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I. INTRODUCTION

A plan for an intertemporal consumer (or society) is a (constrained optimumy} specification
of consumption behaviour from the present to the end of his life (or time horizon). If
an individual cannot dictate his future behaviour, he may be inconsistent {(Strotz [12]):
that is, he may, as time passes, revise his specified future behaviour. Among the many
unpleasant features of inconsistent planning is that if an individual behaves myopically
(*“ naively ”, cf. Pollak [10]) by continually executing the present portion of his plan, his
behaviour, ex post, makes no sense from any paint of view.

This paper presents aiternative ways of looking at intertemporal behaviour, and
examines the conditions under which such behaviour js consistent. In Section III, we show
that naive intertemporal optimization is consistent only if intertemporal preferences are
structured so that the future is functionaily separable from the present. In Section 1V,
we discuss * sophisticated solutions ™, which have been suggested, [1], [10] and [12],
as a planning strategy when the intertemporal preference ordering does not satisfy the
necessary condition for consistent naive planning. We prove an existence and uniqueness
theorem for sophisticated solutions and find the necessary and sufficient conditions for the
““ sophisticated ™ choice functions to be generated by conventional utility maximization.

II. NOTATION AND DEFINITIONS

We will consider a planning entity (an individual or a society) with an m-period horizon,
In each period (r = 1, ..., m), the commeodity bundle is X* e € (the n-dimensional non-
negative Euclidean orthant) * and consumption of a single commadity is denoted x%. A
programmie is denoted | X = (X', ..., ¥™) € Q" and the tth continuation of a programme
is denoted X = (X', ..., X™). The rth continuation of a programme chosen in the sth
period is denoted ,Jf’(s, and ,{*;5, is the component vector of ,}f’(s) relating to period . The
notation for prices (which are assumed strictly positive) is analogous. We also denote
! First version received June 19715 final version received September 1972 (Eds.),

? We wish to thank Robert Pollak and the editor and referees of this journal for many helpful
comments.

3 The assumption that the number of commeodities is the same in each period is made only for nota-
tional convenience.
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240 REVIEW OF ECONOMIC STUDIES

the set of subscript indices in the rth period by I* so that i € I* indicates that the subscripted
variable refers to the rth period.

Prices throughout are “ forward  prices; i.e., cross-temporal exchange ratios in
terms of the first-period numeraire (hence ali interest rates are own rates). Initial wealth
is w and wealth in the rth period is w,.

Definition. A utility function U(-) is a continuous, real valued, non-decreasing, strictly
quasi-concave function defined on the non-negative Euclidean orthant.

Definition. A pair of utility functions on the same domain, U(-} and U'(-), are
equiralent,
| U~ U'C),
if they induce the same pre-ordering on that damain,

Definition. Let (3, ¥°) be a partition of the set of variables, ¥, and let X* be any set
of non-negative values of the variables in y*. The group of variables, ¥°, is separable in
{ from a variable y, if and only if the correspandence, £, defined by

BXS, X9 = {X* | U(X®, X)> UX", X9}
is independent of x,, the value of the variable y,.

Remarks, The condition of this definition originally appeared in an equivalence
femma by Stigum [11, p. 352].

If U is differentiable, the condition of the definition is equivalent to the condition
that the marginal rates of substitution,
_du/faxt
Y Ufaxy
be independent of x, for all 4, jeI°. If U(X)is twice differentiable, this is equivalent to
the condition that

3xk
for ail 7, je I*. This is the condition originally introduced by Leontief [6].

Definition (Lady and Nissen [5]). A function is strongly recursive {SR) in the ardered
partition (¢*, ..., ™ if and only if each pair (", ¥**") is separable from the variables in
(hs s 7.

Remark. A thearem of Gorman [3] states that the union of overlapping separable
sets is separable. Therefore, a function is SR if and only if each continuation, " = [} ¥,

f=r

is separable from all preceding variables.

