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Abstract

We construct an infinite horizon consumption model and use it to define and analyze

harmful addiction. Consumption is compulsive if it differs from what the individual would

have chosen had commitment been available. A good is addictive if its consumption leads

to more compulsive consumption of the same good. A policy is prohibitive if it decreases the

maximal feasible drug consumption. A price policy is one that increases the opportunity

cost of drug consumption. We show that purely prohibitive policies make the agent better-

off and pure price policies make him worse-off. Our analysis of demand for commitment

identifies three regimes: If commitment (rehab) is expensive the agent never utilizes it

and his drug consumption increases over time. If commitment is sufficiently inexpensive

he enters and stays in rehab forever. The intermediate range is characterized by a cycle

of addiction where the agent periodically checks into rehab for a single period. Between

these visits his drug consumption increases each period.

† This research was supported by grants from the National Science Foundation.



1. Introduction

Substantial resources are spent to reduce the availability of and the demand for drugs.

These efforts are justified by the belief that drug addiction is a serious health and social

problem. What is special about drugs that could justify restricting its supply and demand?

Standard economic analysis uses the individuals’ choice behavior as a welfare criterion.

Alternative x is deemed to be better for the agent than alternative y if and only if given

the opportunity, the agent would choose x over y. Restricting the available options for

an individual can never be welfare improving in a standard economic model. Such models

provide a clear welfare criterion for evaluating the individuals welfare but offer no rationale

for treating drugs differently than other consumption goods.

While typical in economic analysis, the identification of welfare and choice is certainly

not the norm in the analysis of addiction by healthcare professionals. Instead, addiction is

often viewed as a disease that impedes the agent’s decision-making ability.1 It is believed

that after being struck by the disease, a person can no longer be trusted to make the right

decision for his “true” self.2 The role of intervention is to “cure” (i.e. induce abstinence)

or at least “control” (i.e. reduce consumption) the disease.

Viewing addiction as a disease creates a wedge between choice and welfare and hence

a rationale for policy interventions that modify the addict’s choices. However, rejecting

the equivalence between the individuals preferences and his welfare creates the need for a

new welfare criterion for evaluating the costs and benefits of these interventions. Consider

a costly treatment that, if successful, would remove the agent’s drug dependency (i.e. cure

the disease). For someone who considers addiction a disease, if the probability of success

is positive, a sufficiently low cost of treatment renders is desirable regardless of whether

the agent thinks so or not. Conversely, if the cost of treatment is sufficiently high then the

treatment is undesirable. But how is the trade-off between the probability of success and

the cost of the treatment to be made in the wide range of intermediate cases? Healthcare

1 “Is alcoholism a disease? Yes. Alcoholism is a chronic, often progressive disease with symptoms that
include a strong need to drink despite negative consequences, such as serious job or health problems.” (cited
from: National Institute on Alcohol Abuse and Alcoholism. http://silk.nih.gov/silk/niaaa1/questions/q-
a.htm#question2)

2 There are numerous criticisms of the disease model of drug addiction (see for example, Davies (1992)).
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professionals’ view of addiction assumes a need for policy but offers little guidance as to

how such policies are to be evaluated.

In this paper we provide an economic model of (harmful) addiction. In our model each

individual is characterized by a single preference that describes both his behavior and his

welfare. Therefore, if our analysis shows that a particular policy is welfare improving then

this assertion can be falsified. This contrasts with the approach of healthcare professionals

and models based on quasi-hyperbolic discounting where the analyst must introduce his

own criterion to investigate the welfare of the agent. At the same time, our model is

consistent with the view that addicts benefit from policies that restrict drug consumption.

We build on previous work (Gul and Pesendorfer (2001)) that allows the agent’s welfare

to depend both on what he chooses and on the set of options from which the choice is

made. This set may contain tempting alternatives that reduce the agent’s welfare either

by distorting his choice or by necessitating costly self-control or both. In particular, drug

consumption constitutes a temptation. Moreover, current drug consumption affects how

the agent will respond to temptations in future periods. Specifically, the agent is more

likely to give in to tempting drug consumption if he has consumed an addictive drug in

the past.

We define (harmful) addiction as follows: first, we introduce the notion of compulsive

consumption. An individual is compulsive if his choice differs from what he would have

chosen had commitment been possible. An agent is more compulsive after consumption

history A than after consumption history B if for every decision problem in which the agent

is compulsive after B he is also compulsive after A. The drug is addictive if an increase

in drug consumption makes the agent more compulsive. Hence, a harmful addiction is

defined as a widening of the gap between the individual’s choice and what he would have

chosen before experiencing temptation. Healthcare professionals define addiction through

the underlying physiological processes or by comparing the individuals consumption choices

with external social standards of acceptability. In contrast, our notion of harmful addiction

relies only on revealed choice and compares the individuals behavior to his own behavior

under different circumstances.

2



To see how our model works, consider an agent who must choose between drug con-

sumption (d) and non-drug consumption (c) from a budget set Bt in period t. For sim-

plicity, we assume that there is no saving. The dynamic program below characterizes the

agent’s utility as a function of last period’s drug consumption. Let W (dt−1) denote the

utility (value) function in period t, then

W (dt−1) = max
{(c,d)∈Bt}

{u(c, d) + σ(dt−1)v(d) + δW (d)}− max
{(ĉ,d̂)∈Bt}

σ(dt−1)v(d̂))

We interpret σ(dt−1)v as the temptation utility and call u+ δW the commitment utility.

To understand this terminology, note that if all options were equally tempting — that is,

resulted in the same v — then the v-terms in equation 1 would drop-out. Therefore, such

consumption problems would be evaluated according to u + δW . For example, when Bt

consists of a single choice (c, d), the overall utility of the current decision problem is the

commitment utility u+ δW of the singe option (c, d). The commitment utility u+ δW is

independent of past drug consumption while the temptation utility σ(dt−1)v depends on

last period’s drug consumption. Addiction exerts its influence through this dependence.

The individual’s choice (c, d, x) maximizes u+σ(dt−1)v+δW . This choice reflects the

compromise between the commitment utility and temptation. An individual is compulsive

if his choice (the u + σ(dt−1)v + δW maximizer) does not maximize his commitment

utility. A drug is addictive if an increase in drug consumption leads to more compulsive

drug consumption.

In Proposition 1, we show that an increase in σ implies that the agent is more com-

pulsive. Hence, if σ is an increasing function then the drug is addictive. An increase in

σ implies that the agent’s utility function places a relatively smaller weight on commit-

ment utility and hence the gap between optimal commitment choices and actual choices

widens. Proposition 2 shows that consumption of an addictive drug is reinforcing, that is,

higher drug consumption in the current period leads to higher drug consumption in future

periods.

Section 3 examines the effect of price changes on drug demand. We show that drug

demand decreases if the current price of the drug increases. If the drug is addictive, drug

demand also decreases if the future price of the drug increases.
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Section 4 analyzes the welfare effects of drug policies. We assume that the agent

faces a fixed budget set in every period. The government can affect this budget set by

changing the price of the drug (price policy) or by reducing the maximally feasible drug

consumption (prohibitive policy). Many actual policies will change the price of the drug

and the maximally feasible drug consumption simultaneously. We separate these two

effects in order to identify the source of welfare effects. An example of a policy with

mostly prohibitive effects is a ban on drug consumption. A tax on the drug will have

mostly price effects if drug consumption is a relatively small part of an agent’s budget and

hence the tax does not affect the maximally feasible drug consumption in a given period.

A pure price policy refers to a policy that has only price effects whereas a purely prohibitive

policy refers to a policy with only prohibitive effects.

We show that a pure price policy always reduces the agents welfare. A pure price

policy makes it more costly to consume the drug but does not change the most tempting

alternative. In response to a pure price policy the agent will consume less of the drug and

exercise more costly self-control. By a simple revealed preference argument, the increased

cost of self-control is always larger than the possible utility gain from reduced drug con-

sumption. The key feature of a pure price policy is that it does not remove temptations

from the agent’s choice set while it increases the cost of drug consumption. Such a policy

will reduce drug consumption but also decrease welfare.

To examine the effect of a prohibitive policy, we focus on the special case where the

optimal drug consumption is zero when the agent can commit. We show that if the drug is

addictive then a prohibitive policy increases welfare. A prohibitive policy changes the most

tempting alternative without affecting the price of the drug. We also examine how drug

demand changes when a prohibitive policy is introduced. If the prohibitive policy is not

binding then a reduction in the maximally allowed drug consumption will increase drug

demand. To see the intuition for this result note that current drug consumption makes

self-control more costly in future periods. If the maximally feasible drug consumption is

reduced then this cost is smaller and hence current drug consumption is more attractive.

Together, our welfare results show that welfare improvement stems from the commit-

ment effect of a policy while the price effects reduce welfare. Moreover, if a policy reduces
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drug demand then this cannot be taken as an indication that the policy “works” in the

sense of welfare improvement. This is true even though the drug is unambiguously “bad”,

that is, the optimal drug consumption under commitment is zero.

Section 5 analyzes a decision problem in which the agent has the option of checking

into a “rehabilitation center”. In our model, rehabilitation centers provide temporary and

costly commitment to zero drug consumption. Drug treatment programs offer a variety

of treatments, many of them go beyond simple commitment. However, making drugs

difficult to acquire seems to be a common feature of most treatment programs. Treatment

programs remove patients from their familiar surroundings, closely monitor their activities,

and ensure that drugs are not available on the premises. In this way, they offer temporary

commitment. Clearly, voluntary treatment programs cannot offer permanent commitment

since agents can leave at any moment. For our purposes the key feature is that immediate

drug consumption is not possible.

In our analysis of the rehab problem, the agent faces a fixed budget in every period

and can choose to enter a rehabilitation center. The decision to enter rehab results in a

commitment to zero drug consumption for the subsequent period but is costly in terms

of the agent’s non-drug consumption. Our model predicts that agents enter rehab after

their drug consumption has reached its peak. Moreover, we show that after the visit to

the rehabilitation center agents can be expected to follow a pattern of increasing drug

consumption followed by another visit to the rehabilitation center. We also demonstrate

that the expectation of attending a rehabilitation center in the next period increases current

drug demand. Hence, agents will “go on a binge” just before entering rehab.

Section 6 provides a foundation for the preferences analyzed in this paper. We pro-

vide axioms that imply the representation used in the text. The key difference to the

representation found in our earlier work is that preferences may depend on past (drug)

consumption.

1.1 Related Literature

We organize the existing economic literature on addiction into two groups; the stan-

dard economic models and models that follow a multiselves approach. We contrast both
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of these approaches to our approach. In this subsection, we compare the welfare analysis

of the alternative approaches. In the next section, we focus on empirical implications.

What we have been calling the standard economic model identifies addiction with

intertemporal complementarities. Becker and Murphy (1986) view the consumption of

an addictive good much like an investment that affects the utility of future consumption.

