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DILATION FOR SETS OF PROBABILITIES

By TEDDY SEIDENFELD' AND LARRY WASSERMAN 2

Carnegie Melion University

Suppose that a probability measure P is known to lie in a set of
probability measures M. Upper and lower bounds on the probability of any
event may then be computed. Sometimes, the bounds on the probability of
an event 4 conditional on an event B may strictly contain the bounds on
the unconditional probability of A. Surprisingly, this might héppen for
avery B in a partition & If so, we say that dilation has occurred. In
addition to heing an interesting statistical curiosity, this counterintuitive
phenomenon has important implications in robust Bayesian inference and
in the theory of upper and lower probabilities. We investigate conditions
under which dilation. occurs and we study some of its implications. We
characterize dilation immune neighborhoods of the uniform measure.

1. Introduction. If M is a set of probability measures, then P(A) =
supp o » P(A) and P(A) = inf, _ ,, P(A) are called the upper and lower prob-
ahility of A, respectively. Upper and lower probabilities have become increas-
ingly more common for several reasons. First, they provide a rigorous mathe-
matical framework for studying sensitivity and robustness in classical and
Bayesian inference [Berger (1984, 1985, 1990), Lavine (1991), Huber and
Strassen (1973), Walley {1991) and Wasserman and Kadane (1992)], Second,
they arise in group decision problems [Levi (1982) and Seidenfeld, Schervish
and Kadane (1989)}. Third, they can be justified by an axiomatic approach to
uncertainty that arises when the axioms of probahility are weakened [Good
(1952), Smith (1961}, Kyburg (1961), Levi (1974), Seidenfeld, Schervish and
Kadane (1990) and Walley (1991)]. Fourth, sets of probabilities may result
from incomplete or partial elicitation. Finally, there is some evidence that
certain physical phenomena might be described by upper and lower probabili-
ties [Fine (1988), and Walley and Fine (1982)].

Good (1966, 1974), in respanse to comments hy Levi and Seidenfeld, Seiden-
feld (1981) and Walley (1991) all have pointed out that it may sometimes
happen that the interval [ P(A), P(A)] is strictly contained in the interval
[P(A|B), P(A|B)] for every B in a partition . In this case, we say that &
dilates A. It is not surprising that this might happen for some B. What is
surprising, is that this can happen no matter what B € # occurs. Consider
the following example [Walley (1991}, pages 208-299].
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Suppose we flip a fair coin twice but the flips may not be independent. Let
H, refer to heads on toss i and 7, tails on toss ¢, i = 1,2. Let M be the set of
all P such that P(H,) = P(H,;) = %, and P(H; and H,) = p where 0 <p < ;.
Now suppose we flip the coin. Then P(H,) = ; but

0 =f(Hng1) <P(H,;) = % =P(H2) <p(H2|H1) =1
and
0 = P(H,IT,) < P(H,) = 5 =P(H,) <P(H,T;) = L.

We begin with precise heliefs about the second toss and then, no matter what
happens on the first toss, merely learning that the first toss has oceurred
causes our beliefs about the second toss to become completely vacuous. The
important point is that this phenomenon occurs nd matter what the ouicome of
the first toss was. This goes against our seeming intuition that when we
condition on new evidence, upper and lower probabilities should shrink toward
each other. :

Dilation leads to some interesting questions. For example, suppose the coin
is tossed and we ohserve the outcome. Are we entitled to retain the more
precise unconditional probability instead of conditioning? See Levi (1977) and
Kyburg (1977) for discussion on this.

To emphasize the counterintuitive nature of dilation, imagine that a physi-
cian tells you that you have probability 3 that you have a fatal disease. He
then informs you that he will carry out a blood test tomorrow. Regardless of
the outcome of the test, if he conditions on the new evidence, he will then have
lower probability 0 and upper probability 1 that you have the disease. Should
you allow the test to be performed? Is it rational to pay a fee not to perform
the test? _

The hehavior is reminiscent of the nonconglomerability of finitely additive
probabilities. For example, if P is finitely additive, there may be an event A
and a partition @ such that P(A) = %, say, but P(A[B) = for every
B, € B. See Schervish, Seidenfeld and Kadane (1984}). A key difference, how-
ever, is that nonconglomerability involves infinite spaces whereas dilation
occurs even on finite sets—dilation cannot be explained as a failure of our
intuition on infinite sets. A key similarity is that both phenomena entail a
difference hetween decisions in normal and extensive form [Seidenfeld (1991}].
It is interesting to note that Walley (1991) regards nonconglomerability as
incoherent but he tolerates dilation.

