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Call an economy revealing if underlying preferences are recoverable from asset
prices, specifically from the prices of aggregate equity or a one-period discount
bond. In a Lucas { Economerrica 46 (1978), 1429-1444 ] model, with Kreps—Porteus
[ Econometrica 46 (1978), 185-200] nonexpected utility and Markov output growth
rate process, local recoverability is shown to be a generic property. In this sense it
is generically true that asset pricing models based on the more general Kreps—
Porteus utility have more explanatory power than the usual expected utility, and
both the risk aversion and intertemporal aspects of the Kreps—Porteus utility can
be recovered from a single dynamic equilibrium. Journal of Economic Literature
Classification Numbers: D11, G12, C60, D50, D80. ¢ 1993 Academic Press. Inc.

1. INTRODUCTION

Spurred by laboratory evidence contradicting expected utility theory, a
number of generalizations have been studied. In addition, some attention
has been devoted to the question of whether these generalized theories are
useful in addressing standard problems in economics and in explaining
market, as opposed to laboratory, data. In particular, Epstein and Zin
[7, 8] demonstrate the theoretical and empirical gains from generalizing
the standard intertemporally additive, expected utility model of preferences
for the study of consumption and asset pricing. They formulate and use the
following nonexpected utility function, which is based on earlier work by
Kreps and Porteus [127],

U=[Cr+BEU, )Y, 120, (1.1)

* [ would like to thank Larry G. Epstein for posing to me the problem studied in this paper
and for many suggestions and comments. [ am also grateful to Darrell Duffie for helpful
suggestions. 1 am responsible for errors. This paper is part of my Ph.D. thesis at the
University of Toronto.
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where C, is the consumption, « a risk aversion parameter, § the discount
factor, and o=1/(1 —p) the elasticity of intertemporal substitution. It
includes the following standard homothetic expected utility function as a
special case when o =p:

Ur=E, ¥ pCr, .. (1.2)
s=0

In (1.2), x represents both the risk aversion and the elasticity of intertem-
poral substitution. An advantage of the generalization of (1.2) with a = p to
(1.1) with o # p is the separation of the risk aversion parameter from the
elasticity of intertemporal substitution. Such separation would seem to be
desirable since attitudes towards risk and towards intertemporal variations
are conceptually distinct.

One important question concerning the Kreps—Porteus utility function is
whether one could recover both ¢ and a from a single dynamic equilibrium.
In particular, could an observer of equilibrium consumption and asset
prices in a given economy distinguish between the intertemporal expected
utility case (o« = p) and the more general case (= # p)? If not, then the more
general model does not provide any additional power for explaining time
series from a single economy. Kocherlakota {11] has shown that if
consumption growth rates are i.i.d., then indeed none of the Kreps-Porteus
parameters «, f, and p is uniquely determined and the Kreps—Porteus
model is observationally equivalent to the standard model. The intuition
underlying this result is clear. Asset prices at time ¢ reflect marginal rates
of substitution at the conditional consumption program faced by the agent
at 1. If that program does not vary sufficiently across states, as in the i.i.d.
case, then marginal rates of substitution will be delivered only on a limited
domain. Indeed, the iid. case is analogous to the situation in demand
theory where a single price/quantity data point cannot be used to pin down
the underlying utility function. This intuition suggests that Kocherlakota’s
observational equivalence result should apply only to a “smali” set of
endowment processes.

The objective of this paper is to confirm the above intuition by
conducting a more general analysis of the recoverability question. The
framework adopted is a Lucas [14] general equilibrium endowment model,
modified so that the representative agent has Kreps—Porteus utility and
specialized so that the output growth rate follows a first-order Markov
process with a fixed and finite number of states. The assets considered are
aggregate equity and a one-period discount bond. I show that generically in
the space of growth rate processes, the asset prices are locally determinate
(unique) and the underlying preferences are locally recoverable, where a
property is generically true if it fails only on a closed zero-measure subset
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of economies. In this sense, for most economies, both risk aversion and
intertemporal aspects of the Kreps—Porteus utility function can be
recovered from a single dynamic equilibrium.

Prior to considering recoverability, I examine the determinacy of
equilibrium asset prices. In an economy with complete markets and finitely
many consumers and commodities, Debreu [2] shows that the economy is
generically determinate. For the present model, Epstein [6] shows that

P:(ho) = pﬂ),(,), ;){E[Uz( YI , Yza m,”ho] }p»‘a,

where {Y,}7_, is the output process, i, the history, and P} the equity
price. This implies that if the utility solution U from (1.1) is unique then
so 1s the equity price. Thus the potential cause of nonuniqueness of asset
prices in our model is that the recursive relation (1.1) may have nonunique
solutions (Epstein and Zin [7, pp. 963] offer a uniqueness result when
ap > 0). This gives rise to the problem of determinacy of equilibria. In other
words, determinacy is an issue because I take the recursive relation (1.1)
as given rather than a utility function. For this reason, the problem of
determinacy is closely related to the analysis in Lucas and Stokey [15], in
which a unique utility solution to the general recursive equation in a
deterministic world is proven.

With complete markets, Mas-Colell [17] shows that if the economic
analyst can observe an excess demand function Z*(P), VP, then the agent’s
function can be uniquely recovered. Roughly speaking, I assume the obser-
vability of the inverse demand function. The main difficulty here is that
observability is assumed only for a single endowment process, and thus
recoverability will only be possible if the conditional distribution function
describing future growth rates varies sufficiently across states. For example,
one nonrevealing case is the i.i.d. growth rate model in Kocherlakota [11].

This paper proceeds as follows: Section 2 describes the model and the
principal results, Theorems 1-3, on determinacy and recoverability.
Section 3 mentions some extensions. Proofs are collected in appendices.

2. DESCRIPTION OF THE MODEL AND THE RESULTS

This section consists of three subsections. 1 will first describe briefly the
definition of utility, then give the definitions of environment, economic
model, and equilibrium, and then give the definition of a revealing
economy. Finally, the main results of this paper, Theorems 1-3, are
presented and discussed.
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2.1. The Utility Function'

Consider an infinitely lived individual who gains utility from the
consumption of a single good in each period. The formulation of the
individual’s intertemporal utility is based on two key assumptions. The first
assumption is that,? in period ¢, with random utility U, , , from the period
t+ 1 onward, the individual computes a certainty equivalent u, of the
random future utility

u,=(E,U*, )", 0£a<1,

r+1

where a is the risk aversion parameter. Second, the individual is assumed
to combine the certainty equivalent g, with current consumption C, via an
aggregator W of CES form

Wic, z)=(c” + Bz*)"?, ¢,z20,0£p<1,0<fi<],

where p is the elasticity parameter and f the discount factor. Thus the
intertemporal utility U is defined recursively by the following:

U,=[Cr+BE UL, )17 120, (2.1)
A solution {U,}”., of this equation is a sequence of Borel measurable
mappings U,: R - R, , t =0, satisfying (2.1). Note that the cases of a =0
or p=0 could be similarly handled but are ignored for simplicity here.
Following Epstein and Zin [7], « is interpreted as a risk aversion
parameter with the degree of risk aversion increasing as o« falls, and
o=1/(1—-p) is the elasticity of intertemporal substitution. Thus p is
interpreted as reflecting intertemporal substitution. When a = p, the above
formulation of utility becomes the common homothetic expected utility

formulation:
e 1/2
o-[5(Er )]

Of immediate concern are the circumstances under which there exist
intertemporal utility functions U satisfying (2.1). Epstein and Zin [7,
Theorem 3.1 and p. 9637 offer an existence result and, for the case where

! See Epstein and Zin [7] for a rigorous and detailed presentation.