For Becker and Murphy, addictive consumption is beneficial if, compared to alternative

consumption choices, it entails a decrease in current utility in exchange for an increase

in future utility. Conversely, addictive consumption is harmful if it entails an increase

in current utility in exchange for a decrease in future utility. Hence, indulging in the

consumption of a beneficial addictive good is exactly like investing; the agent forgoes

current reward in exchange for higher future payoffs, while consumption of a good that is

defined as a harmful addiction is like disinvesting.

Regardless of whether the addiction is harmful or beneficial, the availability of drugs

is never bad for the agent in the Becker-Murphy model. Be it harmful or beneficial, their

agents engage in the consumption of an addictive good if and only if the perceived trade-off

between current and future utility warrants the consumption. Policy interventions cannot

improve such agents’ welfare. This is analogous to the observation that restricting or

forcing investment cannot improve the payoff of a profit maximizing firm. It is in this

sense that the Becker and Murphy preferences are standard; their analysis of addiction

boils down to evaluating intertemporal cross-elasticities of drug demand.

There are at least two criticisms that can be levied at the Becker-Murphy model

of addiction. First, in order to use their key distinction between harmful and beneficial

addictions we need to observe the timing of utility flows and not just of consumption.

Since optimal choices rely only on the discounted present values of these flows and not on

their timing, harmful and beneficial addictions cannot be distinguished through observed

behavior.

Second, the Becker-Murphy formulation entails an a priori rejection of “the problem”

of addiction. Their reliance on standard dynamic preferences ensures that regardless of the

details of the subsequent analysis of demand, there will be no room for welfare enhancing

drug policy. A harmful addiction is harmful in the same way that disinvestment is harmful;
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it increases current payoff at the expense of lower future payoffs. The model offers no

argument for why individuals might be more likely to struggle with harmful addictions then

with any other consumption decision. Hence, the central concepts of the Becker-Murphy

model rely on a distinction that is both difficult to observe and has little relevance for

policy.

The inability of standard economic models to identify addiction as a problem has led

researchers to seek an alternative model of the decision-maker. O’Donoghue and Rabin

(1999) and Gruber and Koszegi (2002) introduce models based on Strotz’s (1955) analysis

of changing preferences as well as the subsequent work of Phelps and Pollak (1968) and

Laibson (1997). In this literature, the decision-maker is viewed as a sequence of distinct

agents — called the (multi)selves. Each self has a different preference over consumption

streams. Hence, the period t self’s choice of alternative x over y reflects only the fact that

given the predicted behavior of the subsequent selves, x leads to a consumption stream

that is better for the period t self than the one induced by y. Other selves may be and

often are made worse-off by this choice. In a multiselves model, the individual selves do

not value commitment per se; commitment has value only as a vehicle for one of the selves

to impose his preferences on subsequent selves. Therefore, policies that restrict current

consumption can be rationalized by appealing to the need for protecting the interests of

the past or future selves.

To see how multiselves models generate intrapersonal conflict and hence a role for

policy, consider the following simple example: for any consumptions stream x = {dt},
t = 1, 2, . . ., define the utility function of the period-t self as follows:

Ut(x) = u(dt)− αu(dt−1) + βδ
X
τ=t

[u(dτ+1)− αu(dτ )]δ
τ−t (MS)

where α > 0, δ ∈ (0, 1), β ∈ (0, 1] and u is an increasing function. The functional form is

interpreted as the description of a flow of utility; in period τ , this flow is u(dτ )−αu(dτ−1).
Hence, the effect of the drug consumption dτ is divided into two components, u(dτ ) at

time τ and −αu(dτ ) which accrues in period τ + 1 and is meant to capture the negative

effect of period τ drug consumption on future well being. The self at τ + 1 derives no

utility from past drug consumption but suffers from the consumption in period τ .
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Assume that βαδ < 1 < αδ, u(0) = 0 and u(1) = 1. Consider two consumption plans

x = {dt}, y = {d̂t} such that dt = d̂t = 0 for all t > 1, d̂1 = 0 and d1 = 1. Then

U1(x) =1−βαδ> U1(y) = 0

U2(x) = −α < U2(y) = 0

The conflict between the period-1 and period-2 selves emerges from two sources; first the

period-2 self suffers the negative consequences of drug consumption but does not share in

the pleasures enjoyed by the period-1 self. Second, for any given increment of period-2

utility, the period-2 self is willing to give up more period 3 utility than the period-1 self.

The latter effect arises from nonexponential discounting β < 1; the former is present even

in the case of exponential discounting. The existence of multiple selves creates a need for

a welfare criterion for evaluating policy alternatives. Finding a suitable welfare criterion

for the multiselves model turns out to be a difficult task.

O’Donoghue and Rabin (1999) and Gruber and Koszegi (2002) use the following func-

tion

SW = (1− αδ)
∞X
τ=1

u(dτ )δ
τ (S)

as a welfare criterion for the multiselves model described by (MS). They use this function

for all values of β. In effect, this corresponds to the utility function of a period-0 self that

does not suffer from the presence-bias exhibited by all of the subsequent selves. Applied

to example above, this social welfare function yields

SW (x) = (1− αδ) < SW (y) = 0

Hence, the O’Donoghue-Rabin/Gruber-Koszegi planner rules in favor of the period-2 self

and would prohibit the period-1 self from consuming drugs.

Consider the following alternative utility specification:

U∗t (x) = (1− αβδ)

"
u(dt) + βδ

∞X
τ=t

u(dτ+1)δ
τ−t
#

(MS∗)

In this case, drug consumption dt affects only the flow of utility at time t, ((1−αβδ)u(dt)).
Note that

U∗t (x)− αu(dt−1) = Ut(x)
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Since the term u(dt−1) cannot affect behavior in period t it follows that (MS) and (MS∗)

lead to exactly the same behavior. The only difference is the timing of utility flows. How-

ever, applying the O’Donoghue-Rabin/Gruber-Koszegi welfare criterion for the multiselves

model (MS∗) yields

SW ∗ = (1− αβδ)
∞X
τ=1

u(dτ )δ
τ (S∗)

Comparing x and y according the social welfare function SW ∗ establishes

SW ∗(x) = (1− αβδ) > 0 = SW ∗(y)

Hence, for the agent described in (MS∗) the O’Donoghue-Rabin/Gruber-Koszegi planner

would rule in favor of x over y. Yet as we noted above, the choice between the two models

relies on assumptions regarding when utilities are enjoyed. This issue cannot be resolved

with any choice experiment and no amount of market data can enable the researcher or

planner to distinguish between the cases where (MS) or (MS∗) are appropriate. Even

if we were willing to use other data besides choice behavior, it is not clear what data is

relevant for answering such questions and how the planner would have access to such data.

Instead of choosing the period 0 utility function as a welfare criterion, some authors

(see Laibson (1997)) have proposed the stronger requirement that all selves be made better-

off by a welfare improving policy. This welfare criterion suffers from many of the same

flaws as the O’Donoghue-Rabin/Gruber-Koszegi criterion. Moreover, it unduly biases the

planners choice in favor of the outcome designated as the status quo.

A very different type of multiselves model is offered by Bernheim and Rangel (2002).

In their model there are two selves identified with different states of the brain.3 In the

cold state the agent makes rational, long-run optimizing choices anticipating the possibility

that he may lose control to the hot state. The brain switches back and forth between these

states according to some stochastic process. The welfare criterion of Bernheim and Rangel

identifies the individual’s true interests with the cold-state self and treats the hot state as

a constraint. This approach raises questions similar to the ones discussed above within the

context of the β−δ framework. The identification of the self with a mood of the individual
3 See also Laibson (2001), and Lowenstein (1996) for related work.
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and the asymmetric manner in which the moods are treated in the welfare analysis raise

a host of interesting issues that are beyond the scope of this paper.

In contrast to the multi-selves approach, our model assumes a single agent with a

consistent preference who maximizes a single consistent utility function. However, our

agent values commitment. Equivalently, he benefits from eliminating temptations from his

choice set.

It is difficult to imagine what kind of “evidence” one could provide in favor of either

the multi-selves or the single-self view. However, we note that the idea of a consistent pref-

erence corresponding to the agent’s true welfare seems to permeate our informal, everyday

analysis of struggles with temptations. Consider the example of a smoker. Suppose, in

period 0 he has decided to quit and thrown out his last pack of cigarettes. In period 1,

he visits a friend who offers him a cigarette which he accepts. After the visit, his friend

is reproached by the friend’s spouse who asks: “Why did you do that? You know he was

trying to quit!” To this the friend responds: “It was his period 0 self that wanted to

quit. Obviously, the period 1 self did not, since it accepted the cigarette that I offered.

Why should I be concerned with the welfare of the period 0 self? After all, it was the

period 1 self that was nice enough to pay us a visit.” Should we consider this an adequate

defence of the friend’s actions? If we take the multi-selves view literally, we may have to.

In contrast, our model takes the view that the agent is harmed by the availability of the

cigarettes in both periods. The agent’s decision to smoke when cigarettes are available only

indicates that exercising self-control is too costly. It does not invalidate his earlier desire

for commitment.

1.2 Evidence

The economics literature on addiction has focused on demand analysis for drugs. The

key comparative static is that the demand for the drug decreases as the future price of the

drug increases. Becker, Grossman and Murphy (1994) found that sales of cigarettes in the

current period decreases if future prices go up. Becker, Grossman and Murphy conclude

that this reflects the complementarities between current and future consumption. Gruber

and Koszegi (2001) confirm their finding after controlling for the difference between sales
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and consumption. The latter research finds evidence of greater sales and lower consump-

tion in response to an anticipated price increase, capturing both the consumers’ desire to

stockpile at the lower price and to avoid the increase cost of addiction. As we show in

section 3, our model is consistent with the empirical analysis of Becker, Grossman and

Murphy (1994) and Gruber and Koszegi (2001).

In addition to analyzing consumption, our model can be used for evaluating the de-

mand for commitment. Our model suggests that addicts should seek commitment oppor-

tunities. We observe addicts seeking commitment by enrolling in voluntary rehabilitation

programs. Treatment programs provide commitment by making drugs difficult to procure.

Prohibition of certain drugs also provides a form of commitment, albeit an involuntary

commitment. The fact that prohibitive drug policies have strong public support also sug-

gests that agents benefit from commitment.

A sophisticated form of commitment is achieved through the use of the opiate antago-

nist naltrexone. Naltrexone blocks the opioid receptors in the brain and hence the euphoric

effects of these drugs for up to 3 days after the last dose. Naltrexone is voluntarily used

by some heroin and morphine addicts. Further evidence for the demand for commitment

devices are the recent efforts by pharmaceutical companies to develop vaccines for nico-

tine (Pentel, et al. (2000)) and cocaine.4 The function of these vaccines is to prevent the

drug from reaching the brain, so as to eliminate its effects and provide commitment for

individuals. A novel feature of these vaccines is their long term effectiveness, and hence

their ability to provide commitment over many months.

4 “When injected in laboratory animals, the vaccine stimulates the immune system to produce an-
tibodies that bind tightly to nicotine. The antibody-bound nicotine is too large to enter the brain,
thereby preventing nicotine from producing its effects. The antibody-bound nicotine is eventually broken
down to other harmless molecules.” cited from http://pharmacology.about.com/health/pharmacology/
library/99news/bl9n1217a.htm
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2. Model

We consider an environment with 2 goods and let C = [0, 1]2 denote the set of possible

consumption vectors. A consumption bundle is denoted (c, d) where d will be interpreted

as the consumption of the addictive good, the “drug”.

