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Abstract

This paper axiomatizes updating rules for preferences that are not necessarily in the

expected utility class. Two sets of results are presented. The first is the axiomatization of

conditional preferences. The second consists of the axiomatization of three updating rules: the

traditional Bayes rule, the Dempster–Shafer rule, and the generalized Bayes rule. The last rule

can be regarded as the updating rule for the multi-prior expected utility (Gilboa and

Schmeidler, J. Math. Econom. 18 (1989) 141). Operationally, it is equivalent to updating each

prior by the traditional Bayes rule.
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1. Introduction

The traditional rule for updating is the Bayes rule. The decision-theoretic
foundation of this rule is laid by the axiomatization of Savage [35], which shows that,
in situations of uncertainty, if an individual’s preference satisfies certain axioms, his
preference can be represented by an expected utility with respect to a subjective
probability measure. This probability measure can be viewed as the individual’s
belief about the likelihoods of uncertainty events. Moreover, in light of new
information, the individual updates his belief according to the Bayes rule.
Over the past 50 years, this Savage paradigm has been the foundation for much of

the economic theories under uncertainty. At the same time, however, the Savage
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paradigm has been challenged by behavior exhibited in the Ellsberg paradox [14],
which questions the very notion of representing an individual’s belief by a
probability measure and consequently the validity of the Bayes rule. The purpose
of this paper is to study how an individual updates when his preference does not
necessarily fall into the expected utility class.
We axiomatize three updating rules: the traditional Bayes rule, the Dempster–

Shafer rule, and the generalized Bayes rule. The last rule can be viewed as the
updating rule for the multi-prior expected utility preferences [4,20]. Operationally, it
is equivalent to updating each prior by the traditional Bayes rule.
The rest of the paper is organized as follows: Section 2 contains a brief review of

the related literature and further motivation of this paper. Section 3 introduces the
set of multi-period consumption–information profiles. Section 4 axiomatizes a class
of conditional preferences which serves as the basis for our study of updating rules.
The results on updating rules appear in Section 5. Finally, Section 6 concludes with
some applications. Proofs and supporting technical details are collected in the
appendix.

2. Motivation and related literature

Motivated by well-documented empirical facts such as the Ellsberg paradox,
Savage’s expected utility theory has been significantly extended over the past decade
or so. In this regard, two classes of preferences stand out as the most prominent. One
class is the Choquet expected utility. It was axiomatized first in the Anscombe–
Aumann framework by Schmeidler [37], and later in the Savage setting by Gilboa
[19], Nakamura [32], Sarin and Wakker [33], and Chew and Karni [7]. The other
class, the multi-prior expected utility, was axiomatized by Gilboa and Schmeidler
[20] in the Anscombe–Aumann framework. Recently, Casadesus-Masanell et al. [4]
succeeded in axiomatizing it in the Savage setting. For a comprehensive survey of
this literature, the reader is referred to Camerer and Weber [3] and Sarin and Wakker
[34].
These new theories have significantly improved our understanding of individual

decision making under uncertainty. In particular, they have for the first time
modelled analytically preferences whose belief component cannot be represented by
a probability measure. The natural question is then: how do these individuals update
their beliefs? In the economic literature, Epstein and LeBreton [16] show that if all
axioms of Savage, except the sure-thing principle, plus dynamic consistency are to be
maintained, then the updating rule must be Bayesian. Gilboa and Schmeidler [21]
show that for Choquet expected utility, if the updated preference is again
representable by a Choquet expected utility, the admissible f -Bayesian updating
rules must be those which assume that the unrealized event yields either the highest
or the lowest possible payoff.
In the statistics literature, extensions of the Bayes rule have been concentrated

mainly on two updating rules. The first rule, called the Dempster–Shafer rule, is for
convex capacities. It dates back to Dempster [11,12]. The more recent work includes
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Shafer [38,39]. The second updating rule, called the generalized Bayes rule, is for
multi-prior likelihood functions. It has been studied by Walley [44], Wasserman and
Kadane [46], Seidenfeld and Wasserman [40], and Herron et al. [25].1

All these updating rules were developed axiomatically. However, the primitives of
the axiomatizations differ. In statistics literature, for example Walley [44], the
primitives are essentially likelihood functions. In economics literature, the main
interest is individuals’ choice behavior. Thus, any updating rule has to be integrated
consistently into individuals’ preferences. In this paper, taking individuals’
preferences as the primitives, we axiomatize the Dempster–Shafer rule and the
generalized Bayes rule.
The motivation for our study of updating rules comes also from the progress on

the application front. Epstein and Wang [17,18] developed an intertemporal asset
pricing model under Knightian uncertainty. In that model, the agent’s preference is
represented by a multi-period version of the multi-prior expected utility developed by
Gilboa and Schmeidler [20]. The evolution of the agent’s belief is modelled by a
transition belief kernel that maps a state to a set of (conditional) probability
measures, rather than to a single (conditional) probability measure as in the Savage
paradigm. Recently, Hansen et al. [24] and Anderson et al. [1] introduced preference
for robustness into an otherwise standard intertemporal asset pricing model. The
issue of robustness arises from the agent’s concern over misspecification of the
economic model and his preference for his decision rule to be robust to the
misspecification. In both of these models, learning/updating was not considered
explicitly. One potential justification for it is that the Knightian uncertainty or the
potential error in model specification is taken by the agent as the state of affairs. In
other words, these models are the reduced form of models with earning.2 In
principle, the ultimate support for the justification requires the specification of an
appropriate rule of updating to connect the reduced form to a model with learning.
Our study can be viewed as a step in that direction. In particular, in [17], the agent
can be viewed as using the generalized Bayes rule, axiomatized in this paper, to
update his belief. Thus, this paper provides the foundation in the learning aspect for
the preference used in that paper (see Section 6).

3. Consumption–information profiles

As the first step to axiomatizing updating rules, we introduce in this section the
objects of choice for the conditional preferences we will introduce in the next section.
Following the approach started by Skiadas [42] we model them by multi-period
consumption–information profiles. Each profile has as its components a consump-
tion process and an information filtration.

1See also [21] and the references therein.
2Seidenfeld and Wasserman [40], Dow and Werlang [13], Herron et al. [25], and Marinacci [31] show

that learning and updating will not necessarily reduce Knightian uncertainty to a case of probability. Thus

learning and updating need not necessarily eliminate Knightian uncertainty. See also the example in

Section 5.3.
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The general structure of a domain of multi-period choice objects is well
understood in the literature [6,15,29]. To focus on the main issue of this paper, we
will illustrate our domain, denoted by Rþ � D; by an example and relegate the
details of its construction to the appendix.
We begin with some notations. Let O be a finite set, which is taken as the state

space for a generic period in the infinite time horizon. The full state space is ON: For
a generic space Y ; let BðY Þ denote the space of bounded functions x̃ :O-Y :
Elements of BðRþÞ are viewed as the state-contingent consumption in a period.
Denote by F the following set of mappings:

F ¼ F

F is a mapping from O to the subsets of O; 2O;

such that FðoÞ ¼ Fi if joAFi; i ¼ 1;y; n

and fF1;y;Fng is a partition of O

�������
8><
>:

9>=
>;:

Clearly, there is a one-to-one correspondence between elements of F and partitions.
To simplify notation, we will useF ¼ fF1;y;Fng to denote both the partition and
the corresponding element of F: Members of F can be viewed as the information
revealed in a period.
The example is a two-period profile. The profile is described diagrammatically by

the two trees in Fig. 1. Fig. 1(a) describes the consumption process. The
interpretation is that at time 1, if event B1 realizes, the consumption is c11; if
further at time 2 event B21 realizes, the consumption at time 2 is c21: Fig. 1(b)
describes the information filtration. The interpretation is that at time 1, the
individual learns one of the two possible events, A1 or Ac

1; at time 2, he learns further
one of the four possible events, A21; Ac

21; A22; Ac
22:

In a setting where learning is not the major concern, the object of choice is
typically described by one tree as in Fig. 1(a). Here in this paper, however, our main
interest is in how individual makes his choice over time in light of new information.
Thus how the information evolves over time is crucial for the choice decision of the
individual. Questions may arise at this point regarding whether there should be any
relation between the information implied by the trees in Figs. 1(a) and (b). We will
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B c
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c21
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c24
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Fig. 1. Two-period consumption–information profile.
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postpone the discussion until we finish the example and provide the formal definition
of a consumption–information profile.
Algebraically, the profile depicted diagrammatically above is described by an

element ðc0; d1ÞARþ � D where

d1 : o1-ðc1ðo1Þ;F1ðo1Þ; d2ðo1ÞÞ is such that F1AF;

c1ðo1Þ ¼
c11 if o1AB1;

c12 if o1ABc
1;

(
F1ðo1Þ ¼

A1 if o1AA1;

Ac
1 if o1AAc

1

(

and for each o1;

d2ðo1Þ : o2-ðc2ðo1;o2Þ;F2ðo1;o2Þ; 0Þ

is such that for each o1;F2ðo1ÞAF and

c2ðo1;o2Þ ¼

c21 if ðo1;o2ÞAB1 � B21;

c22 if ðo1;o2ÞAB1 � Bc
21;

c23 if ðo1;o2ÞABc
1 � B22;

c24 if ðo1;o2ÞABc
1 � Bc

22;

8>>><
>>>:

F2ðo1;o2Þ ¼

A21 if ðo1;o2ÞAA1 � A21;

Ac
21 if ðo1;o2ÞAA1 � Ac

21;

A22 if ðo1;o2ÞAAc
1 � A22;

Ac
22 if ðo1;o2ÞAAc

1 � Ac
22:

8>>><
>>>:

The 0 in mapping d2 denotes the residual profile whose consumption process is zero

and whose information partition at any time is the trivial partitionF0 ¼ fOg: Note
that F1 is a partition of O and F2ðo1Þ is also a partition of O given any o1AO:
Furthermore, F2 is a partition of O2: Thus fF1;F2g induces a filtration on ON;
which is the information filtration component of the profile.
In the algebraic representation above, the consumption–information profile is

described in a recursive fashion. Such recursive description can be applied to any
finite-horizon consumption–information profiles. In an infinite horizon setting, the
recursion takes the form of a homeomorphism, as stated in the following theorem.
This homeomorphism is crucial for our interpretation of elements of Rþ � D as
trees.

Theorem 3.1. Let Rþ � D denote the domain of consumption–information profiles.

Then D is homeomorphic to BðRþ � F� DÞ where, for notational convenience,

BðRþ � F� DÞ denotes the subset of elements ðc1;F1; d2Þ in BðRþ � 2O � DÞ such

that F1AF:

Remark. Despite the fact that the consumption–information profiles in Rþ � D are
all infinite-horizon, some elements of D can be naturally identified with their finite-

T. Wang / Journal of Economic Theory 108 (2003) 286–321290



horizon counterparts.3 For instance, the profile described in the example
above corresponds naturally to a two-period consumption–information profile. In
the rest of the paper, for expositional and notational simplicity, we will simply call
such profiles two-period consumption–information profiles and suppress the
description of the profiles beyond period two. Similar treatment is given to one-
period profiles.