The purpose of this paper is to study the phenomenon of dilation and to
investigate its ramifications. We believe that this is the first systematic study
of dilation. As we shall point out, dilation has implications for elicitation,
robust Bayesian inference and the theory of upper and lower probabilities.
Furthermore, we will show that dilation is not a pathological phenomenon.

« In Section 2 we define dilation and we give some characterizations of its
oceurrence. Examples are studied in Section 3 with particular emphasis on
e-contaminated models. Section 4 characterizes dilation immune neighbor-
hoods. Finally, we discuss the results in Section 5.
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2. Dilation. Let € he a nonempty set and let €(}) be an algebra of
subsets of (3. Let & be the set of all probability measures on €(). If M is a
set of probability measures on #({1), define the upper probability function P
and lower probability function P by '

P(A) = PigLP(A) and P(A) = ﬁgiP(A),

We assume that M is convex and closed with respect to the total variation
topology.

The most common situation where a set of probabilities M would arise is in
the theory of robustness. In classical robustness [Huber (1981, 1973)) M is a
class of sampling models. In Bayesian robustness [Berger (1984) and Lavine
(1991)] M is a set of prior distributions. Another way the sets of probabilities
arise is through the theory of upper and lower probabilities. For example,
Smith (1961) and Walley (1991), among others, show that if the axioms of
probability are weakened, then we end up with upper and lower prohabilities.
This approach is a generalization of de Finetti’s (1964) notion of coherence.

If P(B) > 0, define the conditional upper and lower probability given B by

P(AIB) = inf P(AnB)/P(B) and ;E(A[B) = sup P(AﬂB)/P(B).
EPeM PeM '

This is the natural way to define an upper and lower conditional probability if
the robustness point of view is taken. If we follow the axiomatic approach of
Walley (1991), then this way of defining upper and lower conditional probabili-
ties can be justified through a coherence argument.

Say that B dilates A and write B ~ A if [P(A), P(A)] is strictly contained
in [P(A|B), P(A|B)). (Here we mean strict containment in the set-theoretic
sense.) If & is a finite partition for which P(B) > 0 for all B € &%, then we
say that & dilates A and we write & ~ A if B - A for every B e 2. We will
say that M is dilation prone if there exists A and & such that B A
Otherwise, M is dilation immune. We will say that & strictly dilates A if
P(A|B) < P(A) < P(A) < P(A|B) for every B € 4. Obviously, if either B C A
or B C A¢ for some B < &, then dilation is impossible. Hence, we shall
assume that ANB # Yand AN B+ Jforall B %

Given M, define

M,(A) = {P.e M; P(A) = P(A)}, M*(A)=(PeM;P(A)= P(A)Y}
and )

M,(AIB) = (P € M; P(AIB) = P(AIB)},

M*(A|B) = (P € M; P(AIB) = P(AIB)}.

It will be useful to define the following two notions of dependence. For P € #
define Sp(A, B) = P(A N B)/(P(A)P(B))if P(A)P(B) > ( and Sp(A, B) =
1if PCAYP(B) = 0 and also define d (A, B) = P(A N B) — P(A)P(B). Note
that Sp(A, B) < 1 if and only if Sp(A4, B9 > 1. (This is a consequence of
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Lemma 3.2.) Also define
57(A,B) = (P e 2 dp( A, B) > 0} and
37(A,B)Y={P<c #;dp(A,B) <0}
The surface of independence for events A and B is defined by
HF(A,BY={Pe P;d,(A,B) =0}
The next four theorems show that the independence surface plays a crucial
role in dilation. A necessary condition for dilation is that the independence
surface cuts through M (Theorem 2.1). But this condition is not sufficient. A

sufficient condition is given in Theorem 2.3. A variety of cases exist in
hetween. These are explored in Sections 3 and 4.

TuroreM 2.1. Let & = (B, Be). If & dilates A, then M n #(A, B) # &.

Proor. Choose P € M, (A|B). Then P(A|B) = P(AIB) = Sp(A, B)P(A).
Dilation implies that Sp(A, B}P{A) < P(A). Thus, Sp(A, B) < P(A)/P(A)
< 1. Similarly, there exists § € M such that S,(A, B} > 1. Let R, = aP +
(1 — a)@ and let S, = S, (A, B). Then S, is a continuous function of @ and
by the intermediate value theorem, there is an a € (0,1) such that §, = 1.
Thus, B, € #(A, B) and by convexity of MR, € M. O

If & strictly dilates A, then M need not be closed for the previcus result.