2 In this paper, all random variables are real valued and are defined on a given probability
space (£2, #, P). Given also is an increasing family {#,} "~ , of sub-g-algebras corresponding
to the available information, time-by-time. I use E, to denote a version of %-conditional
expectation, and I suppress “almost surely” for simplicity, taking equality between random
variables to mean almost sure equality. Unless otherwise indicated, any random variables
denoted with a r-subscript, as in “X,,” are taken to be #-measurable.
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ap >0, a uniqueness result. See also Chew and Epstein [1] for an
axiomatic analysis. Epstein [6] shows that if U is unique then so is the
equilibrium price of equity. Therefore, nonuniqueness of equilibrium asset
prices can only result from nonuniqueness of U. This relates to the question
of determinacy of equilibria explained in the Introduction.

2.2. The Economy

Consider a closed economy with one representative individual. There is
one consumption good and two assets: equity and a one-period discount
bond. In period ¢, the individual consumes C, units of good, and holds Z_,
shares of equity and Z,, shares of bond.

The environment. The output level in period 7 is Y,, which is a
positive random variable. The (gross) growth rate process {X,} . ,. defined
by X,,,=Y,,,/Y, for t 20 with given Y, >0, is assumed to follow a first-
order Markov process, ie., there is a function F(-|-): R* — [0, 1] such
that, at any time r>0, X,,, has F(-|X,) as its conditional distribution
function. In addition, for a given constant B>0, assume that X, has
support in [0, B], for all r> 1.

The bond. The one-period discount bond pays 1 unit of consumption
good in the following period. Total supply of the bond is 0. There is a
Borel measurable function P,: R*>— R, , such that, at any time 1, the
bond price 1s P,(X,, Y,).

The equity. The equity pays a sequence of dividends {Y,} " . Total
supply of equity is 1. There is also a Borel measurable function
P.:R?> >R, , such that, at any time 1, the equity price is P,(X,, ¥,).

Given the bound B of the output growth rate, let

€=1{{C,} ol C, isaF-measurable random variable, 0 < C, < MB',
for ail r > 0 and some constant M >0},

and, given a constant 4 > 1, let

A={{A,}.,14,is a #-measurable random variable, |4,| < 4, forall 1 > 0}.

Let U,: RY — R be a solution of (2.1). Then the consumer’s problem is
J(Xo, Yo, Wo) = max Uo(Co, Cy, Gy, )
{Cile€6. {4}en
s.t. W1+1=/11(W1—Cr)Rel+l+(1'_'{t)(Wl‘Cr)Rhl+l
given X,, Yy, W, =0, (2.2)
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where W, is the wealth; 4, is the proportion of investment in equity; R, ,
and R, ,., are, respectively, the (gross) returns for equity and the bond,

YI+I+P(-(XI+leI+l) R _ ! .
» b+ 1= v v
P‘,(X,, Yr) Pb(Xn Y,)

Rl’ 141 =
and Z,,,, and Z,, , are, respectively, the shares of holdings in equity and
the bond,

7 =}.,(W,—C,) A =(l_;l)(WI_Cl)
cr+ 1l = P‘,(X,, Y’)* bhir+1= Ph(X“ Y,)

As required by Epstein and Zin [7], T will assume that the returns are
bounded: there exist constants R and R, 0 = R < R < o, such that R,, and
R, , as random variables have supports in [R, R], for all > 1. Epstein and
Zin [7, Theorem 5.1] offer an existence result of a maximum for the con-
sumer’s problem (2.2). Since all the functions involved in the maximization
problem (2.2) are Borel measurable, J is also Borel measurable. By the
recursive definition (2.1) of U,, any solution of (2.2) is a solution of the
“Bellman equation” (Ma [16] offers a proof)

J(XI9 YH W{): max {C;’-{-/))[E,J“(X,* 1 Y1+I» Wl+l)]u“1}lc‘p
O0< S MB. A< 4

s.t. Wl+ 1 =).,(W,— Cr) Rel+l + (1 _;~1)(Wr— C:) Rht+1

given X,, Y,, W, fort=0 (2.3)

for some constant M > 0.
For solutions {C*}, {Z*}, and {Z}} of (2.3), equilibrium conditions
are

C*r=Y,, Z¥ =1, Zr, ., =0, for r=0. {2.4)
Following Lucas [14],

DEFINITION.  An equilibrium consists of three functions P,, P,, and J
satisfying (2.3) and (2.4).

A dynamic programming analysis would provide circumstances under
which the solutions of (2.3) are solutions of (2.2). Such a Verification
Theorem is, however, not needed for this paper. Equilibria defined by (2.2)
and (2.4) are included in equilibria defined by (2.3) and (2.4). If local
uniqueness (determinacy) and recoverability of utility from equilibrium
asset prices are true for the latter set of equilibria, they must also be true
for the former set of equilibria. That is, my principal results regarding
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determinacy and recoverability are made stronger by my use of a weak
notion of equilibrium.

By Formula (6.6) in Epstein and Zin [7], the Euler equations for this
dynamic problem are

. Co\ 7, Coon\* 7
():E[[(——C——l) R;anlRmele:El[(‘“Ctl) Rnxr+IRht+I]’ (25)

where R,,, . =4, R,, ., +(1 =AY R, . is the market return, y =a/p, and
d=pf"". Note that by the boundedness of the consumption growth rate
and asset returns the integrability of the expectations in (2.5) are
guaranteed. Conditions (2.4) immediately imply

L=1, Ryuiii=Reisns W,=Y+P(X,Y,) for (>0

Note that the budget constraint is satisfied in the equilibrium. By (2.5), we
thus have the following pricing equations:

. Y, P(X,...Y, i
0=E[X7+,’< +1+P (;t;/l) +l)):|

E X* ¥ Yl+1+Pe(Xr+le:+l) i 1
P(X,Y) Py(X,. Y]

Since Y,,,=2X,,,Y,, Eqs. (2.6) imply that there are Borel measurable
functions Q,, Q,: R—- R, such that

(2.6)

P(’(Xﬁ YI)ZQL'(XI) Yl’ Pb(Xl’ Yl):Qh(Xr)w

where Q. and Q,, satisfy

T (110X, 0. Y
"‘E'[X'“< Qe(X,) )] E[X'“< 0.(X,) ) Qhum]'

The boundedness of the asset returns will be satisfied if there exist
constants Q and 0, 0<Q <0<, such that Q< Q(x), Q.(x)<Q, for
0 < x < B. The boundedness of Q. and @, also ensures the integrability of
the above expectations. Since X, ,, ~ F(-|X,), the above set of equations
becomes

3Qi(X) = [ 2[1 +Q.(2)) dF(z] X))
{2.7)
80,(X,) Q1 (X)) = [ 27 1+ 0,(2)) ' dF(z) X))
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Following Mehra and Prescott [19]. to ensure tractability, I assume
that?

