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1 Introduction

Following LeRoy and Porter (1981) and Shiller (1981), considerable effort has gone towards under-

standing why aggregate stock prices are so volatile relative to corresponding discounted dividend

streams. An important component of this effort has focused on the role played by consumers’

preferences in accounting for this behavior. For example, Grossman and Shiller (1981) explored

whether movements in intertemporal marginal rates of substitution in consumption induced by

constant-relative-risk aversion (CRRA) preferences are capable of generating observed patterns of

stock-price volatility, but found these movements to be inadequate. And Heaton (1995) showed

that while certain parameterizations of habit persistence preferences are capable of generating sub-

stantial increases in marginal rates of substitution, and thus have the potential to account for the

puzzle, such parameterizations appear empirically implausible when seeking to account for asset-

pricing behavior more generally (i.e., in expanding the set of moments beyond volatility measures

to obtain parameter estimates).

Here, we examine empirically whether self-control preferences can plausibly account for observed

interactions between prices and dividends, including the relative volatility of prices. The potential

role of self control in influencing asset-pricing behavior is becoming increasingly recognized. For

example, as noted by Gul and Pesendorfer (2000), the propensity for experimental subjects to

willingly forgo future payoffs in return for relatively modest current rewards suggests this poten-

tial. (See Kocherlakota, 2001, for scepticism regarding this view.) If agents face temptations to

deviate from intertemporally optimal savings plans in return for higher current consumption, this

would carry implications for their demand for assets, and thus for asset prices. Our interest is in

quantifying potential implications of these temptations.

Our analysis is based on three versions of a Lucas (1978) — type environment featuring a repre-

sentative household and a single asset. The versions differ only in their specification of preferences.

In each model, the price of the asset reflects the future dividend stream it is expected to generate,

weighted by the household’s marginal rate of substitution. Consumption is financed by dividend

payments and an exogenous endowment; innovations to these stochastic processes drive stock prices.
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In the data, stock prices are not only far more volatile than dividends, but their fluctuations are

also closely correlated. Absent this correlation, virtually any preference specification could account

for the observed pattern of volatility in this environment, if coupled with a sufficiently volatile

endowment process. The problem is that endowment innovations weaken the link between price

and dividend movements. Accounting for both the high volatility and correlation patterns observed

in the data thus represents the crux of the empirical challenge facing the model.

The first specification we consider features CRRA preferences; the second features habit/durability

preferences parameterized, e.g., as in Ferson and Constantinides (1991) and Heaton (1995); and the

third features preferences specified following Gul and Pesendorfer (2000), under which the household

faces a temptation to deviate from its intertemporally optimal consumption plan by selling its en-

tire holding of shares and maximizing current-period consumption. The household never succumbs

to this temptation in equilibrium, yet the presence of temptation potentially wields substantial

influence over the household’s demand for shares.

Our analysis proceeds in two steps. The first involves estimating the parameters of each of the

environments using the full-information Bayesian methodology of DeJong, Ingram and Whiteman

(2000). The second involves assessing the ability of each model to account for selected aspects of the

time-series behavior of the data, as summarized by a set of moments. The data we use are the annual

Standard & Poor’s 500 stock price and dividend series analyzed by Shiller (1981), extended through

1999. The moments we evaluate are the standard deviations of prices and dividends; the ratio of

these standard deviations; and the correlation between prices and dividends. Posterior distributions

of the models’ structural parameters are obtained by combining prior distributions with likelihood

functions corresponding to linear approximations of the models. From these distributions, we

construct corresponding posterior distributions of the set of moments used to evaluate empirical

performance. Finally, we compare these distributions with counterparts obtained using a vector-

autoregressive (VAR) model specified for dividends and prices; the VAR distributions serve as the

summary of the data we use as a basis upon which to judge the models’ empirical performance.

Thus our estimates of the structural models reflect the full set of empirical implications conveyed

by their associated likelihood functions and our a priori views regarding parameter values; and the
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subsequent analysis of fit reflects performance along a select subset of dimensions.

Our analysis of the models featuring CRRA and habit/durability preferences serves as a bench-

mark for interpreting the results we obtain under self-control preferences. Here, we obtain results

consistent with previous studies: neither specification is capable of accounting for observed stock-

price volatility while at the same time preserving the close correlation observed between prices

and dividends. CRRA preferences turn out to provide relatively superior performance along the

volatility dimension relative to habit/durability preferences, but do so at the cost of performing

relatively poorly along the correlation dimension.

Relative to these specifications, we find that the self-control specification provides an improved

characterization of the data, but not a full account of stock-price volatility. Regarding parameter

estimates, the self-control specification yields CRRA preferences as a special case under a certain

parameter restriction. Despite using a prior distribution with a modal value corresponding with

this restriction, the posterior distribution is shifted distinctly away from this point, indicating

empirical support for the presence of a temptation effect. The strength of the effect is significant:

households endowed with the self-control preferences we estimate would demand a 1.32% annual

return premium relative to households endowed with CRRA preferences. Moreover, the temptation

cost borne by households is equivalent to a reduction in steady state consumption of 5.25%.

Regarding empirical performance, the self-control specification marginally outperforms the

CRRA specification: a posterior-odds comparison rates the overall performance of the self-control

specification as superior to the CRRA specification by a margin of approximately 2.4:1. Neverthe-

less, the self-control specification fails to account fully for the volatility of stock prices observed

in the data, which is perhaps not surprising given the simple structure within which it is embed-

ded. Thus we conclude in the context of this simple environment that the presence of temptation

seems to provide an important step towards a better understanding of stock-price volatility, if not

a complete resolution of the puzzle.

As noted, there is a growing body of work that focuses on the potential role played by temptation

and other self-control problems in influencing asset-pricing behavior. Perhaps most closely related

to our study is that of Krusell, Kuruscu and Smith (2002), who explore the ability of a model
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featuring a small subset of agents who face a temptation to save to account for the equity premium

puzzle. These agents end up dominating the equity market, thus their behavior determines asset

prices. Calibrating their model to match the wealth distribution in the U.S., Krusell et al. find

that they can account for the equity premium and low risk-free rate with a risk-aversion parameter

in the neighborhood of 22.

2 Preference specifications

As noted, we consider a Lucas (1978)- type environment featuring a representative household and

a single asset. Time-(t− 1) share holdings st−1 yield a dividend payment dt at time t; time-t share
prices are given by pt. Households maximize expected lifetime utility by financing consumption ct

from dividend earnings, proceeds from sales of shares, and an exogenous endowment et:

max
ct
E0

∞X
t=0

βtu(ct),

0 < β < 1, subject to

ct + pt(st − st−1) = dtst−1 + et. (1)

Since households are identical, in equilibrium st = st−1 for all t, and thus ct = dt + et (hereafter st

is normalized to 1). Combining this equilibrium condition with the household’s necessary condition

for a maximum yields the pricing equation

pt = βEt
u0(dt+1 + et+1)
u0(dt + et)

(dt+1 + pt+1). (2)

The model is closed by specifying stochastic processes for (dt, et). These are given by

ln dt = (1− ρd) ln d
∗ + ρd ln dt−1 + εdt (3)

ln et = (1− ρe) ln e
∗ + ρe ln et−1 + εet
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with  εdt

εet

 ∼ iid N(0,Σ).