THeoREM 2.2. If & strictly dilates A, then for every B € &, M, (AlB) C -
3 7(A, B) and M*(A|IB) c 37(A, B).

Proor. Choose P € M _ (A[B). Then P(AR)/P(B)=P(AB) < P(A) <
P(A). Hence, Sp(A, B) <1 so that P € Z7(A, B). Similarly for the other
case. O

THEOREM 2.3. If for every B € &,
M. (AYNI (A, B+ D and M*(A)NnZ*(A,B) + 2,
then 4 strictly dilates A.

Proor. .Choose PeM (AN X (A, B). Then P(A) = P(A) and P(AB)
< P(A)P(B). Thus, P(A)=P(A)> P(AB)}/P(B)=P(AIB) = P(AIB). A
similar argument applies for the upper hound. O

Many axiomatic approaches to probability involve an assumption that we
can enlarge the space and include events with given probabilities. For example,
we might assume that we can add an event that corresponds to the flip of a
coin with a prescribed probability p. DeGroot (1970), Koopman (1940) and
Savage (1972} all make an assumption of this nature. If we include this
assumption, then as the next theorem shows, dilation always occurs with
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nontrivial upper and lower probabilities. For any event A, define s/(A) =
(2, A, A5, A U A%}, Given two algebras # and %, let B ® € he the product
algebra. :

THEOREM 2.4. Suppose there exists E € B such that 0 < a < B8 < 1, where
a = P(E) and B = P(E). Let A and B be events and let B = B @ 9(A) @
SA(B). For A € (0,1] define a set of probabilities on & by M' = {P & P.s® P,;
P € M}, where Py (A} =4, P(B)=A. Here P& P,, ® P, is the product
measure on &' with P, Py and P, as marginals. Then there exists A such
that strict dilation occurs in M'.

PrOOF. We prove the case where g < 1. Choose A such that

0.5 -8 05— a
<A< .
1-5 1l-ea
Let F=(QxAXB)U(EXAXB)U(E°Xx A® X BY). Then P(F) =
P(Fy=¢ and P(FIA)=A+ (1 -Da<i<i+ (1 - A)B = P(F(A). Also,
P(FIA®) = (1 — M)A - B) <3< (1 - A1 - a) = P(F|A). Thus, {A, A9

strictly dilates F. O

REMARK. Theorems 2.2 through 2.4 are still true even if the convexity of
M is dropped. Also, Theorem 2.4 does not require closure.

3. Examples. In this section we consider classes of probabilities that are
common in Bayesian robustness [Berger (1984, 1985, 1990)] and we find
conditions for dilation. A detailed investigation of a certain class of upper
probabilities is given in Section 4.

ExampLE 3.1. In between the necessary condition of Theorem 2.3 and the
sufficient condition of Theorem 2.4 are many cases. This is illustrated with
the following example. Let P € 5 (A, B) and @ € 5*(A, B). Let M be the
convex hull of P and Q. Thus, M is a line segment. If P(A) = Q{A), then
there is dilation. In other words, if the line segment M is parallel to the side of
the simplex corresponding to the event A, there is dilation. This is the
sufficient condition of Theorem 2.4. Now suppose that P(A) < Q(A) and
define the angle of @ with respect to P by

. Q(A
angle(Q, P) = exp( logPEA; — |log SQI}
and the angle of P with respect to @ by
. P(A
- angle( P, Q) = exp{ logQEA; — [log SPI}.

Then there is dilation if and only if both angles are less than 1. In other words,
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dilation occurs when the line segment is sufficiently ‘‘perpendicular” to the
surface of independence.

ExaMPLE 3.2 (s-contaminated classes). The most common class of probabil-
ities that are used in robustness is the s-contaminated class [Huber (1973,
1981) and Berger (1984, 1985, 1990)] that is defined by M = {(1 - e)P + =@,
Q € 7}, where P is a fixed probability measure and ¢ is a fixed number in
[0, 1]. To avoid triviality, assume £ > 0 and that P is an internal point in the
set of all probabhility measures.

LemMa 3.1. Dilation occurs for this class if and only if

d)(A,B)  dp(A,B)  dp(A,B)  dp(A,B)
P(A)P(BY)’ P(A)P(B)’ P(A)P(B°)' P(AP(B)]

£ > max

Proor. Note that

(1 —£)P(AB)
(1-¢)P(B) +¢

P(A) = (1-£)P(A) and P(AIB) =

Thus, P(A|B) < P(A) if and only if dp(A, B) <sP(A)P(B°). The other
inequalities follow from similar computations. O

Remark. If do(A, B) = 0, then dilation occurs for every ¢ > 0.