Assumption. The (gross) growth rate X, takes only m distinct positive
values x,, x,, .., for all 1= 0.

m »

Let q,=0.(x,), ¢,=0Q,(x;), and n,;=P(X,=x,lX,=x,). Then (2.7)
becomes

m

dqi= ¥, myxi(l+4q,)
! (2.8)

”i

()th u Z nl/ / ](1+qu1’)"' :

i=1

fori=1,2,.., m Let

Typ Tz s Ty

oy T2 Tom
=1 : . .

U T2 e T oom

X= (xl > X2y ey xm)* q.= (qul y Ge2s o qwn)’ qr = (th > b2y ey quJ’
and
O=(a,7,90), E=(x. 1)

Then (2.8) becomes

Il +q.) 4
n : :
X, (1+g m)" q.
G0, q,.9,, &)= e ¢ -6 o =0.
b l(l‘f"]u) gpiql; "
n :
xlln ](l + q('m)y : qhmq:m !
(29)
[n particular, ¢, is determined by
Yil+q.) e
x3(1 )’ g’
HO, g &y=11| 20 HE) | 54| (2.10)
X2 (14 ) Gim

3 The boundedness of the output growth rate and asset returns is automatically satisfied
given this assumption.
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Let the space of parameter vectors (x, f3, p) be
Oo={(2, B, p)eR | a£0,p#0, 1, f>0}.

The cases of x=0 or p=0 could also be considered. Here I ignore them
for simplicity. The results regarding these cases are mentioned in the
concluding remarks of Section 4. For our model to make economic sense
and to guarantee the transversality condition (see Epstein and Zin [7] for
details), we should restrict further: x, 8, p < 1. But these restrictions are not
required by the mathematical proofs in this paper. And if conclusions in
this paper are true for all the parameter vectors in @, they are of course
true for all parameter vectors in a subset set of @,. For convenience, [ will
use {x, 7, &) instead of (x, f§, o) as preference parameters. Let

O=1{(0.7,8)eRa#0,2#75>0).

By directly solving transformation a =a, y=x/p, d=f "7 for (a, §, p} given
(2, 7, 6), we know that these two parameter vectors are related by a smooth
(differentiable of any order) one-to-one relation defined between &, and 6.
Therefore, given the parameter spaces, (2, y, ¢) and («, 8, p) are equivalent
for our discussions.

Let

X={(x,,X,,..,%,)eR" Xy, X4, .., X, are distinct }
] 2 m + + i 2 m 3

and

1

m
Tim = 1— Z

j=1

AE{HHQIWW" M>QV%.

The space of all economies is then defined as

Ly
Iy 2
é >m?x(Zn,-,x,) }
'

with the induced Euclidean topology and Lebesgue measure.

EE{(X, IMeXxd

Remark 2.1. The condition &'% > max,(} n;x})'" or f <
min, (3 m,x7)”** means that the discount factor # is relatively small. T will
show in the proposition in Section 3.2 that this is sufficient for the existence
of asset prices and thus an equilibrium.® It can be shown that it is
necessary when the economy is close to certainty (1.e., when =n,’s are close

to 1). Under expected utility (x=p), if we let a,; = fn,x7 and A=(a;), ..

*Since [max,{x,}] "<min (¥ 7n,x7) "7 when p>0, the assumption relating fi. p.
and consumption growth rates in Epstein and Zin [7, Theorem 3.1] is stronger than my
restriction.



342 SUSHENG WANG

Mehra and Prescott [19] show that the condition “4”" —0 as n — o™ is
necessary and sufficient for the existence of equilibrium. My condition
reduces in this expected utility case to a stronger condition “3; a, < 1, Vi.”
Note that I use Brouwer’s fixed-point theorem rather than the Contraction
Mapping Theorem to prove existence. The Contraction Mapping Theorem
would provide both existence and global uniqueness, while the Brouwer
Theorem only offers existence. However, the latter requires weaker
conditions than the former.

Remark 2.2. In the definition of the space of economies, the following
set could also be included:

o= 1(x, Me R'"zin!,=0 or 1 for some i, j}.

This set can be easily shown to be a closed null set in R"'z, where a set 18
called a null set if it has zero Lebesgue measure in the appropriate
Euclidean space. Therefore, my results are unaffected if this set is included
in E. This set is excluded from E for convenience.

2.3. Determinacy and Recoverability

The main results of this paper are the theorems stated in this subsection.

A property on the space of economies is generic if it fails only on a closed
null subset of E. Since a null set necessarily has empty interior, my
definition of genericity is stronger than the usual one, implying that the set
of “bad economies” under my definition is generally smaller than the one
under the usual definition.

Given 8¢ O, & €k, equilibrium asset prices are said to be determinate if
they are locally unique and smooth: for any g¢,, ¢,eR” ,_ satisfying
G(0.4,,g,,£)=0, there exist a neighborhood N, of (6,8),
neighborhoods N, and N, of ¢, and ¢,, respectively, and unique and
smooth price functions ¢*: N, ,,— N, and ¢}: N, . — N,, such that

‘lt?é‘ll*(()» (SE)’ qh:q:((),éa)
and
GLO, qX(0,687), g5(0,67),6']=0, V(0,6 )eNy 4.

THEOREM | (Determinacy). For m= 1, for any parameter vector G € 0,
there exists a closed null subset of, of E such that equilibrium asset prices in
any economy & e I\, are determinate. In other words, asset prices are
generically determinate, for all 0 € 6.

This theorem 1is technically a necessary step towards recoverability
analysis. Notice that the smoothness of g* and ¢} is with respect to the
vector (6, &), which has nothing to do with the smoothness with respect to
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the state of an economys; the latter is obviously satisfied since there are only
a finite number of states. By Mas-Colell [18, pp.316-317], persistent
equilibria are those that do not depend too precisely on environmental
variables; more precisely, persistence means that the equilibrium moves
smoothly as system parameters shift smoothly. The smoothness of the asset
prices directly implies the persistence of the equilibrium. Theorem 1 serves
as both a lemma for Theorems 2 and 3 and an extension of the literature
on determinacy to a model with nonexpected utility preferences.

Given a parameter vector e @ and an economy & € E, the resulting
asset price ¢(8, &) (¢ = q. or ¢q,} and the economy & are said to be (locally)
revealing if there exists a neighborhood N, of 6 such that, V§', 8" e N,,

0 #0"  implies (0, &) #q(0", &).

That is, there is a neighborhood of 6 in which different parameter vectors
give different asset prices in the economy &. A revealing asset price
theoretically gives modelers the possibility of identifying the underlying
preferences from the asset price.

If the price of equity is observable, we can try to recover underlying
preferences from it.

THEOREM 2 (Recoverability). For m =3, for any parameter vector 8¢ 0,
there exists a closed null set </, in & such that all economies in B\ .o/, are
revealing in terms of equity prices. In other words, economies are generically
revealing in terms of equity prices.

Note that since there are three parameters, it is obvious that we need at
least three equity price values to identify them, which means that we have
to have at least three states (m = 3).

A difficulty with this result is that equity here is an aggregate asset which
may include many nontradeable components like human-capital, etc., and
its price may not be observable. The bond on the other hand is more
readily viewed as a tradeable asset. For this reason, recoverability in terms
of the bond price is also provided.