Theorem 1. A uriliry function, U, is strongly recursive in the ordered partition (x*, ..., ¥™)
if and only if there exist functions f*(+) such that

= Y e=1, ,m—1; f"=f"(X"); U=f".
Proof. See Lady and Nissen [5]. ||

III. CONSISTENT INTERTEMPORAL BEHAVIOUR

An intertemporal preference structure may belong to a society or to an individual. In
either case, in discussing the consistency of an entity which survives m periods, it is con-
venient, for present purposes, to speak of an intertemporal saciety of m generations whose
behaviour is related by

(i} a wealth inheritance mechanism, and

(ii) a specification of the relation between generations’ preferences.
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In what foilows, we assume complete perfect markets and perfect foresight, described
by forward prices {exchange ratios in terms of the first period numeraire),

1P=(P1! vary Pm}o
and initial wealth, w.

Definition.  An intertemporal society is a collection of m generations with utility
functions U', ¢+ = 1, ..., m, each defined on the space of consumption continuations, ,X.

Remark., As the utility functions are defined on the space of consumption continua-
tions, X, the consumption of future generations, .. X, affects the welfare of the rth
generation. If the intertemporal society is an individual at different points in time, this
assumption is natural, If the society is, in fact, a succession of generations, the utility
representation reflects altruistic (or malevolent) concern for future generations. Alter-
natively, we could justify preferences aver consumption continuations by assuming that
the tth generation survives through the mth period but has power only in the ¢th period.

Definition. A naive intertemporal society is an intertemparal society in which each
generation plans by solving

max U'(.X)

X

s.t.w, = P X

%
rX(t) = r¢(r)(wu tP)

and behaves myopically (naively) by executing 1*’&, so that the wealth inheritance mechanism
IS

to abtain

w‘H_—.w,—Pr. *‘E!‘); t=1, ..., m—1; w =w. (1)
Definition. A society is consistent when
E ] ]
!X(I] = tX(I}‘I t= 11 ceay M, ‘(2)
for all (w, P).

We now describe, in three naive intertemporal societies, the relation between individual
preferences required by consistency.’

Society I (The Ex Post Society). In this society preferences are inherited (or imposed)
That is, each individual specifies the preferences of the next.

Theorem 2. The ex post society is consistent if and only if the preference inheritance
mechanism is .
U!(:X)NU!_I(X!(:—-II); tx): 1=2,.,m (3)

Proof. The condition is eguivalent (by recursion) to

UX)~ U (Rl Xy o0 BiThy ), 122, m,

Further, the condition (3) together with the wealth inheritance mechanism (1) makes
adjacent choice problems equivalent, so that, e.g.,

# *
KXoy = Kgoqpy =2, .., m,

implying consistency, (2); and condition (3) is sufficient for consistency. Further, by the
properties of the utility function each point will be chosen by some (w, P), so the condition
is necessary.

I This relationship is also discussed by Hammond [4]. An alternative approach is to specify preferences
a priori, but relax the assumption of naive behaviour and let individuals recognize the consistency problem.
Phelps and Pollak [9] follow this approach to an elegant second-best solution for a particular class of
infintte dimensional utility functions. We analyze this approach. in Section V below.
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Remarks. First, by the construction in the proof, condition (3) is equivalent to
UX)~ UM XLy, oo X0 XD, 1= 2, oy my . (4)

that is, for consistency, the induced pre-ordering on any continuation must be the same for
any point of view. This is the heart of Strotz’s contribution {12].1

Second, the consistent plan achieved by this society is what Pollak [1¢] would call
the commitment path. Here commitment is achieved by the preference inheritance
mechanism.

Society IT (The Ex Ante Society). If imposed preferences are distasteful, we may demand
the ability to describe preferences before inspecting planned behaviour. In the ex ante
society, no generation can impose its preferences on succeeding generations.