In modelling consumption–information profiles, we have distinguished two
filtrations. One is the filtration implied by the consumption process, i.e., Gt ¼
sðc1;y; ctÞ; and the other is the information filtration induced by fF1;F2g as in the
example. One may ask why we do not require that the consumption process be
adapted to the information filtration. The answer lies in the difference between the
uncertainty about the objective states and the uncertainty about the probability law
governing the realization of the states. To elaborate, consider a situation where there
are two state variables. One state variable, following an iid binomial process,
determines the payoff of the aggregate endowment of the economy. The other state
variable is the signal about the likelihood of the state in which the endowment has
high payoff. In this situation, while consumptions can be contingent on both state
variables, only the signal is relevant for updating the knowledge about the
probability law. In this example, the information filtration is that generated by the
signals, and the consumption process need not be adapted to the information
filtration.
It is well understood that there is a conceptual difference between one’s knowledge

about the objective states of the world, which is often expressed in terms of a
probability law, and his/her knowledge about the probability law itself [14,27].4

Because of the difference, at least at the conceptual level, updating of the knowledge
about the probability law should be treated differently from updating of the
probability due to an observation of the realization of the objective states. In the
example above, the signal is relevant for the updating of knowledge of the
probability law, while the first state variable is relevant for the calculation of
conditional probability given a probability law. In a Bayesian world, such difference
is irrelevant at the operational level because updating of the two different types of
knowledge is done according to the same Bayes rule. Updating amounts to
calculating conditional probabilities whether the updating is due to an unknown
parameter of the probability distribution which one wants to learn about in order to
know the true objective probability law, or due to realization of the current state
even when the probability law is known precisely. In a Knightian world, uncertainty
about the probability law itself is treated differently from the uncertainty about the
objective states of the world. In particular, the uncertainty about the probability law

3See the appendix for definition of finite-horizon consumption–information profiles and their natural

infinite-horizon counterparts.
4There can be several interpretation of Knightian uncertainty. One example is that uncertainty is purely

subjective. The view we take in this paper corresponds to the setting in the Ellsberg experiment. That is,

there is a true probability law out there that governs the realization of states, but the individual decision

maker does not have precisely knowledge of it.
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itself may not be described by another probability law. As a result, while the
updating of a probability when it is given can be according to the Bayes rule, the
updating of the knowledge of the probability law itself need not be so.
The information filtration in our consumption–information profile is to capture

such difference. The example above then suggests that the adaptedness requirement
may be overly restrictive for that purpose. To provide a slightly different perspective
and to relate to the more familiar setting where the consumption process is required
to be adapted to the information filtration, we introduce a third filtration. Let Gt ¼
sðcs : sptÞ be the filtration implied by the consumption process. Define the third
filtration byHt ¼ sðGt;FtÞ: This filtration represents the information inFt and Gt

combined. The consumption process ct is naturally adapted to this filtrationHt; but
Ft is meant to be only that part ofHt that is relevant for updating the individual’s
imprecise knowledge about the probability law.
We close this section with a comparison of our domain D with those in the

literature. In [6,15,29], the space D consists of multi-period lotteries, i.e., trees with a
probability attached to each of its branches. Modelling consumption profiles as
multi-period lotteries implicitly assumes that the probabilities associated with
various events have already been evaluated. In a world with Knightian uncertainty,
probabilities are not given. To allow for the derivation of subjective beliefs, we
model the space D at a more primitive level by removing the assumption of
exogenously given probabilities. Wang [45] also models consumption processes as
multi-period trees without probabilities. However, information filtrations are not
modelled there. Our consumption–information profiles are closest to the
acts in Skiadas [42], where both the consumption process and the information
filtration are explicitly modelled. However, Skiadas [42] does not exploit the
recursive structure in D as described in Theorem 3.1. He does not treat Ft andHt

separately either.

4. Conditional preferences

The objective of this section is to axiomatize a class of conditional preferences that
will serve as the primitives for our later study of updating rules.
To reduce the clustering of notation, denote, at any time and state, a generic

consumption–information profile by ðc0; d1Þ: Here c0 indicates the current
consumption and d1 the remaining profile starting next period. That is, if the profile
ðc0; d1Þ is evaluated at time t given the past history of events ht ¼ F1 �?� Ft; then
c0 is the consumption at time t in that event and d1 is the remaining profile from time
t þ 1 onward. Similarly, we will also denote d1 as d1 :o-ðc1ðoÞ;F1ðoÞ; d2ðoÞÞ;
where c1ðoÞ and F1ðoÞ are the realized consumption and information one period
ahead, while d2ðoÞ is the remaining profile from time t þ 2 onward.
Let tX1 and htCOt be a history of past events. A conditional preference given ht;

denoted by kht
; is a complete ordering on Rþ � D: A family of conditional

preferences is a collection of conditional preferences indexed by all possible

evolution of past events, i.e., fkht
: htCOt; tX1g:
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Axiom 1 (Continuity).5 For all ht and all sequences fðc0;n; d1;nÞg and fðc00;n; d 0
1;nÞg in

Rþ � D with ðc0;n; d1;nÞ-ðc0; d1Þ and ðc00;n; d 0
1;nÞ-ðc00; d 0

1Þ; if ðc0;n; d1;nÞkht
ðc00;n; d 0

1;nÞ
for all n; then ðc0; d1Þkht

ðc00; d 0
1Þ: Moreover, for each ðc0; d1ÞARþ � D; there exists a

ĉ0ARþ such that ðĉ0; 0ÞBhtðc0; d1Þ:

Axiom 2 (Uncertainty separability). For all ht; ðc0; c00ÞAR2þ and ðd1; d 0
1ÞAD2;

ðc0; d1Þkht
ðc0; d 0

1Þ if and only if ðc00; d1Þkht
ðc00; d 0

1Þ: Moreover, ðc0; d1Þgðc00; d1Þ
whenever c04c01:

Axiom 3 (Stationarity). For all ðc0; d1Þ; ðc00; d 0
1ÞARþ � D and ht; ðc0; d1Þkht

ðc00; d 0
1Þ if

and only if ðc0; d1Þkht�Oðc00; d 0
1Þ:

A consumption–information profile is called deterministic if its consumption
process is deterministic and its information filtration consists of the trivial partition

F0 ¼ fOg: We will sometimes denote these profiles by ðc0; c1;yÞ:

Axiom 4 (Deterministic information independence). For all ht; h0
t; ðc0; c1;yÞ and

ðc00; c01;yÞ; ðc0; c1;yÞkht
ðc00; c01;yÞ if and only if ðc0; c1;yÞkh0t

ðc00; c01;yÞ: More-

over, for any F and GAF; ðc0; d1ÞBhtðc0; d 0
1Þ whenever d1 : o-ðc1ðoÞ;FðoÞ; d2ðoÞÞ

and d 0
1 : o-ðc1ðoÞ;GðoÞ; d2ðoÞÞ are such that d2ðoÞ is a deterministic profile for all

oAO:

These four axioms are straightforward to interpret. Continuity is standard.
Uncertainty separability says that if two consumption–information profiles have
identical current consumption c0; or identical future consumption–information flow
d1; then the ranking of these two profiles should be independent of the common
component. Stationarity requires that if there is no information revealed over the
period, the conditional preference remains unchanged. Finally, the first part of
Deterministic information independence requires that all conditional preferences
rank deterministic consumption–information profiles the same way. The second part
says if all uncertainty in the consumption process is resolved in the next period, then
any updating of preference due to the information received in the next period is
irrelevant.
To state the next axiom we need the following definition. An event ACO is said to

be null given the history ht if for all c0ARþ and d1; d 0
1 and d 00

1AD; ðc0; d 0
11A þ

d11AcÞBhtðc0; d 00
1 1A þ d11AcÞ; where 1A and 1Ac are indicator functions, and the

addition and multiplication are as in the space of random variables. Null events are
those that are considered to have zero likelihood of happening.

Axiom 5 (Consistency). For all d1 ¼ ðc1;F; d2Þ and d 0
1 ¼ ðc01;F; d 0

2ÞAD and F ¼
fA1;y;AngAF; if ðc1ðoÞ; d2ðoÞÞkht�Ai

ðc01ðoÞ; d 0
2ðoÞÞ; for all oAAi and i ¼ 1; y, n;

5See the appendix for definition of the topology.
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then for any c0ARþ;

ðc0; d1Þkht
ðc0; d 0

1Þ:

Moreover, the latter ordering is strict if for some Ai that is not null,
ðc1ðoÞ; d2ðoÞÞght�Ai

ðc01ðoÞ; d 0
2ðoÞÞ for all oAAi:

The intuition behind this axiom is readily explained with Fig. 2. In Fig. 2(a), when
event Ai happens, the realized consumption–information profile is ðci; diÞ: Fig. 2(b)
has a similar interpretation. Suppose that for all i ¼ 1;y; n; when event Ai is
realized, ðci; diÞ is preferred to ðc0i; d 0

i Þ: Consistency then requires that ex-ante
ðc; ½
Pn

i¼1 ci1Ai
;F;

Pn
i¼1 di1Ai

�Þ is preferred to ðc; ½
Pn

i¼1 c0i1Ai
;F;

Pn
i¼1 d 0

i1Ai
�Þ for

any cARþ: In words, if ex-post d is preferred to d 0 and the information revealed over
the period is identical, then ex-ante d must also be preferred to d 0:
The intuitive appeal of the consistency axiom seems obvious. As will be seen below

this axiom guarantees that the conditional preferences connect in a time-consistent
fashion. It is well understood that in a dynamic optimization problem, if the
intertemporal preference of the decision maker is not time-consistent, a plan chosen
today may be regretted later on, and, if given the opportunity, the plan will be
abandoned in favor of another one, causing inconsistency in choice over time.
For the following theorem, we need some preliminary definitions and notations. A

function VðhtÞ :Rþ � D-R is said to represent the conditional preferencekht
if, for

all ðc0; d1Þ and ðc00; d 0
1ÞARþ � D;

ðc0; d1Þkht
ðc00; d 0

1Þ

if and only if

Vðht; ðc0; d1ÞÞXVðht; ðc00; d 0
1ÞÞ:

d

A1

A2

...

An

(c1, d1)

(c2, d2)

(cn , dn )
(a)

d 

A 1

A 2

An

...

(c'
1, d'

1)

(c'
2, d'

2)

(c'
n , d'

n )
(b)

Fig. 2. Consistency.
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Given a function VðhtÞ :Rþ � D-R that represents the conditional preference kht
;

define a companion function Ṽðht; d1Þ:O-R by, for each d1AD given by

d1 :o-ðc1ðoÞ;F1ðoÞ; d2ðoÞÞ; where F1 ¼ fA1;y;AngAF;

Ṽðht; d1ÞðoÞ ¼ Vðht � Ai; ðc1ðoÞ; d2ðoÞÞÞ; if oAAi:

Ṽðht; d1Þ can be regarded as the ex-post evaluation of d1 after the uncertainty in the
current period is realized. A function m : BðRÞ-R is called a certainty equivalent if
(a) mðxÞ ¼ x for all xAR; and (b) mðx̃ÞXmðỹÞ if x̃Xỹ:

Theorem 4.1. A family of conditional preferences fkht
: htCOt; tX1g satisfies

Axioms 1–5 if and only if it can be represented by a family of continuous functions

fVðhtÞ : htCOt; tX1g on Rþ � D such that

V ½ht; ðc0; d1Þ� ¼ Wðc0; mðht; Ṽðht; d1ÞÞÞ;

where mðht; Þ is a continuous certainty equivalent such that mðhtÞ ¼ mðht � OÞ; and

W : Rþ � R-R is continuous and strictly increasing.6

The main outcome of this theorem is a description of how a family of conditional
preferences that satisfies Axioms 1–5 are connected. The theorem states that they are
connected through two aggregators.7 The function W is the intertemporal
aggregator, which describes, for deterministic consumption profiles, how conditional
utility derived from future consumptions is aggregated with that derived from
current consumption. For example, for a deterministic consumption–information
profile ðc0; d1Þ ¼ ðc0; c1;yÞ; Vðc0; d1Þ ¼ Wðc0;Wðc1; ð?ÞÞÞ: The certainty equiva-
lent m is the state aggregator. It aggregates utilities derived from state-contingent
consumption–information profiles, taking into consideration the fact that prefer-
ences are constantly updated in light of new information. These two aggregators
together allow for a weak separation of preference from belief, in the sense that for
deterministic profiles, the utility is completely determined by the function W ; and
that m is the aggregator that embodies the belief component of the preference and the
rule of updating. Because of this structure of ðW ; mÞ; our theorems on updating rules
in the next section are directed to m only.
Consider next an axiom that is similar to Uncertainty separability, but is with

respect to deterministic consumption–information profiles.

Axiom 6 (Future independence). For all htCOt; all c0; c1; c00 and c01ARþ and

deterministic consumption–information profiles C ¼ ðc2; c3;yÞ and C0 ¼
ðc02; c03;yÞAD; ðc0; c1;CÞkht

ðc00; c01;CÞ if and only if ðc0; c1;C0Þkht
ðc00; c01;C0Þ:

6Consistency, uncertainty separability, deterministic information independence and stationarity imply

the usual monotonicity.
7See a similar theorem in [6,41,42].
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If we add this axiom to Axioms 1–5, the time aggregator W can be significantly
simplified.