An agent is confronted with a dynamic decision problem. Every period t = 1, 2, . . .

the agent must take an action. This action results in a consumption for period t and

constrains future actions. Dynamic decision problems can be described recursively as

a set of alternatives where each alternative is a lottery over current consumption and

continuation decision problems.5 Let Z denote the set of all decision problems and let x, y

or z denote generic elements of Z. Generic choices (i.e. elements of a given z) are denoted

µ, ν or η. A choice µ is a lottery over C × Z, where c ∈ C represents the realization of

current consumption and x ∈ Z represents the realized continuation decision problem. A

deterministic choice yields a particular consumption (c, d) and a particular deterministic

continuation problem z with certainty and is denoted (c, d, z). Most of the analysis in

this paper focuses on the set of deterministic decision problems, Z̄ ⊂ Z. Each z ∈ Z̄ is

a (compact) set of alternatives of the form (c, d, x) where c denotes current consumption

and x ∈ Z̄ denotes the deterministic continuation problem.

The set of decision problems Z serves as the domain of preferences for the agent. This

allows us to describe agents who struggle with temptation. For example, the agent may

strictly prefer a decision problem in which some alternatives are unavailable because these

alternatives present temptations that are hard to resist. Even when the agent makes the

same ultimate choice from two distinct decision problems he may have a strict preference

for one decision problem because making the same choice from the other requires more self-

control. Choice problems are the natural domain for identifying these phenomena. Below

we represent the individual’s preferences over decision problems by a utility function.

This utility function is analogous to the indirect utility function in standard consumer

theory. The traditional indirect utility function is defined for decision problems that can

be represented by a budget set. In contrast, our utility function is defined for a broader

class of decision problems.

5 See Gul and Pesendorfer (2004) for a detailed discussion of dynamic decision problems.
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The preferences analyzed in this paper depend on the agent’s past consumption. To

capture this dependence, we index the individual’s preferences by s ∈ S, the state in the

initial period of the decision problem. The state s represents the relevant consumption

history prior to the initial period of analysis. For simplicity, we assume that only drug

consumption in the last period influences the agents preferences and set S := [0, 1]. We

refer to the indexed family of preferencesº:= {ºs}s∈S simply as the agent or the preference
º. We say that the utility function W : S ×Z → IR represents the preference º if, for all
s, x ºs y iff W (s, x) ≥W (s, y).

In section 6 (Theorem 2) we provide axioms for the utility function used in this

paper. These axioms ensure that the decision-maker’s preferences can be represented by

a continuous function W of the following form:

W (s, z) = max
(c,d,x)∈z

[u(c, d) + σ(s)v(d)δ +W (d, x)]− max
(ĉ,d̂,x̂)∈z

σ(s)v(d̂) (1)

where the function u is continuous and nonconstant, v is continuous and strictly increasing,

σ is continuous and strictly positive, and δ ∈ (0, 1). Henceforth, these axioms are implicit
in any reference to a preference and it is understood that W,u, v, σ, δ refer the functional

form in equation (1).

Straightforward application of results from dynamic programming imply that for every

(u, v, σ, δ) with u, v continuous, δ ∈ (0, 1), there is a unique W that satisfies equation (1).

We say that (u, v, σ, δ) represents the preference º if the unique W that satisfies equation

(1) represents º.
Equation (1) implies that if the agent is committed to a single choice (i.e., z =

{(c, d, x)}) then W (z) = u(c, d) + δW (x). Therefore, we refer to u + δW as the com-

mitment utility of a particular choice. Note that the commitment utility is independent of

the state s.

Consider a deterministic decision problem that does not offer commitment and assume

that (c, d, x) is the unique maximizer of the commitment utility u+ δW and (ĉ, d̂, y) is the

unique maximizer of v in z. In this case, it follows from equation (1) that removing (ĉ, d̂, y)

from the choice set would increase the agent’s welfare. We refer to alternatives (ĉ, d̂, y) that

have this property as temptations. Temptations create a preference for commitment; that
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is, situations where the agent strictly prefers the decision problem x over z even though

x ⊂ z.

The agent’s choice from z in state s maximizes the function

u+ σ(s)v + δW

If (c, d, x) is the choice from z and (ĉ, d̂, y) maximizes v in z then the agent incurs a

self-control cost of

−σ(s)[v(d)− v(d̂)]

This cost is zero if the choice maximizes v. Otherwise it is positive. In our model, past

consumption affects current behavior by changing the cost of self-control.

The optimal choices from z are denoted D(s, z) while C(z) denotes the maximizers of
commitment utility. For any function f : C × Z → IR, let Eµ[f ] be the expectation of f

with respect to µ. Then,

D(s, z) := {µ ∈ z|Eµ[u+ σ(s)v + δW ] ≥ Eν [u+ σ(s)v + δW ],∀ν ∈ z}
C(z) := {µ ∈ z|Eµ[u+ δW ] ≥ Eν [u+ δW ],∀ν ∈ z}

When the agent chooses alternatives that do not maximize commitment utility it

means that behavior is affected by temptations. We call such choices compulsive. This

motivates the following definition.

Definition: ºs is compulsive at z iff D(s, z)\C(z) 6= ∅.

The notion of compulsive consumption plays a central role in the clinical definition

of addiction and in the definition we present below. What distinguishes addiction from

other types of compulsive behavior is the fact that the compulsiveness associated with an

addictive substance is “caused” (or made worse) by past consumption (or higher levels

of past consumption) of the same substance. Below, we offer criteria for ranking states

with respect to the compulsiveness of the agent. This criterion provides a formal, choice-

theoretic definition of what it means for compulsiveness to get worse.

Definition: A preference º is more compulsive at s̄ than at s (denoted s̄Cs) if ºs is

compulsive at z implies ºs̄ is compulsive at z.
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Note that our notion of more compulsive is analogous to the familiar notion of more

risk averse: first we provide a criterion for a consumption choice to be compulsive. Then

we define the agent to be more compulsive in situation s̄ than in s if the set of choice

problems in which he makes a compulsive choice at s is contained in the set of choice

problems in which he makes a compulsive choice at s̄.

Psychologists and healthcare professionals commonly refer to an individual as ad-

dicted if, after repeated self-administration of a drug, the individual develops a pattern of

compulsive drug seeking and drug-taking behavior.6 The clinical definition emphasizes a

lack of control on the part of addicted subjects and suggest a conflict between what the

addict ought to consume and what he actually consumes.

In our model, the agent is compulsive when the choice is different from the u +

δW optimal alternative. Thus, an agent is compulsive if behavior would change were

commitment possible. Similar to the clinical definition above, we say that the drug is

addictive if higher current drug consumption makes the individual more compulsive; that

is, following the increase in drug consumption there are more situations in which the agent

makes a choice that does not maximize U . The definition below expresses this idea.

Definition: The drug is addictive if s̄Cs for all s̄ > s and º1 6=º0.

Proposition 1: (i) s̄Cs if and only if σ(s̄) > σ(s); (ii) the drug is addictive if and only

if σ is non-decreasing with σ(1) > σ(0).

Proposition 1 relates our definition of addiction to our representation of preferences.

It shows that the function σ measures how compulsive the agent is and therefore the drug

is addictive when σ is increasing.7 The proof of Proposition 1 is in the appendix. Note

that the ”if” part of part (i) is straightforward since a higher σ implies a larger weight on

the temptation utility. For the “only if” part we must show that when σ(s̄) > σ(s) there

6 See Robinson and Berridge (1993), pg. 248.
7 Straightforward extensions of known uniqueness arguments (for example, the uniqueness result in Gul

and Pesendorfer (2004)) ensure that if (u, v, σ, δ) represents some º satisfying the conditions of Theorem

2 then (û, v̂, σ̂, δ̂) represents the same º if and only if there exist constants a, b > 0, c and e such that

û = au + c, v̂ = bv + e, σ̂ = a
b
σ, and δ̂ = δ with e = 0 whenever σ is nonconstant (i.e., if the drug is

addictive). Hence all of our assumptions (such as monotonicity, increasingness and differentiability etc.)
and conclusions regarding (u, v, σ, δ) are properties of the underlying preference and not the particular
representation.
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is a decision problem with the property that the agent is compulsive at s̄ but not at s.

Such a decision problem can be constructed as long as u+ δW and u+ σv + δW are not

positive affine transformations of each other. Since u and v are not constant, δ > 0, σ > 0

this holds in our case.

For z ∈ Z̄, let D(s, z) denote the individual’s current period drug demand in state s;

that is, d ∈ D(s, z) if and only if there exists c, x such that (c, d, x) ∈ D(s, z). We write
D(s̄, x) ≥ D(s, y) if d̄ ∈ D(s̄, x), d ∈ D(s, y) implies d̄ ≥ d. Proposition 2 shows that an

increase in σ leads to higher drug demand in every decision problem.

Proposition 2: If σ(s̄) ≥ σ(s) then D(s̄, z) ≥ D(s, z) for all z ∈ Z̄.

Proof: Let (c, d, x) ∈ D(s, z) and (c̄, d̄, x̄) ∈ D(s̄, z). Then,

u(c, d) + σ(s)v(d) + δW (d, x) ≥ u(c̄, d̄) + σ(s)v(d̄) + δW (d̄, x̄)

u(c̄, d̄) + σ(s̄)v(d̄) + δW (d̄, x̄) ≥ u(c, d) + σ(s̄)v(d) + δW (d, x)

Hence,

(σ(s̄)− σ(s))(v(d̄)− v(d)) ≥ 0

and therefore σ(s̄) ≥ σ(s) implies D(s̄, z) ≥ D(s, z).

Psychologists use the term reinforcement to describe the fact that an increase in

current drug consumption leads to an increase in future drug consumption. If � > 0 and

σ(d + �) > σ(d) then the � increase is reinforcing. In particular, an addictive increase in

drug consumption is always reinforcing.

3. Addiction and Drug Demand

Our next objective is to analyze the implications of addiction on drug demand. In

order to facilitate the comparative statics results in this and the subsequent sections, the

following assumptions will sometimes be used. Assumption 1 requires u to not depend on

drug consumption. It implies that the agent would commit to zero drug consumption if

commitment were possible.

Assumption 1: u(·, d) is strictly increasing with u(·, d) = u(·, d̂) for all d, d̂.
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When Assumption 1 is satisfied we write u(c) instead of u(c, d). Assumption 2 imposes

curvature restrictions on u, v and σ. These restrictions are analogous to the standard

curvature and differentiability assumptions in demand theory. The function σ plays a role

similar to a cost function in a standard optimization problem. Therefore concavity of the

objective function in the decision problems below is guaranteed when σ is convex.