Theorem 3. The ex ante society is consistent if and only if each utility function is strongly
recursive with the representation

UCX)= F[X, U X)], t=1, ..., m—1 ..(5)

Proof. Assume that U is differentiable (but see the remark below). Consider the
dual to the tth period maximization problem:

min P X
X

s.t. U(X) = U, ...(8)
yielding the compensated demand functions,
Ky = BB, U,
The expenditure function is
H(P, U) = P $u(P, U")
and the compensated demands are given by

£
0% = %I%VEEIS, s=f 141, ..., m. (N

Intertemporal consistency (2) is therefore equivalent to

t F R
aafl“ = %er*’”ﬂ t=1,..,m—1, .(8)
Fi Di

where oh' "1 féptt ! is evaluated at
U= U, b1 Py wi]; UMt = U 8P UYL, t=1, oy m—1.
Taking the total differential of
(P, UY) = min [P X'+, (P, U]

yields
oh o o ok’ ou* ont U
— dpi+ dpi+ — dxi+ dx;
:ezrr ap d s:g+l 1;‘ apt T AUt ek 6 atr s =2+1 én axi
] ahr+1 aht+l m aUt+1
= Y xdpi+ T pdxi+ dpi+ dst. -0
iezh P i;r' P s=¥+1 :sz,:rs ap; P AU, s ey ders x5 ©)

L Though it is somewhat obscured by the mathematical details, Strotz gets a constant “ rate of time
preference ** by requiring his discount function to be congruent with any continuation of itself, a property
unique to exponential functions {ef. Nissen [7]).
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The first terms on each side of the equality in (9) are equal by (7) and the third term
on the left cancels with the secand term on the right by the first order conditions of the dual,

t 3
g U o, vier,
oU* " Bx!

where 6h°/aU* = 1" is the equilibrium value of the multiplier in the Lagrangean problem.

By (8), if the solution is intertemporally consistent, the second term on the left equals
the third term on the right for all sets of prices. Thus we are left with the following necessary
condition for consistency:

Ly VX AT UL

s=i+1 iels  dx] A s =Tr1 ders ax;

This holds for arbitrary dx* only if
U prt gyttt

axf T X o

which implies the Leontief separability condition for a system of strongly recarsive functions.

Similarly, strong recursivity with a consistent representation implies (10) so that (9)
reduces to

t=1,..,m—1 ..(10)

Viel',s=t+1, ...,m, t=1,...,m—1,

m ahr 4 m t+1 r+1
s=r+1 el ap; 5=tk Qe lt op;
This holds identically in P, U* and U**! for any dp® only if
H t+1
8_!15 = ah ~Viel, s=t+l, .., m—1,
ap; ap;

which is equivalent to intertemporal consistency. ||

Remarks. In the interest of clarity, the above proof uses differentiability of the utility
functions but the theorem can be proved without this restriction. In fact, the consistency
condition (4) together with the assumption that preferences are not impaosed comprise the
separability conditions characterizing a strongly recursive structure.

Second, note that Theorem 3 implies that the consistent ex ante society acts as if it
were maximizing a single utility function, or *“ social welfare function », if and only if the
intertemporal preference structure is strongly recursive. That is, the observed demand
functions, ¢y, (P, w,} are integrable into a utility function, U(, X), if and only if the prefer-
ences are so structured.

The representation (5) suggests that it may be fruitful to consider directly an inter-
temporal society whose members are altruistic.

Society III (The Altruistic Society). Suppose utility functions have the form,
U-E — Ur(£X: U!+l, v UM)‘l

Theorem 4, The altruistic society is consistent if and only if each utility function is
strongly recursive with the representation of Theorem 3,

Proof. The proof of Theorem 3 goes through for Theorem 4.

Remarks. First, note that altruism as represented here means that any two persons
are cardinally comparable from the point of view of a third person.

i Note that this representation allows for malevolent concern for future generations as well as for
altruistic concern.
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Second, the representation (5) means that planning consistency requires a consistent
altruistic structure in the sense that the pre-ordering on the set of utility continuations is
independent of viewpoint. It further requires a kind of noninterference property in that
another’s experience affects one only through the other’s utility function (only X*, not
&, appears in F(X*, U'™1); of. Winter [13].)