It is useful to reexpress the above result as follows. Using that fact that
P(BXSp(A°, B) — 1) = P(B°)1 — Sp( A7, B%)) and using the fact that Sp(-, - )
is symmetric in its arguments, P(AX1 — Sp(A, B)) = P(ANSp(A°, B) — 1),
s0 we have (with obvious generalization to larger partitions):

P(AIB) < P(A) ifand onlyif ¢ > {1 — Sp( A, B<))
and
P( A|B) > P(A) ifandonlyif s> (1 — Sp( A, B9Y).

If P is a nonatomic measure on the real line, then there always exist A and
B with positive probability that are independent under P. Thus, S, = 1 and
hence dilation occurs for every £ > 0.
To pursue this example further, we now investigate the hehavior of dilation
= gver subpartitions. Specifically, we show that if there is a partition that strictly
dilates A, then there is a hinary partition that strictly dilates A. To prove this,
we need a few lemmas that apply generally. The proofs of the next three
lemmas are straightforward and are omitted.
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LemMa 3.2, E}_Sp(A, B)P(B;) =1

LEMMA 3.3. Let B = C U D for events C N D = (4. Then
P(CYS,(A,C) + P(IN)S,(A, D)
P({B) '

Sp(A,B) =

ReMarg. Note that the lemma generalizes in an obvious way for a finite set
of disjoint events.

Remarr. If 7w =(C,,...,C,} dilates A, then = dilates A°.

LEMMA 3.4. s-contamination is preserved under subalgebras. That is, if
M={(1 - )P+ £Q: Q arbitrary} and 7 is a subalgebra of €({1), then
M= {1 - &P+ =@Q; Q arbitrary}, where M ,,= (P,; P € M} and P, is the
restriction of P to &7

THEOREM 3.1. Let M be an s-contaminated class. Suppose that =, =
{C,...,C,}) ts a finite partition that strictly dilates A. Then there exists a
binary partition # = (B, B¢} that strictly dilates A.

Proor. Assume that n > 3 and there is no strict dilation in any coarser
partition %' C a,,. We have that
P(AIC;) < P(A) < P(A) < P(AIC).
Define three families of events from w, by
8*={E; 8p( A, E) > 1}, S-={E; Sp(A, E) <1},
 S'={E;S8p(A,E) =1}

By Lemma 3.1 we know that independence is sufficient for dilation in an

g-contamination model. Hence, if S’ # &, we are done. So assume S' = &.
Let C*=(C,en,; C;e8*} and (C*) =C={C,€m,; C;e87}). From

the assumption that 1, strictly dilates A, by the remark following Lemma 3.1,

(1) e> (1 - Sp(A,C)) ifC e Cc+
and N
(2) g > (\1 - 8p(A°CF)) ifCeC.

From Lemma 3.2 and 3.4 and the assumption that there is no strict dilation in
the partition {C,, C7}, we conclude that

(3) e <(1-8p(A5C)) fC el
and ,
(4) e<(1-Sp(A,C)) ifCeC.

Let %, be the cardinality of C* and let % _ be the cardinality of C~. Without
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loss of generality, assume that & =k, < k_. Write =, = {C,,...,C,,
Cpitr...,C,} where C*={C,,...,C,}. ConSIder the events E =(C*=-C)u
- —C)forC € C* and C, EC”

Case 1 If there exists i, j such that SP(A E;;) <1, then by Lemmas 3.2
and 3.4, Sp(A,(C, U C N = 1 since Ef = =(C, U CJ) We arrive at the following

mntradiction. Becausé there is no dilation in T ={Ch. G, Crny o
Ci1,Ciiyy .., (C; U C, by (1) we know that

(%) £ < (1~ 8p(A, E;)).

Since C; € C™ and since {C;, C;} does not dilate A, by (4),

(% %) e =< (1-8pA,C))

But by assumption of dilation in «,, we have, from (1),

(v2%) e > (1 - Sp(A,CF)).