Assumption 2: u, v,−σ are twice differentiable and strictly concave.
We consider a simple stationary consumption problem. The individual cannot borrow

or lend and can consume at most 1 unit of the drug in every period. Let p = p1, ..., pt, ...

denote the sequence of prices. Given the price sequence p, after date τ ≥ 0 the agent faces
the price sequence pτ , ..., pτ+k, .... We let pτ denote this sequence. Hence, p1 = p. The

individual is endowed with one unit of wealth and must choose consumption (c, d) from

the budget set

Bt = {(c, d) ∈ C| c+ ptd ≤ 1}

We assume that pt < 1 for all t. Since d ≤ 1 the maximally feasible drug consumption
is 1 in every period independent of the price of the drug. Let x(pτ ) denote the dynamic

decision problem confronting an agent who faces the price sequence p. It is easy to verify

that there is a unique optimal consumption plan for every x(pτ ). In particular, the current

period drug demand D(s, x(p)) is a singleton. We use d(s, x(p)) to denote this demand.

We define the period τ demand of the agent facing p recursively, as follows:

d1(s,p) = d(s,p)

dτ+1(s,p) = d(dτ (s,p),pτ+1)

To see how the two assumptions above facilitate comparative static analysis of ad-

diction recall that by Proposition 1, addictiveness implies that σ is non-decreasing. If,

in addition, Assumption 2 holds then σ is a strictly increasing function. Assumption 1

ensures that u depends only on non-drug consumption. Hence, the objective function for

the agent’s choice from x(pt) simplifies to

u(ct) + σ(dt−1)v(dt) + δW (dt, x(pt+1))
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Then, Assumption 2 enables us to identify the following first order condition for an interior

solution for the optimal choice of dt:

ptu
0(ct) = σ(dt−1)v0(dt) + δσ0(dt)(v(dt+1)− v(1))

To understand the above equation consider a marginal increase in drug consumption. This

implies a reduction in current (non-drug) consumption and the left-hand side captures the

utility consequence of this reduction. The first term on the right hand side captures the

current period utility change from the increase in drug consumption. Since v is increasing

this is positive. The second term captures the effect of the increase in drug consumption

on future utility. This effect works through a change in the cost of self-control in the

next period. If σ is increasing (as in the case of an addictive drug) then the increase

in the current drug consumption implies a higher self-control cost next period and the

second term on the left hand side is negative. If σ is decreasing, then the increase in drug

consumption implies a smaller self-control cost in the next period and the term is positive.

The next proposition analyzes the change in demand as a function of current and

future prices.

Proposition 3: Suppose that the drug is addictive and Assumptions 1 and 2 are satis-

fied. Then, d(s,p) is nondecreasing in pt for t ≥ 1. If 0 < dτ (s,p) < 1 for τ ∈ {1, . . . , t}
then d(s, pt, . . . , pt−1, ·, pt+1, . . .) is differentiable at pt and ∂d(s,p)/∂pt < 0.

Proof: First we prove the result for t = 1. Assume that 0 < d(s,p) < 1. The first order

condition is

−p1u0(1− p1d1) + σ(s)v0(d1) + δσ0(v(d2)− v(1)) = 0

Taking the total derivative we find

∂d/∂p1 =
p21u

00(c1) + σ(s)v00(d1) + δσ00(d1)(v(d2)− v(1))

u0(c1)− ptu00(c1)
< 0

by Assumption 2. The weak monotonicity for boundary solutions is equally straightfor-

ward.
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Next, assume that dτ := dτ (s,p), dτ+1 = dτ+1(s,p) are interior for some τ such that

1 ≤ τ < t. Note that

ddτ
ddτ+1

=
p2tu

00(cτ ) + σ(dτ−1)v00(cτ ) + δσ00(v(dτ+1)− v(1))

−σ0(dτ )v0(dτ+1) > 0

by Assumption 2. Then, the fact that ∂d(s,p)/∂p1 < 0 and an inductive argument implies

the result for the interior case. Weak monotonicity for the case of boundary solutions is

equally straightforward.

Proposition 3 applied to the case of t = 1 shows that the drug is a normal good under

our assumptions. For t > 1, Proposition 3 shows that drug demand decreases if the future

price of the drug increases. This connection between current demand and future prices

has been documented in the literature on drug demand. Hence, Proposition 3 shows that

our model is consistent with this empirical finding.

To see why drug demand decreases in response to an increase in future drug prices,

note that since the drug is a normal good, consumption in period t decreases as pt increases.

As a result the period t cost of self-control, given by σ(dt−1)(v(1)−v(dt)), increases. Since
the drug is addictive, σ is increasing. But this implies that drug consumption in period

t− 1 becomes less attractive, since it is associated with a greater marginal increase in the
cost of self-control in period t. Hence, drug demand in period t− 1 decreases. Proceeding
inductively, we conclude that drug demand in period 1 must decrease.

Empirical work on drug demand has found support for the result described in Propo-

sition 3. Becker, Grossman and Murphy (1994) and Gruber and Koszegi (2001) find

support for the prediction that drug demand decreases as future prices increase. Note that

results analogous to Proposition 3 have been shown for other models of addiction. Becker,

Grossman and Murphy (1994) show this result for quadratic utility for the Becker-Murphy

model. Gruber and Koszegi (2001) analyze a decision problem very similar to the one

analyzed in this section. They give conditions under which Proposition 3(ii) holds in a

β − δ model of addiction with quadratic utility.
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4. Drug Policy and Welfare

Drug policies affect consumers along two dimensions. On the one hand, they affect

the availability of the drug — and hence the feasible level drug consumption. On the other

hand, they affect the price of the drug and hence the opportunity cost of drug consumption.

Since a typical consumer can afford the maximally feasible cigarette consumption in a

period before and after a moderate tax increase, a moderate tax on a drug such as cigarettes

will affect the opportunity cost of drug consumption without changing the feasible drug

consumption in the current period. In contrast, the prohibition of drug consumption will

affect the maximally feasible drug consumption for a typical consumer. Often prohibitive

policies will be accompanied by a higher opportunity cost of drug consumption. For

analytical clarity we separate the prohibitive effects of a policy from the price effects in

the analysis below.

A drug policy is a pair (τ, q) where τ ≥ 0 is a per unit tax on the drug and q ∈ [0, 1]
is the maximum feasible drug consumption. Let

B(τ, q) = {(c, d) ∈ [0, 1]2 |c+ (p+ τ)d ≤ 1, d ≤ q}

denote the individual’s opportunity set under the policy (τ, q). We assume that the agent

faces a stationary decision problem in which he must choose (c, d) from B(τ, q) in every

period. Note that in this section we assume that prices (and the parameter q) are constant

across time. This is done for simplicity. We denote with y(τ, q) the corresponding decision

problem.

Any policy (0, q) with q < 1 is a purely prohibitive policy since it reduces the maximum

feasible drug consumption but does not affect the opportunity cost of drugs. A pure price

policy is a policy (τ, 1) with p+τ ≤ 1. In this case, the maximum feasible drug consumption
remains 1 in every period but the opportunity cost of the drug is increased to p+ τ . If the

tax is high enough, in particular, if p+ τ > 1 then the policy (τ, 1) also has a prohibitive

effect since it decreases the maximal drug consumption to 1
p+τ .

Propositions 4, 5 and 6 examine the welfare effects of prohibitive and price policies.

Proposition 4 considers the case where the drug is addictive and u does not depend on drug
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consumption (Assumption 1). It shows that under those circumstances, a more restrictive

prohibitive policy leads to higher welfare than a less restrictive prohibitive policy.

Proposition 4: If the drug is addictive and Assumption 1 is satisfied then q̄ > q implies

W (s, y(τ, q)) > W (s, y(τ, q̄)).

Proof: Let s = d0 = d̄0 be the initial state let {(ct, dt)t≥1} denote the optimal consump-
tion plan for the decision problem y(0, q) at state s. Similarly, let {(c̄t, d̄t)t≥1} denote the
optimal consumption plan for the decision problem x(0, q̄) at state s. Since Assumption 1

is satisfied we write u(c) instead of u(c, d). Define d̂t = min{d̄t, q} and set ĉt = 1− pd̂t for

all t ≥ 1. Clearly, d̂t ≤ d̄t for all t ≥ 1 and therefore we have u(ĉt) ≥ u(c̄t), σ(d̂t) ≤ σ(d̄t).

If d̄t = q̄t, then we have d̂t = qt; if d̄t < q̄t then v(d̂t)− v(q) < v(d̄t)− v(q̄). In the former

case, u(ĉt) > u(c̄t); in the latter case σ(d̂t−1)[v(d̂t)− v(q)] > σ(d̄t−1)[v(d̄t)− v(q̄)]. Hence,

W (s, y(0, q)) ≥
∞X
t=0

δt[u(ĉt, d̂t) + σ(d̂t−1)v(d̂t)− σ(d̂t−1)v0(q)]

>
∞X
t=0

δt[(u(c̄t, d̄t) + σ(d̄t−1)v(d̄t)− σ(d̄t−1)v(q̄)]

=W (s, y(0, q̄))

A prohibitive policy has two effects; it reduces self-control costs and it may render the

previous level of drug consumption infeasible. The reduction in self-control costs always

increases welfare. Assumption 1 ensures that the level of drug consumption that maximizes

the commitment utility is zero. Hence, the reduction in consumption increases utility in the

current period. Moreover, if the good is addictive, this reduction in consumption lowers

future self-control costs. Thus, a purely prohibitive policy on an addictive drug always

increases welfare.

To see why it is important for the drug to be addictive, consider an agent who is in

state s = .5 in period 1. Suppose that abstaining (d = 0) or binging (d = 1) for one period

will cause all temptation to go away in the next period but consuming intermediate levels

will cause temptation to persist. Moreover, assume that the cost of self-control in the

current state is very high. Then, it may be optimal for the agent to binge in the current
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period and abstain thereafter. In such a situation, a policy that reduces the maximal

feasible level of drug consumption from 1 to q = .5 may reduce the agents welfare by

forcing him to either incur the (reduced but still) high cost of self-control in the current

period or remain addicted.

Proposition 5 below shows that a pure price policy can never increase welfare. This

result is derived with a simple revealed preference argument and therefore does not require

any additional assumptions.

Proposition 5: If p+ τ < 1 and τ̄ > τ then W (s, y(τ, q)) ≥W (s, y(τ̄ , q)) for all s.

Proof: Let s = d0 denote the initial state and {(c̄t, d̄t)t≥1} be the optimal consumption
plan for the problem y(τ̄ , 1). Since {(c̄t, d̄t)t≥1} is a feasible choice from y(τ, 1) we have

W (s, y(τ, 1)) ≥
∞X
t=0

δt
¡
u(c̄, d̄) + σ(dt−1)v(d̄t)− σ(d̄t−1)v(1)

¢
=W (s, y(τ̄ , 1))

A pure price policies does not affect the maximal feasible drug consumption and

therefore does not reduce self-control costs. This implies that it cannot improve the agent’s

welfare.