Third, there is implicit in the representation,

UYX) = F(X', U™,

a kind of nice ** responsibility inheritance mechanism . The representation F(-) must
be carefully constructed by “ marking up* the effect of U'*! to account for subsequent
generations, but once that is done, the detailed planning of ,, ; X may be passed on to future
generations. That is, the rth plan is embodied in the choice functions, {* and 8,, defined by

Xt= C[(wn tP)
and

Wiy = 6:("“‘":: LP)

where {* is vector valued (see Lady and Nissen [ 5]).
Finally, if in the above representation, I/* is homothetic in X for r = 2, ..., m, the
rth plan is embodied in the choice functions, «* and f,, defined by

Xr= r(w“ P.t:I H.M- 1)
and

Uttt = ﬁt(wn Ptn HH—l)
where & is vector valued,

I+ = n:-i—l(PM-l HH'Z]

is the ** price ”” of the composite future “ commodity , f**!, a monotonic transform of
U'*! which is positively linearly homogeneous in ,, X, and w,,, is determined by

_ t+1 t+1
Wepy =70 f

(see Blackorby, Nissen, Primont and Russel] {2]).

V. SOPHISTICATED SOLUTIONS

If a planning entity does not have strongly recursive preferences and is unable to pre-
commit its behaviour, myopic behaviour may then occur. The present portion of the
plan is executed and then revised in each period. Planning appears to make little sense
in this context. The consumption programme generated by the behaviour is not optimal
from any point of view. Hence, it has been suggested that such a society follow a
“ sophisticated ” optimum path [1], [9], [11].

Society IV (The Sophisticated Society). Suppose utility functions for the m generations
have the form

U = UGX), t=1,2, .., m,

and commitment is impossible. Inthe* sophisticated society , each generation is cognizant
of the preferences of future generations and takes these preferences into account in con-
structing a consistent intertemporal plan. Thus, each generation chooses a plan which,
according to its own preferences, is the optimum among the set of plans which will, in
fact, be carried out by successive generations.
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In order to describe the sophisticated solution, define, for all ¢, the budget sets,

Bw)={X eQntT}) ' P X Sw, we,
and
A, = {X‘EQ"J X' =¥w, Pl¥weQ}, t=2,..,m,

where £* is the vector valued choice function of the rth generation. The set, A,, thus owns
all bundles, X*, that would be chosen by the ¢th generation for some (non-negative) value
of wealth w,, given the set of prices, P. Thus, this set is nothing more than the projection
of the * income consumption curve ” of the rth generation on to its own consumption
space, "

The sophisticated path, | X, is generated by the following sequence of problems:

max U(X)st. XeB{w)and X" e A,,,, r=1, ..,m—t
X

to obtain
X = E(w, P), t=m, .., L
The w,’'s are then found by
W, = W
and
Wy =w—P w, P), t=1, .., m—1.

Thus the sophisticated path is generated by a recursive programming procedure, in
which the mth choice function is derived first and the first choice function is derived last.
This solution is consistent because the choice functions of future generations are treated
as constraints in the optimization problem. Although this solution is not Pareto optimal,
it has the attractive property that X is preferred by the rth generation to all other paths
which will be followed by subsequent generations.

A serious problem with the sophisticated society is that even though U* is assumed
to be strictly quasi-concave, the ¢th optimum may not be unique, in which case planning is
indeterminate at the (¢— 1)th stage.* To see this, note that the sets, 4,,,, ¥ = 1, ..., m—1,
are not necessarily convex, so that the feasible set for the rth maximization problem is
not necessarily convex. Consequently, the optimum might not be unique. Although
the rth generation is indifferent between the alternative plans, the (r—1)th generation
might not be indifferent. In this case, the (z—1)th generation would need to know how
the * tie ™ in the rth period is going to be resolved in order to formulate its own plan.