THEOREM 3 (Recoverability). For® m>8, for any parameter vector
0e O, there exists a closed zero-measure set fy in b such that all the
economies in E\.ofy are revealing in terms of bond prices. In other words,
economies are generically revealing in terms of bond prices.

Theorems 1-3 together tell us that, given any 8 € ©, it is generically true
that the asset prices are locally unique, revealing of preference parameters,
and smooth with respect to the economy and the parameters.

31 suspect {but have not proven) that m > 3 is sufficient.
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Proving recoverability is, unfortunately, quite complicated. We need
eight lemmas in Appendix 1 for the proofs of Theorems 1 and 2. The
existence of the asset prices is guaranteed by a proposition in Appendix 2.
The proofs of Theorems 1 and 2 are presented in Appendices 3 and 4,
respectively. The proof for Theorem 3, which may be found in Wang [20],
is similar in structure to that of Theorem 2 and is omitted in the interest
of brevity.

3. EXTENSIONS

The cases =0 or p=0 can be similarly handled. Determinacy is still
true for all these cases. Recoverability is, however, only true for the case
p #£0. Intuitively, recoverability fails when p =0 because in that case, the
agent becomes myopic and risk aversion x drops out. In fact, ¢* only
depends on f, and thus we are unable to identify o from g*.

When the growth rate follows a finite-order Markov process with a finite
but unspecified number of states, determinacy and recoverability still hold
and the proofs are similar.

The extension to general F(-|x,} is currently being pursued. This
extension offers us the possibility of dealing with general (nonparametric)
recursive utility functions, but it poses serious technical difficulties. A
further extension of Sard’s Theorem to Banach spaces may be needed. See,
for example, Kehoe et al. [10].

I also have a global recoverability result in Wang [20]. I show that the
general Kreps—Porteus specification is observationally distinguishable from
any nonparametric expected additive intertemporal utility function
satisfying specified regularity conditions, without restricting the Kreps-
Porteus and expected utility functions to be close to one another in any
sense, e.g., in parameter space.

APPENDIX 1: LEMMAS

This appendix contains lemmas needed for the proofs of the theorems.
Proofs not provided here may be found in Wang [20].

First, the following two lemmas will be used to show that the “bad” set
taken away from [ is a closed set.

LEMMA 1. For sets Z<R", A<R™ and continuous function [:Z x
A — R¥, ser

H={EeZ] f(E,4)=0 for some Le A}
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is closed in Z if the following condition is satisfied: for any convergent
sequence |6, < #, & — & € Z, the corresponding sequence {4,] < A
satisfying [(&,, 4,) =0 has a convergent sub-sequence converging to a point
in A.

LEMMA 2. Ler X be a topological space and X, c X a sub-space of X
equipped with the induced topology from X. Then

(1) AcX,isopenin X,=A is open in X if X, is open in X.
(2y Ac X, is closed in X, = A is closed in X if X, is closed in X.

(3) A< X is closed in X and B< X\ A is closed in X\A=C=AUB
is closed in X.

The following lemma is an analogue to Sard’s Theorem. It deals with the
small size of a subset in the domain of a mapping rather than in the range
of a mapping. The Inverse Function Theorem (see Mas-Colell [187) is
invoked in its proof. The lemma will be used to show that the “bad™ set
that I take away from F is a null set. In this paper, the only condition that
really needs to be checked is the condition “rank > k,” i.e., the rank of the
Jacobian matrix is greater than the number of free parameters. The critical
conditions are the “C' and *“rank >£.” It can be shown that both
conditions are necessary.

LEMMA 3. Let /1 Xx A= R"™ be C', let X< R" and A = R* be two open
sets, and
H={xeX|f(x, i)y=0forsome ie A}

If D, f(x,Ay=3a(f,,..fn)/0(x,, .., x,) has tank >k for all (x,A)e Xx A
satisfving f(x, A)=0, then .# has zero measure.

In order to use Lemma | for the special sets that we encounter in the
proofs of the theorems, we need the following two lemmas.

LEMMA 4. Given 0€ @, for any &, &b, 6,8, and ¢"eR" ,
satisfring H(0, q", &,) =0, there exist two positive numbers d and D such that

d<q"<D, for all i, n.

Proof. This proof proceeds in three steps. The first two steps show the
boundedness of ¢g(f, &), where the boundaries depend on (8, &). The last
step shows the boundedness of {g(f, &)}, where the boundaries depend on
16,1, &, and 0.
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Step 1. For all £ and qge R" _ satisfying H(0, g, &) =0, we have
t],Zmin( Zn,, ,> ", for all i. (A.1.1)
For all 7 (y #0), since ¢(8, §)>0, we have

Ly .
6"(1—[Zn,, ,(l+q,)] (Zn,, ,) >mm<Z7t,, ,> )

i

This implies (A.1.1).
Step 2. For all § e and ge R” | satisfying H(0, g, &) =0, we have

++

max, (¥, m,x7)"

SOV —max, (X, mx)t

for all i (A.1.2)

For all v (1 #0), for g=¢(8, &) and ¢, =max,{q,}, we have

1y 1/
3, -[Z X (1 +q,)"] < (14 Grnax) (Z X ,)
1y
(] + qmax) max (z nll ,)

for all j. Therefore,
17y
0]) mdx<(1+qmdx)mdx (an[ 1) *

This immediately implies (A.1.2).

Step 3. {q,,} is bounded for any /.
For any &,— &, &, &cZ, and ¢"eR" |

define two sequences {d(&,)} and {D(4,)} by

satisfying H(0,¢", &,)=0,

max; (3,7} rj‘")

o' —max, (3, njx;)

il

d(é&, mm< Z X m) : and D(&,)

Then, by Steps 1 and 2,
d(é,)<q,< D(&,) for all i, n.

Since &,— &, d(&,) and D(&,) converge to positive numbers d(&,) and
D(&,), respectively, as n-» co. Thus, there exists an integer N such that,
when n> N,

1d(8,) <49, <2D(6), for all .
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Therefore, there exist positive numbers
d=min {$d(&), Gius qias oo Gins 1= 1,2, o m}
and
D=max {2D(&), 4i1s Gins o Gin- i=1,2, ., m|
such that

dg qinsD’ for all i, n. l

LEMMA 5. Let
M= {(x, ek | [T =0).
For any sequence {&,} < E\.#;, &, — & € EN\Ay, and equity prices {q"}

satisfying H(0, q", &,)=0, any sequence of solutions {(4,,u,)} from the
Sfollowing equation set

hlu ]n xln hln ]n(] + qln) h]u q}l’n ln qln
b,,In x, 5, In(1 b . [ "
/;.,,Hn 2n n X>, +”n b‘_,, n(. +q2n) +,Un”" .Z =4 q.,n nql
b"”l ln '\"?l?l b"lll ln(l + (Inm) bmn q‘:ﬂll ln qmn
(A.1.3)
is bounded, where b, = x7 (1 +q,)".
Proof. Equation (A.1.3) can become
1n xln ln(l +qln) 1 eln
In x, In (1 » 1 . "
s e ey sl (ara)
In 'Y"l" ln (’ + ql)"l) ] ()mn
where
eln hlnl q[l’rlr ln qln
€5, b,

2 — (S n (”") 1 q(2’1’1 In qln

€ nin b mn q ;;;n ‘n q mn
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We know that
All AZI Aml
I ]___]_ AIZ AEZ AmZ
A L A 2em e Amm

where 4,=(—1)""M,, and M, is the minor of element n, in /1. Since
& eE\.#,, II" has an inverse. Because &, — &,eE\.#,, we know that
f(1"y '} is bounded. By Lemma 4, {¢,} is bounded above and bounded
from zero. Besides that, it is obvious that {&,} is bounded. Therefore,
le" = (e, €ans o €1n) } 1s bounded.