Proposition 5 stands in contrast to the findings of Gruber and Koszegi (2001) for the

β−δ model of addiction. As discussed in section 1.1, the β−δ model and our approach lead
to very different welfare conclusions. The reason why pure price policies cannot improve

welfare in our setting is that pure price policies cannot eliminate temptations. By definition

a pure price policy does not change the maximally feasible drug consumption. Since we

assume that the temptation utility depends only on current drug consumption this implies

that a price policy cannot eliminate temptations. More generally, a policy can improve

welfare only if it can eliminate temptations.

In section 6, Theorem 1, we provide a representation theorem that allows for a more

general specification of the temptation utility. In that model, the temptation utility de-

pends not only on current drug consumption but also on non-drug consumption and the
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continuation problem. For that general model, it is possible to find specifications under

which a price policy can increase welfare. We analyze the simpler model to capture the

idea that the temptation associated with drugs is focused on current consumption of the

drug.

Ultimately, determining the best specification of temptation utility is an empirical

issue. To distinguish various specifications for temptation utility one needs to examine the

(policy) choices of consumers. Our specification would predict that smokers voluntarily

seek commitment but vote against an increase in cigarette taxes. In contrast, a formulation

for temptation utility that renders a price policy welfare improving leads to the prediction

that smokers seek voluntary commitment but also vote for an increase in cigarette taxes.

Such a relationship between behavior and welfare analysis cannot be established within

the β − δ framework.

Next, we analyze the impact of prohibitive policies on the demand for drugs. Current

period drug demand in state s under the policy (τ, q) is denoted D(s, y(τ, q)). Consider a

purely prohibitive policy (0, q). If the prohibitive policy is binding, that is, ifD(s, y(0, q)) =

q then a reduction in the maximum allowed drug consumption q will obviously lead to a

reduction in drug demand. Proposition 6 shows that if the policy is not binding then a

reduction in q will lead to an increase in drug demand.

Proposition 6: Suppose that the drug is addictive, Assumptions 1, 2 are satisfied, and

0 < d(s, y(0, q)) < q then d(s, y(0, ·)) is differentiable at q and ∂d(s, y(0, q))/∂q < 0.

Proof: Since the optimal consumption is interior, the first order necessary condition is

0 = −pu0(1− pd1) + σ(s)v0(d1) + σ0(d1)(v(d2)− v(q)) ≡ A(d1)

Taking the total derivative we get

dd1A
0(d1)− dqσ0(d1)v0(q) = 0

Assumptions 1, 2 and addictiveness (see Proposition 1) implies that A0(d1) < 0. Since

σ0 > 0 and v0 > 0, the desired result follows.
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A prohibitive policy reduces the utility cost of drug consumption by reducing the

future self-control costs associated with current drug consumption. For this reason, drug

demand increases as the prohibitive policy becomes more stringent. In contrast, as Propo-

sition 3 shows, a price policy reduces demand, that is, drug demand is decreasing in τ .

Assumption 1 implies that the agent (in period 0) would choose not to consume the

drug in any period if perfect commitment were available. Hence, the fact that the drug

is available is unambiguously “bad” for the consumer. Nevertheless, as our results show,

policies that reduce drug consumption may reduce welfare while policies that increases

drug consumption may increase welfare.

5. Rehabilitation

In this section we analyze a situation where the agent can choose to check into a reha-

bilitation center. In our interpretation, rehabilitation centers offer short term commitment

to zero drug consumption.

As in the previous sections, we consider a simple decision problem that rules out

intertemporal transfers of resources. The agent is either in or out of the rehabilitation

center. If the agent is out he faces the budget set

Bo := {(c, d)|c+ pd = 1}

If the agent is in then he is committed to zero drug consumption and hence the choice set

is

Bi(a) := {(c, d)|c = 1− a, d = 0}

The parameter a ∈ [0, 1] represents the cost of commitment.
The agent’s decision problem is as follows. In each period t ≥ 1 he finds himself either

in and hence choosing from Bi(a) or out and choosing from Bo. In addition, the agent

must choose in or out for the next period. The decision problems xi(a), xo(a) represent

the two situations.

xo(a) := {(c, d, x)|(c, d) ∈ Bo, x ∈ {xo(a), xi(a)}
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xi(a) := {(c, d, x)|(c, d) ∈ Bi(a), x ∈ {xo(a), xi(a)}

In period 1 the agent faces the decision problem xo(a).

The following propositions characterize optimal rehabilitation strategies for the addict.

To simplify the notation below, we write (c, d, j) with j ∈ {i, o} for a choice from xk(a), k ∈
{i, o}. An optimal policy for xk(a) is a sequence (ct, dt, jt), t = 1, 2, .... We assumes that
the drug is addictive and that there is a unique optimal policy. Proposition 7 establishes

that under these conditions only three patterns of behavior can emerge. If the cost of

rehab is too high the addict never utilizes the program. If rehab is very inexpensive,

then agent eventually enters rehab and once he is in he stays in. Between these two

extremes, we observe a cycle of addiction and rehabilitation where the agent increases his

drug consumption as long as he is not in rehab, then he enters rehab for one period and

afterwards restarts the cycle of increasing drug consumption.

Proposition 7: Suppose the drug is addictive and that (ct, dt, jt) is the unique optimal

policy for the decision problem xo(a) in state s = 0. Then, (ct, dt, jt) satisfies one of the

following:

(i) jt = i for all t and dt = 0 for all t > 1;

(ii) jt = o for all t and dt ≤ dt+1 for all t;

(iii) there is N ∈ {2, 3, ..} and (ĉn, d̂n, ĵn), n = 1, ..., N such that for all t = kN + n,

k = 0, 1, ..., (ct, dt, jt) = (ĉn, d̂n, ĵn), where, jN−1 = i, d̂N = 0 and 0 < d̂1 < ... < d̂N−1.

Proof: Let (ct, dt, it) denote the unique optimal policy. Note that

W (s, xi(a)) =W (0, xi(a))

since the agent is committed to zero drug consumption in xi(a). Note also that u(c, d) +

σ(s)(v(d)−v(1))+δmax[W (d, xi(a)),W (d, xo(a))] is non-increasing in s since σ is increas-

ing and v(d) ≤ v(1) for all d. Therefore, W (s, xo(a)) is non-increasing in s.

First, consider the case where W (0, xi(a)) > W (0, xo(a)). Hence, the agent prefers

to be “in” when the state is 0. By the above argument it follows that W (s, xi(a)) >
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W (s, xo(a)) for all s. This implies that the agent chooses jt = i for all t = 1, 2, .... Hence,

case (i) applies.

Next, consider the case where W (dt, x
i(a)) < W (dt, x

o(a)) for all dt. In that case the

agent chooses jt = o for all t = 1, 2, .... Note that the agent’s consumption plan is optimal

for the stationary decision problem in which he faces the budget set Bo in every period.

Let x = {(c, d, x)|(c, d) ∈ Bo} denote the corresponding decision problem. By Proposition
2, the drug demand from x is monotonically increasing in s. This in turn implies that dt

is non-decreasing and case (ii) applies.

Since we assumed a unique optimal solution, it remains to show that if W (0, xo(a)) >

W (0, xi(a)) and W (dt, x
i(a)) > W (dt, x

o(a)) for some dt, then case (iii) applies. It follows

from W (0, xo(a)) > W (0, xi(a)) that j1 = o. Let N = t + 1 where t is the smallest

integer such that W (dt, x
i(a)) > W (dt, x

o(a)). Hence, jN−1 = i. Note that W (0, xo(a)) >

W (0, xi(a)) implies jN = o and therefore, in period N + 1 the agent makes an optimal

choice from the decision problem xo(a) in state 0, the same state and decision problem

that the agent faced in period 1. From the uniqueness of the optimal policy it follows

that optimal choices in periods N +1, ..., 2N are identical to the choices in periods 1, ...,N

and that jn = o for n < N − 1. It remains to show that 0 < d1 < ... < dN−1. In

spite of the difference in the choice problems, the argument of Proposition 2 applies to

ensure that the drug demand in xo(a) is non-decreasing in the state. Hence, it follows

that 0 ≤ d1 ≤ ... ≤ dN−1. Because the optimal policy is unique, the drug demand must

be strictly increasing. To see this first suppose dt = dt+1, t < N − 1. Then (ct, dt, o)
is an optimal choice from xo(a) at state dt. But this contradicts the uniqueness of the

optimal choice and the fact that jt = i for some t. If d1 = 0 then it must be that

W (d, xi(a)) ≥W (d, xo(a)) again contradiction.

In Proposition 7, we have assumed that the optimal solution in unique. Alternatively,

we could have imposed Assumptions 1 and 2, which would have rendered drug demand

strictly increasing in the state. Then, the optimal solution would be unique, for generic

values of a.

The following proposition demonstrates that cheaper rehabilitation centers may in-

crease drug consumption in some periods. More precisely, suppose the initial cost of rehab
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is so high that in the current state it is not optimal to choose i. Now assume that this cost

is lowered so that i becomes the optimal choice. Then, drug consumption in the current

period increases.

Proposition 8: Suppose the drug is addictive and Assumptions 1 and 2 are satisfied. If

ā > a, (c, d, i) is an optimal choice from xo(a) in state s and (c̄, d̄, o) is an optimal choice

from xo(ā) in state s then d ≥ d̄. A strict inequality holds if d > 0.

Proof: Assumptions 1 and 2 imply that both W (s, x0(a)) and W (s, x0(ā)) have unique

maximizers (c, d), (c̄, d̄) respectively. Hence,

u(c) + σ(s)v(d) > u(c̄) + σ(s)v(d̄)

since next period the agent is committed to a zero drug consumption. Similarly,

u(c̄) + σ(s)v(d̄) + δσ(d̄)(v(d̂)− v(1)) > u(c) + σ(s)v(d) + δσ(d)(v(d̂)− v(1))

where d̂ is the optimal drug consumption in the next period. If d̂ = 1, then the two

inequalities above yield

u(1− ād)− u(1− ād̄) < u(1− ad)− u(1− ad̄)

Then, the concavity strict increasingness of u ensures that d̄ < d. Hence, assume d̂ < 1.

Then,

u0 + σ(s)v0 + δσ0(v(d̂)− v(1)) < u0 + σ(s)v0

If d = 1 then we are done. If 0 < d < 1 then the first order condition at d holds with

equality and hence d̄ > d. If d = 0 then d̄ = 0.

Although drug demand in period 0 may increase as a result of less expensive rehab

the agent’s welfare increases as rehab becomes cheaper.

Proposition 9: If u(·, d) is nondecreasing and ā > a then W (s, xo(a)) ≥W (s, xo(ā)).
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Proof: Let (c̄t, d̄t, j̄t) denote an optimal policy for the decision problem xo(ā). We have

W (s, xo(ā)) =
∞X
t=1

δt−1(u(c̄1, d̄1) + v(d̄1)− v̄maxt )

where v̄maxt denotes the maximally feasible drug consumption in period t. Note that

v̄maxt = 1 in period 1. In all other periods it is 1 if j̄t−1 = o and 0 if j̄t−1 = i. Since ā > a

there is a feasible policy (ĉt, d̂t, ĵt) for x
o(a) with d̂t = d̄t, ĵt = j̄t and ĉt ≥ c̄t. The utility

of this policy is
∞X
t=1

δt−1(u(ĉt, d̂t) + v(d̂t)− v̄maxt ) ≥W (s, xo(a))

Hence W (s, xo(a)) ≥W (s, xo(ā)).