Three possible escapes from this dilemma are as follows:? First, we might permit
a type of weak pre-commitment, in which the first generation affected by the prospect of
future multiple optima commits the relevant generation to a specific plan among the set
of optima. Second, we could adopt a probabalistic approach to deal explicitly with the
uncertainty regarding the choices of future generations. Finally, we could posit a strong
ordering of consumption programmes, X, for t = 2, ..., m—1, in which case the optimum
is unique despite the possibility of a non-convex feasible set.

The problem with the last approach is that a strong ordering cannot be represented
by a continuous, order-preserving, real-valued function. The other two approaches do not
resolve a more fundamental problem generated by non-convex feasible sets. If, in period ¢,
the feasible set is not convex, the choice function might not be upper semi-continuous, in
which case the feasible set in period z—1 might not be closed. In this case, an optimum
might not exist even if the (—1)th generation can pre-commit future generations in their
choice among multiple optima.®

L This fact was first pointed out to us by Robert Pollak. The problem is discussed in Phelps and
Pollak [9] and in Peleg and Yaari [8].

2 All three of these solutions have been suggested to us by Robert Pollak.

3 For an example, see Peleg and Yaari (8, pp. 6-7].

G—40/2
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In addition to the assumption of strong orderings of consumption programmes
sufficient conditions for a unique sophisticated path to exist are embodied in the following
theorem: !

Thearem 5. If the utility functions, U*, t = 2, ..., m, are homathetic, a unique sophisti-
cated path, (X, exists for all P e Q"™ and for all we Q.

Proof. As the mth maximization is constrained only by the budget constraint, the
assumptions regarding U™ imply that the vector-valued function, &™, exists and is linearly
homogeneous in w,,. The proof therefore proceeds by induction.

Suppose that the functions, &, r = t+1, ..., m, exist and are linearly homogeneous in
w.. Then the sets, 4,;,, ¥ = 1, ..., m—t, are rays in £}". The set of constraints,

X'"edi, r=1,...,m—t,

can be expressed equivalently as X € AT where

Al = ( I:[ AH,) x Q"
r=1

Clearly, A" is an (#+1)-dimensional, closed, convex come. The feasible set for the
tth problem, is therefore
Fiw,) = AH(“.B,(WJ,

a compact, convex subset of Q"™ ~¢*1)_ (In fact, F(w,) is a closed, connected subset of an
affine set of dimension #+ 1.) Thus, the non-decreasing, continuous, strictly quasi-concave
function, U?, reaches a unique maximum on the upper boundary of F{w,). Moreover,
at the optimurm, X, the (unique) gradient of the upper boundary of the set F,(w,) belongs
to the set of subgradients of the convex function whose epigraph. is the set,

S4X) = {(X | U(X) = U(X)}.
It remains ta show that the function, &, is linearly homogeneous in w, for t = m—1, ..., 2,
As the set
IBw) = { Xe B(Aw) Vi, eQ}
is a closed, convex cone of dimension n(m—t+1),
AF(w,) = AEI NAB,(w,)
is a closed convex cone of dimension m— ¢+n. Hence, AF,(w,) contains the ray
{(X1 . X=41',2VieQ}
For given P, the gradient of the upper boundary of F,(iw,), for 4 & €), is independent of 1.
But, by homotheticity, the sets of subgradients of the functions defined by the epigraphs,
S+ X), are independent of 1 so that £'(Aw,, P) = AX fort=m—1,...,2. |

The sophisticated solution (if it exists) would appear to be an improvement over naive
planning. By explicitly considering future preferences each generation realizes a level of
utility greater than that which is possible under inconsistent naive planning. But despite
this improvement, it is still not clear in what sense, if any, the sophisticated solution is
optimal, since each generation’s utility is maximized subject to some rather unconventional
constraints.

