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Abstract

We construct an inÞnite horizon consumption model and use it to deÞne and analyze

addiction. Consumption is compulsive if it differs from what the individual would have

chosen had commitment been available. A good is addictive if its consumption leads to

more compulsive consumption of the same good in the future. We analyze two types of drug

policies. A policy is prohibitive if it decreases the maximally feasible drug consumption.

We show that prohibitive policies make agents better off and - if they are not binding -

lead to higher drug demand. A price policy is one that increases the opportunity cost of

drug consumption without changing the maximally feasible drug consumption. We show

that price policies make the agent worse-off and decrease drug demand if the drug is a

normal good.

� This research was supported by grants from the National Science Foundation.



1. Introduction

Substantial resources are spent to reduce the availability of and the demand for drugs.

These efforts are justiÞed by the belief that addiction is a serious health and social problem.

This belief is supported by distressing descriptions of the life of a typical drug addict and

a large number of deaths attributed to nicotine, alcohol, opiate or cocaine/amphetamine

addiction. There are however, many other goods whose consumption is dangerous or

associated with an unattractive life style. With the exception of a few psychothropic

substances these properties are not considered sufficient reasons for banning a substance,

let alone spending billions on enforcing the ban. What, if anything, is special about drugs

that could justify restricting its supply and demand?

Standard economic analysis uses the individuals� choice behavior as a welfare criterion.

Alternative x is deemed to be better for the agent than alternative y if and only if given

the opportunity, the agent would choose x over y. While typical in economic analysis, the

identiÞcation of welfare and choice is certainly not the norm in discussions of addiction.

Instead, addiction is often viewed as a disease that inßicts the agent�s decision-making

ability.1 It is believed that after being struck by the disease, a person can no longer be

trusted to make the right decision for his �true� self.2 The role of intervention is to �cure�

(i.e. induce abstinence) or at least �control� (i.e. reduce consumption) the disease.

Viewing addiction as a disease creates a wedge between choice and welfare. This wedge

makes room for desirable interventions that modify the addict�s choices but also creates

the need for a new welfare criterion. Consider a costly treatment that, if successful, will

remove the agent�s drug dependency (i.e. cure the disease). If the probability of success

is sufficiently high then the treatment is desirable regardless of whether the agent thinks

so or not. Conversely, if the probability of success is sufficiently small then the treatment

is undesirable. How can the planner determine whether the probability of success justiÞes

the cost of the treatment?

1 �Is alcoholism a disease? Yes. Alcoholism is a chronic, often progressive disease with symptoms that
include a strong need to drink despite negative consequences, such as serious job or health problems.� (cited
from: National Institute on Alcohol Abuse and Alcoholism. http://silk.nih.gov/silk/niaaa1/questions/q-
a.htm#question2)

2 There are numerous criticisms of the disease model of drug addiction (see for example, Davies (1992)).
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In this paper, we provide a model of addiction that is consistent with the view that

addicts may beneÞt from interventions that modify their choices. At the same time, the

model offers clear guidance for welfare comparisons. Building on previous work (Gul and

Pesendorfer (2000a)), we assume that the agent may have a preference for commitment;

that is, his welfare may go up when some alternatives are eliminated from his set of choices.

We refer to options that the agent would rather not have as temptations. A temptation

lowers the agent�s utility either because it distorts his choice or because it necessitates

costly self-control. In the latter case, the agent does not choose the tempting alternative

but its availability makes him worse off. Thus, our model allows welfare to depend both

on what the individual chooses and on the set of options from which the choice is made.

To see how our model works, consider an agent who must choose from the choice prob-

lem z. Each element of z is of the form (c, x), where c is a consumption vector that includes

the drug and x is the (continuation) choice problem for the next period. We capture the

dynamic nature of addiction by allowing past consumption to affect current preferences.

The agent�s preferences are deÞned over choice problems and can be represented by the

utility function W where

W (s, z) = max
{(c,x)∈z}

{u(s, c) + δW (s0, x) + V (s, (c, x))}− max
{(c0,y)∈z}

V (s, (c0, y))

Past consumption determines the state s in the current period. Next period�s state, s0,

is determined jointly by the current state s and current consumption c. The function V

represents the agent�s temptation while u+ δW is his commitment utility; that is, u+ δW

describes what the agent would do in the absence of temptation. If all options in z are

equally tempting, then the V -terms in the representation above drop out. Therefore, such

consumption problems are evaluated according to u + δW . In particular, if z consists of

a single choice (c, x); that is, if the agent were able to commit to (c, x) in some previous

period, then the overall utility of the current choice problem is the commitment utility

u+ δW , of the singe option (c, x).

The individual�s choice (c, x) maximizes u + δW + V . This choice reßects the com-

promise between the commitment utility and temptation. We say that an individual is

compulsive if his choice does not maximize the commitment utility and hence temptation
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distorts his choice. A drug is addictive if an increase in drug consumption leads to more

compulsive drug consumption in the future. Thus, we deÞne addiction as a widening of the

gap between the individual�s choice and what he would have chosen before experiencing

temptation.

As in standard models, choice and welfare are synonymous in our model. Therefore,

we may elicit how much a �treatment program� is worth by confronting the individual with

the appropriate choices. Suppose we give the individual the option to plan drug consump-

tion one or more periods in advance. We can infer the social value of this commitment

opportunity by asking the agent how much consumption he would be willing to give up in

exchange for the commitment option.

Our model suggests that addicts should seek commitment opportunities. We observe

such behavior in the form of enrollment in voluntary rehabilitation programs. For exam-

ple, consider an addict who seeks treatment for alcohol addiction and is given the drug

disulÞram. DisulÞram is a deterrent medication that is used to Þght alcohol addiction.

DisulÞram produces a sensitivity to alcohol which results in a highly unpleasant reaction

when the patient under treatment ingests even small amounts of alcohol. This effect lasts

up to 2 weeks after ingestion of the last dose.3 Hence, the patient is committed to ab-

staining from alcohol as long as the drug is effective (Chick 1992). Similarly, the opiate

antagonist naltrexone blocks the opioid receptors in the brain and hence the euphoric ef-

fects of these drugs for up to 3 days after the last dose. Naltrexone is voluntarily used by

some heroin and morphine addicts.

Further evidence for the demand for commitment devices are the recent efforts by

pharmaceutical companies to develop vaccines for nicotine (Pentel, et al. (2000)) and

cocaine.4 The function of these vaccines is to prevent the drug from reaching the brain, so

3 �DisulÞram plus even small amounts of alcohol produces ßushing, throbbing in head and neck,
throbbing headache, respiratory difficulty, nausea, copious vomiting, sweating, thirst, chest pain, palpita-
tion, dyspnea, hyperventilation, tachycardia, hypotension, syncope, marked uneasiness, weakness, vertigo,
blurred vision, and confusion. In severe reactions, there may be respiratory depression, cardiovascular
collapse, arrhythmias, myocardial infarction, acute congestive heart failure, unconsciousness, convulsions,
and death.� (cited from: http://www.mentalhealth.com/drug/)

4 �When injected in laboratory animals, the vaccine stimulates the immune system to produce an-
tibodies that bind tightly to nicotine. The antibody-bound nicotine is too large to enter the brain,
thereby preventing nicotine from producing its effects. The antibody-bound nicotine is eventually broken
down to other harmless molecules.� cited from http://pharmacology.about.com/health/pharmacology/
library/99news/bl9n1217a.htm
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as to eliminate its effects and provide commitment for individuals. A novel feature of these

vaccines is their long term effectiveness, and hence their ability to provide commitment

over many months.

The economics literature has typically identiÞed addiction with inter-temporal com-

plementarities. Becker and Murphy (1986) view the consumption of an addictive good

much like an investment that increases the return of future consumption. The preferences

analyzed by Becker and Murphy are �standard� in the sense that individuals can never

beneÞt from the elimination of some alternatives. Therefore, an individual who voluntarily

acquires costly commitment devices such as the drugs described above is inconsistent with

the Becker and Murphy preferences.