However, Cf = (E;; U C;). Hence, by Lemma 3.3, using (*) and (» )},
e<1—-8p(AE,;UC)=1-8p(A,Cf),

which contradicts (* * =),

Case 2: We have that Sp(A, E;)) > 1 for all i, j so that by Lemma 3.2,
Sp(A, Ef;) < 1. Thus,as Ef; =(C; U C}), Sp(A,(C, U C))) < lforall C; e C*,
C,eC”. Since k,<h_ we may form the % digjoint pairs F, = C; U
Ckﬂ,.‘.,Fk:CkUCkM and Sp(A,F)<1,i=1,...,k Let F= U,F,. By
Lemma 3.3, Sp(A, F) < 1. However, C* C F so either F° is empty or F¢ < §~
so that Sp(A, F) > 1, a contradiction. O

The following example illustrates how the dilation preserving coarsenings
may be quite limited. Let P(AC,) = %, P(AC,) = 3, P(AC,;) = &, P(AC)
= &, P(A“C,) = L and P(A°C,) = 1. So P(A)=P(A%) =1 and P(C) =}
for i =1,2,3. Note that Sp(A,C;)=%,1,% for i = 1,2,8, If £ > 1, then
{C, Cy, st dilates A. Since Sp(A,C,y) = 1, {Cy, C5) dilates A for every £ > 0.
However, if £ < %, neither (C,, Cf} nor {C,, C} dilates A.

Also, the g-contaminated model has the property that the upper and lower
conditionals cannot shrink inside P{A) and P{(A). Specifically, note that
P(A|B) < P(A) if and only if £ > (1 — §p(A, B°)) and P(A|B) > P(A)if and
only if & > (1 — Sp( A%, B9)). At least one of Sp(A, B¢) and Sp(A°, BY) must
be greater than or equal to 1 so that at least one of these inequalities must

_oceur. Hence, it cannot be that P(A) < P(A|B) < P(A(B) < P(A).

ExampLE 3.3 (Total variation neighborhoods). Define the total variation
metric by (P, ) = sup,|P(A) — @(A)|. Fix P and ¢ and assume that P is
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internal. Let M = {@; 8(P, @) < ¢). Then P(A) = max{P(A) — ¢,0} and P(A)
= min{P{A) + ¢, 1}. Also, _
max{ P{( AB) — &, 0}
max{ P(AB) — ¢,0} + min{ P(A°B) + ¢,1}

P(AIB) =

There are four cases:
Case 1. P(AB), P(AB*®) < &. Dilation occurs if and only if

e > max{—~dp( A, B)/P(B¢),dp( A, BY/P(B)}.
Case 2: P(AB) < ¢ < P(ARB¢), Dilation occurs if and only if
e > max{~dp(4, B)/P(B), ~dy(A, B)/P(B),dp(A, B)/P(B)}.
Case 3: P(AB®) < ¢ < P(AB). Dilation occurs if and only if
¢ > max{dp( A, B)/P(B°), —dp( A, B)/P(B*),d( A, B)/P(B)}.
Case 4: £ < P(AB), P(AB*®). Dilation occurs if and only if
e > max{-dp(A, B)/P(B),ds(A, B)/P(B°),
~dy(A, B)/P(B°),dp(A, B)/P(B)).

ExampLE 3.4 (Density ratio classes). Let QO ={w,,...,w,} and let p =
(p,, ..., p,) be a probability vector with each p, > 0. For 2 > 1, define the
density ratio neighborhood by M, = {q ={q,,...,9.)% q9./q; < kp,/p; for all
i,j1. [A more general case is considered in DeRobertis and Hartigan (1981).
Also, see Section 4 of this paper.] Then P(A) = P{A)/(P(A) + kP(A%)),
where P is the probability measure generated by p. Alse, P(A|B) =
P(AB)/(P(AB) + kP(A°B)). If d.(A, B) =0, then [P(A|B), P(AIB)] =
[P(A), P(A)] so dilation does not occur. If d (A, B) > 0, then P(AIB) > P(A)
so dilation does not oceur. If dp(A, B) < 0, then P(A|B”) > P(A) so dilation
does not occur. Thus, dilation never occurs. This class also posseses many
other interesting properties—see Wasserman (1992).

4. Neighborhoods of the uniform measure. In Bayesian robustness it
is common to use sets of probabilities that are neighborhoods of a given
probahility measure. In this section we investigate neighborhoods of the
uniform measure on a compact set. Subject to some mild regularity conditions,
we characterize dilation immune neighborhoods. Specifically, we show that the
only dilation immune neighborhoods are the density ratio neighborhoods. This
has impartant implications in Bayesian robustness since it means that, unless
these neighborhaods are used, dilation will be the rule rather than the
exception. It also shows that it is the structure of the class, not necessarily its
size, that causes dilation. The mathematical techniques used here are based on
continuous majorization theory as developed in Ryff (1965), See also Hardy,
Littlewood and Pélya (1952), Chapter 10, and Marshall and Olkin (1979). The
restriction to neighborhoods around the uniform is, of course, a special case.
But the restriction to this special case allows for an intense investigation of the
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phenomenon. Furthermore, neighborhoads of uniform priors are an important
special case in Bayesian robustness.