Theorem 4.2. A family of conditional preferences fkht
: htCOt; tX0g satisfies

Axioms 1–6 if and only if it can be represented by a family of continuous functions

of the form

V ½ht; ðc0; d1Þ� ¼ uðc0Þ þ bmðht; Ṽðht; d1ÞÞ;
where mðht; Þ is a continuous certainty equivalent such that mðhtÞ ¼ mðht � OÞ; and

u : Rþ-R is strictly increasing and continuous. Furthermore, u is unique upto affine

transforms.

Without loss of generality, we will assume that uð0Þ ¼ 0:

5. Updating rules

We have axiomatized the class of conditional preferences that will serve as the
primitives for our investigation of updating rules. In this section, we will study three
updating rules.

5.1. Bayes rule

Axiom 7 (Timing indifference). 8 For all partitions of O; fA1;y;Ang and

fB1;y;Bmg; all two-period consumption–information profiles of the form ð0; d1Þ
and ð0; d 0

1Þ with d1 ¼ ð0;F0; d2iÞ if o1AAi and d2iðo2Þ ¼ cij if o2ABj; i ¼ 1;y; n;

j ¼ 1;y;m; d 0
1 ¼ ð0;F0; d 0

2jÞ if o1ABj and d 0
2jðo2Þ ¼ cij if o2AAi; i ¼ 1;y; n;

j ¼ 1;y;m; and all htCOt; we have ð0; d1ÞBhtð0; d 0
1Þ:

The intuition behind this axiom can be readily explained. Suppose that ð0; d1Þ and
ð0; d 0

1Þ are as described in the axiom. The consumption processes embedded in these
two two-period profiles can be illustrated with Fig. 3. There are two events A and B:
In Fig. 3(a), event A happens first and event B follows. In Fig. 3(b), event B happens
first and then event A follows. It can be easily verified that the state-contingent
consumptions at time 2 in Fig. 3(a) are identical to those in Fig. 3(b). The
information filtrations embedded in both ð0; d1Þ and ð0; d1Þ are the same. They are
the trivial information partition, F0; which means that, as far as updating is
concerned, there is no new information revealed over the period, and hence nothing
is to be learned.9 There are no consumptions at times 0 and 1 in both of the trees.
The only difference between Figs. 3(a) and (b) is that the timing of resolution of

8See [5,6] for a similar axiom in the lottery framework.
9To be precise, the filtration should be described by a process ðF1;F2Þ as in the example in Section 3.

However, since both ð0; d1Þ and ð0; d1Þ are two-period profiles, the only relevant information is given by
the partition at time 1. In the example in Section 3, this is the partition given byF1: The partition at time 2

is irrelevant for ð0; d1Þ and ð0; d1Þ because there are no more consumptions after time 2.
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uncertainty in the two trees are reversed. Axiom 7 says that in this situation, the two
consumption–information profiles should be ranked indifferent.
The following theorem is a preparation for the main result of this section, the

Bayes rule. It is, however, of independent interest.

Theorem 5.1.10 Suppose that the family fkht
: htCOt; tX1g of conditional preferences

satisfies Axioms 1–6. Then it satisfies timing indifference if and only if there exists a

unique family of probability measures fPðhtÞ : htCOt; tX1g on O and a family

of continuous, strictly increasing functions fcht
: htCOt; tX1g such that the family of

certainty equivalents fmðhtÞ : htCOt; tX1g in Theorem 4.2 are given by, for any

x̃ABðRÞ;
mðht; x̃Þ ¼ c�1

ht
ðEPðhtÞ½cht

ðx̃Þ�Þ;

where Pðht; Þ and cht
satisfy,

cht
ð0Þ ¼ 0; Pðht; Þ ¼ Pðht � O; Þ; cht

¼ cht�O

and for all x̃ABðRÞ;
bc�1

ht
ðEPðhtÞ½cht

ðx̃Þ�Þ ¼ c�1
ht
ðEPðhtÞ½cht

ðbx̃Þ�Þ:

Therefore, by Theorem 4.2,

Vðht; ðc0; d1ÞÞ ¼ uðc0Þ þ bc�1
ht
ðEPðhtÞ½cht

ðṼðht; d1ÞÞ�Þ:

Now that we have a theorem characterizing the certainty equivalents mðhtÞ; we
turn to its implication for updating. Let ðc0; d1Þ be a consumption–information
profile and fctg and fFtg be the consumption and information components of it,

d1

A

Ac

B

Bc

B

Bc

c11

c12

c21

c22

d'
1

B

Bc

A

A c

c11

c21

A

Ac

c12

c22
(a) (b)

Fig. 3. Timing indifference.

10See [5,6] for a related result in the lottery framework.
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respectively. Recall that Gt ¼ sðcs; sptÞ; the filtration generated by the consumption
process, and Ht ¼ sðGt;FtÞ:

Theorem 5.2 (Bayes rule). Suppose that the family fkht
: htCOt; tX1g of conditional

preferences satisfies Axioms 1–7. Let F ¼ fFtg be an increasing sequence of s-

algebras and Rþ � DF be the subset of consumption–information profiles ðc0; d1Þ such

that the information filtration embedded in d1 coincides with F and the consumption

process embedded in d1 is uniformly bounded. Then there exists a unique probability

measure P0 on ðON;FNÞ where FN ¼ sðOt : t ¼ 1;yÞ such that for any

ðc0; d1ÞADF and any elementary history ht;
11

Vðht; ðct; dtþ1ÞÞ ¼ uðctÞ þ bc�1
ht
ðEP0 ½cht

ðṼðht; dtþ1ÞÞjFt�Þ;

where ðct; dtþ1Þ is the continuation of ðc0; d1Þ at time t: In other words, on DF; the

family of conditional preferences has a belief component described by the initial

probability measure P0 and the belief updates according to the Bayes rule.

To illustrate Theorem 5.2 with the standard intertemporally additive expected
utility, let cht

ðxÞ ¼ x for all ht: Then Theorem 5.2 says

Vðht; ðct; dtþ1ÞÞ ¼ EP0

XN
s¼0

bsuðctþsÞ
�����Ht

" #
:

In other words, the individual who is described by this family of conditional
preferences behaves as if he has an initial prior P0 and updates according to the
Bayes rule.
To close this subsection, we clarify the role of cht

in Theorems 5.1 and 5.2.

Let ð0; d1Þ ¼ ð0; ðc̃1;FÞÞ be a one-period consumption–information profile. By
Theorem 5.1,

Vðht; ð0; d1ÞÞ ¼ bc�1
ht
ðEPðhtÞ½cht

ðuðc̃1ÞÞ�Þ:

It should be clear from this expression that the more concave cht
is the more risk

averse the conditional preference is. Thus cht
can be viewed as a (state-contingent)

risk aversion parameter of the conditional preference.

5.2. Dempster–Shafer rule

The Dempster–Shafer rule for updating non-additive probability measures first
appeared in Dempster [11,12] and Shafer [38,39] in the statistics literature. Our
axiomatization of the rule is based on the following timing indifference axiom.

Axiom 8 (Comonotonic timing indifference). For all htCOt; all partitions of O;
fA1;y;Ang and fB1;y;Bmg; and all two-period consumption–information profiles

11An history htAFt is called elementary if there does not exist another history h0t ¼ F 0
1 �?� F 0

tAFt

such that h0tCht and h0taht:
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ð0; d1Þ and ð0; d 0
1Þ such that d1ðo1Þ ¼ ð0;F0; d2iÞ if o1AAi and d2iðo2Þ ¼ cij if o2ABj ;

i ¼ 1;y; n; j ¼ 1;y;m; d 0
1ðo1Þ ¼ ð0;F0; d 0

2jÞ if o1ABj and d 0
2jðo2Þ ¼ cij if o2AAi;

i ¼ 1;y; n; j ¼ 1;y;m; we have ð0; d1Þkht
ð0; d 0

2Þ; provided that ci1p?pcim and

c1jp?pcnj for all i and j:

To understand the intuition formally expressed in Axiom 8, let us focus first on the
difference between Axioms 7 and 8, which is the additional condition that
ci1p?pcim and c1jp?pcnj for all i and j: This condition is related to the notion

of comonotonicity introduced by Schmeidler [36]. Recall that any two random
variables, x̃ and ỹ; are said to be comonotonic if for all o and o0AO such that
x̃ðoÞax̃ðo0Þ and ỹðoÞaỹðo0Þ; ½x̃ðoÞ � x̃ðo0Þ�½ỹðoÞ � ỹðo0Þ�40: Now consider the
two two-period consumption processes in Fig. 4. Here ci1oci2 and c1joc2j for

i; j ¼ 1; 2, which is the condition of Axiom 8 with strict inequalities. If the two
subtrees at time 1 in Fig. 4(a) are viewed as two random variables, then they are
comonotonic. The same is also true for the subtrees in Fig. 4(b). Thus another way of
stating the additional condition in Axiom 8 is that the two subtrees at time 1 are
comonotonic.12

Comonotonicity is a convenient way of describing the relationship among better-
than sets. Let c̃ ¼ ðc1;A1; c2;A2;y; cn;AnÞ be a state-contingent consumption with
c1oc2o?ocn: The better-than sets are, by definition,

An ¼ fc̃Xcng;An,An�1 ¼ fc̃Xcn�1g;y;An,?,A1 ¼ O ¼ fc̃Xc1g:

Observe that two random variables x̃ and ỹ are comonotonic if and only if the
following two conditions hold: (a) x̃ and ỹ assume the same number of distinct
values, say x1ox2o?oxn; y1oy2o?oyn; and (b) they have the same better-than

d1

A

Ac

B

Bc

B

Bc

c11 = 1

c12 = 3

c21 = 2

c22 = 4

d'
1

B

Bc

A

Ac

c11 = 1

c21 = 2

A

Ac

c12 = 3

c22 = 4
(a) (b)

Fig. 4. Comonotonic timing indifference.

12We have just made the connection between the additional condition in Axiom 8 with comonotonicity

when the inequalities in the condition are strict. The general case with weak inequalities can be viewed as

the limit of the case with strict inequalities.
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sets, foAO : x̃ðoÞXxig ¼ foAO : ỹðoÞXyig for all i: Thus if fcijg satisfy the
comonotonicity condition, then the better-than sets in the two subtrees in Fig. 4(a)
are identical (Bc and O). Since in Fig. 4(a) the payoff in each branch of the lower
subtree is greater than that in the corresponding branch of the upper subtree, the
lower sub-tree in ð0; d1Þ has higher utility o the individual than the upper sub-tree.
Suppose that the utility of the upper and lower sub-trees of ð0; d1Þ are V1 and V2;
respectively, with V1oV2: Then, at time 0 looking one-period ahead, the better-than

sets for ð0; d1Þ are Ac ¼ fṼXV2g and O ¼ fṼXV1g; where Ṽ is the state-contingent
utility at time 1. All together, the better-than sets in ð0; d1Þ are fAc;Og and fBc;Og:
It can be readily verified that ð0; d 0

1Þ has the same better-than sets. The only
difference is that in Fig. 4(b), the better-than sets of the subtrees are Ac and O; and
those at time 0 are Bc and O: Thus the comonotonicity condition in Axiom 8 can be
restated as: ð0; d1Þ and ð0; d 0

1Þ have the same collection of better-than sets, but in
reverse timing as described above.
Turn now to the relevance of better-than sets for an individual’s choice behavior.