In Becker and Murphy�s treatment of addiction, drug consumption is never �bad� in

terms of individual welfare, and hence their model leaves no room for a drug policy. How-

ever, Becker and Murphy do distinguish between addictions that are harmful and those

that are beneÞcial: an addiction is harmful if it leads to a utility penalty in future periods.

However, the mere fact that the agent chooses to become addicted implies that the addic-

tion�s net effect on utility is positive. Becker and Murphy�s distinction between a harmful

addiction and a beneÞcial habit is based on when utility is experienced. However, choice

experiments cannot identify when an individual experiences the utility of a given choice.

Therefore, this distinction does not have behavioral content. Empirically distinguishing

harmful addictions and beneÞcial habits as deÞned by Becker and Murphy would require

a direct measurement of utility ßows.

O�Donoghue and Rabin (1997) offer a model of addiction that merges the approach

of Becker and Murphy with hyperbolic discounting. In their model, the individual may

consume more than his past selves would like because of a presence-bias in his preferences.

As in our approach, this model implies that agents will utilize commitment opportunities

(at least if they are sophisticated). However, their notion of a harmful addiction is based

on that of Becker and Murphy and therefore relies on hedonistic utility. Moreover, the

multi-selves view of the agent implies that the decision to get addicted beneÞts the current

self but typically, harms future selves. Therefore, revealed preference information is no

longer sufficient to identify what is good for the agent. In such cases it is difficult to devise

a criterion for evaluating treatment and policy alternatives.
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To analyze the welfare and demand effects of policy alternatives, we consider a special

case of our model in which there is a single tempting good (�the drug�) and consump-

tion of the drug is addictive. Moreover, we assume that the drug is �bad�; that is, the

commitment utility is decreasing in drug consumption. Thus, if the agent could commit

to a consumption path, he would never consume the drug. However, drug consumption

is tempting and, as a result, the agent may consume the drug when commitment is not

possible.

A typical drug policy affects agents along two dimensions. First, the drug policy may

have a prohibitive effect, that is, the policy may reduce the maximally feasible level of

drug consumption. For example, drug enforcement efforts may occasionally interrupt the

supply of drugs. Second, drug policies may have a price effect. That is, the cost of the

drug may change as a result of the drug policy. Often drug consumption is a relatively

small part of an agent�s budget and opportunity cost of drug consumption goes up without

affecting the maximally feasible drug consumption in the current period. We refer to such

a policy as a price policy. Similarly, when the maximally feasible drug consumption is

reduced without affecting the opportunity cost of drug consumption we say the policy is a

prohibitive policy.

A prohibitive policy always makes the agent better-off. By contrast, a price policy

always makes the agent worse-off. The reason is that a prohibitive policy offers some

commitment for the agent without affecting the feasible consumption of goods other than

the drug. On the other hand, a price policy offers no commitment because it does not

change the most tempting alternative. Yet, for a given level of drug consumption the price

policy reduces the consumption of other goods and hence leads to lower welfare.

We also examine the demand effects of price and prohibitive policies in simple station-

ary choice problems. Clearly, when a prohibitive policy is binding and makes the desired

level of drug consumption infeasible it leads to lower drug consumption. We show however,

that if a prohibitive policy is not binding, it leads to higher drug consumption. The reason

is that by providing future commitment opportunities the prohibitive policy makes it less

costly to get addicted. In contrast, a price policy decreases drug demand when the drug

is a normal good. As in standard consumer theory the demand effect of a price policy is

in general ambiguous.
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Our analysis shows that the demand and welfare effects of drug policies may move in

opposite directions even when a drug is bad; that is, when the agent would not consume

the drug if costless commitment were available. The fact that a drug policy does not

decrease drug demand does not imply that that policy is not successful in terms of welfare.

Conversely, a policy that successfully reduces drug demand may be harmful.

The paper is organized as follows. Section 2 introduces the model of preferences and

provides the deÞnition of compulsive consumption. Section 3 deÞnes and characterizes

addiction. Section 4 examines the positive and normative implications of policies. Finally,

Section 5 provides axioms for the utility functions used in the earlier sections.

2. SSC Preferences and Compulsive Consumption

There are l goods and C = [0, 1]l is the set of possible consumption vectors. We

consider an agent who is confronted with a dynamic choice problem. Every period t =

1, 2, . . . the agent must take an action. This action results in a consumption for period t

and constrains future actions.

A deterministic dynamic choice problem can be described recursively as a set of al-

ternatives, each yielding a current consumption and a continuation choice problem.5 We

use Z̄ to denote deterministic choice problems. Each z ∈ Z̄ is a (compact) set of alterna-
tives of the form (c, x) where c denotes the current consumption and x ∈ Z̄ denotes the

continuation problem. A broader class of choice problems, Z, allows for uncertainty. In

that case, the agent chooses among lotteries over current consumption and continuation

choice problems. We use x, y or z to denote generic choice problems (elements of Z or Z̄).

Generic choices (elements of a given z) are denoted µ, ν or η and constitute probability

distributions over C × Z. The degenerate lottery that yields with certainty the current
consumption c and the continuation problem x is denoted (c, x).6

The set of choice problems Z serves as the domain of preferences for the agent. This

allows us to describe agents who struggle with temptation. For example, the agent may

strictly prefer a choice problem in which some alternatives are unavailable because these

5 See Gul and Pesendorfer (2000b) for a detailed discussion of dynamic choice problems.
6 For most of the analysis, we restrict to deterministic choice problems. This is done for notational

simplicity. However, some of our results utilize lotteries and hence we need to consider choice problems
that include uncertainty.
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alternatives present temptations that are hard to resist. Even when the agent makes the

same ultimate choice from two distinct choice problems he may have a strict preference

for one choice problem because making the same choice from the other requires more

self-control. Below, we represent the individual�s preferences by a utility function. This

utility function is analogous to the indirect utility function in standard consumer theory.

The difference is that the traditional indirect utility function is deÞned only for choice

problems that can be represented by a budget set while our utility function is deÞned for

all choice problems.7

The preferences analyzed in this paper depend on the agent�s past consumption. To

capture this dependence, we index the individual�s preferences by s ∈ S, the state in

the initial period of the choice problem. The state s represents the relevant consumption

history prior to the initial period of analysis. We assume that there is a Þnite number

K such that consumption in only the last K periods inßuences the agents preferences.

Therefore, S := CK . We refer to the indexed family of preferences º:= {ºs}s∈S simply
as the agent or the preference º. For any state s = (c1, . . . , cK) and c ∈ C, let sc denote
the state (c2, . . . , cK , c). We say that the utility function W : S × Z → IR represents the

preference º if, for all s, x ºs y iff W (s, x) ≥W (s, y).
Section 5 provides axioms under which º can be represented by a continuous function

W of the following form. There are continuous utility functions u : S × C → IR, V :

S × (C × Z)→ IR and a discount factor δ ∈ (0, 1) such that for z ∈ Z̄

W (s, z) = max
(c,x)∈z

{u(s, c) + δW (sc, x) + V (s, (c, x))}− max
(c0,y)∈z

V (s, (c0, y)) (1)

To understand this representation, Þrst consider a choice problems that offers commitment;

that is, a choice problems with one alternative, {(c, x)}. In that case, the V -terms drop out
and W (s, {(c, x)}) = u(s, c)+ δW (sc, x). Therefore, we say that the function U := u+ δW
represents the agent�s commitment utility.

Next, consider a choice problems with two alternatives, {(c, x), (c0, y)}. Assume that
U(s, (c, x)) > U(s, (c0, y)) and V (s, (c, x)) < V (s, (c0, y)). Then, if follows from equation (1)

7 For a detailed deÞnition of the class of choice problems captured by Z, see Gul and Pesendorfer
(2000b).
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thatW ({(c, x)} > W ({(c, x), (c0, y)}). Hence, the agent strictly prefers the choice problem
where only (c, x) is available to the choice problem where, in addition, (c0, y) is available.