Let Q = [0, 1], let £{£) be the Borel sets and let p be Lebesgue measure.
Given two measurable functions f and g, say that f and g are equimeasur-
able and write f~ g if u(o; flo) > t}) = plo; glw) > t}) for all t. Loosely
speaking, this means that g is a “permutation” of f. Given f, there is a
unique, nonincreasing, right-continuous function f* such that f* ~ f. The
function f* is called the decreasing rearrangement of f. We say that f is
majorized by g and we write f<g if [{f= fig and [{f* < [Jg* for all s.
Here [f means [f(w)u(dw). Let A(f) be the convex closure of {g; g ~ f}. Ryff
(1965) shows that A(f) = {g; g < f}. We define the increasing rearrangement
of f to be the unique, nondecreasing, right-continuous function f, such that

Let u(w) =1 far all o< ). Let m be a weakly closed, convex set of
bounded density functions with respect to Lebesgue measure on 3, let M be
the corresponding set of probability measures and let P and P be the upper
and lower probability generated by M. We call m a neighborhood of u if
f e m implies that g € m whenever g ~ /. This condition is like requiring
permutation invariance for neighborhoods of the uniform measure on finite
sets. All common neighborhoods satisfy this regularity condition. From Ryff’s
theorem, it follows that if € m and g </, then g € m. The properties of
such sets are studied in Wasserman and Kadane (1992). If m is a neighbor-
hood of i, we shall say that M is a neighborhood of w. To avaid triviality, we
assume that M # {u). Next, we state a useful lemma. The proof is by direct

caleulation and is omitted.

LEMMA 4.1. Let & = (B,, ..., B,} be a finite partition of ( and let fand g
be two probability density functions such that (5 f= g gfori=1,...,n. Iff
is constant over each B,, then f < g.

For every f define

esssup f
o(f) = essinf f’
where esssup f = infl; u(lw; f(w) > #) =0} and essinf f = sup(t; u({o;
flw) < t}) =-0). For k = 1, define y, = {f; p(f} < k}. This is the density ratio
" neighborhood of . Let &/={A € €(Q); 0 < w(A) < 1}. For every A€ &/
define a density f, by~

g(ﬁ ifweA

~ !_L(A_)’ t
fA(w) - 1 '_f(A) ‘f &
__—]_—,(_L(A)’ I @ .

Let P(da) = fw)u{dw). Note that P,(A) = P(A). Let m (A) = (dP/du;
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P € M,(A)). Also define f* by

E(.i)., if c A
fhy = | A ress
1L-P(A) ]
m, if w e AS.

We define P* and m*(A) analogously.

LeEMMA 4.2. Suppose that m is a neighborhood of u. For every A € &7,
fa€m, (A

Proor. Choose f& m,(A) Then by Lemma 4.1, fA<f so f, € m. But
fo fa=P(A)so f,em, (A) O

For every ¢t € (0,1) let A, =1[0,¢], m,= m (A), m' —m*(A ), fi=f%
and f, = f, . Define F(z) = P(A ) and F(t) = P(A,). Alsa, define

) e ()

Let ¢ = 1/(k‘t +Q1 - t)) and ¢, = 1/(¢t + k{1 — £)). Then f* is equal to ¢'&’
on A, and is equal to ¢! on AS. Similarly, £, is equal to ¢, on A, and is equal
to e, Iz on Aj. It is easy to show that ' > 1 and &, > L. If u(A) = n(B), then
P(A) = P(B) and P(A) = P(B). Also, F(t) + F(1 — t) = 1. Hence, k, = k'".
In particular, k% = &, ,, = k, say.

f=

LEMMa 4.3. Suppose that M is a dilation immune neighborhood of .
Then, forallt €€0,1), k* < b and k, < k.

Proor. Consuler t € (0, 7). Suppose that kf > k. There exists n = 1 such
that nz < 2 < (n + 1)t. Suppose that nt < ;—the proof for the case where
nt = % is similar. Define W =[G - Dt it)fori=1,...,n and W, , = [nt, 3).
Define Y, =[3 + G — 1,3 +it)for i=1,...,n and Y,.. =[5 +nt1] Let
B,=W,UY, A=A, , and P(dw) =f"*w)u(dw). Then A is independent
of each B, under P, Let f be a rearrangement of f° that is equal to ¢‘k* on
W, and that is equal to ¢’ over all of Af ;. [This is possible since each W, has
,tL(WL-) < t.] Let @{dw) = f-(w),u.(dcu) and a; = w(W;) = u(¥;). Then

QW)
QW) + Q(Y))
_ 1 B 1
1+ (Q.Y)/Q(W)) 1+ (c‘ai/c‘}z‘ai)
1 1
T+ (1787 1+ (1/k)

= P(A|B,) = P(A) = P(A).