For comparison, consider first the case where an individual has precise knowledge of
the objective probability law. In this case, he is able to assign probabilities to all sets
of the form fc̃ ¼ cig; i ¼ 1;y; n: Moreover, the assignment is independent of the
payoff to the individual on the events. Now return to the case where the individual
understands that there is an objective probability law that governs the realization of
uncertainty, but does not have the precise knowledge about this law. In this case,
precise likelihood can no longer be assigned to events like fc̃ ¼ cig: The revealed
likelihood assignment is likely to be dependent on the payoff of c̃ on the event to the
individual. In this situation, since better-than sets are characterized by worst-case
payoffs, they seem to be a natural input that the individual would need, in
combination with his vague assessment of the likelihood of events, to evaluate a
uncertain consumption prospect.
Let fA1;y;AngAF and x̃ be a random variable on O that takes values x1o?oxn

on the partition. Let Bi ¼
Sn

j¼i Aj; i ¼ 1;y; n; be the better-than sets. If n is a
monotonic set function such that nð|Þ ¼ 0 and nðOÞ ¼ 1; then the Choquet integral
[8] of x̃ with respect to n is defined as

En½x̃� �
Z

x̃ dn ¼
Xn

i¼1
½nðBiÞ � nðBiþ1Þ�xi;

where Bnþ1 ¼ |: It reduces to the standard integral when n is a probability measure.

Theorem 5.3. Suppose that the family fkht
: htCOt; tX1g of conditional preferences

satisfies Axioms 1–6. Then fkht
g satisfies comonotonic timing indifference if and only

if there exist a unique family of monotonic set functions fnðht; Þg and a family of

continuous, strictly increasing functions fcht
g such that, for any x̃ABðRÞ;

mðht; x̃Þ ¼ c�1
ht
ðEnðhtÞ½cht

ðx̃Þ�Þ;
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where nðht; Þ and cht
satisfy,

cht
ð0Þ ¼ 0; nðht; Þ ¼ nðht � O; Þ; cht

¼ cht�O

and, for all x̃ABðRÞ;
bc�1

ht
ðEnðhtÞ½cht

ðx̃Þ�Þ ¼ c�1
ht
ðEnðhtÞ½cht

ðbx̃Þ�Þ:

Therefore, by Theorem 4.2,

Vðht; ðc0; d1ÞÞ ¼ uðc0Þ þ bc�1
ht
ðEnðhtÞ½cht

ðṼðht; d1ÞÞ�Þ:

Parallel to the previous subsection, we consider the implication of this theorem for
updating.

Theorem 5.4 (Dempster–Shafer rule). Suppose that the family fkht
: htCOt; tX1g of

conditional preferences satisfies Axioms 1–6 and 8. Let F ¼ fFtg be an increasing

sequence of s-algebras and Rþ � DF be the subset of consumption–information profiles

ðc0; d1Þ such that the information filtration embedded in d1 coincides with F: Then

there exists a monotonic set function n0 on ðON;FNÞ where FN ¼ sðOt : t ¼ 1;yÞ
such that for any ðc0; d1ÞADF and any elementary event htAFt;

Vðht; ðct; dtþ1ÞÞ ¼ uðctÞ þ bc�1
ht
ðEn0 ½cht

ðṼðht; dtþ1ÞÞjFt�Þ;

where ðct; dtþ1Þ is the continuation of ðc0; d1Þ at time t and, for any event BCO and

htAFt; and n0ðBjhtÞ is given by the Dempster–Shafer rule,

n0ðBjhtÞ ¼
n0ð½ht � B�,½ðhtÞc � O�Þ � n0ððhtÞc � OÞ

1� n0ððhtÞc � OÞ :

Dempster–Shafer rule has been well studied in the statistics literature (see, for
example, [38]). Its incorporation into a preference/behavior framework, however,
has not been easy, mainly because of the time-consistency problem raised in [16].
Theorem 5.4 provides an alternative perspective on the issue. Consider first the result

in [16]. Let c2 :O2-Rþ be an act and let the initial preference be represented by a
Choquet expected utility,

Uðc2Þ ¼
Z

uðc2Þ d %n; ð1Þ

where %n is a capacity over O2: Suppose that conditional any event, the preference can
still be represented by a Choquet expected utility (see [21, Proposition 3.2] for
conditions under which this is true). Now we require that the preference be
dynamically consistent so that,

Uðc2Þ ¼
Z Z

uðc2ðo1;o2ÞÞ %nðo1; do2Þ
� �

%nðdo1Þ; ð2Þ
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where %nðo1; Þ is the conditional capacity derived from %n and the inner integral is the
conditional Choquet expected utility. Then by a mathematical result of Graf [23], (1)
and (2) imply that nmust be a probability measure. Thus we arrive at a version of the
result of Epstein and LeBreton [16] that dynamically consistent preferences must be
Bayesian.
Consider next Theorem 5.4 applied, with t ¼ 0; cht

ðxÞ ¼ x and b ¼ 1; to a two-
period consumption–information profile of the form ð0; d1Þ where

d1 :o1-ð0;F1ðo1Þ; d2ðo1ÞÞ; F1 ¼ fA1;y;Ang; d2ðo1;o2Þ ¼ c2ðo1;o2Þ:
This profile is the counterpart of the act c2 in our consumption–information profile
framework. For such a profile,

Vð0; d1Þ ¼
Z Z

uðc2ðo1;o2ÞÞ nðo1; do2Þ nðdo1Þ; ð3Þ

where nðo1; do2Þ ¼ nðAi; do2Þ if o1AAi: Eq. (3) is formally identical to Eq. (2).
Because of the recursive structure of Eq. (3), dynamic consistency is retained.
However, there is no requirement of Eq. (1) in our framework. In other words, we do
not require that conditional preference be the restriction of the prior preference. As a
result, n0 need not be a probability measure.
In a sense, the discussion above is a restatement of the result in [16]. It says if one

starts with conditional preferences and construct a n0 on subsets of O2 so that n0 and
nðjhtÞ are consistent with the Dempster–Shafer rule, and if the conditional
preferences are time-consistent, then n0 will not be consistent with the initial
preference at time zero.

5.3. Generalized Bayes rule

The generalized Bayes rule has been studied in the statistics literature [44]. The
axiomatization we provide below is based on a notion of pessimism by Wakker [43].

Axiom 9 (Pessimism). Let ð0; dxÞ with dx ¼ ðx̃;F0Þ and ð0; dyÞ with dy ¼ ðỹ;F0Þ be

two one-period consumption–information profiles, where x̃ and ỹABðRþÞ assume

values

x1p?pxi1p?pxi2p?pxN

and

y1p?pyi1p?pyi2p?pyN

on non-null events A1;A2;y;AN ; respectively, such that xi ¼ yi for i1pioi2 and

xi24yi2 : Let ð0; d 0
xÞ with d 0

x ¼ ðx̃0;F0Þ and ð0; d 0
yÞ with d 0

y ¼ ðỹ0;F0Þ be another two

one-period consumption–information profiles, where x̃0 and ỹ0ABðRþÞ assume values

x0
1p?px0

i1
p?px0

i2
p?px0

N

and

y0
1p?py0

i1
p?py0

i2
p?py0

N
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on A0
1;A0

2;y;A0
N ; respectively, such that ðaÞ A0

i1
¼ Ai2 ; A0

i2
¼ Ai1 ; and A0

i ¼ Ai for

iai1 and i2; and (b) x0
i1
¼ xi2 ; y0

i1
¼ yi2 ; x0

i ¼ y0
i for i1oipi2; and x0

i ¼ xi; y0
i ¼ yi for

i4i2 and ioi1: For all htCOt and tX1; if ð0; dxÞBhtð0; dyÞ; then ð0; d 0
xÞkht

ð0; d 0
yÞ:

While the formalism in the axiom is a bit involved, the sense of pessimism it
describes is very simple. It says that an individual is pessimistic if he assigns
more likelihood to the lower outcomes. This is best seen for conditional preferences
that satisfy Axioms 1–6 and 8. Let x̃; ỹ; x̃0 and ỹ0 be as described in the axiom.
Fig. 5 describes a case with four outcomes. Suppose that, as in Theorem 5.3 with
cht

ðxÞ ¼ x;

Vðht; ð0; dxÞÞ ¼ b
Xn

i¼1
½nðht;BiÞ � nðht;Biþ1Þ�uðxiÞ;

where Bi ¼
Sn

j¼i Aj; i ¼ 1;y;N: Borrowing an intuition from expected utility,

nðht;BiÞ � nðht;Biþ1Þ can be called the implied/revealed likelihood assigned to the
outcome xi: Then,

Vðht; ð0; dxÞÞ ¼ Vðht; ð0; dyÞÞ

is equivalent to

Xn

i¼1
½nðht;BiÞ � nðht;Biþ1Þ�½uðxiÞ � uðyiÞ� ¼ 0:

Similarly,

Vðht; ð0; d 0
xÞÞXVðht; ð0; d 0

yÞÞ

is equivalent to

Xn

i¼1
½nðht;B0

iÞ � nðht;B0
iþ1Þ�½uðx0

iÞ � uðy0
iÞ�X0;
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Fig. 5. Pessimism.
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where B0
i ¼

Sn
j¼i A0

j ; i ¼ 1;y;N: A subtraction yields

ðnðht;Bi2Þ � nðht;Bi2þ1ÞÞ½uðxi2Þ � uðyi2Þ�

pðnðht;Bi1Þ � nðht;Bi1þ1ÞÞ½uðxi2Þ � uðyi2Þ�;

which is true if and only if,
nðht;Bi2Þ � nðht;Bi2þ1Þpnðht;Bi1Þ � nðht;Bi1þ1Þ:

That is, when the number of outcomes higher than xi2 is larger in x̃0 than in x̃; xi2 is

assigned higher likelihood in x̃0 than in x̃; which is precisely what the intuitive
definition of pessimism suggests.
An axiom of optimism can be symmetrically defined. The following theorem is

established using Axiom 9. Pessimism is captured by the minimization over a set of
probability measures. There is also a version of the theorem for optimism by
symmetry.

Theorem 5.5. Suppose that the family fkht
: htCOt; tX1g of conditional preferences

satisfies Axioms 1–6 and 8 so that Theorem 5.3 holds. Then fkht
: htCOt; tX1g

satisfies Axiom 9 if and only if there exist a unique family of closed and convex subsets

fPðhtÞ : htCOt; tX1g of probability measures on O and a family of strictly increasing

and continuous functions fcht
: htCOt; tX1g such that, for all x̃ABðRÞ;

mðht; x̃Þ ¼ c�1
ht

min
pAPðhtÞ

Ep½cht
ðx̃Þ�

� �
;

where cht
has the property described in Theorem 5.1 and PðhtÞ ¼ Pðht � OÞ: Therefore,

by Theorem 4.2,

Vðht; ðc0; d1ÞÞ ¼ uðc0Þ þ bc�1
ht

min
pAPðhtÞ

Ep½cht
ðṼðht; d1ÞÞ�

� �
:

We now examine updating. First we introduce the generalized Bayes rule. Let

fFtgNt¼1 be a filtration and FN be the s-algebra generated by fOtgNt¼1 on ON: Let

fPtðhtÞ : htAFt; ht is elementary; t ¼ 0; 1;yg
be a family of sets of probability measures on ðON;FNÞ: Each probability measure
PAPtðhtÞ can be viewed as a probability measure conditional on the history ht: In
the case where each of the PtðhtÞ ¼ fPtðhtÞg is a singleton set and

PtðhtÞ ¼ P0ðjhtÞ;
the whole family of probability measures are related through the Bayes rule, and we
can say that the family updates according to the Bayes rule. In the general case, the
family is said to update according to the generalized Bayes rule if

(a) PAPtðhtÞ implies that
PðjFtþ1ÞAPtþ1ðht � Ftþ1Þ; ð4Þ

for any Ftþ1 such that ht � Ftþ1AFtþ1 is elementary; and
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(b) Ptþ1ðotþ1Þ is a Ftþ1-measurable selection from Ptþ1ðotþ1Þ; where by definition
Ptþ1ðotþ1Þ ¼ Ptþ1ðht � Ftþ1Þ for any otþ1Aht � Ftþ1; and PtAPtðhtÞ imply

PAPtðhtÞ; ð5Þ
where P is defined by

PðAÞ �
Z Z

1APtþ1ðot;otþ1; doNÞPtðdotþ1Þ; ð6Þ

for any otAht:

Expression (4) is called the forward inclusion. It states that any probability measure
in PðhtÞ; when updated according to the Bayes rule in light of new information Ftþ1;
falls into the set Pðht � Ftþ1Þ: Similarly, expression (5) is called the backward
inclusion, which states that when conditional probability measures Ptþ1ðotþ1Þ; each
drawn from Ptþ1ðotþ1Þ; and an unconditional PtðotÞ (relative to Ptþ1ðotþ1Þ) are
given and when they are used to define a probability measure through the
Kolmogorov backward equation, the probability measure falls into the set PðotÞ:
These forward and backward inclusions are straightforward extensions of the
standard Kolmogorov forward and backward equations.
We emphasize that a family

fPtðhtÞ : htAFt; ht is elementary; t ¼ 0; 1;yg

satisfies the generalized Bayes rule if it satisfies both the forward and backward
inclusions, (4) and (5). In the case where each PtðhtÞ is a singleton for all t and ht; by
standard probability theory, the family satisfies the forward inclusion if and only if it
satisfies the backward inclusion. The following two-period example shows, however,
that for a general family these two inclusions may not always be satisfied at the same
time.13 Suppose a fair coin is flipped twice and the flips may not be independent. Let
Hi; i ¼ 1 and 2 denote the event that the ith flip comes up head. Let

P0 ¼ fP : PðH1Þ ¼ PðH2Þ ¼ 1=2;PðH1-H2Þ ¼ p; pA½0; 1=2�g:

Applying Bayes rule to each P in the set yields

P1ðH1Þ ¼ fPðjH1Þ : PðH2jH1ÞA½0; 1�g;

P1ðT1Þ ¼ fPðjT1Þ : PðH2jT1ÞA½0; 1�g:

The family of sets of probabilities, P0; P1ðH1Þ and P1ðT1Þ; satisfy the forward
inclusion condition. However, they do not satisfies the backward inclusion
condition, because integrating yields

P0
0 ¼ fP : PðH1Þ ¼ 1=2;PðH2Þ ¼ q; qA½0; 1�;PðH1-H2Þ ¼ p; pA½0; 1=2�g;

which is not equal to P0:
Return to the implication of Theorem 5.5 for updating. Let P be a set of

probability measures on ðON;FNÞ: Define, for any bounded FN-measurable

13The example is adapted from Seidenfeld and Wasserman [40].
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function f

EP½f jFt�ðotÞ ¼ inf fEP½f jFt�ðotÞ : PAPg ¼ inf fEP½f ðotÞ� : PAPtðotÞg: ð7Þ

Theorem 5.6 (Generalized Bayes rule). Suppose that the conditions of Theorem 5.5

hold. Let F ¼ fFtgNt¼1 be an increasing sequence of s-algebras and Rþ � DF be the

subset of consumption–information profiles ðc0; d1Þ such that the filtration embedded in

d1 coincides with F and the consumption process embedded in d1 is uniformly bounded.

Then ðaÞ there exists a unique set of probability measures P0 on ðON;FNÞ such that

the family

fPtðhtÞ : htAFt is elementary; t ¼ 0; 1;yg; ð8Þ
where

PtðhtÞ ¼ fQ : Q ¼ PðjFtÞ; htAFt;PAP0g ð9Þ
satisfies the generalized Bayes rule; ðbÞ for any ðc0; d1ÞAR � DF and any elementary

history ht;

Vðht; ðct; dtþ1ÞÞ ¼ uðctÞ þ bc�1
ht
ðEP0 ½cht

ðṼðht; dtþ1ÞÞjFt�Þ;
where ðct; dtþ1Þ is the continuation of ðc0; d1Þ at time t; and ðcÞ if further cht

ðxÞ ¼ x;

then

Vðht; ðct; dtþ1ÞÞ ¼ EP0

XN
s¼0

bsuðctþsÞ
�����Ht

" #
: ð10Þ

In words, the theorem says that an individual with conditional preferences
satisfying Axioms 1–6, 8 and 9 behaves as if, on DF; he has a belief component
described by a set of priors, P0; on ðON;FNÞ and uses the generalized Bayes
rule to update his belief over time. Furthermore, the generalized Bayes rule is
operationally equivalent to updating each prior in P0 by the traditional Bayes rule
(see (9)).

6. Applications

Epstein and Wang [17,18] develop an intertemporal asset pricing model under
Knightian uncertainty. One of the key ingredients of the model is the representative
agent’s utility function:

VtðcÞ ¼ uðctÞ þ b inf
Z

Vtþ1ðcÞ dP : PAPðoÞ
� �

; ð11Þ

where PðoÞ is a closed convex set of probability measures on O for each state o:
Epstein and Wang introduce this utility function as an intertemporal extension of the
multi-prior expected utility developed by Golboa and Schmeidler [20]. They then go
on to study the effect of Knightian uncertainty on asset pricing. While there are
axiomatizations of multi-prior expected utility in atemporal settings [4,20],
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axiomatization of such utility in an intertemporal setting has not been available.
Theorem 5.5 of this paper can be viewed as providing such an axiomatization. In the
same spirit, Theorem 5.3 can be viewed as an axiomatization of intertemporal
Choquet expected utility, extending Schmeidler [37], Gilboa [19], Nakamura [32],
Sarin and Wakker [33], and Chew and Karni [7]. We view these as another
contribution of this paper.14

One interesting issue associated with extending multi-prior expected utility to an
intertemporal setting is its appropriate formulation. Epstein and Wang [17]
propose Eq. (11) as one possible formulation. They also discuss an alternative
formulation

VtðcÞ ¼ inf EP

XN
s¼t

bðs�tÞuðcsÞ
" #

: PAPðoÞ
( )

; ð12Þ

where P is a correspondence from O to subsets of probability measures on ON: As
they point out, unlike the time-additive expected utility, the two formulations (11)
and (12) are not necessarily equivalent in general. The natural issue is then: which
formulation is more appropriate?
It would be difficult to address this issue according to the respective intuitive

appeal of the two formulations. The recursive formulation (11) ensures that the
preference is dynamically consistent. It makes the utility function amenable to the
application of dynamic programming technique. Formulation (12), on the other
hand, is more convenient in certain applications. For example, to study the effect of
learning on asset price/return dynamics in an environment with Knightian
uncertainty, one may wish to specify a multi-prior expected utility preference as in
(12) and examine how the set of priors, P; evolves over time and its effect on
equilibrium asset prices.
Fortunately, under some conditions, the two formulations are equivalent.

Theorem 5.6 provides one such equivalence result. It starts with the recursive
formulation and states that under certain conditions it has an equivalent formulation
as in (12). A complementary result would be to start with (12) and establish its
equivalence to the recursive formulation. The following theorem is such an
complementary equivalence result.

Theorem 6.1. Let F ¼ fFtgNt¼1 be an increasing sequence of s-algebras on

ðON;FNÞ where FN ¼ sðOt; t ¼ 1; 2yÞ: Let Rþ � DF be the subset of

consumption–information profiles ðc0; d1Þ such that the information filtration

embedded in d1 coincides with F and the consumption process embedded in d1 is

uniformly bounded. Suppose that P is a closed set of probability measures on

ðON;FNÞ: Let

PtðotÞ ¼ fQ : QðÞ ¼ PðjFtÞðotÞ;PAPg

14See [26] for an alternative axiomatization.
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be sets of probability measures on ðON;FNÞ: If the family fPtg satisfies the

generalized Bayes rule, then

EP

XN
s¼0

bsuðctþsÞ
�����Ht

" #
¼ EP uðctÞ þ bEP

XN
s¼0

bsuðctþsþ1Þ
�����Htþ1

 !�����Ht

" #
:

An immediate corollary of the discussion above is that the agent in [17] can be
viewed as using the generalized Bayes rule of updating. Thus another application of
this paper is that it also provides the axiomatic foundation in the learning aspect for
the preference used in [17].
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Appendix A. Proofs and supporting technical details

Definition of the Domain D: We begin with t-period consumption–information
profiles. The space of t-period consumption–information profiles is constructed
recursively. Let D1 ¼ BðRþÞ: For each t41; define

Dt ¼ BðRþ � F� Dt�1Þ;

where, for notational convenience, BðRþ � F� Dt�1Þ denotes the subset of BðRþ �
2O � Dt�1Þ such that if ðc1;F1; d2Þ is in the subset, thenF1AF: Elements of Rþ � Dt

are called t-period consumption–information profiles.
Elements of D are defined using these t-period consumption–information profiles.

Let f1 : D2-D1 be defined by, for any dAD2 with d : o-ðc1ðoÞ;F1ðoÞ; d2ðoÞÞ;
f1ðdÞðoÞ ¼ c1ðoÞ; for each oAO:

Inductively, for t41; define ft :Dtþ1-Dt by, for dADtþ1 with
d :o-ðc1ðoÞ;F1ðoÞ; d2ðoÞÞ;

ftðdÞðoÞ ¼ ðc1ðoÞ;F1ðoÞ; ft�1ðd2ðoÞÞÞ; for all oAO:

Intuitively, what mapping ft does is to transform a t-period consumption–
information profile into a ðt � 1Þ-period one by cutting off the consumption and
the information of the last period in the t-period profile. We define D as the limit of a
sequence of finite-horizon profiles with the property that each ðt þ 1Þ-period profile
in the sequence is consistent with the preceding t-period profile. That is, we define

D ¼ fðd1; d2;yÞ : dtADt and dt ¼ ftðdtþ1Þ; tX1g:

All t-period consumption–information profiles can be naturally embedded in
Rþ � D: Specifically, let dt be an element of Dt: It can be extended to a ðt þ kÞ-period
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profile by attaching at the end of each branch of it a k-period consumption–
information profile whose consumption process is zero and whose information
filtration consists of only trivial partitions. With this extension, dt becomes an
element of Dtþk: Since k is arbitrary, dt corresponds naturally to an infinite sequence
of finite-horizon profiles such that any one of them grows out its predecessor. Thus
dt becomes an element of D:
Now we define the topology for D:We start with the topology on Dt: For a generic

topological space Y ; the topology on BðYÞ is the standard pointwise convergence
topology. On F; define the topology by the metric

rðF;GÞ ¼
X
oAO

X
o0AO

X#ðFÞ

i¼1

1

#ðFiÞ
X
o00AFi

1fogðo00Þ1Fi
ðo0Þ

�����
�
X#ðGÞ

j¼1

1

#ðGjÞ
X

o00AGi

1fogðo00Þ1Gj
ðo0Þ

�����;
where #ðFÞ and #ðFiÞ denote the number of elements in F and Fi respectively,
and 1F is the indicator function. This metric induces the pointwise convergence
topology introduced by Cotter [9] on set of s-algebras. Intuitively, two partitions
F and G are different if there are at least two subsets FiAF and GjAG such

that Fi-Gja| and FiaGj : In that case, there exist o and o0 such that oAFi-Gj

and o0AFi; but o0eGj; or o0eFi; but o0AGj: For this pair of o and o0; rðF;GÞ40:
Conversely, if rðF;GÞ40; then reversing the argument above implies thatF and G
are not identical. Thus, conforming to the intuition, if Fn is a sequence of
partitions and rðFn;FÞ-0; then Fn ‘‘converges’’ to F because for large n;
rðFn;FÞ ¼ 0: Now for each t41; give Rþ � F� Dt�1 the product topology. Then
the topology on Dt can be defined recursively. Finally, we give D the product
topology.