From (2), it is clear that following a shock to either dt or et, the response of pt depends in

part upon the variation of the marginal rate of substitution between t and t + 1. This in turn

depends upon the momentary utility function u(.). We now specify the alternative utility functions

considered here, and evaluate their potential for generating relatively volatile responses of pt.

2.1 CRRA

CRRA preferences are parameterized as

u(ct) =
c1−γt

1− γ
(4)

where γ > 0 measures the degree of relative risk aversion, and 1/γ is the intertemporal elasticity

of substitution. In this case, the equilibrium pricing equation reads

pt = βEt
(dt+1 + et+1)

−γ

(dt + et)−γ
(dt+1 + pt+1). (2a)

Notice that, ceteris paribus, a relatively large value of γ will increase the volatility of price

responses to exogenous shocks, at the cost of decreasing the correlation between pt and dt.

2.2 Habit / durability

Following Ferson and Constantinides (1991) and Heaton (1995), the habit/durability specification

we consider is parameterized as

u(xt) =
x1−γt

1− γ
, (4b)

with

xt = x
d
t − αxht ,
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where 0 < α < 1, xdt is the household’s durability stock, and x
h
t its habit stock. The stocks are

defined by

xdt =
∞X
j=0

δjct−j

xht = (1− θ)
∞X
j=0

θjxdt−1−j = (1− θ)
∞X
j=0

θj
∞X
i=0

δict−1−i

where 0 < δ < 1 and 0 < θ < 1. Thus, the durability stock represents the flow of services

from past consumption, which depreciates at rate δ. This parameter also represents the degree

of intertemporal consumption substitutability. The habit stock can be interpreted as a weighted

average of the durability stock, where the weights sum to one. Notice that more recent durability

stocks, or more recent flows of consumption, are weighted relatively heavily. Thus, the presence of

habit captures intertemporal consumption complementarity. The variable xt represents the current

level of durable services net of the average of past services; the parameter α measures the fraction

of the average of past services that is netted out. Notice that if δ = 0, we would only have habit

persistence, while if α = 0 we would only have durability. Finally, when θ = 0, the habit stock

includes only one lag.

Using the definitions of durable and habit stocks, xt becomes

xt = ct +
∞X
j=1

"
δj − α(1− θ)

j−1X
i=0

δiθj−i−1
#
ct−j ≡

∞X
j=0

Φjct−j ,

where we define Φ0 ≡ 1. Thus, for these preferences, the equilibrium pricing equation is given by

pt = βEt

∞P
j=0

βjΦj

µ∞P
i=0
Φict+1+j−i

¶−γ
∞P
j=0

βjΦj

µ ∞P
i=0
Φict+j−i

¶−γ (dt+1 + pt+1) (2b)

where as before ct = dt + et.

To see how the presence of habit and durability can potentially influence the volatility of the
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prices, rewrite the pricing equation as

pt = βEt
(ct+1 +Φ1ct +Φ2ct−1 + ...)−γ + βΦ1(ct+2 +Φ1ct+1 +Φ2ct + ...)

−γ + ...
(ct +Φ1ct−1 +Φ2ct−2 + ...)−γ + βΦ1(ct+1 +Φ1ct +Φ2ct−1 + ...)−γ + ...

(dt+1 + pt+1) .

When there is a positive shock to say et, ct increases by the amount of the shock, say σe. Given

(3), ct+1 would increase by ρeσe, ct+2 would increase by ρ2eσe, etc. Let us examine the first term

in parenthesis both in the numerator and the denominator. First, in the denominator ct will grow

by σe. Second, in the numerator ct+1 + Φ1ct goes up by (ρe +Φ1)σe ≶ σe. Thus, whether the

share price pt increases by more than in the standard CRRA case depends ultimately on whether

ρe+Φ1 ≶ 1. Notice that if Φj = 0 for j > 0, then the equation above reduces to the standard CRRA

utility case. If we had only habit and not durability, then Φ1 < 0, and thus the response of prices

would be greater than in the CRRA case. This result is intuitive: habit captures intertemporal

complementarity in consumption, which strengthens the smoothing motive relative to the time-

separable CRRA case.

Alternatively, if we had only durability and not habit, then 0 < Φ1 < 1, but we still would not

know whether ρ + Φ1 ≶ 1. Thus, with only durability, we cannot conclude on how the volatility

of pt would be affected since it will depend upon the sizes of ρ and Φ1. Finally, we also face

indeterminacy under a combination of both durability and habit: if α is large and δ is small enough

to make ρ+Φ1 < 1, then we would get increased price volatility. Thus this issue is fundamentally

quantitative.

2.3 Self-control

We now consider a household that every period faces a temptation to consume all of its wealth.

Resisting this temptation imposes a self-control utility cost. To model these preferences we follow

Gul and Pesendorfer [2000], who identified a class of dynamic self-control preferences. In this case,

the problem of the household can be formulated recursively as

W (s, P ) = max
s0
{u(c) + v(c) + βEW (s0, P 0)}−maxes0 v(ec)
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where P = (p, d, e); u(.) and v(.) are Von Neuman-Morgesten utility functions; 0 < β < 1; ec
represents temptation consumption; and s0 denotes share holdings next period. While u(.) is

the momentary utility function, v(.) represents temptation. The problem above is subject to the

following budget constraints

c = ds+ e− p(s0 − s)

ec = ds+ e− p(es0 − s)
In the specification above, v(c)−maxes0 v(ec) ≤ 0 represents the disutility of self-control given that

the agent has chosen c. The concavity/convexity of v(.) turns out to carry important implications

for stock-price volatility. We consider both scenarios in turn. (Notice that if v(.) is convex, one

must impose restrictions to guarantee that u(.)+ v(.) is strictly concave. On the other hand, if v(.)

is strictly concave, one must guarantee that W (.) is also strictly concave. It turns out, as shown

later, that this is the case.)

Throughout the paper, we will consider strictly increasing specifications for v(.). In this case,

the solution for maxes0 v(ec) is simply to drive ec to the maximum allowed by the constraint ec =
ds+ e− p(es0 − s), which is attained by setting es0 = 0. Thus, we can rewrite the problem as

W (s, P ) = max
s0
{u(c) + v(c) + βEW (s0, P 0)}− v(ds+ e+ ps)

subject to

c = ds+ e− p(s0 − s).

The optimality condition reads

£
u0(c) + v0(c)

¤
p = βEW 0(s0, P 0)

and since

W 0(s, P ) =
£
u0(c) + v0(c)

¤
(d+ p)− v0(ds+ e+ ps)(d+ p)
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then the optimality condition becomes

£
u0(c) + v0(c)

¤
p = βE

£
u0(c0) + v0(c0)− v0(d0s0 + e0 + p0s0)¤ (d0 + p0).