As in the previous section we find that the success of policy or treatment options

cannot be determined by examining their effect on drug consumption. For a small enough,

checking into a rehabilitation center is unambiguously welfare improving for the agent even

though it may actually increase overall drug consumption.

6. Representation Theorems

In this section we provide two representation theorems. Theorem 1 axiomatizes a rep-

resentation that is more general than the one used in the applications above. In particular,

the representation allows for a more general state space and a more general specification of

the temptation utility. Theorem 2 provides additional axioms that yield the representation

throughout the previous sections.

The set of consumptions in each period is C = [0, 1]2 and b ∈ C denotes a generic

consumption vector. For any subset X of a metric space, we let ∆(X) denote the set

of all probability measures on the Borel σ−algebra of X and K(X) denote the set of all
nonempty compact subsets of X. An infinite horizon decision problem (denoted z ∈ Z) can

be identified with an element in K(∆(C×Z)) and conversely each element in K(∆(C×Z))

identifies a decision problem z ∈ Z. For formal definitions of Z and the map that associates

each element of Z with its equivalent recursive description as an element of K(∆(C×Z)), we
refer the reader to Gul and Pesendorfer (2004). In what follows only the recursive definition

is used and hence without risk of confusion we identify the sets Z and K(∆(C × Z)). In
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Gul and Pesendorfer (2004) we note that since C is a compact metric space it follows that

Z,∆(C×Z) and K(∆(C×Z)) are compact metric spaces as well. To abbreviate notation,

we write ∆ instead of ∆(C × Z) when there is no risk of confusion.

The individual’s preferences are defined on Z and are indexed by s ∈ S, the state in

the initial period of the decision problem. The state s represents the relevant consumption

history prior to the initial period. We assume that there is a finite number K such that

consumption in only the last K periods influences the agents preferences. Therefore,

without loss of generality we set S := CK whereK is the minimal length of the individual’s

consumption history that allows us to describe º.8 We refer to the indexed family of

preferences º:= {ºs}s∈S simply as the agent or the preference º.
For any state s = (b1, . . . , bK) let sb denote the state (b2, . . . , bK , b). We impose the

following axioms on ºs for every s ∈ S.

Axiom 1: (Preference Relation) ºs is a complete and transitive binary relation.

Axiom 2: (Strong Continuity) The sets {x |x ºs z} and {x | z ºs x} are closed in Z.

Axiom 3: (Independence) {µ}Âs {ν} implies {αµ+(1−α)η}Âs {αν+(1−α)η} ∀α ∈ (0, 1).
Axioms 1− 3 are standard. In Axiom 4 we deviate from standard choice theory and

allow for the possibility that adding options to a decision problem makes the consumer

strictly worse-off. For a detailed discussion of Axiom 4, we refer the reader to our earlier

paper (Gul and Pesendorfer 2001).

Axiom 4: (Set Betweenness) x ºs y implies x ºs x ∪ y ºs y.

Next, we make a separability assumption. For z ∈ Z let bz ∈ Z denote the decision

problem {(b, z)}, that is, the degenerate decision problem that yields c in the current period
and the continuation problem z. Thus b1b2 . . . bKz is a degenerate decision problem that

yields the consumption (b1, ..., bK) in the first K periods and the continuation problem z in

period K + 1. For s = (b1, . . . , bK) we write sz instead of b1b2 . . . bKz. Axiom 5 considers

decision problems of the form {(b, sz)} and requires that preferences are not affected by
8 That is, there is a pair of states, (s = (b1, · · · , bK), ŝ = (b̂1, · · · , b̂K)) that differ only in their first

component (b1 6= b̂1, bt = b̂t, t ≥ 2) and lead to different preferences (ºs 6=ºŝ).
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the correlation between current consumption c and the K+1 period continuation problem

z.

Axiom 5: (Separability) {12(b, sz) + 1
2(ĉ, sẑ)} ∼ŝ {12(b, sẑ) + 1

2 (ĉ, sz)}.
Axiom 6 requires preferences to be stationary. Consider the degenerate lotteries, (b, x)

and (b, y), each leading to the same period 1 consumption c. Stationarity requires that

{(b, x)} is preferred to {(b, y)} in state s if and only if the continuation problem x is

preferred to the continuation problem y in state sb.

Axiom 6: (Stationarity) {(b, x)} ºs {(b, y)} iff x ºsb y.

Note that Axiom 6 implies that the conditional preferences at time K + 1 after con-

suming s in the first K periods is the same as the initial preference ºs. Together, Axioms 5

and 6 restrict the manner in which past consumption influences future preferences. Axiom

5 ensures that correlation between consumption prior to period t − K and the decision

problem in period t does not affect preferences whereas Axiom 6 ensures that the real-

ization of consumption prior to period t − K does not affect the individuals ranking of

consumption flows after period t.

Axiom 7 requires individuals to be indifferent as to the timing of resolution of un-

certainty. In a standard, expected utility environment this indifference is implicit in the

assumption that the domain of preference is the set of lotteries over consumption paths.

Our domain of preferences are decision problems and in this richer structure a separate

assumption is required to rule out agents that are not indifferent to the timing of resolution

of uncertainty, such as the ones described by Kreps and Porteus (1978).

Consider the lotteries µ = α(b, x)+(1−α)(b, y) and ν = (b, αx+(1−α)y). The lottery µ
returns the consumption c together with the continuation problem x with probability α and

the consumption c with the continuation problem y with probability 1− α. In contrast, ν

returns c together with the continuation problem αx+(1−α)y with probability 1. Hence,
µ resolves the uncertainty about x and y in the current period whereas ν resolves this

uncertainty in the future. If {µ} ∼s {ν} then the agent is indifferent as to the timing of
the resolution of uncertainty.

Axiom 7: (Indifference to Timing) {α(b, x) + (1− α)(b, y)} ∼s {(b, αx+ (1− α)y)}.
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Definition: ºs is regular if there exists x, x̂, y, ŷ ∈ Z such that x̂ ⊂ x, ŷ ⊂ y, x Âs x̂

and ŷ Âs y. º is regular if each ºs is regular.

Hence º is not regular if it either displays no preference for commitment (i.e., is

standard) or if it always prefers fewer options. Theorem 1 below establishes that all

regular preferences that satisfy Axioms 1 − 7 can be represented as a discounted sum of

state-dependent utilities minus state-dependent self-control costs. We say that the function

W : S ×Z → IR represents º when x ºs y iff W (s, x) ≥W (s, y) for all s. For any µ ∈ ∆,
let µ1 denote the marginal of µ on C.

Theorem 1: If º is regular and satisfies Axioms 1 − 7, then there exists δ ∈ (0, 1),
continuous functions u : S × C → IR, V : S ×C × Z → IR, W : S × Z → IR such that

W (s, z) = max
µ∈z

Z
[u(s, b) + δW (sb, z) + V (s, b, z)]dµ(b, z)−max

ν∈z

Z
V (s, b, z)dν(b, z)

for all s ∈ S, ν ∈ ∆ and W represents º. For any δ ∈ (0, 1), continuous u, V there exists

a unique function W that satisfies the equation above and the º represented by this W

satisfies Axioms 1− 7.

The two main steps of the proof of Theorem 1 entail showing that a preference re-

lation (over decision problems) that satisfies continuity, independence, set betweenness,

stationarity and indifference to timing of resolution of uncertainty has a representation of

the form

W (s, z) = max
µ∈z {U(s, µ) + V (s, µ)}−max

ν
V (s, ν) (2)

and then using stationarity and separability to show that U is of the form U = u + δW .

In Gul and Pesendorfer (2004) we offer a related proof under stronger stationarity and

separability axioms, yielding a representation of state-independent preferences

Next, we provide additional assumptions that are needed to characterize the prefer-

ences used in our analysis of addiction; that is, those represented by a utility function W

satisfying equation (1).

Assumption I below is taken from Gul and Pesendorfer (2004). It requires that two

alternatives, ν, η, offer the same temptation if they have the same marginal distribution

over current consumption. For any µ ∈ ∆(C × Z) we denote by µ1 the marginal on the
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first coordinate (current consumption) and by µ2 the marginal on the second coordinate

(the continuation problem).

Assumption I: (Temptation by Immediate Consumption) For µ, ν ∈ ∆ suppose ν1 =

η1. If {µ} Âs {µ, ν} Âs {ν} and {µ} Âs {µ, η} Âs {η} then {µ, ν} ∼s {µ, η}.

To understand Assumption I, note that {µ} Âs {µ, ν} Âs {ν} represents a situation
where the agent is tempted by ν but chooses µ from {µ, ν}.9 Similarly, {µ} Âs {µ, η} Âs

{η} means that the agent is tempted by η but chooses µ. Hence, the agent makes the same
choice in both situations. If ν1 = η1 then immediate temptation means that the agent

experiences the same temptation in the two situations and therefore is indifferent between

them; {µ, ν} ∼s {µ, η}.
Assumption N below ensures that goods other than d are neutral, i.e., cause no temp-

tation and have no dynamic effects. That is, only good d is tempting and only past

consumption of d affects future rankings of decision problems.

Assumption N: Let b = (c, d) and b̂ = (ĉ, d̂). If d = d̂ then {(b, z), (b̂, ẑ)} ºs {(b, z)}
and ºsb=ºsb̂. If d̂ > d and {(b, z)} Âs {(b̂, ẑ)}} then {(b, z)} Âs {(b, z), (b̂, ẑ)}.

The first statement in Assumption N ensures that there is no temptation so long as

the options differ only with respect to current consumption of non-drugs. The second

statement means that future preferences are the same so long as the current state and

current consumption of drugs are the same. Finally, the third statement implies that

higher current drug consumption is always tempting.

To state the final assumption, we first define what it means for the agent to have the

same preference for commitment at two states.

Definition: ºs has a preference for commitment at z if there is x ⊂ z such that x Âs z; º
has the same preference for commitment at ŝ and at s ifºs has a preference for commitment

at z iff ºŝ has a preference for commitment at z.

Assumption P says that the agent’s preference for commitment does not change as the

state changes. In other words, which alternatives constitute a temptation is independent

of the state.

9 This follows from a straightforward application of the representation in (2).
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Assumption P: The agent has the same preference for commitment at all s.

Theorem 2: º is regular and satisfies Axioms 1−7, I, N and P if and only if (i) S = [0, 1],
and (ii) there are continuous functions v, σ : [0, 1] → IR, u : C → IR, and δ ∈ (0, 1), such
that for z ∈ Z̄

W (s, z) = max
(c,d,x)∈z

{u(c, d) + σ(s)v(d) + δW (c, d, x)}− max
(ĉ,d̂,y)∈z

σ(s)v(d̂)

and W represents º. (iii) u is nonconstant, v is strictly increasing, σ > 0, and s is the

previous period’s drug consumption.

Proof: See Appendix.