We interpret this as a situation where the agent suffers from the temptation presented by

(c0, y) and conclude that V measures this temptation. The agent compromises between

commitment utility U and temptation utility V by maximizing U + V . That is, U + V

governs the agent�s choice from z.

Let (c, x) be the alternative that maximizes U(s, ·) + V (s, ·) in z. By choosing

(c, x) the agent enjoys the utility U(s, (c, x)) but also incurs a self-control cost equal to

−[V (s, (c, x)) − max(c0,y)∈z V (s, (c0, y))]. This cost is zero if (c, x) also maximizes V in

z and positive otherwise. By maximizing U + V the agent ensures an optimal trade-off

between the commitment utility and avoiding self-control costs.

We refer to preferences that can be represented by a utility function that satisÞes

equation (1) as stationary self-control (SSC) preferences. Straightforward application of

results from dynamic programming imply that for every (u, V, δ) with u, V continuous,

there is a unique W that satisÞes equation (1). We say that (u, V, δ) represents the SSC

preference º if the the uniqueW that satisÞes equation 1 represents º. An SSC preference
º is regular if for all s, U(s, ·) is not constant and V (s, ·) is not an affine transformation
of U(s, ·).

The three main concepts of this paper are preference for commitment, compulsive

consumption and self-control. To illustrate these concepts, consider a deterministic choice

problem z ∈ Z̄ and assume that (c, x) is the unique maximizer of the commitment utility
U(s, ·) in z whereas (c0, y) is the unique maximizer of the temptation utility V in z. We

refer to alternatives that have higher temptation utility than (c, x) as temptations and

hence (c0, y) is a temptation in z. From equation (1) we can infer that removing the

temptation (c0, y) from the set z increases the agent�s welfare. Hence, temptations create

a preference for commitment; that is, situations where the agent strictly prefers the choice

problem x over z even though x offers fewer choices; that is, x ⊂ z. The agent is compulsive
if he does not choose the maximizer of the commitment utility (c, x). For example, the

agent is compulsive if he succumbs to temptation and chooses (c0, y). The agent exercises

self-control if he does not choose the most tempting alternative (c0, y). Note that if the
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agent chooses neither (c, x) nor (c0, y) he chooses a compulsive consumption and exercises

self-control at the same time.

Below, we formally deÞne preference for commitment (P), compulsive consumption

(C) and self-control (S). To deÞne these concepts for all choice problems including those

with stochastic choices we need the following notation. For any probability distribution µ

on C×Z we deÞne U(s, µ) := R U(s, (c, z))dµ(c, z) to be the expected commitment utility
and V (s, µ) =

R
V (s, (c, z))dµ(s, z) to be the expected temptation utility. For any function

f : S × Z → IR, deÞne Cf (s, z) := {µ ∈ z : f(s, µ) ≥ f(s, ν), ∀ν ∈ z} to be the f(s, ·)
maximizers in z. Hence at state s, CU+V (s, z) denotes the agent�s optimal choices from z,

while CU (s, z) denotes the commitment utility maximizers and CV (s, z) denotes the most
tempting alternatives in z.

DeÞnition: Let (u, V, δ) represent the regular SSC preference º and let U be the cor-

responding commitment utility. Then,

(i) ºs has P at z iff CU (s, z) ∩ CV (s, z) = ∅.
(ii) ºs has S at z iff CU+V (s, z) ∩ CV (s, z) = ∅.
(iii) ºs is C at z iff CU+V (s, z)\CU (s, z) 6= ∅.

Part (i) of the deÞnition says that the agent has a preference for commitment (P) if

the choice problem contains temptations. Part (ii) says that the agent has self-control (S)

if he does not choose one of the alternatives that maximizes the temptation utility. Part

(iii) says that the agent is compulsive (C) if at least one of his optimal choices does not

maximizes the commitment utility.

In the appendix we show that the commitment and temptation utilities associated with

a regular SSC preference are unique up to a common affine transformation. Consequently,

for regular SSC preferences, P, S and C are properties of the preference and not of the

particular representation.

Below, we offer criteria for ranking states with respect to preference for commitment,

self-control and compulsive consumption. We say that the preference has more preference

for commitment at s than at s0 if ºs has preference for commitment at z implies ºs0 has
preference for commitment at z. A similar deÞnition yields a ranking of states with respect

to self-control and compulsive consumption.
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DeÞnition: An SSC preference º has more P at s than at s0 (denoted sPs0) if ºs0 has
P at z implies ºs has P at z. Similarly, sSs0 (sCs0) if ºs0 has S (is C) at z implies ºs
has S (is C) at z.

Preference for commitment, self-control and compulsive consumption lead to partial

orders over states, where a given pair of states s and s0 may not be ranked. However,

Proposition 1 below establishes that if the agent has more preference for commitment and

less self-control at s than at s0 then he is more compulsive at s and than at s0. Less

self-control implies fewer instances where the most tempting alternative is not chosen.

Hence, the agent�s choice shifts towards alternatives preferred by the temptation utility.

Greater preference for commitment implies a greater divergence between commitment and

temptation utilities. Together these two effects imply that there are more instances where

the choice does not maximize the commitment utility.

Proposition 1: For any regular SSC preference sPs0 and s0Ss implies sCs0.

The notion of compulsive consumption plays a central role in the clinical deÞnition of

addiction and in the deÞnition of addiction we present in the next section. What distin-

guishes addiction from other types of compulsive behavior is the fact that the compulsive

consumption of an addictive substance is �caused� (or made worse) by past consumption

of the same substance. In order to focus on this dependency of compulsive consumption

on the past consumption, in the next section, we restrict attention to a subset of SSC

preferences, called simple SSC preferences.

3. Simple SSC Preferences and Addiction

In this section we study a subset of SSC preferences, referred to as simple SSC pref-

erences. The subset is characterized by restrictions on the temptation utility and by

assumptions on how past consumption can inßuence preferences.

For a simple SSC preference, the temptation utility depends on current consumption

of good l only. Thus, temptation is myopic and focused entirely on one good, referred to

below as �the drug�. This assumption allows us to steer clear of issues related to �cross-

addiction�, where consumption of one substance affects future preferences for another

substance.
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Agents with simple SSC preferences can rank all states according to their preference

for commitment (P); that is, for every two states s, s0, sPs0 or s0Ps. Recall that in general,

preference for commitment induces a partial order on the states. Here, we assume that this

order is complete. This assumption allows us to parameterizes preference for commitment,

self-control and compulsive consumption. As we show in section 5, this assumption also

implies that the preferences in the next period can be affected by current consumption but

not by consumption in past periods. In section 5 we provide an axiomatic characterization

of simple SSC preferences.

It is often convenient to distinguish between the drug and the non-drug goods. There-

fore, we sometimes write (b, d) ∈ C instead of c, where b denotes the Þrst l− 1 coordinates
of c and d is the drug coordinate of c.

A simple SSC preference can be represented by a function W of the form

W (sl, z) = max
(b,d,x)∈z

{u0(b, d) + σ(sl)v0(d) + δW (d, x)}− max
(b0,d0,y)∈z

(π(sl) + σ(sl))v0(d
0) (2)

where sl is the l�th coordinate of s. Without risk of confusion, we will omit the subscript l,

but it will be understood that for simple SSC preferences, the state s is last period�s drug

consumption. The discount factor is δ ∈ (0, 1); u0 is a continuous real valued function on
C; v0,π,σ are continuous real valued functions on [0, 1], v0 is strictly increasing π ≥ 0 and
π + σ > 0.