Combining this expression with the equilibrium conditions s = s0 = 1 and c = d+ e yields

p = βE
¡
d0 + p0

¢ ·u0(d0 + e0) + v0(d0 + e0)− v0(d0 + e0 + p0)
u0(d+ e) + v0(d+ e)

¸
.

Notice that when v(.) = 0, there is no temptation, and the equation above reduces to the

standard case. Otherwise, the term u0(d0 + e0) + v0(d0 + e0)− v0(d0 + e0 + p0) represents tomorrow’s
utility benefit from saving today. This corresponds to the standard marginal utility of wealth

tomorrow u0(d0 + e0), plus the term v0(d0 + e0) − v0(d0 + e0 + p0) which represents the derivative of
the utility cost of self-control with respect to wealth. The behavior of this term depends on the

concavity/convexity of v(.). For v(.) convex, this derivative is negative, implying that the standard

marginal utility of wealth tomorrow u0(d0+e0) is decreased by the term v0(d0+e0)−v0(d0+e0+p0) < 0.
In other words, the convexity of v(.) implies that as wealth increases, self-control becomes more

costly.

We assume the following functional forms for the momentary and temptation utility functions

u(c) =
c1−γ

1− γ
(4c)

v(c) = λ
cφ

φ

with λ > 0, which imply the following pricing equation:

p = βE
£
d0 + p0

¤ ·(d0 + e0)−γ + λ(d0 + e0)φ−1 − λ(d0 + e0 + p0)φ−1

(d+ e)−γ + λ(d+ e)φ−1

¸
. (2c)

Continuing with the case in which v(.) is convex, so that φ > 1, a positive shock to d or e would
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imply less price volatility than under the CRRA case. To see this, rewrite (2c) as

p = βE
£
d0 + p0

¤ (d0+e0)−γ
(d+e)−γ + λ(d+ e)γ

£
(d0 + e0)φ−1 − (d0 + e0 + p0)φ−1¤

1 + λ(d+ e)φ−1+γ


where we can see that a larger, say e, increases the denominator, while decreasing the term λ(d+

e)γ
£
(d0 + e0)φ−1 − (d0 + e0 + p0)φ−1¤ in the numerator. Both effects imply that relative to the CRRA

case, in which λ = 0, this specification reduces price volatility in the face of an endowment shock,

which is precisely the opposite of what we would like to achieve in order to better match the data.

The mechanism behind this reduction in price volatility is as follows: a positive shock to d or e

increases the household’s wealth today, which has three effects. The first, which we call “smoothing”

captures the standard intertemporal motive: the household would like to increase saving, which

drives up the share price. Second, there is a “temptation” effect: with more wealth today, the

feasible budget set for the household increases, which represents more temptation to consume, and

less willingness to save. This effect works opposite to the first, and reduces price volatility with

respect to the standard case. Third, we have the “self-control” effect: due to the assumed convexity

of v(.), marginal self-control costs also increase, which reinforces the second effect. As shown above,

the last two effects dominate the first, and thus under convexity of v(.) the volatility is reduced

relative to the CRRA case.

In contrast, price volatility would not necessarily be reduced if v(.) is concave, and thus 0 < φ <

1. In this case, when d or e increases, the term λ(d+e)γ
£
(d0 + e0)φ−1 − (d0 + e0 + p0)φ−1¤ increases.

On the other hand, if φ − 1 + γ > 0, i.e., if the risk-aversion parameter γ > 1, the denominator

also increases. If the increase in the numerator dominates that in the denominator, then we will

observe higher price volatility than in the CRRA case.

To understand this effect, note that the derivative of the utility cost of self-control with respect

to wealth is positive if v(.) is concave: v0(d0 + e0)− v0(d0 + e0 + p0) > 0. This means that as agents
get wealthier, self-control costs become lower. This explains why it might be possible to get higher

price volatility in this case. In fact, the mechanism behind this result still involves the three effects

discussed above: smoothing, temptation, and self-control. The difference is on the latter effect:
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under concavity, self-control costs are decreasing in wealth. This gives the agent an incentive to

save more rather than less. If this self-control effect dominates the temptation effect, then these

preferences will produce higher price volatility.

Notice that when v(.) is concave, we need to impose conditions to guarantee thatW (.) is strictly

concave, so that the solution corresponds to a maximum. In particular, the second derivative of

W (.) must be negative:

−γ (d+ e)−γ−1 + λ(φ− 1)
h
(d+ e)φ−2 − (d+ e+ p)φ−2

i
< 0

which in fact holds for any d, e, and p > 0, and for γ > 0, λ > 0, and 0 < φ < 1. Hereafter, we will

proceed under this set of parameter restrictions.

2.4 Steady States

We conclude with comments regarding steady states. As noted above, s is normalized to one. We

also normalize the steady-state value d∗ = 1. Let η = e∗
d∗ , so that η = e

∗. Thus, c∗ = 1 + η. From

(2a) and (2b), the steady-state price under CRRA and habit/durability preferences is given by

p∗ =
β

1− β
d∗ =

β

1− β
. (5)

From the optimality conditions under self-control preferences, steady-state temptation consumption

is ec∗ = 1 + η + p∗. From (2c), the steady-state price in this case is given by

p∗ = β (1 + p∗)

"
(1 + η)−γ + λ (1 + η)φ−1 − λ (1 + η + p∗)φ−1

(1 + η)−γ + λ (1 + η)φ−1

#
. (6)

As we shall see below, (5) and (6) carry significant influence on parameter estimates: (5)

exclusively for β, (6) for (β,φ, γ, η,λ). The interpretation of (5) is straightforward. Letting β =

1/(1 + r), where r denotes the household’s discount rate, (5) implies p∗/d∗ = 1/r. Thus as the

household’s discount rate increases, its asset demand decreases, driving down the steady state price

level. Empirically, the average price/dividend ratio observed in the data serves to pin down β,
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under CRRA and habit/durability preferences.

Regarding (6), the left-hand-side is a 45-degree line. The right-hand side is strictly concave

in p∗, has a positive intercept, and a positive slope that is less than one at the intercept. Thus

(6) yields a unique positive solution for p∗ for any admissible parameterization of the model. (In

practice, we solve for p∗ in (6) numerically using GAUSS’s quasi-Newton algorithm NLSYS.) An

increase in λ causes the function of p∗ on the right-hand-side of (6) to shift down and flatten, thus

p∗ is decreasing in λ. The intuition for this is again straightforward: an increase in λ represents an

intensification of the household’s temptation to liquidate its asset holdings. This drives down its

demand for asset shares, and thus p∗. Note the parallel between this effect and that generated by

an increase in r, or a decrease in β, which operates analogously in both (5) and (6). The impact

on p∗ of the remaining parameters is discussed below.