Proof of Theorem 3.1. First, we define a mapping Y from D to BðRþ � F� DÞ: Let
dAD: By definition

d ¼ ðd1; d2;yÞAPN

t¼1 Dt; with ftðdtþ1Þ ¼ dt:

Recall that the latter consistency condition implies that dtðoÞ ¼
ðc1ðoÞ;F1ðoÞ; dt

2ðoÞÞ for some common c1ABðRþÞ and F1AF for all t: Define
YðdÞ by for each oAO;

YðdÞðoÞ ¼ ðc1ðoÞ;F1ðoÞ; d2ðoÞÞ; d2ðoÞ ¼ ðd22 ðoÞ; d32 ðoÞ;y; dt
2ðoÞ;yÞ:

To ensure that Y is well defined, we need to show that d2ðoÞAD for each oAO: That
is, for each oAO; ft�1ðdtþ1

2 ðoÞÞ ¼ dt
2ðoÞ: Fix oAO: By assumption, for all t41;

ftðdtþ1Þ ¼ dt: This implies that

ftðdtþ1ÞðoÞ ¼ ðc1ðoÞ;F1ðoÞ; ft�1ðdtþ1
2 ðoÞÞÞ ¼ dtðoÞ ¼ ðc1ðoÞ;F1ðoÞ; dt

2ðoÞÞ;

and hence ft�1ðdtþ1
2 ðoÞÞ ¼ dt

2ðoÞ as desired. Arguing in reverse order shows that Y is
one-to-one and onto. For continuity, suppose that dn-d: Then dtþ1;n-dtþ1 for each
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t: This is equivalent to ðcn
1ðoÞ;Fn

1ðoÞ; d
t;n
2 ðoÞÞ-ðc1ðoÞ;F1ðoÞ; dt

2ðoÞÞ for all oAO:
Thus ðd2;n2 ðoÞ; d3;n2 ðoÞ;yÞ-ðd22 ðoÞ; d32 ðoÞ;yÞ and hence

ðcn
1ðoÞ;Fn

1ðoÞ; ðd
2;n
2 ðoÞ; d

3;n
2 ðoÞ;yÞÞ-ðc1ðoÞ;F1ðoÞ; ðd22 ðoÞ; d32 ðoÞ;yÞÞ:

Therefore Y is continuous. Arguing in reverse order establishes the continuity

of Y�1: &

The information filtration embedded in d1: Let d1AD: Fix a t and ðo1;y;otÞ:
Suppose

d1ðo1Þ ¼ ðc1ðo1Þ;F1ðo1Þ; d2ðo1ÞÞ:
SinceF1 ¼ fF1;y;Fn1g is a partition, there is a unique Fo1AF1 such that o1AFo1 :

Next suppose

d2ðo1Þðo2Þ ¼ ðc2ðo1;o2Þ;F2ðo1;o2Þ; d3ðo1;o2ÞÞ:
Since F2ðo1Þ ¼ fFo1;1;y;Fo1;nðo1Þg is a partition, there is a unique

Fðo1;o2ÞAF2ðo1Þ such that o2AFðo1;o2Þ: Inductively, there exists a unique sequence

Fo1 ;y;Fðo1;y;otÞ such that ðo1;y;otÞAFo1 �?� Fðo1;y;otÞ: The collection of

such sets Fo1 �?� Fðo1;y;otÞ as ðo1;y;otÞ runs through Ot is a partition of Ot;

which naturally extends to a corresponding partition of ON:Denote this partition by
Ft: Let t run through 1; 2;y: Then fsðFtÞ : tX1g is the information filtration
embedded in d1:

Proof of Theorem 4.1. By Debreu [10], each conditional preference kht
on Rþ � D

can be represented by an utility function Vðht; ðc0; d1ÞÞ on Rþ � D: Due to
Axiom 4, the ranking of deterministic consumption profiles are independent
of past information histories. Thus we can normalize the utility functions by
monotonic transforms such that for any deterministic consumption–information
profile ðc0; d1Þ;

Vðht; ðc0; d1ÞÞ ¼ Vðh0
t; ðc0; d1ÞÞ;

for any ht ¼ A1 �?� At and h0
t ¼ B1 �?� Bt: By stationarity, we further

normalize the utility functions such that Vðht; ðc0; d1ÞÞ ¼ Vðht � Os; ðc0; d1ÞÞ:
Define a function V̂ðht; d1Þ : D-R by

V̂ðht; d1Þ ¼ f ðVðht; ð0; d1ÞÞÞ;
where f is the unique strictly increasing function such that for all cARþ;

Vðc; 0Þ ¼ f ðVð0; cÞÞ;
where ðc; 0Þ and ð0; cÞ are the deterministic consumption profile which has a one-time
consumption of c today and tomorrow, respectively, and Vðc; 0Þ is the conditional
utility at time 0 of a one-time current consumption c at time 0: By convention

no historical information is recorded at time 0. Intuitively, V̂ðht; d1Þ is the utility of
d1 at time t þ 1 evaluated just before the uncertainty in the period between time
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t and t þ 1 is realized. To illustrate, let ðc0; d1Þ ¼ ðc0; ðc̃1;FÞÞ be a one-period
consumption–information profile and

Vðht; ðc0; d1ÞÞ ¼ uðc0Þ þ bE½uðc̃1Þjht�:

Then Vðc0Þ ¼ uðc0Þ; f ðxÞ ¼ x=b and

V̂ðht; d1Þ ¼ E½uðc̃1Þjht�:

Now define for any c0ARþ and any real number v;

Wðht; ðc0; vÞÞ ¼ Vðht; ðc0; d1ÞÞ;

for any d such that v ¼ V̂ðht; d1Þ: If d1 and d 0
1 are such that v ¼ V̂ðht; d1Þ ¼ V̂ðht; d 0

1Þ;
then it follows from uncertainty separability that

Vðht; ðc0; d1ÞÞ ¼ Vðht; ðc0; d 0
1ÞÞ:

Thus the function W is well defined. Continuity and monotonicity of W are
straightforward.
We now show that Wðht; ðc0; vÞÞ is independent of ht: Let ðc0; d1Þ be a

deterministic consumption–information profile. By the normalization,

VðA1 �?� At; ðc0; d1ÞÞ ¼ VðB1 �?� Bt; ðc0; d1ÞÞ:

Thus

WðA1 �?� At; ðc0; vÞÞ ¼ WðB1 �?� Bt; ðc0; vÞÞ:

That is, Wðht; ðc0; d1ÞÞ is independent of ht:

Next, let tX0 and htCOt: Define mðhtÞ :BðOÞ-R by

mðht; x̃Þ ¼ V̂ðht; d1Þ;

for any d1AD such x̃ ¼ Ṽðht; d1Þ:We claim that mðhtÞ is well defined. Suppose that d1
and d 0

1 are such that

x̃ ¼ Ṽðht; d1Þ ¼ Ṽðht; d 0
1Þ;

and that d1ðoÞ ¼ ðc1ðoÞ;FðoÞ; d2ðoÞÞ and d 0
1ðoÞ ¼ ðc01ðoÞ;GðoÞ; d 0

2ðoÞÞ whereF ¼
fA1;y;Ang and G ¼ fB1;y;Bmg: Then we have, for all i and j and oAAi-Bj;

V ½ht � Ai; ðc1ðoÞ; d2ðoÞÞ� ¼ V ½ht � Bj; ðc01ðoÞ; d 0
2ðoÞÞ�: ð13Þ

By Axiom 1, for each o; there exist constant numbers yðoÞ and zðoÞ (which are
viewed as deterministic consumption–information profiles) such that

ðc1ðoÞ; d2ðoÞÞBht�Ai
yðoÞ and ðc01ðoÞ; d 0

2ðoÞÞBht�Bj
zðoÞ:

Thus, by Axiom 4 and the normalization,

V ½ht � Ai; ðc1ðoÞ; d2ðoÞÞ� ¼V ½ht � Ai; yðoÞ� ¼ V ½ht � Bj; yðoÞ�

¼V ½ht � Bj ; ðc01ðoÞ; d 0
2ðoÞÞ�

¼V ½ht � Bj ; zðoÞ� ¼ V ½ht � Ai; zðoÞ�:
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Then for any c0ARþ

V ½ht; ðc0; d1Þ� ¼V ½ht; ðc0; ðc1;F; d2ÞÞ� ¼ V ½ht; ðc0; ðy;F; 0ÞÞ�

¼V ½ht; ðc0; ðy;G; 0ÞÞ� ¼ V ½ht; ðc0; ðz;G; 0ÞÞ�

¼V ½ht; ðc0; ðc01;G; d 0
2ÞÞ� ¼ V ½ht; ðc0; d 0

1Þ�;

where the second, fourth and fifth equalities are by the consistency axiom, and the
third equality is by Axiom 4. Since c0 is arbitrary, it follows that

V̂½ht; d1� ¼ V̂½ht; d 0
1�:

Thus mðhtÞ is well defined. Stationarity clearly implies that mðhtÞ ¼ mðht � OÞ:
To show mðht; x̃Þ is a certainty equivalent, let ðc0; d1Þ ¼ ðc0; ðc1;F0ÞÞ be a one-

period consumption–information profile. Observe that

V̂ðht; d1Þ ¼ mðht; Ṽðht; d1ÞÞ

¼ mðht;Vðht � O; ðc1; 0ÞÞ:

By stationarity and the normalization,

Vðht � O; ðc1; 0ÞÞ ¼ Vðht; ðc1; 0ÞÞ ¼ Vðc1Þ:

By definition of V̂ðht; d1Þ;
V̂ðht; d1Þ ¼ f ½Vðht; ð0; ðc1;F0ÞÞ� ¼ Vðc1Þ:

Thus mðht;Vðc1ÞÞ ¼ Vðc1Þ; which is the property (a) of a certainty equivalent.
For property (b), let d1 be given by d1ðoÞ ¼ ðc1ðoÞ;F0; 0Þ and x̃ ¼ Ṽðht; d1Þ so

that x̃ðoÞ ¼ Vðht � O; ðc1ðoÞ; 0ÞÞ: Similarly, let d 0
1 be given by d 0ðoÞ ¼ ðc01ðoÞ;F0; 0Þ

and ỹðoÞ ¼ Vðht � O; ðc01ðoÞ; 0ÞÞ: If x̃Xỹ; then, by consistency,

mðht; x̃Þ ¼ mðht; Ṽðht; d1ÞÞ ¼ V̂½ht; d1�

X V̂½ht; d 0
1� ¼ mðht; Ṽðht; d 0

1ÞÞ ¼ mðht; ỹÞ: &

Proof of Theorem 4.2. This theorem follows from Koopmans [28] or Gorman
[22]. &

Proof of Theorem 5.1. The proof is exactly identical to that of Theorem 5.3 with only
one change: under Timing Indifference, property (A6) is replaced by

dAðmFðx1;y; xnÞ;mFðy1;y; ynÞÞBF1�?�Ft dFðmAðx1; y1Þ;y;mAðxn; ynÞÞ: ðA60Þ

Under ðA60Þ; by Nakamura [32, Theorem 1], nðht; Þ in the proof of Theorem 5.3 is in
fact a probability measure. &

Proof of Theorem 5.2. Denote ðo1;y;otÞ by ot: Let Pðht; Þ; where htAFt is
elementary, be the probability measures whose existence is guaranteed by Theorem
5.1. For any ACO and otAhtAFt; let Pðot;AÞ ¼ Pðht;AÞ: Define, for each t and ot;
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a probability measure PtðotÞ on ðON;FNÞ by, for any A ¼ Ftþ1 �?� FT ;

Ptðot;AÞ ¼
Z Z

?
Z
1APðoT�1; doT Þ

� �
?