For the simple SSC preference represented in equation (2), the commitment utility is

given by u0 − πv0 + δW and the temptation utility is given by V = (π + σ)v0. Setting

U = u+ δW = u0 − πv0 + δW
V = (π + σ)v0

we can verify that a simple SSC preference is indeed a SSC preference. Note that the

temptation utility depends only on current drug consumption. A simple SSC preference

is regular iff there is no state s such that U(s, ·) is constant.8 We identify a simple SSC
preference with the functions and discount factor (u0, v0,π,σ, δ) used in its representation.

8 Recall that an SSC preference is regular if for all s, U(s, ·) is not constant and V (s, ·) is not an
affine transformation of U . For a simple SSC preference V depends on current drug consumption only
and is strictly increasing in current drug consumption. When U(s, ·) is not constant it depends on future
consumption and hence, V is not an affine transformation of U(s, ·).
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For simple SSC preferences, the impact of past consumption is measured by the func-

tions π and σ. An increase in σ implies that U + V puts more weight on v0. Since U + V

governs behavior, this suggests a loss of self-control. An increase in π implies that in-

crease in the gap between the commitment utility U and the temptation utility V and

hence suggests an increase in the preference for commitment. Proposition 2 conÞrms this

intuition.

Proposition 2: Let (u0, v0, π,σ, δ) be a regular, simple SSC preference. Then,

(i) sPs0 iff π(s) ≥ π(s0)

(ii) s0Ss iff σ(s) ≥ σ(s0)

(iii) sCs0 iff π(s) ≥ π(s0) and σ(s) ≥ σ(s0).

Given (i) and (ii), the only if part of (iii) follows from Proposition 1. Proposition 2

establishes that for regular, simple SSC preferences, more P and less S is in fact equivalent

to more C.

Psychologists and health professionals commonly refer to an individual as addicted if,

after repeated self-administration of a drug, the individual develops a pattern of compulsive

drug seeking and drug-taking behavior.9 The clinical deÞnition emphasizes a lack of control

on the part of addicted subjects and suggest a conßict between what the addict ought to

consume and what he actually consumes.

In our model, the agent is compulsive when the choice (the U + V maximizer) is

different from the U optimal alternative. Thus, an agent is compulsive if behavior would

change were commitment possible. Similar to the clinical deÞnition above, we deÞne an

increase in drug consumption to be addictive if higher current drug consumption makes

the more compulsive; that is, following the increase in drug consumption there are more

situations in which the agent makes a choice that does not maximize U . Note that the

state in the following period is equal to the drug consumption is the current period. Hence,

if current period drug consumption increases from d to d+ ² then the next period�s state

increases from s = d to s+ ².

9 See Robinson and Berridge (1993), pg. 248.
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DeÞnition: An ² > 0 increase in drug consumption is addictive at d if, for s = d and

s0 = d+ ², s0Cs and ºs0 6=ºs . The drug is addictive if every ² > 0 increase is addictive at
every d.

Note that for any simple SSC preference, π(s) = π(s0) and σ(s) = σ(s0) implies that

the agent�s preference in states s and s0 are the same. Hence, the following characterization

of addiction follows immediately from Proposition 2.

Corollary 2: Let (u0, v0, π,σ, δ) be a regular, simple SSC preference. An ² > 0 increase

in drug consumption is addictive iff, for s = d and s0 = d+ ²,

(i) π(s0) ≥ π(s), σ(s) ≥ σ(s0) and
(ii) π(s0) + σ(s0) > π(s) + σ(s).

Recall that π measures the individual�s preference for commitment and σ measures

self-control. Hence, Corollary 2 decomposes the effect of an addictive consumption into two

components: an increase in the preference for commitment and a reduction of self-control.

Our next objective is to relate each of these two components of addiction to behavior.

We denote with D(s, z) the current period drug demand when the agent faces the

deterministic choice problem z ∈ Z̄ and the state is s. Formally, d ∈ D(s, z) if there

exists an a non-drug consumption b and a continuation problem x such that (b, d, x) is an

optimal choice from z. We write D(s, x) ≥ D(s0, y) if d ∈ D(s, x), d0 ∈ D(s0, y) implies
d ≥ d0. Proposition 3 shows that lower self-control (higher σ) leads to higher drug demand
in every decision problem.

Proposition 3: If σ(s) ≥ σ(s0) then D(s, z) ≥ D(s0, z) for all z ∈ Z̄.
Recall that the agent�s choice is governed by u0(b, d)+σ(s)v0(d)+ δW (d, x). Since v0

is increasing in d, it follows that drug demand increases as σ increases. Psychologists use

the term reinforcement to describe the fact that an increase in current drug consumption

leads to an increase in future drug consumption. If ² > 0 and σ(d+ ²) > σ(d) then the ²

increase is reinforcing. In particular, an addictive increase in drug consumption is always

reinforcing.

Reinforcement is necessary but not sufficient for an increase to be addictive. Addiction

also means an increase in the preference for commitment, as measured by π. To translate
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the change of π into behavior we consider situations in which the individual chooses between

alternatives that all yield the same current consumption. This choice is unaffected by

temptation since all options that yield the same current consumption are equally tempting.

Note that (c, (c0, x)) denotes an alternative that yields c in the current period, c0 next

period and the choice problem x two periods hence. Therefore, for z ∈ Z̄ the choice

problem {c} × z = {(c, (c0, x)) | (c0, x) ∈ z} has the property that current consumption is
Þxed at c and the choice from z is made in the current period. This choice leads to a drug

consumption in the next period. We call this drug consumption advance drug demand

from z. It is easy to see from equation (2) that advanced demand does not depend on the

current state s and depends on current consumption c = (b, d) only through d. Hence,

we use DA(d, z) to denote advanced drug demand. That is; d∗ ∈ DA(d, z) if and only

if there exists b, b∗, x such that (b, d, (b∗, d∗, x)) is an optimal choice from z. We write

D(d, x) ≥ D(d0, y) if d∗ ∈ D(s, x), d∗∗ ∈ D(s0, y) implies d∗ ≥ d∗∗.
Proposition 4 shows that if current (drug) consumption increases π then the advance

drug demand decreases. In other words, an increase in preference for commitment leads

to a decrease in the advance demand for the drug.

Proposition 4: If π(d) ≥ π(d0) then DA(d0, z) ≥ DA(d, z).

The commitment utility u0(b, d)− π(s)v0(d) + δW (d, x) governs the agent�s advance
demand. Since v0 is decreasing in d an increase in π implies a decrease in advance demand.

Together Propositions 3 and 4 show that an addictive increase in drug consumption

leads to an increase in drug demand and a decrease in advance drug demand. Advance

drug demand captures the agent�s behavior when he can commit to a choice prior to the

consumption period. For choice problems that do not offer commitment, addiction leads

to a widening of the gap between what the agent chooses and what he would have chosen

had commitment been available. To put it differently, addiction increases both the agents

demand for drugs and his need for commitment mechanisms for reducing consumption.

As an illustration consider an individual who must decide whether to attend a party.

The party offers the opportunity to consume an addictive drug and a chance to meet

friends. If the individual stays home he is committed to a drug-free evening and does not
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meet friends. Suppose that the quality of the party is determined by the number of friends

attending.

In this example, we can compare the decisions of the individual when he is addicted

(high past drug consumption) and when he is not addicted (low past drug consumption).

Consider a party that the individual would attend independent of prior drug consumption.

When addicted, the agent has lower self-control and higher preference for commitment. A

lower self-control implies that he consumes more of the drug at the party. By contrast, a

higher preference for commitment has no effect on drug consumption. Addiction also has

an effect on the decision to attend the party. Both the loss of self-control and the increase

in preference for commitment make the party less attractive. Hence, if the non-addicted

agent is just indifferent between attending the party and staying home, then the addicted

agent will stay home. The increase in preference for commitment implies that every level

of drug consumption is less desirable for the commitment utility. The loss in self-control

implies a greater cost of self-control for any given level of drug consumption. Both make

commitment to a drug-free evening more desirable.