Equation (A.1.4) can be expressed in the following form:

Adnx, +p,+In(t +4q,)=e,,. i=1,2,., m

This implies that

Lo X, 1 +¢,,
A"[n._‘.._i_ln.__.L: 2r1~£)l/1'
1+(]1,,

Mn

And thus,
i 1 +a
)‘n =TT [eln — €y, In —i&{:,
ln('\‘ln/xln’ I + qln
r,=€,,— }“n In Xiyn— ln(] + qln)-
We know that In(x,,/x,,)—In(x,,/v,,)#0, and that, by Lemma4,
{{14+¢,5,)/(1+q),)} is bounded from zero and from above. Therefore, {4, }

and thus {u,} are bounded. {

The following two lemmas show that, except for a null set, most
economies result in equity prices which very across states, and similarly for

the b;’s.

LEMMA 6. Given 0 e O, the following set

m 1

My={Eel M HO, q,6)=0,q9,=q, for some i#mand ge R" |
is a closed null set in B\ .#;.
Proof. Givenie {1,2, .., (m—1)}, for
m ]’
+ 4+ f

M= {Ecb\MI|H(B, q,&)=0and ¢,=q, for some ge R
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we have

oH
ox

biby---b,
=a" 22— [T| #£0

X)Xz Xy,

for any & e E\.#,; and ge R™ ' That is, ¢H/0é has full rank m, with only
(m—1) free parameters. Thus, by Lemma 3, .#% has zero measure for
i=1,2, .., (m—1). Therefore .#,=3" "' 4 has zero measure.

By Lemmas | and 4, .#, is closed in E\.#,. |
LEMMA 7. Given 0€ @, the following set

H={8€k|H(O,q,&)=0,b,=b,, for some i#m and ge R” , }

+ 4+ f
is a closed null set in E, where b,=x%(144,)".

Proof. Given ie {1,2,.., (m— 1)}, define

ma¢gg
b.—b, )

i

Q.(0, q. 5‘)5(

nt

For any § €t and ge R"™ | satisfying Q,(8, ¢, 6)=0, 1 need to show that
¢Q,/¢é& has full rank.
Let me first show that, for any ¢eR

m

and &el satisfying

++
H(0,4.6)=0, not all the b’s are equal. Suppose not, that is,
by=by=---=b,. Then H(H, q, &) =0 implies that b, =g for all i. That
1, g, =¢.= --- =¢,,. By substituting this into b, =b,= ... =b,,, we get
X,=x,= --- =x,. This is a contradiction.

Therefore, since Q,(6, g, §)=0 implies b,=5b,,, there is a j, j# i, such
that b, # b,,. We then have

a0.
Q, :z_bi(h/_bm)m#o'
ATy Mgy oy Ty X)X

That is, éQ,/¢& has full rank. Therefore, by Lemma 3,

M={Eck|H(0, q,&)=0and b,=b,, for some geR7 ,}

m— 1

has zero measure, for any i. Then, .#;=3"7"" .#% has zero measure.
By Lemmas 1 and 4, .#; is closed in E. ||

Finally, the following lemma tells us how small the “bad” set that we
encounter in the proof of Theorem 2 is.

LemMa 8. Given €0, let f(-10): R° - R,

flz,x,a, b, A0)=x *¢ "Ha(ilnx+z)+b
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Then there exist smooth functions @(-|10). D(@)— R, ¢(-10): D(y)— R, and
#(-18): R* — R such that

L0180 {(z, x,a,b,4) | o(x,a, b, 1]0)=z}
uilz, x,a b ) (x,a b Al0)==z}
uflz,x,a,b,4) dlx,a b, i|0)==z}, (A.15)

where D(@) and D(r) are some open sets in R*.

In short, Lemma8& shows that the solutions of the equation
flz,x,a,b,2]8)=0 for (z,x,a,b, A) can be covered by three smooth
functions ¢, ¥, and ¢.

Proof of Lemma 8. We have

fo=a—yx %" and  f.=7yx e 7 >0.

Since fis convex with respect to z, given (x, a, b, 1), f=0 will have at most
two solutions Z and 2. By this, I can define two functions ¢ and . For any
(x, a, b, A)e R*, if there is a solution 7 from f=0 such that f. <0, then I
define

Z=o(x, a, b, 4]0).

@ is defined on a set D(¢)< R* in which such Z exists. Since f is convex
with respect to z, there is at most one such Z. This means that ¢ is well
defined on the set D(¢p).

I can also similarly define a function . For any (x, a, b, A)e R?, if there
is a solution # from f'=0 such that f. >0, then [ define

Z=i(x, a, b, 1]0).

Y is defined on a set D() = R® By the same argument as above, ¥ is well
defined.

Another possible case is that at a solution point Z we have f. =0. This
time we can easily find this Z. If this 7 exists, we can easily know that the
a cannot be zero and that from . =0 we can solve for this Z:

s —1ln (f x’) =¢(x,a, b, A|0)
¥ 7

We see that this kind of 7 is unique, given any (x, a, b, ).

The above derivation immediately implies (A.1.5). It is obvious that ¢ is
smooth. I now need to show that ¢ and i are smooth, and D(¢) and D(y)
are open.
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Given any point (zq, X, dg, bg, 4y) satisfying z, = @(xq, aq, by, 4| 0), as
/-#0 at this point and f is smooth, by the Implicit Function Theorem,
there are two open neighborhoods V' and N of z; and (xg, gy, bg. 4o),
respectively, and a smooth function ¢: N — V such that == @(x, a, b, 2|6)
is the unique solution for any (x, @, b, A)e N. We know that, by definition,

f:(:()’ X0, Ao, bo’ AOIO) < 0

This implies that there exists an open neighborhood W of {x,, a,, by, 2¢),
W < N, such that

J.[@o(x,a,b,4]18),x,a,b,4i8]<0.

As I have argued before, the number of solutions = satisfying f. <0 cannot

exceed one. Therefore, on W, ¢ and ¢ are identical. This first implies that

¢ is smooth on D{¢). Second, since for any (xq, aq, by, 40) € D(@) I find an

open neighborhood W such that W< D(¢), D(p) must be open.
Similarly, I can show that i is smooth and D(y) is open. |}

APPENDIX 2: PROPOSITION ON EXISTENCE

This appendix provides a proposition on existence of equilibrium.

ProrosiTION (Existence of Asset Prices). For any € © and § €L, there
exist asset prices q,, q,€ R" | satisfying G(0, q,, g,, &) =0.