3 Empirical Implementation

As noted, our empirical analysis consists of two components: model estimation, and evaluation of

fit. The approach we use to evaluate fit is described in Section 4; estimation is accomplished using

the full-information Bayesian procedure developed by DeJong, Ingram and Whiteman (2000). A

sketch of the technical details of this procedure is provided in the appendix. Briefly, this procedure

works as follows. First, we obtain a log-linear approximation of the relevant asset-pricing equation

(2) using a first-order Taylor-series expansion. Coupled with the specifications of the exogenous

dividend and endowment processes given in (3), this yields the likelihood function for dividends

and prices implied by the model. Next, since we generally have clear a priori guidance from theory

regarding values of the models’ structural parameters, we bring this guidance to bear formally

by specifying prior distributions over these parameters. Finally, combining these priors with the

likelihood function using Bayes’ Rule, we obtain posterior distributions of the parameters, along

with posterior distributions of any functions of these parameters we wish to evaluate.

Under this procedure, the parameters and functions of parameters we analyze are interpreted

as random variables. Their corresponding posterior distributions reflect the relative plausibility

13



of alternative values of these variables, conditional on the models, our priors, and the observed

data. Focusing on parameters, their posterior distributions convey information, e.g., regarding

the extent to which the data support the presence of a non-trivial temptation effect under the

self-control specification. Focusing on a function such as the standard deviation of prices, its

posterior distributions convey information regarding the extent to which the restricted stochastic

specifications of prices implied by the alternative structural models we consider coincide with the

actual behavior of prices, as characterized by the stochastic specification associated with a relatively

unrestricted reduced-form representation such as a VAR.

In specifying prior distributions, our goal is to place an emphasis on standard ranges of pa-

rameter values, while assigning sufficient prior uncertainty to allow the data to have a nontrivial

influence on our estimates. The priors we use for this purpose are summarized in Table 1. In all

cases, prior correlations across parameters are zero; and each of the informative priors we specify

is normally distributed (but truncated when appropriate).

Consider first the parameters common across all models. The prior mean (standard deviation)

of the discount factor β is 0.96 (0.02), implying an annual discount rate of 4%. The prior for the

risk aversion parameter γ is centered at 2 with a standard deviation of 1. We specified the usual

non-informative prior over the covariance matrix of the shocks Σ, proportional to det(Σ)−(m+1)/2

(where m is the dimension of Σ), and centered the priors over the persistence parameters (ρd, ρe) at

0.9, with standard deviations of 0.05. The prior over η = e∗/d∗ is more problematic: we wish to use

this prior to de-emphasize extremely large and small values of this ratio, but have little guidance

upon which to sharply judge what constitutes what such values might be. So we considered two

alternative specifications of prior means (standard deviations) for η: 5 (3); 10 (5). It turns out that

the data are relatively uninformative regarding the location of η, so that the prior dominates the

posterior along this dimension; this is particularly true in the CRRA specification. Fortunately,

the prior over η turns out have little influence either on the fit of the models or on estimates of

the additional parameters, since posterior correlations between η and the additional parameters are

limited to a single dimension (σεe, for reasons discussed in Section 4). Given the limited general

sensitivity of our results to the prior over η, we report in detail only those results obtained using
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the (10, 5) specification. Finally, the priors over (β, ρd, ρe) are truncated from below at zero and

from above at one, and the prior over η is truncated from below at zero.

Regarding the habit/durability parameters, we centered the priors over the decay parameters

δ and θ at 0.0625, and assigned standard deviations of 0.03. This follows the prior specification

employed by Otrok (2001), who centered his priors at 0.5 in working with quarterly data. This

specification for δ is also consistent with SMM estimates obtained by Heaton (1995), while the

specification for θ lies considerably below his estimates of this parameter (although as shown below,

the posterior mode of θ turns out to be zero in this setting, so our prior does not account for

the difference in results we obtain along this dimension). Finally, we specified an uninformative

prior over α, which indicates the relative importance of habit and durability in the preference

specification; this was done because we have no a priori reason to restrict attention to a particular

range of the parameter space in this case. In contrast, Otrok centered his prior over α at 0.5; as

shown below, the adoption of a similar prior in this setting would have a trivial influence on our

results. All three priors were truncated from below at zero and from above at 1.

Regarding the self-control parameters λ and φ, we specified priors by focusing on the impli-

cations these parameters carry for the steady state relationship between prices and dividends, as

indicated in (6). Recall that along with λ and φ, the parameters β, γ and η also influence this

relationship. When λ = 0, we revert to the CRRA case, under which our prior over β is centered on

0.96, implying an annual rate of return of 4%, or a steady state price/dividend ratio of 24. As we

shall see below, the average rate of return in the data is 4.49%, implying an average price/dividend

ratio of 22.26. Thus we deem parameterizations of λ and φ that leave us in this ballpark as rea-

sonable a priori. Fixing β, γ and η at their prior means, (λ,φ) combinations in the respective

ranges ([0, 0.001], [0, 0.75]) deliver this behavior. Increasing β by one prior standard deviation,

up to 0.98, moves these ranges to ([0, 0.006], [0, 0.8]); re-centering β at 0.96 and decreasing γ by

one standard deviation to 1 moves these ranges to ([0, 0.014], [0, 0.8]); and re-centering γ and

decreasing η by one standard deviation to 5 moves these ranges to ([0, 0.004], [0, 0.7]). Thus notice

that small changes in λ can have large impacts on steady state price/dividend values, while changes

in φ have relatively small impacts. Recall the intuition behind the impact of λ: as the household’s
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temptation to consume increases, its demand for asset holdings decreases, thus driving down p∗.

In light of these calculations, we specified a normal distribution for λ centered and truncated from

below at 0, with a standard deviation of 0.01; and a normal distribution for φ centered at 0.4 with

a standard deviation of 0.2, truncated from below at 0 and from above at 1.

Since the model approximations we work with involve logged deviations of variables from steady

state values, the data used to analyze the models must be transformed accordingly. Shiller’s (1981)

analysis of stock-price volatility was based on the assumption that dividends and prices are trend

stationary; DeJong (1992) and DeJong and Whiteman (1991, 1994) provided subsequent empirical

support for this assumption. Following this work, we too adopt the trend-stationarity assumption,

which implies that logged steady state dividends follow a linear trend. This assumption, coupled

with the steady state specifications for prices and dividends given either by (5) or (6), implies a

restricted trend-stationarity specification for prices. Specifically, given the value of p∗/d∗ implied

under either (5) or (6), the assumption of trend-stationarity for dividends, coupled with this steady

state restriction yields:

ln(d∗t ) = φ0 + φ1t (7)

ln(p∗t ) =
·
φ0 + ln

µ
p∗

d∗

¶¸
+ φ1t.

Thus the variables we work with are logged deviations of prices and dividends from the re-

stricted trajectories given in (7). (See the appendix for details regarding the implementation of

this restriction.)