4. Behavioral and Policy Implications of Addiction

In this section, we analyze interventions that may impact the behavior and welfare

of individuals struggling with addiction. Such policies may be available to the addict in

the form of voluntary rehabilitation programs or may be imposed on him by government

intervention.

A typical anti-drug intervention can affect addicts along two dimensions. First, it may

reduce the maximum feasible consumption of the drug. We call such policies prohibitive.

For example, banning a drug use may reduce the maximum feasible consumption to zero.

The use of a deterrent drug is an example of a voluntary prohibitive policy. Second, a

policy may increase the opportunity cost of drug consumption. Fines or taxes levied on

addictive goods fall into this category. When such measures do not signiÞcantly change

the maximum feasible drug consumption we call them price policies.

We assume that C = [0, 1]2 and consider a simple SSC preference (u0, v0, π,σ, δ),

where u0, v0,π and σ are twice continuously differentiable. We also assume that u0 is
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strictly increasing in its Þrst argument. Hence, the Þrst good is indeed a good. We say

that the drug is bad if u0 is strictly decreasing in its second argument. Note that if the

drug is bad then the preference is regular.

Suppose that the individual is endowed with one unit of good 1 in each period and faces

the following stationary consumption problem. Each period the agent chooses consumption

(b, d) in the set B where

B = {(b, d) ∈ [0, 1]2 | b+ pd ≤ 1, d ≤ 1}

We assume that the price of the drug, p, is less than 1. The individual cannot borrow or

lend and can at most consume 1 unit of each good in every period.

A drug policy is a pair (τ, q) where τ ≥ 0 is a per unit tax on the drug and q ∈ [0, 1]
is the maximum feasible drug consumption. Let

B(τ, q) = {(b, d) ∈ [0, 1]2 |b+ (p+ τ)d ≤ 1, d ≤ q}

denote the individual�s opportunity set under the policy (τ, q) and x(τ, q) denote the cor-

responding stationary choice problem:

x(τ, q) := {(c, x(τ, q)) | c ∈ B(τ, q)}

Note that any policy (0, q) with q < 1 is a prohibitive policy since it reduces the

maximum feasible drug consumption but does not affect the opportunity cost of drugs. A

price policy is a policy (τ, 1) with p + τ ≤ 1. In this case, the maximum feasible drug

consumption remains at 1 in every period but the opportunity cost of the drug is increased

to p + τ . If the tax is high enough, in particular, if p + τ > 1 then the policy (τ, 1) also

has a prohibitive effect since it decreases the maximal drug consumption to 1
p+τ .

Propositions 5 and 6 examine the welfare effects of prohibitive and price policies.

Proposition 5 demonstrates that a prohibitive policy on a bad, addictive drug increases

the agent�s welfare. Proposition 6 shows that a price policy decreases the agent�s welfare.

Proposition 5: If the drug is bad and addictive then W (s, x(0, q)) > W (s, x(0, q0)) for

q0 > q.
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Proof: Let d00 = �d0 = s and {(bt, dt)t≥1} denote the optimal consumption plan for
the choice problem x(0, q) at state s. Similarly, let {(b0t, d0t)t≥1} denote the optimal
consumption plan for the choice problem x(0, q0)at state s. DeÞne �bt = 1 − pd0t and
�dt = min{d0t, q} for all t ≥ 1. Clearly, �dt ≤ d0t for all t ≥ 1. Since the drug is bad

and addictive, this implies u0(�b
t, �dt) − π( �dt−1)v0( �dt) ≥ u0(b

0t, d0t) − π(d0t−1)v0(d0t) and
[π( �dt−1)+σ( �dt−1)][v0( �dt)−v0(q)] ≥ [π(d0t−1)+σ(d0t−1)][v0(d0t)−v0(q0)]. Moreover, at least
one of the two preceding inequalities is strict. To see this, note that if v0( �d

t)−v0(q) < 0 or
v0(d

0t)−v0(q0) < 0 then the second inequality is strict. If v0( �dt)−v0(q) = v0(d0t)−v0(q0) = 0
then �bt > b0t so the Þrst inequality is strict. Hence,

W (s, x(0, q)) ≥
∞X
t=0

δt[u0(�b
t, �dt) + σ( �dt−1)v0( �dt)− (π( �dt−1) + σ( �dt−1))v0(q)]

>
∞X
t=0

δt[(u0(b
0t, d0t) + σ(d0t−1)v0(d0t)− (π(d0t−1) + σ(d0t−1))v0(q0)]

=W (s, x(0, q0))

A prohibitive policy has two effects; it reduces self-control costs and it may render

the previous level of drug consumption infeasible. The reduction in self-control costs

always increases welfare. If the drug is bad the commitment utility maximizing level of

drug consumption is zero. Hence, the reduction in consumption increases utility in the

current period. Moreover, if the good is addictive, this reduction in consumption leads

to a decrease in level of addiction which reduces future self-control costs. Thus, a purely

prohibitive policy on a bad, addictive drug always increases welfare.

It is easy to see how Proposition 5 may fail for a drug that is not bad. In that

case, the argument is similar to the standard economic argument for why a quota or a

ban may reduce welfare. To see how Proposition 5 fails when the drug is not addictive,

consider an agent who is in state s = .5 in period 1. Suppose that abstaining (d = 0) or

binging (d = 1) for one period will cause all temptation to go away in the next period but

consuming intermediate levels will cause temptation to persist. Moreover, assume that

the cost of self-control in the current state is very high. In that case, it may be optimal

for the agent to binge in the current period and abstain thereafter. A policy that reduces
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the maximally feasible level of drug consumption from 1 to q = .5 may reduce the agents

welfare by forcing him to either incur the (reduced but still) high cost of self-control in the

current period or remain addicted.

Proposition 5 showed that a reduction in temptation increases welfare in our model.

Proposition 6 shows that a policy that does not reduce temptation cannot increase the

agent�s welfare. Recall that a price policy is an increase in the opportunity cost of drug

consumption that does not reduce the maximally feasible drug consumption. When the

tax increases from τ to τ 0 and p+ τ 0 ≤ 1 then even after the tax increase, the maximally
feasible drug consumption in the current period is unchanged at 1.

Proposition 6: If the drug is bad and p+ τ 0 ≤ 1 then W (s, x(τ, 1)) ≥W (s, x(τ 0, 1)) for
τ 0 > τ .

Proof: Let d0 = s and {(bt, dt)t≥1} be the optimal consumption plan for the problem
x(τ 0, 1). Since {(bt, dt)t≥1} is a feasible choice from x(τ, 1) we have

W (s, x(τ, 1)) ≥
∞X
t=0

δt
¡
u0(b, d) + σ(d

t−1)v0(dt)− (π(dt−1) + σ(dt−1))v0(1)
¢

=W (s, x(τ 0, 1))

Since a price policy does not affect the maximally feasible drug consumption it does

not reduce self-control costs. Therefore, a price policy cannot improve the agent�s welfare.

The proof of Proposition 6 gives a simple revealed preference argument: since temptation

is unaffected by the tax increase and the set of alternatives is smaller the agent cannot

be better off. The key hypothesis in Proposition 6 is that the maximally feasible drug

consumption is smaller than the maximal amount of drugs the individual can afford in the

current period. This hypothesis is likely to be satisÞed if the drugs under consideration

are inexpensive or cannot be consumed in large doses. For example, for most smokers the

maximally feasible cigarette consumption is a small fraction of the individual�s budget.

Next, we analyze the impact of policies on the demand for drugs. Current period

drug demand in state s under the policy (τ, q) is denoted D(s, x(τ, q)). Consider a purely

prohibitive policy (0, q). If the prohibitive policy is binding, that is, if D(s, x(0, q)) = q
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then a reduction in the maximum allowed drug consumption q will obviously lead to a

reduction in drug demand. Proposition 7 shows that if the policy is not binding then a

reduction in q will lead to an increase in drug demand.

Proposition 7: If the drug is bad and addictive and D(s, x(0, q)) is a differentiable

function of q then ∂D(s, x(0, q))/∂q < 0.