Proof. For 8O, &€k, and be R, define a mapping T: [0, b]" - R™
by

1
q)_l: Z chj i 1+q/):| » i=1,2,...,m.

ji=1

T(-) is obviously a continuous function. For any e ® and & = (x, I[T)eE,
we want to find a positive number b so that T(-) has a fixed point in
[0 b]l"

For 6 # © and & € E, we have 46"7 > max, (T, n,x7)'". Since

1],

(1 +b)b—1 as b— o, we can find a sufficiently large b> 0 such that

1+b

Liy
9 i max(Zn,, ,) <L
J
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This implies that, for this 4 and any g€ [0, ]7,

| I s
()< (1 +b)<52nﬁx,"> <b, i=1,2, .., m
j

Therefore, T: [0, 5]” — [0, b]”. Notice that here y can be negative. By the
Brouwer Theorem, 7(-) has a fixed-point in [0, ]”. This means that an
equity price ¢, exists for (6, §). From (2.9), ¢, can be explicitly solved,
given ¢q,. Therefore, the asset prices exist. |

APPENDIX 3: PROOF OF THEOREM 1

When m =1, it is the certainty case. The proof in this case is obvious.
1 thus only need to prove it for m> 2.

The price equations set (2.9) can be separated into two parts:
H(8, q,,6)=0 and

P +q,\
== mox*r M —Y , i=1,2, .. m.
q’)’ 6 Z ( q('i ) :

j=1

Thus, if I can show that the ¢, determined by H =0 is generically deter-
minate, then Theorem 1 is proven.

We want to prove that, for any #€ @ and almost any & € E, the equity
price® g(6, &) satisfying H(#, g, &) =0 is locally unique and smooth with
respect to variables (6, &). This can be done by the Implicit Function
Theorem, if we can prove that the Jacobian determinant of H(0, ¢, &) with
respect to g valued at (8, &) and ¢(6, &) is nonzero. The Jacobian determi-
nant is

3H(0, g, &)

1,00, 4, &) = P

a
1 as

= '}’"'(511 s 25 s qm)T 11 c . - (S[ ’

a

m

where a,=x*(1+1/¢,) " '. Unfortunately, we cannot rule out the
possibility that {J,(6, g, &)] may be zero for some (6, g, &) satislying
H(8, g, &) =0. My strategy is to show that, given any 6 € @, the set of the
economies satisfying both [J, (0,4, £)|=0 and H(6, ¢, &)=0 for some

m

geR™ , is a closed null set.

¢ The existence of such ¢ is guaranteed by the proposition.
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|J, (8, g. &) =0 is equivalent to: 34 = (4, 43, ... 4,), ~#0, such that

Aya, i

/yay 2,
Q(B,q,),,(f)sﬂ 2. LI S 2 1=,

}“mam /tm

Without loss of generality, I will henceforth assume that 4,, = 1. This means
that Ae R” ! Let
. H(0,q,6) )
K(B, g, 4, €)= ( .
( q Q(O’ qa Av ée)

My={Eel|1J,(0,9 &) =0and H(, g, §)=0forsome ge R , |

+ 4§
and

M= {Ee B\ M\ H| K0, g, i, &)=0for some (¢, L) e R7 , xR” '},

where . #, and .#; are defined in Lemmas 5 and 7, respectively. By the
definition, we see that

My M0 Mo .

By Lemmas 1 and 4, .#, is closed in E. By Lemma 7, .#; has zero
measure. By Sard’s Theorem, it is very easy to see that .#; has zero
measure too. Therefore, if I can prove that .#, has zero measure, then .#,
is a closed null set.

I will proceed in two steps to finish this proof. Step | shows that .#, has
zero measure; Step 2 then uses the Implicit Function Theorem to explain
that . #, is the set that we want for the theorem.

Step 1. . #, (and thus .#,) has zero measure.

Suppose that there exist some (g, 2)eR” , xR” "' and & e bE\.#,\ #
satisfying K(0, g, A, £)=0 so that dK/6& does not have full rank. 1 am
going to find a contradiction from this.

For these (g, 2)eR” , xR™ ""and &€, all the 6 x6 sub-matrices
in éK/¢& have to be degenerate. The following one is one of the simple
ones that 1 consider. Let 7" = (n,,, ®,;, Tys M2 s Tpqs W) Then, for
i=2,3,.... (m—1), we have

‘K
oy

b, b, b, |"
. ") =4+ 1Aa, Aa, a,| =0. (A1)

/a,—d4a, +ra,—da,

bl_bm hr_h "
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The following is another simple one:
oK
a(x’ USTER/S TR nml)

bbb, = (la Aa —a
—(_1) b _ mry mZ172 " m l—{——l'l“ﬂ> A32
( ) ( 1 bm) | '1 XIXQ"‘xmiI:Il< b bl_bm ( )

i

Notice that in E\.#;\.#s, |IT|#0 and b,# b, for i=1,2,.., (m—1)

I am now going to find a contradiction if the above two types of special
(2m) x (2m) sub-determinants of |¢K/dé& | are all zero.

By (A.3.1), |aK/¢IT"| implies that

)'Ial —d, Aa,—a,

bl_bm - bl'_bm

for i=2,3,.., (m—1). By (A.3.2), this in turn implies that

EEE
6(.\’, Tirs Taps oo nml)

bby---b,(a, a,—7ia
— b —b v\ I m 192 L m m 141
i( | m) l , o (bm bm—bl )

XXXy,

m! l]"lai A"iai_am
<1l (77” bi—b )

i=1 i m
Thus, |0K/0(x, 7y, 2y, . Ty )| =0 implies that (4;a,/b;)— ((4,0,— a,,)/
(b,—b,,))=0 for some ie{l,2,.,(m—1)}, or (a,/b.)—a,,—Aa)/
(b, —b,))=0. Since all these equalities are symmetric, without loss of
generality, we can assume that

Aray Aya,—a,,
— =0 A33
b, bi—b, (A33)

By (A.3.1), |8K/aIT'?| =0 also implies that: 3a, b, ce R, (a, b, ¢} #0, such
that

b, Aa, 1
al by |+b}| dya, |+l 1]=0 (A.34)
b,, a,, 1

alb,—b,)+b(lia,—a,)=0

a(b,—b,)+ b(1,a,—a,,)=0. (A.3.5)
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By the first equations in (A.3.5) and (A.3.3) we then have (evidently,
b=0=a=c=0;s0 b#0):

Using the first equation in (A.3.4), this implies that

0=ab,+b}t,a1+c=bb,(g+2,a—l—>+c=a
b b,

Then, equation set (A.3.4) implies that: Jue R, u #0, such that

b, Ara,
by |=p| 4aa;
bm a"'l

Similarly, for any ie {3,4, ., (m— 1)}, 3ie R, fi+#0, such that

b, Ara,
bi =ﬁ i‘iai
b"l a"l

By the fact that b,,= pa,, and b,, = fia,,, we know that ji= u. Therefore,
Jue R, p#0, such that

b,=ud,a,, i=1,2,..,m (A.3.6)
Note that here 4,,=1. By K=0, we thus have

gl = ul;, i=12.,m
Substitute this back into (A.3.6) to get

b,=qla,, i=1,2,.,m
By the definition of a,’s and 4;'s, we then have

q;

=1, i=1,2,.,m
l1+g,

This is a contradiction.