� �
Pðotþ1; dotþ2Þ

� �
� Pðot; dotþ1Þ: ð14Þ

Kolmogorov Theorem ensures that PtðotÞ; t ¼ 0; 1;y; are well defined. The
probability measure P0 is the desired initial probability. By construction,

P0½jFt�ðotÞ ¼ Ptðot; Þ; Ptðot; jFtþ1Þðotþ1Þ ¼ Ptþ1ðotþ1; Þ
and

Ptðot;A � ONÞ ¼ Pðot;AÞ ¼ Pðht;AÞ;
for any ACO and otAht: Thus fPðhtÞg are conditionals of P0: &

Proof of Theorem 5.3. Fix ht: First we introduce some simplifying notations. LetF ¼
fA1;y;Ang be a partition of O: Denote by dFðx1;y; xnÞ the random variable whose
value in state oAAi is xi: We will also use it to denote the one-period consumption–
information profile whose current consumption is zero and whose consumption at time
1 in state oAAi is xi: The meaning will always be clear from the context. Note that for
one-period consumptions, updating in the forthcoming period is irrelevant by Axiom 4.
Let ACO: For the partitionF ¼ fA;Acg we will also write dFðx; yÞ simply as dAðx; yÞ:
For partitions F ¼ fA1;y;Ang and Fi ¼ fBi1;y;Bimg; i ¼ 1;y; n; denote by
dF ¼ ðdF1ðx11;y; x1mÞ;y; dFnðxn1;y; xnmÞÞ the two-period consumption profiles

ð0; ð0;F0; d2ÞÞ; d2ðoÞ ¼ dFi
ðxi1;y; ximÞ for oAAi; i ¼ 1;y; n:

Consider the restriction of kht
to one-period consumption–information profiles. To

simplify notations, write V ½F1 �?� Ft; ð0; dFðx1;y; xnÞÞ� as V ½F1 �?�
Ft; dFðx1;y; xnÞ� when no confusion arises.
We shall first verify that if Axioms 1–6 and 8 hold, then the ordering kht

has the

following properties:

(A1) For each dFðx1;y; xnÞ; there exist x and yARþ such that

dOðxÞght dFðx1;y; xnÞghtdOðyÞ:

(A2) If dAðy; zÞkht
dFðx1;y; xnÞkht

dAðx; zÞ; then dFðx1;y; xnÞBht dAða; zÞ for
some aARþ:

(A3) If A is not null15 and fx; ygpz; then xpy if and only if dAðy; zÞkht
dAðx; zÞ; if A

is not universal16 and fx; ygXz; then xpy if and only if dAðz; yÞkht
dAðz; xÞ:

(A4) If xpy and ACB; then dAðx; yÞkdBðx; yÞ:
(A5) Every strictly bounded standard sequence is finite.17

15Recall that an event ACO is null if for all x; y; zARþ; dAðx; zÞBF1�?�Ft dAðy; zÞ:
16An event ACO is universal if for all x; y; zAR; dAðx; yÞBdAðx; zÞ:
17Let N be any set of consecutive integers. Given an event A which is neither null nor universal, a

standard sequence is defined as a set faiARþ : iANg for which there exist a and bARþ such that aab and

either fa; bgpai and dAða; aiÞBht dAðb; aiþ1Þ for all iAN; or aipfa; bg and dAðai ; aÞBht dAðaiþ1; bÞ for all
iAN:
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(A6) If x1p?pxn and y1p?pyn with xipyi for all i; then

dAðmFðx1;y; xnÞ;mFðy1;y; ynÞÞBht dFðmAðx1; y1Þ;y;mAðxn; ynÞÞ;
where mFðx1;y; xnÞ is the constant such that

V ½ht; ð0;mFðx1;y; xnÞÞ� ¼ V ½ht; ð0; dFðx1;y; xnÞÞ�
or

mFðx1;y; xnÞ ¼ u�1½V ½ht; ð0; dFðx1;y; xnÞÞ�=b�: ð15Þ
Note that mFðx1;y; xnÞ is the constant consumption that is realized one

period from now.

Properties (A1)–(A4) follow from Axioms 1,4 and 5. Recall that consistency
implies the usual monotonicity.
For (A5), let fxn; nANg be a standard sequence. Then, without loss of generality,

there exist two real numbers p and qARþ such that

V ½ht; dAðxn; pÞ� ¼ V ½ht; dAðxnþ1; qÞ�: ð16Þ
Assume first that p4q: Then by monotonicity, xnoxnþ1 for all n: We wish to verify
that if this standard sequence is strictly bounded in the sense that aoxnob for some
aob; then the sequence must be finite. Suppose the contrary. Then xn converges to a
real number x0pb: Taking limit in (16) and applying the continuity of V ; we have
V ½ht; dAðx0; pÞ� ¼ V ½ht; dAðx0; qÞ�; which contradicts the fact that A is not universal
and hence Ac is not null. The case that poq can be verified similarly.
For (A6), we show first that the certainty equivalent operator, m½ht�; satisfies

m½ht; bx̃� ¼ bm½ht; x̃� ð17Þ
for all x̃ABðRþÞ: In the following derivation, we make heavy use of the expressions

V ½ht; ðc; dÞ� ¼ uðcÞ þ bmðht; Ṽ½ht; d�Þ ð18Þ
and

V ½ht; dFðx1;y; xnÞ� ¼ bm½ht; uðx̃Þ�: ð19Þ
Now let x̃ABðRþÞ be a random variable that assumes values x1o?oxn on
A1;y;An respectively. Let F ¼ fA1;y;Ang: Let

d1ðoÞ ¼ ð0;F0; d2ðoÞÞ; d2ðoÞ ¼ dFðu�1ðxiÞ;y; u�1ðxiÞÞ; if oAAi

and

d 0
1ðoÞ ¼ ð0;F0; d 0

2ðoÞÞ; d 0
2ðoÞ ¼ dFðu�1ðx1Þ;y; u�1ðxnÞÞ; ifoAAi:

Observe that

Vðht; dFðdFðu�1ðx1Þ;y; u�1ðx1ÞÞ;y; dFðu�1ðxnÞ;y; u�1ðxnÞÞÞÞ

¼ Vðht; ð0; d1ÞÞ ¼ bmðht; Ṽðht; d1ÞÞ: ð20Þ
where in the second equality we have used (18), noting that the argument of Vðht; Þ
is a two-period consumption–information profile. For oAAi;
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Ṽðht; d1ÞðoÞ ¼Vðht � O; dFðu�1ðxiÞ;y; u�1ðxiÞÞÞ

¼ bmðht � O; dFðu�1ðxiÞ;y; u�1ðxiÞÞÞ ¼ bmðht � O; xiÞ ¼ bxi; ð21Þ

where the third equality is by (19). By a similar argument,

Vðht; dFðdFðu�1ðx1Þ;y; u�1ðxnÞÞ;y; dFðu�1ðx1Þ;y; u�1ðxnÞÞÞÞ

¼ Vðht; ð0; d 0
1ÞÞ ¼ bmðht; Ṽðht; d 0

1ÞÞ ð22Þ

and for oAAi;

Ṽðht; d2ÞðoÞ ¼Vðht � O; dFðu�1ðx1Þ;y; u�1ðxnÞÞÞ

¼ Vðht; dFðu�1ðx1Þ;y; u�1ðxnÞÞÞ ¼ bmðht; x̃Þ; ð23Þ

where the second equality is by Stationarity. Now by (20)–(23)

bmðht; bx̃Þ ¼Vðht; dFðdFðu�1ðx1Þ;y; u�1ðx1ÞÞ;y; dFðu�1ðxnÞ;y; u�1ðxnÞÞÞÞ

¼Vðht; dFðdFðu�1ðx1Þ;y; u�1ðxnÞÞ;y; dFðu�1ðx1Þ;y; u�1ðxnÞÞÞÞ

¼ bmðht; bmðht; x̃ÞÞ ¼ b2mðht; x̃Þ;

where the second equality is by comonotonic timing indifference, and last equality
from mðhtÞ being a certainty equivalent. Thus (17) is shown.
Now, let

f̃ðoÞ ¼
Vðht � O; dFðx1;y; xnÞÞ if oAA;

Vðht � O; dFðy1;y; ynÞÞ otherwise:

(

Then

Vðht; dAðmFðx1;y; xnÞ;mFðy1;y; ynÞÞÞ

¼ Vðht; dAðu�1½Vðht � O; dFðx1;y; xnÞÞ=b�;

u�1½Vðht � O; dFðy1;y; ynÞÞ=b�Þ

¼ m½ht; f̃� ¼ 1
b
½bmðht; f̃Þ�

¼ 1
b

Vðht; dAðdFðx1;y; xnÞ; dFðy1;y; ynÞÞÞ

¼ 1
b

Vðht; dFðdAðx1; y1Þ;y; dAðxn; ynÞÞÞ

¼ Vðht; dFðu�1½Vðht � O; dAðx1; y1ÞÞ=b�;y; u�1½Vðht � O; dAðxn; ynÞÞ=b�ÞÞ

¼ Vðht; dFðmAðx1; y1ÞÞ;y;mAðxn; ynÞÞÞÞ

where first equality is by (15), the second equality is by (19) and (17), the fourth
equality is by (18), the fifth equality is by comonotonic timing indifference, the sixth
equality is by (18), and the last equality is by (15). Thus (A6) holds.
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Now by Nakamura [32, Theorem 1], there exist a strictly monotonic function ght ;
unique under affine transform, and a unique normalized monotonic set function
nðhtÞ such that dFðx1;y; xnÞkht

dGðy1;y; ymÞ if and only ifZ
ght ½uðx̃Þ� dnðhtÞX

Z
ght ½uðỹÞ� dnðhtÞ:

Thus, for any x̃ and ỹABðRþÞ;
Vðht; dFðx1;y; xnÞÞXVðht; dGðy1;y; ymÞÞ

if and only ifZ
ght ½uðx̃Þ� dnðhtÞX

Z
ght ½ðỹÞ� dnðhtÞ;

which implies that there exists a strictly increasing function cht
such that

cht
ðVðht; dFðx1;y; xnÞÞ=bÞ ¼

Z
ghtðuðx̃ÞÞ dnðhtÞ:

However, Vðht; dFðx1;y; xnÞÞ=b ¼ mðht; uðx̃Þ� by (19). Thus

cht
ðmðht; uðx̃ÞÞÞ ¼

Z
ghtðuðx̃ÞÞ dnðhtÞ:

Since mðht; Þ is a certainty equivalent, the above equation implies that
cht

½uðxÞ� ¼ ghtðuðxÞÞ:

Since ght is unique under affine transform, we can normalize cht
so that cht

ð0Þ ¼ 0:
Returning to mðhtÞ; we have

mðht; ỹÞ ¼ c�1
ht

Z
cht

ðỹÞ dnðhtÞ:

We have shown the if the conditional preferences satisfies Axioms 1–6 and 8, then
the certainty equivalents are of the form claimed in the theorem. The converse is
straightforward to verify. &

Proof of Theorem 5.4. To derive the Dempster–Shafer rule from Theorem 5.3, we
first define an unconditional non-additive prior. We then tie it to the family of set
functions, fnðhtÞg; in Theorem 5.3, which are viewed as non-additive conditionals.
For simplicity, we examine the two-period case. The more general case is the same.

Define the unconditional non-additive prior n on O2 by, for any A � BCO2;

nðA � BÞ ¼ Vð0; d1Þ;

where

d1 :o1-ð0;Fðo1Þ; d2ðo1ÞÞ; F ¼ fA;Acg;

d2ðo1;o2Þ ¼
1 if o1AA and o2AB;

0 otherwise:

(
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This definition looks more complicated than it really is. The ð0; d1Þ corresponds to
the two-period trees in Fig. 6. Now let F ¼ fA1;y;ANg: For subsets of O2 of the
form

Sn
i¼1 Ai � Bi where Ai � Bi are disjoint and NXn; define

n
[n
i¼1

Ai � Bi

 !
¼ Vð0; d1Þ;

where

d1 :o1-ð0;Fðo1Þ; d2ðo1ÞÞ; d2ðo1;o2Þ ¼
1 if o1AAi and o2ABi;

0 otherwise

(

for i ¼ 1;y; n:18

For F1 and BCO; it is readily verified that

nðF1 � BÞ ¼ nðF1ÞnðF1;BÞ:

Thus

nðF1;BÞ ¼ nðF1 � BÞ=nðF1Þ:

It is formally the same as the Bayes rule. It is also readily verified that

nð½F1 � B�,½Fc
1 � O�Þ ¼ ð1� nðFc

1 � OÞÞnðF1;BÞ þ nðF c
1 � OÞ:

Thus

nðF1;BÞ ¼ nð½F1 � B�,½Fc
1 � O�Þ � nðFc

1 � OÞ
ð1� nðFc

1 � OÞÞ :

This last expression is the Dempster–Shafer rule. &

Proof of Theorem 5.5. This theorem follows from Wakker [43, Theorem 7.3] and the
standard representation theorem for Choquet integration with respect to a convex
capacity. See for example [2]. &

A

Ac

0

0

1

0

0

0

B

Bc

B

Bc

(a) (b)

A

Ac

B

Bc

B

Bc

Fig. 6. Simple consumption–information profile.