We conclude this section with a characterization of the data. As noted in the introduction,

the data are precisely those upon which Shiller (1981) based his analysis of stock-price volatility,

updated through 1999. The price series is the S&P’s monthly composite stock price index for

January, divided by the producer price index (January PPI starting in 1900, annual average PPI

from 1871 - 1899); the dividend series represents total dividends for the calendar year accruing to

the portfolio represented by the stocks in the index, divided by the average PPI for the year.

As noted, the sample average of the price/dividend ratio is 22.26, implying an annual return

of 4.78%; under the CRRA and habit/durability specifications, this implies a corresponding value
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of β of 0.954. Logged deviations of prices and dividends from the trends estimated subject to

(7) for this price/dividend ratio are illustrated in Figure 1. The two series are closely correlated

(0.673), and the standard deviation of the price series is nearly twice that of the dividend series

(0.406 versus 0.217). In our assessment of the ability of the models to characterize these data,

we focus on four summary statistics: the standard deviation of prices and dividends (σp,σd); the

ratio σd/σp; and the correlation between prices and dividends (corr(p, d)). In order to characterize

statistical properties of these statistics, we calculated their posterior distributions using a six-lag

vector autoregressive representation (VAR) (estimated using the detrended series depicted in Figure

1); this was done using an uninformative prior specified over the VAR parameters. The dashed

lines in Figure 3 depict marginal posterior distributions over these statistics; and Table 2 reports

posterior means and standard deviations. Note from Figure 3 that these distributions feature

considerable skewness, particularly the distribution of σp. As a result, e.g., the posterior mean of

σp (0.62) lies considerably above its sample average of 0.406.

As noted in the introduction, two features of these data constitute the crux of the excess-

volatility puzzle: the successful model must account simultaneously for the high volatility of fluctu-

ations in asset prices relative to dividends, and the close correlation observed between movements in

these series. We turn now to an assessment of the ability of the alternative preference specifications

to account for this behavior.

4 Results

4.1 Estimation

Posterior means and standard deviations obtained for all specifications are presented in Table 1;

posterior means and standard deviations of summary statistics corresponding to all models are

presented in Table 2. For the CRRA specification, marginal posterior distributions of parameters

and summary statistics are graphed in Figures 2 and 3; for the habit/durability specification,

these distributions are graphed in Figures 4 and 5; and for the self-control specification, these

distributions are graphed in Figures 6 and 7. We begin here with a discussion of the parameter
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estimates obtained for each model; we then turn to a characterization of fit.

Consider first parameter estimates obtained for the CRRA specification. The posterior distri-

bution of β is centered very close to the prior (with respective means of 0.957 and 0.96), but is much

more tightly distributed (its standard deviation of 0.004 is five times less than the prior’s). In con-

trast, the posterior and prior dispersions of γ are similar (respective standard deviations are 0.814

and 1), while the posterior distribution is moderately right-shifted relative to the prior (respective

means are 2.884 and 2). Thus the data indicate a somewhat higher degree of risk aversion than was

embodied in the prior, but not by a dramatic amount: the means differ by less than one prior stan-

dard deviation. Regarding the shocks, the persistence of the endowment shock is greater than that

of the dividend shock (posterior means of ρd and ρe are 0.876 and 0.913, with standard deviations

of 0.033 and 0.026), and the shocks are positively correlated (the posterior mean of corr(εd, εe) is

0.313, with posterior standard deviation of 0.124). Regarding the size of the shocks, the posterior

distributions of σεd and σεe have similar means (0.114 and 0.097, respectively); but the standard

deviation of σεe is five times that of σεd, and is skewed substantially to the right. Finally, as noted

above, the prior and posterior distributions of η = e∗/d∗ are virtually indiscernible, indicating that

the data are uninformative regarding the location of this ratio. This calls into question the general

sensitivity of our results to this prior specification, an issue we return to below.

To gain intuition for these results, it is important to keep in mind that the empirical problem

confronting the model is largely two-dimensional: simultaneously account for the relatively high

volatility of stock prices, and the close correlation observed between prices and dividends. Four

parameters play a critical role in confronting this problem. First, large values of σεe and η are

useful in helping the model along the former dimension: by respectively increasing the volatility

and importance of the household’s endowment in the budget constraint, these parameters serve to

increase the volatility of stock prices without requiring an increase in the volatility of dividends. But

these effects are harmful along the latter dimension: they serve to weaken the correlation between

movements in prices and dividends. However, this harm can be offset given a large corresponding

value of corr(εd, εe), since this of course boosts the correlation between dividends and the endow-

ment process, and thus between dividends and prices. Finally, large values of γ provide help along
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the former dimension by boosting the volatility of the household’s marginal rate of substitution for

a given volatility of consumption. But this again serves to weaken the correlation between prices

and dividends, because dividend fluctuations do not constitute the exclusive source of fluctuations

in consumption.

These considerations are helpful in understanding, for example, why the posterior distribution

of γ is only moderately right-shifted relative to the prior, and why the data clearly favor a positive

value for corr(εd, εe). They are also helpful in interpreting the posterior correlations estimated

between the parameters of the model. Among the eight parameters featured in this version of the

model, there are four nontrivial posterior correlations (reported in Table 1): between γ and σεe

(-0.836); γ and corr(εd, εe) (-0.302); σεe and corr(εd, εe) (0.165); and corr(εd, εe) and η (0.520).

So for example, given a relatively large value of σεe, corr(εd, εe) is also relatively large, and γ is

relatively small: adjustments in these latter parameters help combat the decreased dividend/price

correlation associated with the large value of σεe.

In light of this correlation pattern, it is easy to convey the implications of adjusting the prior

specified over η. Decreasing its prior mean/standard deviation from 10/5 to 5/3 leads to an ap-

proximate one-standard-deviation decrease in the posterior mean of corr(εd, εe). Also, the posterior

mean of σεe rises slightly (by approximately a half-standard-deviation), which apparently serves to

offset the volatility reduction in prices corresponding to a decrease in η. Posterior means of the

remaining parameters are affected inappreciably by this change.

Consider now the estimates obtained using the habit/durability specification. First, the esti-

mates obtained for the parameters common to both specifications are quite similar. In fact, the

posterior mean of ρe lies one posterior standard deviation below the mean obtained using CRRA

preferences (at 0.889), but the remaining means are all within one posterior standard deviation of

their CRRA counterparts. Anticipating the discussion of fit to follow, two additional differences

in parameter estimates are noteworthy: the posterior mean of σεe falls by nearly one standard

deviation (to 0.079), and the posterior mean of corr(εd, εe) rises by nearly one standard deviation

(to 0.414). All three of these changes work to generate less-volatile price fluctuations, and greater

correlation between dividends and prices.
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Regarding the habit/durability parameters, our results are not supportive of the presence of

habit: the posterior mode of α is zero (as is that of θ). However, there is clear support for durability.