P(AIB,) = Q{AIB;) =
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Now, P(A|B,) < P,(A|B,} = P,(A) = P(A). Hence, {B,,..., B, ,} - A which
is a contradiction. Thus, k* < k. A similar argument shows that k, < £. The
relation &, = &' ~* establishes the result for all ¢ € (0,1). O

LemMMA 4.4.  Suppose that M is a dilation immune neighborhood of .. Then
ki=k,=kforallt<(0,1).

Proor. We prove the result for k‘. Consider ¢ & (0,3). Suppose that
Rt < k. Let P(de) = fY¥o)uldw), Qdw)=fw)u(dw) and R(dw) =
flep(de). Let W=1[0,w} and Y = (3, 1] where w = ¢/(2(1 — ¢)). Note that
w <t so that Wc A, Let B=WUY and A=A, Then A and B are
independent under bhoth @ and E. By a similar argument as that in
the previous lemma, we deduce from the fact that k' < £, that P(A|B) >
P(AIB) > Q(AIB) = Q(A) = P(A). Let f equal ¢*/*k on [0,¢] U (¢ + %, 1] and
equal ¢/ on[¢t,¢ + ). Then f~ /2 and P(AIB®) = P(AIB®) > Q(A|B*) =
Q(A) = P(A), where P(dw) = fla)u{dw). Also, P(A|B) < R(A|B) = R(A) =
P(A)and P(A|B°) < R(A|B®) = R(A) = P(A). We have a dilation which is a
contradiction; thus, ‘> k. By a similar argument k, > 2. From B, =k'"?
this holds for all ¢ € (0,1). From the previous lemma, ‘< £ and k, < k.
Hence, the claim follows. (]

Let F,(t) = P,(A,), where P, is the upper probability generated by the
density ratic neighborhood y,. The next lemma is a standard fact about
density ratio neighborhoods and we state it without proof.

Lemma 4.5. F,(¢) = kt/(kt + (1 - £)).

LEMMa 4.6.  If M is a dilation immune neighborhood of ., then F = F, for
some k = 1.

ProoF. Follows from the last two lemmas. O

We conclude that if M is dilation immune, then M generates the same
upper probability as v,. But this does not show that m = y,. To show this, we
need one more lemma. Given % > 1 and ¢ € (0, 1), define r** by

rhi() = etk ifw <t
e, if @ > £,

where ¢*! = {kt + (1 — £)}7 ..
The next lemma gives an integral representation of density ratio neighbor-
hoods.
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Lemma 4.7 (Integral representation of density ratio neighborhoods). The
following two statements are equivalent:

@ fem, -
(ii) There exists a probability measure R on €(Q) and a number z € [1, k]
such that for almost all w, f*(w) = [dr>Xw)R{(dt).

Proor. Suppose (i) holds. Then 1 <z = f*(0)/f*(1) < k. Let hlw)=
f*(@)/f*(1). Define a set function V hy V([0, w]) = (z = h{w))/(z — 1). Then
V(1) =1 so V can be extended to be a probabhility measure on £(Q). Let
h¥Hw) = r*"w)/c**. Then, for almost all o, {§A*(w)V{dt) = V(0,w]) +
z(1 — V([0, @])) = h(w). Now

fH(0) = F*W)Aw) = () [ 'h*4(0)V(de)

=‘L2J”(w)R(dﬂ,

where R is defined by R{0, ]) = V([0, w]) F*(1) /c**. Now we confirm that R
is a probability measure. We have

1= ['*(w)n(da) = [ [*r(0) R(dt)u(da)

_ fol,{olrz'e(‘”)”(dm)R(dt) = J:"R(dz) =R(0).

Thus, R is a probability measure, Hence, (ii) halds.
Now suppose that (ii) holds. Then o( f) = £*(0)/f*(1) = h(0) = z for some
z €[1, k]. Thus, (i) holds. O

THEOREM 4.1. Suppose that M is a neighborhood of .. Then M is dilation
immune if and only if m = v, for some k.

Proor. Suppose that m is dilation immune, From Lemma 4.4 we conclude
that there exists £ = 1 such that r*¢ & m' for every t € (0, 1). It follows that
r>* € m for every t € (0,1) and every z € [1, k]. Let f < y,. By Lemma 4.7, f
is a mixture of the r**’s so that f < m. Hence, y, € m.