18This n on subsets of O2 corresponds to the likelihood relation in the literature. See [16,30].
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Proof of Theorem 5.6. We first construct P0: Fix a tX0: Let Pðos; Þ; s ¼ t; t þ 1;y;
be a sequence of Fs-measurable selection from PðhsÞ; i.e.,

Pðos; ÞAPðhsÞ and for each ACO Pðos;AÞ is Fs-measurable:

By Kolmogorov Theorem, there exists a probability measure Ptðot; Þ on ðON;FNÞ
such that

Ptðot;Atþ1 �?� AsÞ ¼
Z

?
Z
1Atþ1�?�Asðotþ1;y;osÞPðos�1; dosÞ?

� Pðot; dotþ1Þ;

for any s4t and Atþ1 �?� AsCOs�t: Let PtðotÞ; tX0; denote the set of all such
measures. By construction, if PAPtðotÞ; then

PðjFtþ1Þðotþ1ÞAPtþ1ðotþ1Þ: ð24Þ
That is, if P is any probability measure in PtðotÞ; then its conditionals fall into
Ptþ1ðotþ1Þ; which is the forward inclusion. Conversely, if Ptþ1ðotþ1Þ is a Ftþ1-

measurable selection from Ptþ1ðotþ1Þ and PtðotÞAPðhtÞ; then

PAPtðotÞ; PðAÞ �
Z Z

1APtþ1ðot;otþ1; doNÞPtðot; dotþ1Þ; ð25Þ

which is the backward inclusion. Thus the family just constructed, fPtðotÞg; satisfies
the generalized Bayes rule. P0 is the desired set of priors on ðON;FNÞ:
The second claim is straightforward. For the third claim, we will prove the case of

‘‘finite-horizon’’ consumption–information profiles. The infinite-horizon case can be
shown by a limiting argument, assuming that the limits on both sides of the equation
exist. We prove the case of two-period consumption–information profiles. The more
general case is the same, but involves more notation. We also assume t ¼ 0: The case
for general t is the same. Let ðc0; d1Þ ¼ ðc0; ðc1;F1; d2ÞÞ withF1 ¼ fF1;y;Fng and
d2 ¼ ðc2;F2; 0Þ: Note thatF2 is irrelevant for the evaluation of the utility. So there
is no need to specify it. By Theorem 5.5,

Vðc0; d1Þ ¼ uðc0Þ þ bmin
Z

Ṽðd1Þðo1ÞPðdo1Þ : PAP0

� �
;

Ṽðd1Þðo1Þ ¼VðFi; ðc1ðo1Þ; d2ðo1ÞÞÞ

¼ uðc1ðo1ÞÞ þ bmin
Z

uðc2ðo1;o2ÞÞPðdo2Þ : PAPðFiÞ
� �

:

Since both P0 and PðFiÞ are closed, there exist P�
0AP0 and P�

1ðo1ÞAPðFiÞ for o1AFi

such that

Vðc0; d1Þ ¼ uðc0Þ þ b
Z

Ṽðd1Þðo1ÞP�
0ðdo1Þ;

Ṽðd1Þðo1Þ ¼VðFi; ðc1ðo1Þ; d2ðo1ÞÞÞ

¼ uðc1ðo1ÞÞ þ b
Z

uðc2ðo1;o2ÞÞP�
1ðo1; do2Þ; if o1AFi:
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Let fP�
t ðotÞg be a sequence ofFt-measurable selection from PðhtÞ; for tX2: Let P be

the probability measure on ðON;FNÞ generated by fP�
t g

N

t¼0 via the Kolmogorov
Theorem. Then PAP0 and

VðFi; ðc1ðo1Þ; d2ðo1ÞÞÞ ¼ uðc1ðo1ÞÞ þ b
Z

uðc2ðo1;o2ÞÞP�
1ðo1; do2Þ

¼EP½uðc1Þ þ buðc2ÞjH1�;

Vðc0; d1Þ ¼ uðc0Þ þ bEP½Ṽðd1Þ�

¼ uðc0Þ þ bEP½uðc1Þ þ buðc2ÞjH0�:
Thus, the LHS of Eq. (10) is greater than its RHS. On the other hand, by Theorem
5.5 and the construction of P0; its LHS is always less than its RHS. Therefore, the
equality holds. &

Proof of Theorem 6.1. Note first that

EP

XN
s¼0

bsuðctþsÞ
�����Ht

" #
XEP uðctÞ þ bEP

XN
s¼0

bsuðctþsþ1Þ
�����Htþ1

 !�����Ht

" #
:

For the reverse inequality, let Pðotþ1ÞA #Ptþ1ðotþ1Þ be such that

EPðotþ1Þ
XN
s¼0

bsuðctþsþ1Þ
�����Htþ1

 !
¼ EP

XN
s¼0

bsuðctþsþ1Þ
�����Htþ1

 !
;

and let PðotÞAPtðotÞ be such that

EP uðctÞ þ bEP

XN
s¼0

bsuðctþsþ1Þ
�����Htþ1

 !�����Ht

" #

¼ EPðotÞ uðctÞ þ bEPðotþ1Þ
XN
s¼0

bsuðctþsþ1Þ
�����Htþ1

 !�����Ht

" #
:

Since fPtg satisfies the generalized Bayes rule, the probability measure defined by

PðAÞ ¼
Z Z

1APðot;otþ1; doNÞPðot; dotþ1Þ

is in Pt: Thus the reverse inequality holds. &

References

[1] E. Anderson, L. Hansen, T. Sargent, Robustness, detection and the price of risk, Working paper,

University of Chicago, 1999.

[2] B. Anger, Representation of capacities, Math. Ann. 229 (1977) 245–258.

[3] C.F. Camerer, M. Weber, Recent developments in modelling preferences: uncertainty and ambiguity,

J. Risk Uncertainty 8 (1992) 167–196.

T. Wang / Journal of Economic Theory 108 (2003) 286–321 319



[4] R. Casadesus-Masanell, P. Klibanoff, E. Ozdenoren, Maxmin expected utility over savage acts with a

set of priors, J. Econom. Theory 92 (2000) 35–65.

[5] S.H. Chew, L. Epstein, The structure of preferences and attitudes towards the timing of the resolution

of uncertainty, Internat. Econom. Rev. 30 (1989) 103–117.

[6] S.H. Chew, L. Epstein, Recursive utility under uncertainty, in: A. Kahn, N. Yannelis (Eds.),

Equilibrium Theory with an Infinite Number of Commodities, Springer, Berlin, Heidelberg, New

York, 1991, pp. 352–369.

[7] S.H. Chew, E. Karni, Choquet expected utility with a finite state space: commutativity and act-

independence, J. Econom. Theory 62 (1994) 469–479.

[8] G. Choquet, Theory of capacities, Ann. Inst. Fourier 5 (1953–4) 131–295.

[9] K. Cotter, Similarity of information and behavior with a pointwise convergence topology, J. Math.

Econom. 15 (1986) 25–38.

[10] G. Debreu, Representation of a preference ordering by a numerical function, in: R. Thrall, C.

Coombs, R. David (Eds.), Decision Processes, Wiley, New York, 1954.

[11] A.P. Dempster, Upper and lower probabilities induced from a multivalued mapping, Ann. Math.

Statist. 38 (1967) 525–539.

[12] A.P. Dempster, A generalization of Bayesian inference, J. Roy. Statist. Soc. Ser. B 30 (1968) 205–247.

[13] J. Dow, S. Werlang, Laws of large numbers for non-additive probabilities, Working paper, London

Business School, 1994.

[14] D. Ellsberg, Risk, ambiguity, and the savage axioms, Quart. J. Econom. 75 (1961) 643–669.

[15] L. Epstein, S. Zin, Substitution, risk aversion and the temporal behavior of consumption and asset

returns: a theoretical framework, Econometrica 57 (1989) 937–969.

[16] L. Epstein, M. Le Breton, Dynamically consistent beliefs must be Bayesian, J. Econom. Theory 61

(1993) 1–22.

[17] L. Epstein, T. Wang, Intertemporal asset pricing under knightian uncertainty, Econometrica 62

(1994) 283–322.

[18] L. Epstein, T. Wang, Uncertainty, risk-neutral measures and security price booms and crashes,

J. Econom. Theory 67 (1995) 40–80.

[19] I. Gilboa, Expected utility theory with purely subjective non-additive probabilities, J. Math. Econom.

16 (1987) 65–88.

[20] I. Gilboa, D. Schmeidler, Maxmin expected utility theory with non-unique prior, J. Math. Econom.

18 (1989) 141–153.

[21] I. Gilboa, D. Schmeidler, Updating ambiguous beliefs, J. Econom. Theory 59 (1993) 33–49.

[22] W.M. Gorman, The structure of utility functions, Rev. Econom. Stud. 35 (1968) 367–390.

[23] S. Graf, A Radon–Nikodym theorem for capacities, J. Math. 320 (1980) 192–214.

[24] L. Hansen, T. Sargent, T. Tallarini, Robust permanent income and pricing, Rev. Econom. Stud. 66

(1999) 873–907.

[25] T. Herron, T. Seidenfeld, L. Wasserman, Divisive conditioning: further results on dilation, Philos.

Sci. 64 (1997) 411–444.

[26] P. Klibanoff, Dynamic choice with uncertainty aversion, Working paper, Northwestern University,

1995.

[27] F. Knight, Risk, Uncertainty and Profit, Houghton, Mifflin, Boston, 1921.

[28] T. Koopmans, Stationary ordinal utility and impatience, Econometrica 28 (1960) 287–309.

[29] D. Kreps, E. Porteus, Temporal resolution of uncertainty and dynamic choice theory, Econometrica

46 (1978) 185–200.

[30] M. Machina, D. Schmeidler, A more robust definition of subjective probability, Econometrica 60

(1992) 745–780.

[31] M. Marinacci, Limit laws for non-additive probabilities and their frequentist interpretation,

J. Econom. Theory 84 (1999) 145–195.

[32] Y. Nakamura, Subjective expected utility with non-additive probabilities on finite state spaces,

J. Econom. Theory 51 (1990) 346–366.

[33] R. Sarin, P. Wakker, A simple axiomatization of nonadditive expected utility, Econometrica 60

(1998) 1255–1272.

T. Wang / Journal of Economic Theory 108 (2003) 286–321320



[34] R. Sarin, P. Wakker, Revealed likelihood and knightian uncertainty, J. Risk Uncertainty 16 (1998)

223–250.

[35] L. Savage, Foundations of Statistics, Wiley, New York, 1954.

[36] D. Schmeidler, Integral representation without additivity, Proc. Amer. Math. Soc. 97 (1986) 255–261.

[37] D. Schmeidler, Subjective probability and expected utility without additivity, Econometrica 57 (1989)

571–587.

[38] G. Shafer, A Mathematical Theory of Evidence, University of Princeton Press, New Jersey, 1976.

[39] G. Shafer, Allocations of probability, Ann. Probab. 7 (1979) 827–839.

[40] T. Seidenfeld, L. Wasserman, Dilation for convex sets of probabilities, Ann. Statist. 21 (1993)

1139–1154.

[41] C. Skiadas, Subjective probability under additive aggregation of conditional preferences, J. Econom.

Theory 76 (1997) 242–271.

[42] C. Skiadas, Recursive utility and preferences for information, Econom. Theory 12 (1998) 293–312.

[43] P. Wakker, Testing and characterizing properties of nonadditive measures through violations of the

sure-thing principle, Econometrica 69 (2001) 1039–1059.

[44] P. Walley, Statistical Reasoning with Imprecise Probabilities, Chapman & Hall, London, 1991.

[45] T. Wang, A class of dynamic risk measures, Working paper, University of British Columbia, 1999.

[46] L. Wasserman, J. Kadane, ‘Bayes’ Theorem for Choquet capacities, Ann. Statist. 18 (1990)

1328–1339.

T. Wang / Journal of Economic Theory 108 (2003) 286–321 321


	Conditional preferences and updating
	Introduction
	Motivation and related literature
	Consumption-information profiles
	Conditional preferences
	Continuity
	Uncertainty separability
	Stationarity
	Deterministic information independence
	Consistency
	Future independence
	Updating rules
	Bayes rule
	Timing indifference
	Bayes rule
	Dempster-Shafer rule
	Comonotonic timing indifference
	Dempster-Shafer rule
	Generalized Bayes rule
	Pessimism
	Generalized Bayes rule

	Applications
	Acknowledgements
	Proofs and supporting technical details
	References