To illustrate the role of the assumptions in Theorem 2, consider the representation

provided in Theorem 1. Adding Assumption I ensures that V (s, ·) depends only on current
consumption. Them, Assumption N guarantees that V (s, ·) depends only on current drug
consumption and is strictly increasing in d. Finally, Assumption P implies that U = u+δW

is independent of the state and that the state is equal to last period’s drug consumption.

7. Conclusion

Most studies on drug abuse assert that addiction should be considered a disease.10

In our approach drug abuse is identified with the discrepancy between what the agent

would want to commit to, as reflected by maximizing U , and what he ends-up consuming

by maximizing U + V . We provide straightforward choice experiments for measuring this

discrepancy. Our approach is silent on the question of whether addiction is a disease or a

part of the “normal” variation of preferences across individuals.

While our approach is compatible with the disease conception of addiction, there are

important differences between our formulation and the typical disease model. Consider

the following example: the opiate antagonist naltrexone blocks the opioid receptors in the

brain and hence the euphoric effects of these drugs for up to 3 days after the last dose.

Naltrexone is used in the treatment of heroin and morphine. However, with the exception

of highly motivated addicts such as parolees, probationers and healthcare professionals,

10 To emphasize the organic basis of the condition the term “disease of the brain” is often used.
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most addicts receiving naltrexone tend to stop taking their medicine and relapse. Addicts

often report that they stop taking naltrexone because it prevents “getting high”. Doctors

call this as a “compliance problem” with naltrexone. For them, this is simply a limitation

on the usefulness naltrexone, the same way that toxicity might be a limitation on the

usefulness of some other medication.

In our model, there can be two reasons for an addict to discontinue naltrexone and

resume heroin consumption: either 3 days is not the right time horizon for commitment

or the addict does not wish to commit. The former would suggest a need for longer acting

versions of Naltrexone while the latter would mean that there is neither a need nor any

room for treatment of this addict. In fact, by our definition, an individual who is unwilling

to commit to reducing his drug consumption, for any length of time, at any future date

is not an addict. Hence, where the disease model of addiction finds a compliance problem

our model suggests that there may be no problem at all.

The fact that naltrexone continues to be used by the most motivated addicts, those

who are more likely to abstain even without commitment, suggests a reduction of the cost

of self-control as a possible motive taking naltrexone.

Economists interpret behavior as a reflection of the agents’ stable interests and desires.

In standard economic analysis there is no room for the notion of a behavioral problem,

except to the extent that the behavior is a problem for someone else. Consequently, there

is no role for therapy aimed at controlling problem behavior. In contrast, psychologists

often view behavior to be independent of and even an impediment to the agent’s welfare.

Our model of temptation and self-control provides a potential bridge between these two

approaches. Like standard models in economics, we take as given agents’ interests and

desires (i.e., utility functions) and accept the hypothesis that behavior is motivated by

these interests and desires (i.e., utility maximization). But, we extend the domain of utility

functions to include temptation. Without the aid of some outside agency, it is difficult

and often very costly for the individual to commit; that is, reduce temptation. Hence, our

model leaves room for welfare enhancing treatments and policy. In our interpretation, the

role of treatment and policy is to develop commitment devices and opportunities for the

agent.
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Our model provides a framework for the analysis of both the purposeful actions (e.g.

decisions made in the stock market) studied by most economists as well as the compulsive

and detrimental behavior (e.g. addiction) studied by many psychologists and healthcare

professionals. We have analyzed the interaction of these two types of behavior and evalu-

ated policy alternatives. Our focus was on psychoactive drugs but the model presented in

this paper can also be applied to other types of compulsive behavior such as over-eating

and other forms of dependency.

35



8. Appendix

Proof of Proposition 1: To prove the “if” part, let σ(s̄) ≥ σ(s) and let µ ∈ D(s̄, z)∩ C(z).
Then Z

(u(ĉ, d̂) + σ(s̄)v(d̂) + δW (d̂, ẑ))dµ(ĉ, d̂, ẑ) ≥Z
(u(ĉ, d̂)+σ(s)v(d̂) + δW (d̂, ẑ))dν(ĉ, d̂, ẑ)

and Z
(u(ĉ, d̂) + δW (d̂, ẑ))dµ(ĉ, d̂, ẑ) ≥

Z
(u(ĉ, d̂) + δW (d̂, ẑ))dν(ĉ, d̂, ẑ)

for all ν ∈ z. Since σ > 0 there is α ∈ (0, 1] such that σ(s) = ασ(s̄). Taking a convex

combination of the above two inequalities we conclude that µ ∈ D(s, z) ∩ C(z). Hence, if
ºs̄ is not compulsive then ºs is not compulsive. Obviously ºs 6=ºŝ if σ(s̄) > σ(s).

To prove the “only if” part we can repeat the argument of Lemma 12 from Gul and

Pesendorfer (2001) in the current setting to obtain the following fact.

Fact: º is more compulsive at s̄ than at s only if for some β1, β2 ∈ IR+ and β3,

U + σ(s)v = β1U + β2(U + σ(s̄)v) + β3

for all µ.

Note that

U + σ(s)v = U +
σ(s)

σ(s̄)
σ(s̄)v

Hence, β1 + β2 = 1 and β2 =
σ(s)
σ(s̄) . Since, β1, β2 > 0, we conclude σ(s̄) > σ(s).
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9. Proof of Theorems 1 and 2

9.1 Proof of Theorem 1

It is easy to show that if º satisfies Axioms 3, 6 and 7 then it also satisfies the following
stronger version of the independence axiom:

Axiom 3∗: x Âs y, α ∈ (0, 1) implies αx+ (1− α)z Âs αy + (1− α)z.

Theorem 1 of Gul and Pesendorfer (2001) establishes that ºs satisfies Axioms 1,2, 4 and

3∗ if and only if there exist W (s, ·), U(s, ·), V (s, ·) such that

W (s, z) := max
µ∈z {U(s, µ) + V (s, µ)}−max

ν∈z V (s, ν) (∗)

for all z ∈ Z and Ŵ represents º. Moreover, the functions W (s, ·), U(s, ·), V (s, ·) are con-
tinuous and linear in their second arguments. We refer to the triple (U(s, ·), V (s, ·),W (s, ·))
as a representation of ºs. The additional content of Theorem 1 is that we may choose

functions (U, V,W ) that are continuous in s such that (U(s, ·), V (s, ·),W (s, ·)) is a repre-
sentation of ºs for each s and U(s, ·) satisfies

U(s, µ) =

Z
[u(s, b) + δW (sb, z)]dµ(c, z)

for some continuous function u and δ ∈ (0, 1).
Fix s̄ and let (Ŵ (s̄, ·), Û(s̄, ·), V̂ (s̄, ·)) be a representation of ºs̄. Define W to be the

following function:

W (s, y) := Ŵ (s̄, sy) (∗∗)

Observe that W is well defined and continuous in both arguments since Ŵ is continuous

in its second argument. In the following Lemmas, the function W is the function defined

in (∗∗).

Lemma 1: W represents º. Moreover, there exist continuous functions U, V such that

W (s, z) := max
µ∈z {U(s, µ) + V (s, µ)}−max

ν∈z V (s, ν)

and W,U, V are linear in their second arguments.
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Proof: Axiom 6 implies W (s, x) ≥ W (s, y) iff Ŵ (s, x) ≥ Ŵ (s, y). Therefore, W repre-

sents º. Note that Ŵ is linear in its second argument. Let z = αx+ (1− α)y. Axiom 7

and linearity of Ŵ in its second argument imply that

W (s, z) = Ŵ (s̄, sz)

= Ŵ (s̄, {αsx+ (1− α)sy})
= αŴ (s̄, sx) + (1− α)W (s̄, sy)

= αW (s, x) + (1− α)W (s, y)

Thus, W is linear in its second argument. It follows that W (s, z) = α(s)Ŵ (s, z) + β(s)

for some α, β : S → IR such that α(s) ≥ 0. Since º is regular, α(s) > 0 for all s. Hence,

U = αÛ + β, V = αV̂ and the W have the desired properties.

Lemma 2: Let Ŵ (s, ·) represent ºs. Then,

Ŵ (s, b1 . . . blŝz̄)−Ŵ (s, b1 . . . blŝz)=Ŵ (s, b̄1 . . . b̄lŝz̄)−Ŵ (s, b̄1 . . . b̄lŝz)

for all l, (b̄1, . . . b̄l), (b1, . . . bl) ∈ Cl+1, ŝ ∈ CK , z, z̄ ∈ Z.

Proof: Note that by Axiom 5,

1

2
(b̄1, b2 . . . blŝz̄) +

1

2
(b1, b2 . . . blŝz) ∼s 1

2
(b1, b2 . . . blŝz̄) +

1

2
(b̄1, b2 . . . blŝz)

Assume that the assertion holds for l0 ≤ l − 1. Then, Axiom 6 implies that

1

2
(b̄1, b̄2 . . . b̄lŝz̄) +

1

2
(b̄1, b2 . . . blŝz) ∼s 1

2
(b̄1, b2 . . . blŝz̄) +

1

2
(b̄1, b̄2 . . . b̄lŝz)

Since Ŵ represents ºs, we conclude

Ŵ (s, b1 . . . blŝz̄)−Ŵ (s, b1 . . . blŝz)=Ŵ (s, b̄1b2 . . . blŝz̄)−Ŵ (s, b̄1b2 . . . blŝz)

=Ŵ (s, b̄1 . . . b̄lŝz̄)−Ŵ (s, b̄1 . . . b̄lŝz)

and hence the assertion holds for l0 ≤ l̄. Observe that Axiom 5 implies that the Lemma

holds for l = 1.

Lemma 3: W (s0, sx)−W (s0, sy) =W (s00, sx)−W (s00, sy) for all s0, s00x, y.
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Proof: Recall that

W (s0, sx) = Ŵ (s̄, s0sx)

for some Ŵ such that Ŵ (s̄, ·) represents ºs̄. Lemma 2 implies that

Ŵ (s̄, s0sx)− Ŵ (s̄, s0sy) = Ŵ (s̄, s00sx)− Ŵ (s̄, s00sy) (‡)

Substituting W for Ŵ in equation (‡) then proves the Lemma.

Lemma 3: There exist δ : S × C → (0,∞) and u : S × C → IR such that U(s, ν) =R
[u(s, b) + δ(s, b)W (sb, z)]dν(b, z) for all s ∈ S, ν ∈ ∆.

Proof: Since U(s, ·) is linear and continuous, it has an integral representation. That is;

U(s, ν) =

Z
U(s, b, z)dν(b, z)

By Axiom 6, U(s, b, ·) and W (sb, ·) yield the same linear preferences over Z. By regu-
larity, neither function is constant. It follows that U(s, b, ·) is a strictly positive affine
transformation of W (sb, ·). Hence, for some u, δ,

U(s, b, ·) = u(s, b) + δ(s, b)W (sb, y)

where δ(s, b) > 0 for all s ∈ S, b ∈ C. Therefore,

U(s, ν) =

Z
[u(s, b) + δ(s, b)W (sb, y)]dν(b, z)

as desired

Lemma 4: The function δ(·) in Lemma 3 is constant.