Proof: If (b∗, d∗) is the optimal choice in the current period and (b∗∗, d∗∗) is the optimal

choice in the next period, then

W (s, x(0, q)) = u0(1− pd∗, d∗) + σ(s)v0(d∗) + δW (d∗, x(0, q))− (π(s) + σ(s))v(q)

Since the optimal consumption is interior, the necessary Þrst order condition is

0 =− p∂u0(1− pd
∗, d∗)

∂b
+
∂u0(1− pd∗, d∗)

∂d
+ σ(s)

∂v0(d
∗)

∂d
+ δ

∂W (d∗, x(0, q))
∂d

=− p∂u0(1− pd
∗, d∗)

∂b
+
∂u0(1− pd∗, d∗)

∂d
+ σ(s)

∂v0(d
∗)

∂d

+ δ

·
v0(d

∗∗)
∂σ(d∗)
∂d

− v0(q)∂(π(d
∗) + σ(d∗))
∂d

¸
≡A(d∗)

Taking the total derivative we get

dd
∂A(d∗)
∂d

− dq∂(π(d
∗) + σ(d∗))
∂d

∂v0(q)

∂q
= 0

From the second order condition, we infer that ∂A(d∗)
∂d ≤ 0. Since dddq is well-deÞned it

follows that ∂A(d
∗)

∂d < 0. By corollary 2, π+σ is strictly increasing. Since v0 is also strictly

increasing the desired result follows. .

A prohibitive policy effectively reduces the cost of drug consumption by reducing

the future cost of self-control associated with current drug consumption. For this reason,

drug demand increases as the prohibitive policy becomes more stringent. In contrast, the

analysis of the demand effect of a pure price policy ((τ, 1), p+ τ ≤ 1) is no different than
the analysis of demand effects of price changes in a standard consumer problem: if current

drug consumption is a normal good then drug demand is decreasing in τ .10

10 In general, just as in standard demand theory, the response to an increase in τ is ambiguous.
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In the following simple example, we analyze further the effect of a change in τ . Con-

sider an agent with constant self-control σ(d) = α and increasing preference for commit-

ment, π(d) = αd. Let

u0(b, d) = b− d
v0(b, d) = log d

The individual faces the choice problem x(τ, q) and therefore solves the following maxi-

mization problem:

W (s, x(τ, q)) := max
{dt}

∞X
t=1

δt−1
·
1− (p+ τ)dt − dt + α log dt − α(1 + dt−1) max

B(τ,q)
log d

¸

First, consider the case where q < 1
p+τ . Then, the maximally feasible drug consump-

tion is q and a change in τ constitutes a pure price policy. Drug demand is

D(s, x(τ, q)) = min

½
a

1 + p+ τ + δα log q
, q

¾
When drug consumption is not constrained by q, the only effect of an increase in τ is to

increase the opportunity cost of consuming drugs. In our example current drug consump-

tion is a normal good and therefore drug demand is decreasing in τ . We call this reduction

in drug demand the price effect of the drug policy.

Second, consider the case where q ≥ 1
p+τ . Then, the maximally feasible drug con-

sumption is 1
p+τ . An increase in τ raises the opportunity cost of the drug but also reduces

temptation (i.e., the maximally feasible drug consumption). Solving the maximization

problem above yields,

D(s, x(τ, q)) = min

½
α

1 + p+ τ + δa log(1/(p+ τ))
, 1

¾
Hence, the demand effect of an increase in τ is ambiguous. To see this, assume that drug

demand is less than q. Inspecting the demand function above, we Þnd that

∂

∂τ
D(s, x(τ, q)) = (δα− (p+ τ))D(s, x(τ, q))

Therefore, if δα > p + τ , the increase in τ leads to an increase in drug demand. The

increase in τ reduces the self-control costs associated with addiction and results in higher
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drug demand. This self-control effect effect dominates the price effect. Finally, if δα < p+τ

drug demand decreases. In this case, the price effect dominates the self-control effect.

As in the tax example above, most actual policies affect both the opportunity cost and

the maximally feasible drug consumption. As our analysis shows, the prohibitive aspects

of a policy beneÞt the individual as long as the drug is bad and addictive. However, when

a prohibitive policy is not binding it also results in an increase in drug demand. On the

other hand, an increase in opportunity cost of the drug harms individual and, in the case

of a normal good, will lead to lower drug demand.

5. Representation Theorems

Preferences are deÞned over Z, the set of choice problems. Let ∆ denote the set of

probability measures on C ×Z. A choice problem z ∈ Z can be identiÞed with a compact
subset of ∆. More precisely, for any subset X of a metric space, we let ∆(X) denote the

set of all probability measures on the Borel σ−algebra of X and K(X) denote the set of
all nonempty compact subsets of X. Each z ∈ Z can be identiÞed with an element in

K(∆(C × Z)) and conversely each element in K(∆(C × Z)) identiÞes a choice problem
z ∈ Z. For formal deÞnitions of Z and the map that associates each element of Z with its
equivalent recursive description as an element of K(∆(C ×Z)), we refer the reader to Gul
and Pesendorfer (2000b). In what follows only the recursive deÞnition is used and hence

without risk of confusion we identify the sets Z and K(∆(C×Z)). In Gul and Pesendorfer
(2000b) we note that since C is a compact metric space then Z,∆(C×Z) and K(∆(C×Z))
are compact metric spaces as well.

The individual�s preferences are indexed by s ∈ S, the state in the initial period of the
choice problem. The state s represents the relevant consumption history prior to the initial

period. We assume that there is a Þnite number K such that consumption in only the

last K periods inßuences the agents preferences and therefore S := CK . Without loss of

generality, we assume that K is the minimal length of the individual�s consumption history

that allows us to describe º.11 We refer to the indexed family of preferences º:= {ºs}s∈S
11 That is, there is a pair of states, (s = (c1, · · · , cK),�s = (�c1, · · · ,�cK)) that differ only in their Þrst

component (c1 6= �c1, ct = �ct, t ≥ 2) and lead to different preferences (ºs 6=º�s).
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simply as the agent or the preference º. Recall that for any state s = (c1, . . . , cK) sc

denotes the state (c2, . . . , cK , c). We impose the following axioms on ºs for every s ∈ S.

Axiom 1: (Preference Relation) ºs is a complete and transitive binary relation.

Axiom 2: (Strong Continuity) The sets {x | x ºs z} and {x | z ºs x} are closed in Z.

Axiom 3: (Independence) {µ}Âs {ν} implies {αµ+(1−α)η}Âs {αν+(1−α)η} ∀α ∈ (0, 1).
Axioms 1-3 are standard. In axiom 4 we deviate from standard choice theory and

allow the possibility that the adding options to a choice problem makes the consumer

strictly worse off. For a detailed discussion of Axiom 4, we refer the reader to our earlier

paper (Gul and Pesendorfer 2000a).

Axiom 4: (Set Betweenness) x ºs y implies x ºs x ∪ y ºs y.
Next, we make a separability assumption. For z ∈ Z let cz ∈ Z denote the choice

problem {(c, z)}, that is, the degenerate choice problem that yields c in the current period

and the continuation problem z. Thus c1c2 . . . cKz is a degenerate choice problem that

yields the consumption (c1, ..., cK) in the Þrst K periods and the continuation problem z

in periodK+1. For s = (c1, . . . , cK) we write sz instead of c1c2 . . . cKz. Axiom 5 considers

choice problems of the form {(c, sz)} and requires that preferences are not affected by the
correlation between current consumption c and the K + 1 period continuation problem z.

Axiom 5: (Separability) { 12(c, sz) + 1
2 (c

0, sz0)} ∼s0 { 12 (c, sz0) + 1
2(c

0, sz)}.
Axiom 6 requires preferences to be stationary. Consider the degenerate lotteries, (c, x)

and (c, y), each leading to the same period 1 consumption c. Stationarity requires that

{(c, x)} is preferred to {(c, y)} in state s if and only if the continuation problem x is

preferred to the continuation problem y in state sc.