While the posterior of δ is shifted towards zero relative to the prior, the shift is slight: posterior

and prior means are 0.0532 and 0.0625, respectively. Also, the height of the posterior at its mode

(approximately 0.06) is roughly seven times higher that at zero. The implication of these estimates

is that the data are distinctly supportive of a mild degree of local consumption substitutability

in the context of this model. Using alternative specifications of preferences, Dunn and Singleton

(1986), Gallant and Tauchen (1989), and Eichenbaum and Hansen (1990) also find evidence of local

substitutability using monthly aggregate consumption and return data.

Our results of course do not constitute a “rejection” of the notion that consumption is in

fact habit-forming. Rather, they indicate that in the context of this environment, the model’s

characterization of the behavior of the aggregate stock price and dividend data upon which we

condition in obtaining these estimates is not enhanced by the generalization of preferences along the

habit dimension. Examples of contrasting results obtained using different environments, estimation

procedures, and data sets are plentiful. For example, using the same full-information approach to

estimation we employ, Otrok (2001) obtained posterior evidence supportive of the presence of both

habit and durability in an RBC environment estimated using quarterly observations on non-durable

consumption and services and non-residential investment.

Heaton’s (1985) analysis of habit/durability is the most closely related to this aspect of our

analysis, thus a careful comparison of our results with his is warranted. Heaton studied an asset-

pricing environment very similar to ours: it too featured a representative household, an exogenous

endowment process, and the same preference specification we consider (indeed, our specification

is adopted directly from his). Heaton’s results were obtained using a two-step SMM procedure.

In the first step, he estimated an autoregressive process for monthly observations on the growth

rates of non-durable consumption and services and an annualized dividend series corresponding

with CRSP value-weighted returns. In the second step he conditioned on this estimated driving

process, and obtained estimates of the same set of preference parameters we consider, using as

an objective function variances, cross-correlations, and auto-correlations of monthly CRSP value-
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weighted returns and returns on one-month T Bills.

Heaton obtained non-zero point estimates for each of the durability and habit parameters, thus

at first blush it appears that our results are at odds with his. However, as he carefully notes, it is

difficult to make a sharp assessment of the statistical significance of his estimates. For example, his

point estimate of α is 0.672, with a corresponding standard error of 1.268. While this is suggestive

of statistical insignificance, the fact that α is truncated from above at one raises the possibility

that the standard error may provide a poor approximation of the precision of this estimate. Similar

observations pertain to his estimates of δ and θ. This problem motivates an analysis of the impact

on the fit statistic (sample size times SMM criterion function) of imposing zero restrictions on the

preference parameters. While even this is problematic (since this characterization of fit does not

correspond with a known asymptotic distribution), it reveals a pattern of results similar to ours.

Specifically, relative to the unrestricted model, the imposition of a zero restriction on δ generates

a 180% increase in the fit statistic, while the imposition of a zero restriction on α generates only

a 29% increase. Thus like us, Heaton finds relatively strong support for durability in his analysis,

but weaker support for habit persistence. And as we shall see when we discuss fit below, our results

are similar to Heaton’s in a second regard: in neither case do we find that habit/durability resolves

the excess volatility puzzle. (Our failure to find a significant role for habit formation in this setting

obtains despite the fact that we work with annual data: as noted, e.g., by Ferson and Constantinides

(1991), the use of annual data is helpful in detecting slowly developing habit formation.)

Consider now the estimates obtained using the self-control specification. In this case, the

estimates obtained for the parameters common to both the self-control and CRRA specifications are

relatively distinct. Most notably, the posterior mean of β increases by approximately one standard

deviation under the self-control specification; the means of γ and η decrease by approximately one

standard deviation; and the mean of σεe increases by more than 1.5 standard deviations. Again

anticipating the discussion of fit to follow, the decreases in γ and η will serve to increase the

correlation between prices and dividends in the model, while dampening the volatility of prices; the

increase in σεe will have the opposite effect. This raises the question of why these offsetting factors

arise. The key lies in reconsidering the relationship between steady state prices and dividends given
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in (6). Movements away from zero by the self-control parameters λ and φ cause sharp declines in

the steady state price/dividend ratio; decreases in γ and η, and increases in β, can serve to offset

these effects. Thus it appears that the altered estimates of γ, η and β arise from an empirical

preference for non-zero values of λ and φ; the posterior estimates of these self-control parameters

confirm this observation.

The posterior mean of φ is 0.3, roughly one posterior standard deviation below its prior mean,

but still significantly higher than zero. And the posterior mean of λ is 0.00286, which coincides

closely with its mode, and lies approximately 1.5 posterior standard deviations above the prior

mode of zero. To appreciate the quantitative significance of this estimate, consider two alternative

calculations. First, returning to (6), if we fix γ, η, β and φ at their posterior means, an increase of λ

from zero to 0.00286 implies a decrease in the steady state price/dividend ratio from approximately

28 to 20.46, implying an increase in annual average returns from 3.57% to 4.89%. In other words,

a household endowed with the self-control preferences associated with these parameter estimates

would demand an annual “return premium” over a household endowed with CRRA preferences of

1.32%, representing a 36% difference. Second, consider the quantity of steady state consumption a

household endowed with the temptation specification we estimate would be willing to sacrifice in

order to be rid of this temptation. This is the value x such that

u(c− x) = u(c) + v(c)− v(ec),
where here ec denotes the steady state value of temptation consumption. Using posterior means of
our parameter estimates, the implied value of x amounts to 5.25% of c. Thus we obtain support

for the presence of a quantitatively significant temptation effect in the data.

4.2 Fit

We now characterize implications of these parameter estimates for the behavior of the variables

included in the models. As noted, we summarize this behavior with the following set of statistics:

standard deviations of prices, dividends, and endowments (σp, etc.); the ratios (σd/σp,σe/σp); and
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cross-correlations between these variables. To evaluate fit, we compare posterior distributions of

the statistics associated with the observable variables (σp,σd,σd/σp, corr(p, d)) with their empirical

counterparts (the posteriors obtained using the flat-prior VAR). The posterior distributions of these

statistics are summarized in Table 2, and graphed in Figures 3, 5, and 7 (CRRA preferences,

habit/durability preferences, self-control preferences).

Visual comparisons of model and VAR posteriors provide one way to evaluate fit: loosely, the

greater the correspondence, the better the fit. Beyond this, we rely on two formal measures of

correspondence: the confidence-interval-criterion (CIC) measure proposed by DeJong, Ingram and

Whiteman (1996); and the posterior-odds measure proposed by Geweke (1999). Each measure

enables head-to-head fit comparisons for sets of alternative models, including non-nested ones.

Regarding the CIC measure, let s be a summary statistic that can be calculated both from

the model and the VAR; and let P (s) and V (s) denote the marginal posterior distributions over

s associated with the model and VAR. Finally, let [a b] denote the inter-κ quartile range of V (s)

(i.e., a is the κ/2 quantile of V (s), and b is the 1− κ/2 quantile of V (s)). Then the CIC measure

associated with s we employ is given by

CIC(s) =

bZ
a

P (s)ds;

thus CIC(s) measures the proportion of the distribution of P (s) that lies within the inter-κ quartile

range of its empirical counterpart V (s).