To answer this question, it seems reasonable to seek the conditions under which the
system of sophisticated demand functions can be integrated into a system of intertemporal
utility functions of the form U™, X)), ¢ = I, ..., m. That is, we seek the conditions under

! This theorem is analogous to Thearem 8.1 of Peleg and Yaari [8, p. 25]. The latter authors deal,
however, with the existence of a Nash game-equilibrium rather than the sophisticated solution. A set of
choice functions i is a Nash equilibrium if the choice function of each generation yields maximal utility for
that generation, given the choice functions of all other generations. A set of choice functions generates a
sophisticated path, on the other hand, if the ¢hoice function of each generation yields maximal utility for
that generation given the choice functions of all succeeding generations for any feasible choice functions

of preceding generations. A sophisticated solution is a game-equilibrium solution, but the converse does
nat hold (see Peleg and Yaari [8, p. 10]).
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which a sophisticated society would act as if it were maxiniizing a sequence of intertemporal
utility functions subject to conventional constraints, This, together with the fact that the
demand functicns are intertemporally consistent, would then imply integrability into a
single utility function, U (see the remarks under Theorem 3). These conditions are given
by the following proposition.

Theorem 6. An intertemporal wiility function which generates the demand functions
of a sophisticated society exists if and only if the saciety’s preferences are strongly recursive
with a consistent representation.

Proof. Consider the dual to the rth sophisticated maximization problem
min P+ X
X
st. XeCU); x**"eD,,,, r=1,.., m~t,
where
CUY={X e U(X)2 U, U'eQ}
D, = {X"""e Q| X" = &11..P, U™, U e Q).

This yields a solution,?

X = &P, UY,

X gt PUY, r=1, .., m~t

In general, &(.) is the (vector valued) compensated demand function derived in period ¢
for the bundle of goods to be consumed in period s. [t gives the sophisticated path
because in each period ¢, the bundles chosen for future generations lie on their “ utility
expansion paths ”, denoted by D,,,.

The compensated demand function, X™ = £7(, P, U™, is homogeneous of degree
zero in P = P". Assuming that X**" = £717(,,, P, U'*") is homogeneous of degree zero
in P, for r =1, ..., m—1, then clearly X* = &(,P, U") is homogeneous of degree zero
in P since changing all prices by the same proportion has no effect on the feasibie set.
Hence, by induction, ail the compensated demand functions are homogeneous of degree
zero0 in prices.

Intertemporal consistency implies that

c:(sps Uj) = éf(tP! U:)n 3= z! —eey M, t= ls ey ML
Hence, the expenditure function for the fth continuation can be written as

t=m, ..., L

H(P, UY= $ PEP U= § PR, UY

= Z Z p}é:}(rpa U:)a t= I, ieay m,

s=t jelI*
where £}(.) is the compensated demand by the tth generation for the jth good to be con-
sumed in the sth period.
Differentiating (partially) with respect to the price of the ith good to be consumed in
period r,

oH ., L ;08
= ﬁ"}‘ .
TR Py
Integrability is equivalent to the symmetry * condition,
o, _ o
oy 8p;

1 As the theorem presumes the existence of a sophisticated solution, the existence problems discussed
above are moot in this proof. )
2 That is, the symmetry of the cross-substitution term.
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Substituting this condition into the equation above and employing Fuler's Theorem
yields
il

ap; = &P, U
Hence, consistency implies that l
t a £+ 1
D: B

As this is equivalent to (8), the remainder of the proof proceeds exactly as in the proof of
Theotem 3. |

Remarks. Again, while the above proof uses differentiability, the theorem can be
proved without this restriction.

The above result indicates that the sophisticated society acts “ rationally ™ under
alternative price and wealth configurations if and only if its preferences are strongly
recursive, That is, unless the society’s intertemporal preferences are of this form, it may
violate the tramsitivity axiom. This, of course, is not surprising since the sophisticated
optimum path is a ““ second-best " solution unless the society’s preferences are strongly
recursive with a consistent represeatation.
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