Axiom 6: (Stationarity) {(c, x)} ºs {(c, y)} iff x ºsc y.
Note that Axiom 6 implies that the conditional preferences at time K + 1 after con-

suming s in the Þrst K periods is the same as the initial preference ºs. Together, Axioms 5
and 6 restrict the manner in which past consumption inßuences future preferences. Axiom

5 ensures that correlation between consumption prior to period t−K and the choice prob-

lem in period t does not affect preferences whereas Axiom 6 ensures that the realization

of consumption prior to period t−K does not affect preferences in period t.
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Axiom 7 requires individuals to be indifferent as to the timing of resolution of un-

certainty. In a standard, expected utility environment this indifference is implicit in the

assumption that the domain of preference is the set of lotteries over consumption paths.

Our domain of preferences are choice problems and in this richer structure a separate as-

sumption is required to rule out agents that are not indifferent to the timing of resolution

of uncertainty as described by Kreps and Porteus (1978).

Consider the lotteries µ = α(c, x)+(1−α)(c, y) and ν = (c,αx+(1−α)y). The lottery
µ returns the consumption c together with the continuation problem x with probability

α and the consumption c with the continuation problem y with probability 1 − α. By
contrast, ν returns c together with the continuation problem αx+(1−α)y with probability
1. Hence, µ resolves the uncertainty about x and y in the current period whereas ν resolves

this uncertainty in the future. If {µ} ∼s {ν} then the agent is indifferent as to the timing
of the resolution of uncertainty.

Axiom 7: (Indifference to Timing) {α(c, x) + (1− α)(c, y)} ∼s {(c,αx+ (1− α)y)}.

DeÞnition: ºs is regular if there exists x, x0, y, y0 ∈ Z such that x0 ⊂ x, y0 ⊂ y, x Âs x0

and y0 Âs y. º is regular if each ºs is regular.12

Theorem 1 below establishes that all regular preferences that satisfy Axioms 1 − 7
can be represented as a discounted sum of state-dependent utilities minus state-dependent

self-control costs. We say that the function W : S × Z → IR represents º when x ºs y iff
W (s, x) ≥W (s, y) for all s. For any µ ∈ ∆, let µ1 denote the marginal of µ on C. Axioms
1-7 yield the following representation.

Theorem 1: If º is regular and satisÞes Axioms 1 − 7, then there exists δ ∈ (0, 1),
continuous functions u : S × ∆(C) → IR, V : S × ∆ → IR, W : S × Z → IR with

u(s, ·), V (s, ·),W (s, ·) linear for all s, such that

W (s, z) = max
µ∈z {u(s, µ

1) + δ

Z
W (sc, z)dµ(c, z) + V (s, µ)}−max

ν∈z V (s, ν)

12 In section 2, we presented the deÞnition of a regular SSC preference. It can be shown that the current
general deÞnition and the one offered in section 2 are equivalent for SSC preferences.
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for all s ∈ S, ν ∈ ∆ and W represents º. For any δ ∈ (0, 1), continuous u, V such that

u(s, ·) and V (s, ·) are linear for all s ∈ S, there exists a unique function W that satisÞes

the equation above and the º represented by this W satisÞes Axioms 1− 7.

The two main steps of the proof of Theorem 1 entail showing that a preference relation

(over choice problems) that satisÞes continuity, independence, set betweenness, stationarity

and indifference to timing of resolution of uncertainty has a representation of the form

W (s, z) = max
µ∈z {U(s, µ) + V (s, µ)}−maxν V (s, ν)

and then using stationarity and separability to show that U is of the form U = u + δW .

In Gul and Pesendorfer (2000b) we offer a related proof under stronger stationarity and

separability axioms, yielding a representation of state-independent preferences

Next, we provide assumptions under which preferences can be represented by a utility

function W that satisÞes equation (2) (i.e., characterize simple SSC preferences).

Assumption I below requires that the agent is tempted only by the prospect of im-

mediate consumption. The assumption considers two situations in which the agent uses

self-control and chooses the same alternative µ. If the tempting alternative ν in one sit-

uation, yields the same consumption in the current period as the tempting alternative in

the second situation η they are equally tempting. That is, the agent is indifferent between

the two situations.

Assumption I: U(s, µ)+V (s, µ)>U(s, ν)+V (s, ν), U(s, µ)+V (s, µ)>U(s, η)+V (s, η),

V (s, ν) > V (s, µ), V (s, η) > V (s, µ) and ν1 = η1 implies {µ,ν}∼s {µ, η}.
Assumption N below ensures that goods other than d are neutral i.e., cause no tem-

pation and have no dynamic effects. That is, only good d is tempting and only past

consumption of d affects future rankings of choice problems.

Assumption N: Let c = (b, d), c0 = (b0, d0) and U(s, (c, x)) > U(s, (c0, x0)). If d = d0

then ºsc=ºsc0 . Moreover, ºs has P at {(c, x), (c0, x0)} iff d0 > d.

Recall that {(c, z)} Âs {(c, z), (c0, z0)} means that (c0, z0) has greater commitment
utility U and less temptation utility V than (c0, z0). Hence, ºs has a preference for com-
mitment at {(c, z), (c0, z0)}. Therefore, the Þrst statement ensures that there is no P (i.e.,
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no temptation) so long as the options differ only with respect to current consumption

of non-drugs. The second statement means that future preferences are the same so long

as the current state and current consumption of drugs are the same. Finally, the third

statement means that higher current drug consumption is always tempting. That is, if the

alternative with higher current drug consumption yields lower commitment utility then it

creates temptation, that is decreases the utility of the current situation.

Our next assumption requires that the agent can rank states according to P, his

preference preference for commitment. Thus, for every s, s0 either sPs0 or s0Ps.

Assumption P: P is complete.

Theorem 2: Let º be a regular SSC preference satisfying I, N and T. Then, (i) S = [0, 1],
and (ii) there are continuous functions v0, π,σ : [0, 1] → IR, u0 : C → IR, and δ ∈ (0, 1),
such that for z ∈ Z̄

W (s, z) = max
(b,d,x)∈z

{u0(b, d) + σ(s)v0(d) + δW (d, x)}− max
(b0,d0,y)∈z

(π(s) + σ(s))v0(d
0)

and W represents º. (iii) v0 is strictly increasing; π ≥ 0, π + σ > 0; and s is the previous
period�s drug consumption.

Proof: See Appendix.

To get some intuition about the proof of Theorem 2, start with the representation of

SSC preferences provided in Theorem 1. Then, assumption I ensures that V (s, ·) depends
only on current consumption c. Assumption N guarantees that V (s, ·) depends only on
current drug consumption d and is strictly increasing in d.

Since U measures commitment utility while V measures temptation, if U(s0, ·), V (s0, ·)
were both convex combinations of U(s, ·), V (s, ·), the gap between commitment utility and
temptation utility would be less in state s0 than in s. In this case, the agent would have

greater preference for commitment at s than at s0. In Gul and Pesendorfer (2000a) we show

that U, V moving closer in this way is necessary and sufficient for sPs0. Since V (s, ·) does
not depend on next period�s choice problem and U(s, ·) does, it follows that the convex
combination of U(s, ·), V (s, ·) that deÞnes V (s0, ·) puts zero weight on U(s, ·). Hence,

V (s0, ·) is of the form V (s0, ·) = a(s)v0(d).
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To conclude the argument, we need to verify that only last period�s consumption can

inßuence current preferences. This result is an implication of Assumption P. Suppose,

contrary to Theorem 2, that the consumption in the past two periods affects current

preferences. The following example illustrates why this would violate Assumption P.

As in Theorem 2, the example considers an SSC preference that can be represented

by (u0, v0,π, σ, δ). However, π depends on the consumption in the past two periods.