Regarding Geweke’s (1999) posterior odds measure, letm denote a vector of summary statistics,

PA(m) the posterior distribution ofm associated with model A, and V (m) the posterior distribution

of m associated with the VAR. Then assigning even prior odds to models A and B, the posterior

odds in favor of model A relative to B are given by

POA,B =

R
PA(m)V (m)dmR
PB(m)V (m)dm

;

thus POA,B provides a characterization of the relative overlap between the VAR density over m
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and the posterior densities associated with models A and B. The greater the overlap exhibited by

model A relative to model B, the greater will be POA,B.

Evaluation of the integrals required to calculate POA,B is facilitated by kernel density approx-

imation. Let mA(i) denote the ith of M drawings of m obtained from PA(m) (or in our case, a

suitably weighted drawing from the importance density associated with PA(m)), and mV (j) denote

the jth of N drawings obtained from V (m). Then the numerator of POA,B may be approximated

using

1

MN

MX
i=1

NX
j=1

K(mA(i),mV (j)),

and likewise for the denominator. Here, we use a Normal density kernel with window width chosen

to minimize approximate mean integrated square error, following Silverman (1986, equation 3.31).

A key difference between the CIC and PO measures is that the CIC measure facilitates com-

parisons of marginal densities of a single statistic in isolation, and thus is useful in highlighting

performance along a specific dimension. In contrast, the PO measure enables comparisons of the

joint behavior of the entire vector of summary statistics. Thus if there is significant interaction

between the statistics, this will be picked up by the PO measure but not the CIC measure, and

inferences based on the two measures can potentially vary.

Turning to our results, note first that all three models provide virtually identical characteriza-

tions of the volatility of dividends, and that the characterizations correspond very closely with the

data: e.g., CIC(σd) is close to 1 in all cases. Differences across models are evident, however, in the

remaining series.

Consider first a comparison of the CRRA and habit/durability specifications. Note that the

volatility of the endowment is considerably lower in the habit/durability specification: respective

posterior means (standard deviations) of σe are 0.175 (0.061) and 0.251 (0.116); moreover, the

posterior of σe obtained using the CRRA specification is distinctly right-skewed. In light of the

lower estimates of the parameters (ρe,σεe) obtained for the habit/durability specification, this

difference is not surprising.

The implication of this behavior for prices is also not surprising: prices are far smoother in the
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habit/durability specification than in the CRRA specification, and more closely correlated with

dividends. As a result, the CRRA specification does a relatively good job in characterizing price

volatility, at the cost of matching the data along the correlation margin; and the opposite is true

of the habit/durability specification. For example, CIC(σp) is 0.616 in the CRRA specification,

but only 0.214 in the habit/durability specification; while CIC(corr(p, d)) is 0.865 in the CRRA

specification, and 0.998 in the habit/durability specification. Thus like Heaton (1985), we find that

habit/durability preferences are not capable of accounting for stock-price volatility.

This is reflected further in our posterior-odds comparison: the odds favoring the CRRA model

relative to the habit/durability model are nearly 2:1 (1.987). Given the distinct evidence favoring

a non-zero value of the durability parameter δ provided by its marginal posterior distribution illus-

trated in Figure 4, this result is surprising at first blush. However, it is important to interpret this

result appropriately: it implies that the CRRA specification provides a superior characterization of

the four summary statistics we have chosen to highlight on a weighted-average basis relative to the

habit/durability specification. One explanation for this could be, for example, that the likelihood

function places greater emphasis on other features of the data than on the summary statistics we

highlight. Nevertheless, it is clear that the habit/durability extension does not enhance the model’s

characterization of stock-price volatility in this environment.

The CRRA and self-control specifications are more closely comparable. Once again, an obvious

difference lies along the σe dimension, but in this case the self-control specification delivers a

relatively large value for this statistic: 0.391 (0.129) versus 0.251 (0.116). This is the result of

the relatively large estimate of σεe obtained using the self-control specification. Recall that the

increased estimate of σεe arose under the self-control specification from a need to offset the impact

on predicted price volatility of the decreased estimates of γ and η.

Regarding fit, the self-control specification marginally outperforms the CRRA specification

according to the CIC criterion along both the volatility and correlation dimensions: CIC(σp) is

0.624 in the self-control specification (compared with 0.616), and CIC(corr(p, d)) is 0.902 in the self-

control specification (compared with 0.865). The posterior-odds comparison yields a more dramatic

difference: the odds favoring the self-control over the CRRA specification are approximately 2.4:1.
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Thus it appears that the self-control specification does a relatively good job in characterizing the

joint behavior of the statistics we use to evaluate fit.

Taken as a whole, the parameter estimates and evaluations of fit we obtain are supportive of

a positive role for self-control preferences in helping account for the interaction of aggregate stock

prices and dividends. The data support the presence of a significant temptation effect according to

our posterior estimates. And in the presence of temptation, lower values of the coefficient of relative

risk aversion γ are needed to characterize volatility; the importance of the exogenous endowment

process is also diminished. These results are useful in helping the model to deliver an adequate

characterization of the strong correlation pattern observed between stock prices and dividends,

while at the same time attempting to characterize stock price volatility. In the context of the

simple environment we study, this characterization is not completely successful; nevertheless, it

seems to represent a step in the right direction.

5 Conclusion

We have used a simple asset-pricing environment to study the ability of self-control preferences to

account for the interaction of aggregate annual stock prices and dividends. Using as benchmarks

results obtained using CRRA and habit/durability preferences, we found empirical support for a

positive role for temptation in characterizing the behavior of these data. Moreover, parameter esti-

mates obtained using a full-information procedure indicate the presence a quantitatively significant

temptation effect. While self-control preferences do not fully account for the level of price volatility

observed in the data, our results are nevertheless encouraging, particularly in light of the simple

environment upon which our analysis was based.
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A Appendix

Here we provide a sketch of the technical details of our estimation procedure. Let µ denote the
vector of parameters associated with a given model, and xt denote the (n x 1) vector of variables
in the model, written as logged deviations from steady state values. For a given specification of µ,
log-linear approximation of the model yields a first-order system of the form

xt = Fxt−1 +Gεt (A1)

where εt denotes the (m x 1) vector of disturbances in the model with a corresponding covariance
matrix Σ, and the elements of (F,G,Σ) are functions of µ. Although the system is of dimension
n, it is stochastically singular because it includes only m random shocks. Thus the model carries
non-trivial predictions for an (m x 1) vector of variables Xt, with a mapping from xt given by

Xt = H
/xt (A2)

Coupled with the assumption of normality for εt, (A1) and (A2) yield a likelihood function L(X|µ)
that can be evaluated using the Kalman filter. Finally, the specification of a prior distribution p(µ)
yields a posterior distribution for µ via Bayes’ Rule:

P (µ|X) ∝ L(X|µ)p(µ). (A3)

The expected value of a general function of interest g(µ) under the posterior is given by

E[g(µ)] =

R
g(µ)P (µ|X)dµR
P (µ|X)dµ . (A4)

(Here, our interest is in the parameters themselves, as well as in various moments of xt.) In general,
the integrals in (A4) must be approximated using numerical integration techniques. Ideally, this is
done by generating an artificial sample {µk} for k = 1,...,D directly from the posterior density (A3),
and approximating (A4) by calculating the average value of g(µ) obtained using these drawings.
But since the likelihood function in this case is in the form of an observer system, it is not possible
to generate parameter drawings from its associated posterior distribution. Instead, we proceed via
Importance Sampling, which involves generating an artificial sample from a different distribution
from which it is possible to sample, and assigning weights to the elements of the sample so that
they can be thought of as originating from the posterior distribution of interest. The distribution
I(µ) used to obtain drawings of m is known as the importance density. Given an artificial sample,
(A4) is approximated by calculating the weighted average

gD =

DP
i=1
g(µi)w(µi)

DP
i=1
w(µi)

, (A5)

where the weight function w(µi) = P (µi|X)/I(µi); I(µi) appears in the denominator of w(µi) to
offset the direct influence that I(µ) has in obtaining the particular drawing µi. Given that the
support of I(µ) includes that of P (µ|X), gD converges almost surely to E[g(µ)], so long as E[g(µ)]
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exists and is finite.
To obtain the results reported in the paper, we specified a multivariate t distribution for I(µ) for

each model to insure that their supports included those of P (µ|X). Means and covariance matrices
for I(µ) were chosen sequentially. In calculating first-pass approximations of posterior means and
covariance matrices of µ, only very few drawings from I(µ) typically received appreciable posterior
weight. Thus after obtaining an initial round of draws, means and covariance matrices of I(µ) were
relocated at the first-pass approximations, and a second round of drawings was obtained. After
several rounds moment calculations converged (subject to numerical sampling error) to those used in
deriving the results presented in the paper. Of these drawings, that which was assigned the greatest
weight received less than three percent of the total assigned weight under the habit/durability
specification, and less than one percent under the CRRA and self-control specifications; hence we
are confident that our results closely approximate the actual posterior calculations we seek.

Recall that the data we work with are logged deviations of dividends and prices from the
restricted trend specification given in (7). Since the restrictions are a function of the parameters
µ, the raw data must be re-transformed for every parameter drawing we obtain. Specifically, given
a particular drawing of µ, which implies a particular value for p∗/d∗, we regress logged prices and
dividends on a constant and linear time trend, imposing the parameter restrictions indicated in (7);
deviations of the logged variables from their respective trend specifications constitute the values of
Xt used to evaluate the likelihood function for that specific drawing of µ.

We conclude with a note regarding the pricing equation (2b) obtained under the habit/durability
specification. This equation relates prices to an infinite sum of leads and lags of consumption,
which must be truncated prior to empirical evaluation. Experimentation with alternative trunca-
tion points indicates that consumption values beyond four leads/lags receive little weight in this
equation under plausible parameterizations, thus our model estimates were obtained using this
approximation.
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Table 1.  Parameter Estimates 
 
 

 β  γ δ θ α λ φ ρd ρe σεd σεe corr(εd,εe) d/e  
              

Prior Mean 0.960 2.000 0.0625 0.0625 UN 0.0000 0.4 0.900 0.900 UN UN UN 10.00 
CRRA 
Mean 

0.957 2.884 NA NA NA NA NA 0.876 0.913 0.114 0.097 0.313 10.68 

Hab/Dur 
Mean 

0.959 2.754 0.0532 0.0248 0.0004 NA NA 0.891 0.889 0.114 0.079 0.414 10.57 

Self-Control 
Mean 

0.966 1.973 NA NA NA 0.00286 0.30 0.880 0.911 0.115 0.154 0.290 5.95 

              
Prior Std. 

Dev. 
0.020 1.000 0.030 0.030 UN 0.01 0.2 0.050 0.050 UN UN UN 5.00 

CRRA Std. 
Dev. 

0.004 0.814 NA NA NA NA NA 0.033 0.026 0.007 0.035 0.124 4.39 

Hab/Dur 
Std. Dev. 

0.003 0.697 0.0245 0.0315 0.0036 NA NA 0.032 0.024 0.007 0.028 0.132 4.586 

Self-Con. 
Std. Dev. 

0.007 0.422 NA NA NA 0.00182 0.14 0.027 0.023 0.007 0.034 0.108 3.22 

 
 

Posterior Correlations: γ, σεe γ, corr(εd,εe) σεe, corr(εd,εe) corr(εd,εe), d/e  
     

CRRA Preferences -0.836 -0.302 0.165 0.520 
Hab/Dur Preferences -0.899 -0.301 0.200 0.609 

Self-Control Preferences -0.718 -0.343 0.047 0.553 
 

Notes: UN denotes “uninformative prior”; NA denotes “not applicable”. 
 



Table 2.  Summary Statistics 
 
 

 σp σd σe σd/σp σe/σp corr(p,d) corr(p,e) corr(d,e) 
         

VAR Mean 0.620 0.268 NA 0.448 NA 0.672 NA NA 
CRRA Mean 0.434 0.244 0.251 0.571 0.568 0.536 0.960 0.301 

Hab/Dur Mean 0.366 0.261 0.175 0.710 0.482 0.669 0.926 0.408 
Self-Con. Mean 0.418 0.248 0.391 0.608 0.941 0.564 0.939 0.282 

         
VAR Std. Dev. 0.183 0.065 NA 0.095 NA 0.178 NA NA 

CRRA Std. Dev. 0.067 0.041 0.116 0.101 0.212 0.079 0.043 0.120 
Hab/Dur Std. Dev. 0.041 0.051 0.061 0.082 0.170 0.071 0.063 0.130 

Self-Con. Std. 
Dev. 

0.069 0.035 0.129 0.125 0.296 0.101 0.079 0.106 

         
CRRA CIC 0.616 0.978 NA 0.549 NA 0.865 NA NA 

Hab/Dur CIC 0.214 0.946 NA 0.039 NA 0.998 NA NA 
Self-Con. CIC 0.624 0.975 NA 0.479 NA 0.902 NA NA 

         
 

Posterior Odds: CRRA versus Hab/Dur: 2 : 1; CRRA versus Self-Control 1 : 2.4 
 
Notes: VAR statistics summarize flat-prior posterior distributions associated with a six-lag vector autoregression; CIC denotes the 
“confidence interval criterion” of DeJong, Ingram and Whiteman (1996);  σx denotes the standard deviation of the logged deviation of 
x from its steady state value; and corr(x,y) denotes the correlation observed between logged deviations from steady state values of x 
and y. 
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