Therefore, I prove that dK/3& has full rank for any (g, A)e R” , x R™ !
and & e B\ .\ .4, satisfying K(0, g, 4, §)=0, given G € . Since .#; and .#;
are closed in E, E\.#;\.#; is open in E. By Lemma 2(1), since E is open in
R™, E\.\.#s is open in R™. Therefore, the mapping K(6, -, -, -):
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R” . xR™ 'x(B\.#\#Hs)—R™ is well defined on an open set, which
means that Lemma 3 is applicable to mapping K. Since the rank is 2m and
there are only (2m — 1) free parameters (g, 1), by Lemma 3, .4, has zero
measure.

Step 2. The property of the economies in [\.#.
Given e @, for any &eb). 4 and ¢eR” , satisfying H(t. g, £)=0,
since & ¢ .#,, we have

2H(0, 4, 6)

0.
g *

1,0, 4. )| = ‘

By the Implicit Function Theorem, there then exist two open sets N, ., in
R™**and N, in R™ with (8, £)e N, -, and ge N, and a unique smooth
function ¢*: N, ,,— N, such that g=¢*(0, &) and

H[O, g*(0,87), §']=0, V(0,8 )eN 4.

This finishes the proof. |

APPENDIX 4: PROOF OF THEOREM 2

For the general case with m >3, the proof is much more complicated.
I will only present here the proof for m = 5. The procedure of the proof is
the same as the general case m > 3. I will mention in this proof where the
m < 4 case needs more work.

I will use the Implicit Function Theorem to prove this theorem. To do
this, 1 need to show that the Jacohian matrix with respect to the
parameters has full rank at [0, ¢(0, &), £,

OH(8, ¢, &)
Jo(0,q. 6)= "= E
1
b,Inx, b/ In{l1+g¢q)) _Sb'
1 0 dqilng, O
_ bylnx, byIn(l+g-) _gbg 0 6¢ilng, O
0 dgiIng, O

1
b,Inx, b,In{l+g,) ”Sbm

where H(#, g, &)=0 is used. Unfortunately, we cannot rule out the
possibility that J,(8, g, &) may not have full rank for some economies. My
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strategy 1s to show that, given any 8 @, J,(6, ¢(6, &), &) has full rank for
almost all the economies in E.
Ju(8, g, &) not having full rank means that: 34, ue R, such that

b,d, giIng,
h" !’ N 'ﬁl >

00, g, i &)y=n| 20 5] ©NE g
b'"d"’ q:n In qm

where d,=/1In x;+1In (1 +¢,) + w, Vi. Given @€ @, let

8, q, 4 u, é”))

F(8, q, 4, ;1,(5)5( H(0, 4. &)

CF(0, g, iy 1, &
= {é‘e E\. 4| F(0, ¢, 4, 1, &) =0, and "—i—-";{:—ﬁ——)
6

not having full rank, for some (g, 4, p)e R” | x Rz}

and

My={E et A\ M H(O, g, &Y=0and J,(0, q, &)

m 1

not having full rank, for some ge R" _ },

where .#; is defined in Lemma5. J,(0, ¢, &} has full rank except in
Ao i 0 M. Therefore, if 1 can show that .#, U . 4, L . #, is a closed null
set, then it will be the set that I need to take away from [.

By Lemmas 4 and 3, for any {&,} <. 4., &, — & e E\. 4, the {g", i, u,!
satisfying F(0, ¢", 2, 4,,6,) =0 is bounded. Then, by Lemmal, .#, is
closed in £..#,. By Lemmas | and 4, using an argument similar to that
used for . #,, .#, is closed in E\.#\.#;. By Lemma 2(3), .#, u.#; is then
closed in E'.#;, and .#;,u.#, w . #, is closed in E. By Sard’s Theorem, it
is very easy to see that .#, has zero measure. What is left is to show that
; and .#, have zero measure.

In the following first two steps, [ will show that .#, has zero measure,
and then in Step 3 I show that .#; has zero measure too. Step 4 finishes off
this proof.

I will first define a simple set .#, that contains . #; in Step 1, and then
show that . #, has zero measure in Step 2. In this way, .# is thus proved
to be of zero measure.

Step 1. Define a subset .4, in E such that .4, > . #,.
I will look at one type of simple (2m) x (2m) sub-matrices in AF/0&. .4,
will be defined by these sub-matrices. Notice that for the m < 4 case, I need
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to consider more types of sub-matrices in ¢F/0& in order to get two more
constraints on the economy. The assumption m >S5 gives us two extra
constraints from H(6, ¢, §) =0 which makes the construction of .4, much
easier.

[ will discuss the rank of ¢F/6& in E\.#G\ 4\ A, where .#, and .4 are
defined in Lemmas 6 and 7, respectively. That is, we have

bi # bm and ql ?‘: qm

fori=1,2,.., (m—1). 1 will then add .45, .#,, and .#; into .4, to include
all the economies in .4;.

In .#,\.#,, not all d/s are equal. If not, by K=0,d,=d,= --- =d,, first
implies that

by gilng,
d, 1 b.z -5 q}il.rlqz
bl \ghing,
and then d, =1ng,;, Vi. That is, g, =¢,= --- =g¢,,. This is a contradiction.
I can thus assume that
d #d,. (A4.1)

The following one is one of the simple ones that I can easily handle. Let
H“E (nlla Tyis Waps Mgy voes Moyt s 7'[mi)' Then

oF

anlz

_ hldl‘bmdm b?.dz-bmdm ”
ST bl—bm bZ_bm )

For this, we see that in general, for i=2, 3, ..., (m— 1), | 6F/¢IT"| =0 imply
that

bldl—bmdm bidi~bmdm
bl_bm bi_bm
x (l+qy)77 x*(1+q)77 X (I +gn) 7
=[{iAlnx,+In{l+¢;) Alnx,+In(14+¢q,) Alnx,+In(l+gq,) =0
1 1 1

(A.4.2)

Notice that in the above determinants I choose 1 and m as two fixed
indices because of the assumption in (A.4.1). This will matter later.
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For any & € .#,, 3(q, 4, ) e R” , x R? such that the formula in (A.4.2)
and F(6, g, 4, pu, &) are zero. Let us see in the following what this implies.
By (A42), |0F/0IT?| =0 imply that: 31, 45, 1, €R, (4,, 4., 43) #0,
such that
Ax, {1 +q) "+ 4 [2lnx,+1In({l+4g,)]+ 4:=0, for i=1,2,m
(A4.3)
Let me first show that A, #0. If not, then 4, #0 and for some bR

Alnx,+In(l1+¢4)+b=0, for i=12m

I can then solve for g,, ¢g,, and gq,,:
g, =Bx "—1, for i=1,2,m and some BeR .
Thus,

di=ilnx+1n(Bx; ")+ u=pu+1nB, for i=1,2,m.

This contradicts (A.4.1). Therefore, the 4, cannot be zero.
Since 4, #0, (A.4.3) implies that there exists (a, b} € R? such that

x7*(Y+q) "+afilnx, +In(1 +¢)]+b=0, for i=1,2 m

Similarly, for any je {3,4, .., (m— 1)}, |0F/0ITY] =0 implies that there
exists (4, b)e R? such that

x, *(l+g) ‘walAlnx,+ln(1+¢)}1+5=0, for i=1,j,m

The above two equation sets imply that
(@a—a)ilnx, +In(1+4)1+h—5=0
(a—@)ilnx, +in(l +¢,)]+h—-b=0.