Now choose f & m. Suppose that f & y,. Then p(f) = f*(0)/f*(1) =x > k.
Let ¢t € (0, 3) and choose an integer n such that (1 — 2£)/(2£) < n < 1/(2t).
Define W,,...,W,, Y,,...,Y,, B,,..., B, and A as in Lemma 4.3 and define
R’ by

[k
fotf’ if w e W,
[ i
Rlo)=¢1 — ifwecQ-B,
, () 1_2tr 1w L1
1 #*
h?f, ifwey,.
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Then k% € m since hY < f. For ¢ sufficiently small, p(k%) > k. Then, by the
same argument used in Lemma 4.3, (B,,..., B, ,} ~» A—a contradiction.
Thus, f must be in vy, and we conclude that m = vy,.

Finally, we show that y, is dilation immune. Consider any A. Let A = u(A).
Choose a partition & ={B,...,B,}). Let W,=B,"A and Y, =B, n A" It
can be shown that P(A[B;) = ku(W)/(hu(W) + u(Y))) and P(A|B;)=
p(W) AulW,) + 2u(Y))). Also, P(A) = ha/Cka + (1 — a)) and P(A) =
a/(e + k(1 — a)). If this partition dilates A, then, fori = 1,...,n, IS(AiBL-) >
P(A) which implies that w(Y;)/u{W,) < (1 — a)/a. Similarly, P(A[B)) <
P(A) which implies that u(Y,)/uw(W,) > (1 — a)/a. But for a dilation to occur,
at least one set of these inequalities must be strict. This is impossible. Hence,
there can be no dilation. O

We have shown that the only dilation immune neighborhoods of x are
density ratio neighborhoods. Recall that, for Theorem 4.1, m is assumed to be
a set of density functions which rules out total variation neighborhoods and
g-contamination neighborhoods since these neighborhoods contain measures
without densities. But, following Section 3, it is easy to see that these
neighborhoods are dilation prone. Another class of densities, called density
bounded classes, is discussed in Lavine (1991). Our theorem shows that this
class is dilation prone.

5. Ramifications of dilation. In Bayesian robustness neighborhoaods of
probability measures are often used—see Berger (1984, 1990) and Lavine
(1991). Unless density ratio classes are used, and most often they are not, the
robust Bayesian must accept dilation. When sets of probabilities result from
incomplete elicitation of probabilities, one response to dilation might be to
elicit more precise probabilities. But the results in Section 4 show that this will
not prevent dilation. Generally, it is the form of the neighborhoaod, not its size,
that causes dilation. This does not mean that dilation prone neighborhoods
should be abandoned. The fact that a dilation may occur for some event may
not be a problem. However, it is important to draw attention to the phe-
nomenon. We believe that few people who use robust Bayesian techniques are
aware of the issue.

Dilation also has ramifications in decision theory. Specifically, Seidenfeld
(1991) shows that dilation causes the usual relationship between normal and
extensive forms of decision problems to break down.

Dilation provides an alternate axiomatic basis for precise probabilities, A
precise probability may be regarded as a complete order on the set of all
random variables {gambhles). Many critics of prohability theory insist on weak-
ening the complete order and using, instead, a partial order. This leads to
upper and lower prohabilities [Walley (1991)]. Now suppose we start with a
partial order and add two more axioms. The first is the existence of indepen-
‘dent coin flips. Second, suppose we demand dilation immunity as an axiom.
Then, by Theorem 2.4, the upper and lower probabilities must agree {as long
as we rule out the trivial case that dilation is avoided by having upper
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probabilities equal to 1 and lower probabilities equal to 0). Hence, the theory of
upper and lower probabilities must either tolerate dilation or must rule out all
but precise probabilities. In defense of the former, see Walley (1991), page 299.

To conclude, we mention some open questions that we are currently investi-
gating. First, we are exploring the counterparts of Lemma 3.1 and Theorem
4.1 applied to more general convex sets. For example, under what conditions
will there be dilation if the convex set of probabilities is generated by a precise
likelihood and a set of prior probabilities? Second, we are considering whether
the “coarsening result” of Theorem 3.1 applies more generally. Third, we are
investigating statistical applications of dilation. For example, Seidenfeld (1981)
and Walley (1991), page 299, argue that randomization in experimental design
can be understood in terms of sets of probabilities. But then dilation occurs
when the ancillary data of the outcome of the randomization are known.
Finally, the special role that independence plays in dilation (Section 2) sug-
gests that there may be useful relations between dilation and the analysis of
contingency tables using imprecise probabilities.
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