Proof: Suppose δ is not constant. Let k ∈ 1, ...,K + 1 denote the smallest integer such

that δ(b1, ..., bK+1) = δ(b̃1, ..., b̃K+1) for all (b1, ..., bK+1), (b̃1, ..., b̃K+1) with bn = b̃n for

n ≤ k. Then, it is straightforward to show that there exist (s, bK+1) = (b1, ..., bK+1) and

(s∗, b∗K+1) = (b
∗
1, ..., b

∗
K+1) such that bn = b∗n, n 6= k and δ(b1, ..., bK+1) > δ(b∗1, ..., b∗K+1).

Pick any b ∈ C. Let s0 = (b, . . . , b, b1, b2, . . . , bk−1). Fix any ŝ. By regularity there are

yh, yl ∈ Z such that W (ŝ, yh) > W (ŝ, yl). Let yhh = bk . . . bK+1ŝyh, yhl = bk . . . bK+1ŝyl
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and ylh = b∗k . . . b
∗
K+1ŝyh, yll = b∗k . . . b

∗
K+1ŝyl. Let x = .5yhh + .5yll and z = .5yhl + .5ylh.

By Lemma 2, W (s0, x) =W (s0, z).

Applying Lemma 3 repeatedly and using the fact that δ(s, b) = δ(s̃, b̃) for (s, b), (s̃, b̃)

with bn = b̃n, n ≤ k establishes W (s0, x)−W (s0, z) = 0 iff

δ(s, bK+1)W (sbK+1, ŝyh) + δ(s∗, b∗K+1)W (s
∗b∗K+1, ŝyl) =

δ(s, bK+1)W (sbK+1, ŝyl) + δ(s∗, b∗K+1)W (s∗b∗K+1, ŝyh)

Rearranging, this implies

δ(s, bK+1)(W (sbK+1, ŝyh)−W (sbK+1, ŝyl) =

δ(s∗, b∗K+1)(W (s∗b∗K+1, ŝyh)−W (s∗b∗K+1, ŝyl)

Observe that W (s, ŝyh) −W (s, ŝyl) > 0 by construction and hence Lemma 3 implies the

desired contradiction.

Lemma 5: Let δ ∈ IR denote the constant function in Lemma 4. Then, 0 < δ < 1.

Proof: That δ > 0 has already been established. Pick any b ∈ C and let s = (b, b, . . . , b).

Let zb denote the unique z ∈ Z such that z = {b, z}. Pick y1 ∈ Z such that W (s, y1) 6=
W (s, z). By regularity, such a y1 exists. Define yn ∈ Z inductively as yn = {(b, yn−1)} and
note that yn converges to z. Hence, by continuity, W (s, z)−W (s, yn) must converge to 0.

But, by Lemma 3, W (s, z)−W (s, yn) = δn−1(W (s, y1)−W (s, z)) 6= 0. Hence, δ < 1.

Lemmas 1 − 5 establish that there is a continuous representation (U, V,W )) that

satisfies U(s, µ) = u(µ1) +
R
δW (sb, z)dµ(b, z).

To conclude the proof, let δ ∈ (0, 1) and u : S × C → IR and V : S × C × Z → IR be

continuous functions.

Lemma 6 (A Fixed-Point Theorem): If B is a closed subset of a Banach space with

norm k·k and T : B → B is a contraction mapping (i.e., for some integer m and scalar

α ∈ (0, 1), kTm(W )− Tm(W 0)k ≤ α kW −W 0k for all W,W 0 ∈ B), then there is a unique

W ∗ ∈ B such that T (W ∗) =W ∗.

Proof: See [Bertsekas and Shreve (1978), p. 55] who note that the theorem in Ortega

and Rheinbold (1970) can be generalized to Banach spaces.
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LetW be the Banach space of all continuous, real-valued functions on S×Z (endowed

with the sup norm). The operator T :W →W, where

TW (s, z) = max
µ∈z

Z
[u(s, b) + V (s, b, z) + δW (sb, x)]dµ(b, x)−max

ν∈z

Z
V (s, b, z)dν(b, z)

is well-defined and is a contraction mapping. Hence, by Lemma 6, there exists a unique

W ∈W such that T (W ) =W .

For any W,u, v, δ such that

W (s, z) = max
µ∈z {

Z
[u(s, b) + V (s, b, z) + δW (sb, x)]dµ(b, x)}−max

ν∈z V (s, b, z)dµ(b, z)

define ºs by x ºs y iff W (s, x) ≥ W (s, z). Verifying that ºs satisfies Axioms 1 − 7 is
straightforward.

9.2 Proof of Theorem 2

By Theorem 1, º can be represented by a continuous Ŵ where

Ŵ (s, z) = max
µ∈z {

Z
[û(s, µ1) + δŴ (sb, x)]dµ(b, x) + V̂ (s, µ)}−max

ν∈z V̂ (s, ν) (3)

for some continuous u, v and δ ∈ (0, 1). Moreover, Ŵ , û, V̂ are linear in their second

argument. Let Û(s, µ) =
R
(û(s, b) + δŴ (sb, x)d)µ(b, x).

Lemma 6: V̂ (s, µ) = V̂ (s, ν) if µ1 = ν1.

Proof: If V̂ (s, ·) = αÛ(s, ·) + β for some α ≤ −1, then x ºs y for all x ⊂ y contradicting

regularity. If V̂ (s, ·) = αÛ(s, ·) + β for some α ≥ 0 then x ºs y for all y ⊂ x ∈ Z and º is
not regular. Hence, for each s ∈ S there are two possibilities: either V̂ (s, ·) is not an affine
transformation of Û(s, ·) or there exists α ∈ (−1, 0) such that V̂ (s, ·) = αÛ(s, ·) + β. In

either case, regularity implies that there exist µs, νs ∈ ∆ such that Û(s, µs) + V̂ (s, µs) >

Û(s, νs) + V̂ (s, µs) and V̂ (s, µs) < V̂ (s, νs).
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Take any ν, ν̂ ∈ ∆ such that ν1 = ν̂1. By continuity, there exists α > 0 small enough

so that

Û(s, µs) + V̂ (s, µs) > Û(s, αν + (1− α)νs) + V̂ (s, αν + (1− α)νs)

Û(s, µs) + V̂ (s, µs) > Û(s, αν̂ + (1− α)νs) + V̂ (s, αν̂ + (1− α)νs)

V̂ (s, µs) < V̂ (s, αν + (1− α)νs)

V̂ (s, µs) < V̂ (s, αν̂ + (1− α)νs)

Then, Assumption I implies {αν + (1 − α)νs, µs} ∼s {αν̂ + (1 − α)νs, µs}. Since Ŵ

represents º we have V̂ (s, αν + (1 − α)νs) = V̂ (s, αν̂ + (1 − α)νs) and since V̂ is linear,

we conclude V̂ (s, ν) = V̂ (s, ν̂) as desired.

By Lemma 6, there is a function v̂ : S × ∆(C) → IR such that V̂ (s, µ) = v̂(s, µ1).

Regularity implies that neither Û(s, ·) nor v̂(s, ·) is constant. Moreover, (since δ > 0) this
implies that v̂(s, ·) is not an affine transformation of Û(s, ·). Hence, we may apply Theorem
7 of Gul and Pesendorfer (2001) to yield the following implications:

Fact: (Theorem 7 (Gul and Pesendorfer (2001)) ŝPs iff for some αu, αv ∈ [0, 1], γ >

0, γu, γv ∈ IR

γÛ(s, µ) = αuÛ(ŝ, µ) + (1− αu)v̂(ŝ, µ
1) + γu

γv̂(s, µ1) = αvÛ(ŝ, µ) + (1− αv)v̂(ŝ, µ
1) + γv

for all µ.

Pick any s0 ∈ S. It follows from Assumption P and the Fact above that for all s ∈ S

Û(s, µ) = α(s)Û(s0, µ) + γ̂u(s)

v̂(s, µ1) = β(s)v̂(s0, µ
1) + γ̂v(s)

(4)

for some functions α, β, γ̂u, γ̂v such that α(s) > 0, β(s) > 0 for all s. Note that Û and v̂

are continuous and hence α, β, γu, γv are continuous.

Combining (3) and (4) yields,Z
[û(s, b) + δŴ (sb, z)]dν(b, z) =Z
[α(s)û(s0, b) + γu(s) + α(s)δŴ (s0b, z)]dν(b, z)

(5)
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The only terms on either side of (5) that depend on ν2 are δŴ (sb, z) and α(s)δŴ (s0b, z).

Since regularity implies that neither of these terms is constant it follows that

Ŵ (sb, ·) = α(s)Ŵ (s0b, ·) +A(s, b)

Lemma 2 (in the proof of Theorem 1) then implies that α(s) = 1 for all s. It follows that

Ŵ (s0b, ·) represents ºsb. Hence, K = 1. That is, sb = b for all s, b. Henceforth, we write

b instead of sb.

Let W (b, z) = Ŵ (b, z) − γu(b), u(b) = û(s0, b) + δγu(b) for all b. Let v(·) = v̂(s0, ·).
Then,

W (b, z) = Ŵ (b, z)− γu(b) = max
µ∈z {Û(b, µ) + v̂(b, µ)}−max

ν∈z v̂(b, ν)− γu(b)

= max
µ∈z {Û(s0, µ) + βv(b)v̂(s0, µ)}−max

ν∈z βv(b)v̂(s0, ν)

= max
µ∈z

Z
[û(s0, b

0) + βv(b)v̂(s0, b
0) + δŴ (b0, x)]dµ(b0, x)}

−max
ν∈z βv(b)v̂(s0, ν)

= max
µ∈z

Z
[u(b0) + βv(b)v(b

0) + δW (b0, x)]dµ(b0, x)}
−max

ν∈z βv(b)v̂(ν
1)

Define σ(b) := βv(b). By Assumption N, v(c, d) = v(ĉ, d̂) if d = d̂. Assumption N

also implies that v(c, d) is strictly increasing in d. Finally, Assumption N implies that

σ(c, d) = σ(ĉ, d̂) if d = d̂. Hence, u, v, σ, δ satisfy all the desired properties.

Establishing that the preference represented by W with (u, v, σ, δ) satisfying the con-

ditions (i − iii) of the theorem satisfies Axioms 1 − 7, I,N and P is straightforward.

Hence, to conclude the proof of the converse, we need to show only that the º represented
is regular. Since u is nonconstant, there exists (c̄, d̄) and (c, d) such that u(c, d) > u(c̄, d̄).

Pick any x ∈ Z and let z̄ = {(c̄, d̄, x)} and z = {(c, d, x)}. Then, it follows from the

representation of Theorem 2 that W (s, z ∪ z̄) = W (s, z̄) > W (s, z). Next, let ȳ = (ĉ, d̂, z̄)

and y = (ĉ, d̂+ �, z) for z̄, z as defined above and some ĉ, d̂ and some � > 0. It follows from

the continuity and increasingness of v that for � sufficiently small, W (s, ȳ) > W (s, y ∪ ȳ)
proving that º is regular.
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