By (A.4.1), I thus have ¢=a and then b =b. Therefore, I(a, b) € R? such
that

X, {t+q) "+aldAlnx,+In(t +¢)1+5=0, for i=1,2,.,m
(Ad4)

Define z;=In(t + g,). Then, by Lemma 8, there exist smooth functions
g(-10): DGy - R, ¢(-18): D(§g)—R, and 4(-18): R* - R such that the
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equity price satisfying (A.4.4) can only be of the following three possible
types,

q;=qlx,, a, b, 20), g, =q(x;,a, b, A8), or g;,=4q(x;,a, b, A10),

where D(G) and D(g) are some open sets in R*.
Denote § as ¢, ¢, or 4, and ¢, =§(x,, a, b, A|0). Substitute the §’s into
function F to get

FO,a,b, 2,1, &)Y =F[0,G(x,, a, b, 310), 21, £7.

By the above derivation, &e.#,\.#,\ # implies that there exists
(a, b, i, uye R* such that F(0, a, b, 2, u, &) =0. Denote

M= 1E DN N M FQO, a, b, i,y £)=0 for some (a, b, 7, n)e R*}.

Let
My = My O A0 WO

If 1 can prove that .#,, has zero measure, as .#, > .#, by the definition,
then . #, has zero measure (we already know that .#,, .#,, and .#; have
Zero measure).

Note that, in the definition of . #,, we should think of .#,, as a union of
several sets like .#), as ¢ takes three possible forms ¢, ¢, and 4.

Step 2. .#, has zero measure.

Since F has four free parameters (. b, 4, n), to prove that .#,, has zero
measure, | need to show that ¢F/& has a rank =5 for any (a, b, i, p)eR?
and & e E\.#,\. 4\ . #s satisfying F(0, a, b, . 1, §)=0.

Let the corresponding 4;’s and d/s for the equity price §, be denoted as
bh’s and ds, respectively. Since A’s and d,'s do not depend on /7, we have,

(“(ﬁ _((}‘;lgl _Etrlgrrz)lrrt>
6(”1117[2“-"’ 7Tm]) (bl‘bm)lm '

where [, is the m x m identity matrix. Since

”

’(/‘;l ﬁl-;m) 1/11‘ = (;I _._Em)’";ﬁo

forany (a, b, 4, p) e R* and & € B\ #,\ .4\ . satisfying F(0, a, b, 2, yu, &) =0,
éF/é(n,,, myy, o M,y ) thus has full rank (=m>4) for any parameters
(a, b, A, p)e R* and economy & € E\.#;\.#," . #; satisfying F(0, a, b, 2, u, &)
= (. Notice that in E\.#;\.4,\.#, we have b, # b, for any equity price. By
Lemma 6, .#, is closed in E\.#,, and thus by Lemma 2(3) #,u.#, is
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closed in E. Therefore, also by Lemma 2, E\.#\.#\ .#. is open in R™.
Thus, by Lemma 3, .#,, has zero measure.

Since .#,,, ., #,, and # have zero measure, .#, has zero measure
too. As .4, > . #,, .#; has zero measure.

Notice that for the m <4 case, we need two more columns in 01?/6(5’”. For
this, we need to consider more types of simple sub-matrices in ¢F/0& such
as those corresponding to the combinations of partial derivatives with
respect to #;’s and x;'s in order to get more constraints on the economy.
This extra work is very difficult. The assumption m > 5 gives us two extra
constraints from H(8, q, §) =0 which makes this proof much easier.

Step 3. The inverse problem.
By the definition of .#,, 8F/0& has full rank for any (g, 4, u)e R , x R?

+ +
and & e.#, satisfying F(0, ¢, 4, 1, §)=0. Since .#, is closed in E\.#;,
i s closed in B, and thus B\ .45 #; is open in E. By Lemma 2(1),
E\.#,. #, is open in R™’. This means that Lemma 3 is applicable to the
mapping F(6. -, -, -, -} R™ | x R*x (E\.#\.#;) —» R*>". By the definition,
we have

M= 18 e B\ AN M F(D, q, A, pu, &) =0 for some (g, 4, p)e R™ , x R?}.

Because the full rank 2m of éF/@& is greater than the number (m+ 2) of
free parameters (g, a, b), by Lemma 3, . # has zero measure.

I have finally proved that .4, and .#; are null sets. By this, I can now
go back to the beginning of this proof.

Take

A= M0 MO 0 M,

where . #, is defined in Theorem 1. First, since .#,, .#;, .#,, and .#, all
have zero measure, .#, has zero measure too. Second, as explained at the
beginning, .#, is a closed subset in E. For all the economies in b4,
I now discuss the inverse problem.

Given fle @, for any & e £'..#,, by Proposition 1, we have a ¢ satisfying
H(O, q,8)=0. Since &¢ . H,0. M0 .#y, Jo(0.q EY=CH(, g, £)/00 has
full rank (=3). This means that there is a 3 x 3 sub-matrix in J,(6, 9, &)
having nonzero determinant. For simplicity, assume that this sub-matrix
consists of the first three rows in J,(6, 4, &). Let

H, (0, 4. &)
H'¥0.q,.86)=| H,(8, 9, &)
H.(0, 4, &)
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We then have

123 A
’@H (0, 9, 6) <0,

6

j=3)

Then, by the Implicit Function Theorem, there exist two open sets
N )R+ and N, R? with (¢, £)e N, ,, and fe N, and a unique
smooth function 0*: N ., — N, such that 8 =0*(g, &) and

HIB[0%(q, 6, 4. 61=0, (g . 6VEN, 4.

Step 4. Revealingness.

I am now going to show that all the economies in E\.#, are revealing.

For any & € E\.#,, by Proposition 1, there is an equity price g satisfying
H(0,q,&)=0. Since &¢.#,, by Theorem |, there exist open neigh-
borhoods N, R* and N,=R” of § and ¢, respectively, and a unique
smooth equity price function ¢*(-|£): N, - N, such that ¢ =¢*(8|&), and

H{O, g*(8'16), 61=0, VO’ e N,. {A4.5)
Since & ¢ .4, u .#; U ¥, by the last step, there exist open neighborhoods

V,cR™ and V,cR’ of ¢ and 6, respectively, and a unique smooth
parameters function 8*(-|&): V, — V', such that 0 =6*(¢|&), and

HB@ g, 6)=0 il 6 =0%q'|&) (A4.6)
forallg’eV, and 0" e V.
Now take Ny=N,nV,ng* "(N,nV,). It is obvious that N, is an

open neighborhood of 8. For any 0'e N, let ¢’ = q*(0'|&); since 0’ e N,
by (A4.5), we have

HP(, ¢, &) =0.
Since 8'e V;, and g’ V,,, by (A.4.6), we have
0 =0*(q'| &).
That is, for all 8'e N,, we have
6'=0%[q*(0'16) | £1.

From this, we immediately see that in the neighborhood N, of 6, different
#'s give different ¢’s. That is, the economy & is revealing. Therefore, all the
economies in E\.#, are (locally) revealing. This finishes the proof. |
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