There is one good, d and s = (d−1, d0) ∈ [0, 1]2. Further, let u0(d) = 2d, v0(d) = d,

π(s) = 3d−1 + d0,σ(s) = 1 and δ = 2/3. We compare the preferences at states s = (1, 0)

and s0 = (0, 1). Let z be the choice problem in which the agent is committed to zero

consumption, that is z = {0, z}. Consider the choice problem x = {(0, z), (1, z)}. In state
s0 the commitment utility is increasing in current drug consumption (2 − π(s0) > 0) and
hence the agent has no P at x. By contrast, in state s the commitment utility is decreasing

in current drug consumption (0 > 2−π(s)) and hence the agent has P at x. Now consider
the choice problem y = {(1/2, x), (0, z)}. In state s the commitment utility of (1/2, x) is
−1/2+ δ(3/2) = 1/2 and the commitment utility of (0, z) is zero. Therefore, in state s the
agent has no P at y. In state s0 the commitment utility of (1/2, x) is 1/2+ δ(−1) = −1/6
and the commitment utility of (0, z) is zero. Therefore, in state s0 the agent has P at y. We

therefore conclude that ºs and ºs0 cannot be ranked according to P. A similar violation
of assumption P can be obtained where V to depend on the last two periods consumption.

6. Conclusion

Most studies on drug abuse emphasize that addiction should be considered a disease.13

In our approach drug abuse is identiÞed with the discrepency between what the agent

would want to commit to, as reßected by maximizing U , and what he ends-up consuming

by maximizing U + V . We provide straightforward choice experiments for measuring this

discrepency. Our approach is silent on the question of whether addiction is a disease or a

part of the �normal� variation of preferences across individuals.

While our approach is compatible with the disease concept of addiction, there are

important differences between the two. Consider the following example: the opiate antag-

onist naltrexone blocks the opioid receptors in the brain and hence the euphoric effects

13 To emphasize the organic basis of the condition the term �disease of the brain� is often used.
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of these drugs for up to 3 days after the last dose. Naltrexone is used in the treatment

of heroin and morphine. However, with the exception of highly motivated addicts such

as parolees, probationers and health care professionals, most addicts receiving naltrexone

tend to stop taking their medicine and relapse. Addicts often report that they stop taking

naltrexone because it prevents �getting high�. Doctors call this as a �compliance problem�

with naltrexone. For them, this is simply a limitation on the usefulness naltrexone, the

same way that toxicity might be a limitation on the usefulness of some other medication.

In our model, there can be two reasons for an addict to discontinue naltrexone and

resume heroin consumption: either 3 days is not the right time horizon for commitment

or the addict does not wish to commit. The former would suggest a need for longer acting

drugs while the latter would mean that there is neither a need nor any room for treatment

of this addict. In fact, by our deÞnition, an individual who is unwilling to commit to

reducing his drug consumption, for any length of time, at any future date is not an addict.

Hence, where the disease model of addiction Þnds a compliance problem our model suggests

that there may be no problem at all.

The fact that naltrexone continues to be used by the most motivated addicts, those

who are more likely to abstain even without commitment, suggests a reduction of the cost

of self-control as a possible motive taking naltrexone.

Economists interpret behavior as a reßection of the agents� stable interests and desires.

In standard economic analysis there is no room for the notion of a behavioral problem,

except to the extent that the behavior is a problem for someone else. Consequently, there

is no role for therapy aimed at controlling problem behavior. In contrast, psychologists

often view behavior to be independent of and even an impediment to the agent�s welfare.

Our model of temptation and self-control provides a potential bridge between these two

approaches. Like standard models in economics, we take as given agents� interests and

desires (i.e. utility functions) and accept the hypothesis that behavior is motivated by

these interests and desires (i.e. utility maximization). But, we extend the domain of utility

functions to include temptation. Without the aid of some outside agency, it is difficult

and often very costly for the individual to commit, that is; reduce temptation. Hence, our

model leaves room for welfare enhancing treatments and policy. In our interpretation, the

27



role of treatment and policy is to develop commitment devices and opportunities for the

agent.

Our model provides a framework for the analysis of both the purposeful actions (e.g.

decisions made in the stock market) studied by most economists as well as the compulsive

and detrimental behavior (e.g. addiction) studied by many psychologists and health care

professionals. We have analyzed the interaction of these two types of behavior and evalu-

ated policy alternatives. Our focus was on psychoactive drugs but the model presented in

this paper can also be applied to other types of compulsive behavior such as over-eating

and other forms of dependency.
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7. Appendix

7.1 Proof of Proposition 1

Lemma 12 in Gul and Pesendorfer (2000a) implies that whenever (a) U(s, ·), U(s0, ·)
are not constant, (b) V (s, ·) is not an affine transformation of U(s, ·) and (c) V (s0, ·) is not
an affine transformation of U(s0, ·); sPs0 if and only if there is a non-negative full rank
matrix Θ and a λ ∈ IR2 such thatµ

U(s0, ·)
V (s0, ·)

¶
= Θ

µ
U(s, ·)
V (s, ·)

¶
+ λ (3)

Similar arguments establish that if (a)− (c) hold then s0Ss iff there is a positive full rank
matrix �Θ and a �λ ∈ IR2 such thatµ

U(s, ·) + V (s, ·)
V (s, ·)

¶
= �Θ

µ
U(s0, ·) + V (s0, ·)

V (s0, ·)
¶
+ �λ (4)

and sCs0 iff there is a positive full rank matrix �Θ and a �λ ∈ IR2 such thatµ
U(s0, ·)

U(s0, ·) + V (s0, ·)
¶
= �Θ

µ
U(s, ·)

U(s, ·) + V (s, ·)
¶
+ �λ (5)

Regularity of º implies that conditions (a)− (c) are satisÞed. Therefore, equation (3)
implies that equation (5) holds for some full rank �Θ and �λ. Routine calculations establish

that �Θ is non-negative.

7.2 Proof of Proposition 2

As in the proof of Proposition 2 above, we note that sPs if and only if there is a

positive full rank matrix Θ and a λ ∈ IR2 such thatµ
U(s0, ·)
v(s0, ·)

¶
= Θ

µ
U(s, ·)
v(s, ·)

¶
+ λ

Note that

U(s0, ·) = U(s, ·) + π(s)− π(s
0)

π(s) + σ(s)
v(s, ·)

and

v(s0, ·) = π(s0) + σ(s0)
π(s) + σ(s)

v(s, ·)
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Since π + σ > 0 it follows that sPs0 if and only if π(s) ≥ π(s0).
Similarly, s0Ss if and only if there is a positive full rank matrix Θ and a λ ∈ IR2 such

that µ
U(s0, ·) + v(s0, ·)

v(s0, ·)
¶
= Θ

µ
U(s, ·) + v(s, ·)

v(s, ·)
¶
+ λ

Note that

U(s, ·) + v(s, ·) = U(s0, ·) + v(s0, ·) + σ(s)− σ(s)
π(s0) + σ(s0)

v(s0, ·)

and

v(s, ·) = π(s) + σ(s)

π(s0) + σ(s0)
v(s0, ·)

Since π + σ > 0 it follows that s0Ss if and only if σ(s) ≥ σ(s0).
Finally, sCs0 if and only ifµ

U(s0, ·)
U(s0, ·) + v(s0, ·)

¶
= Θ

µ
U(s, ·)

U(s, ·) + v(s, ·)
¶
+ λ

Note that

U(s0, ·) = π(s0) + σ(s)
π(s) + σ(s)

U(s, ·) + π(s)− π(s
0)

π(s) + σ(s)
(U(s, ·) + v(s, ·))

and

U(s, ·) + v(s, ·) = σ(s)− σ(s0)
π(s) + σ(s)

(U(s, ·)) + π(s) + σ(s
0)

π(s) + σ(s)
(U(s, ·) + v(s, ·))

Therefore, sCs0 if and only if π(s) ≥ π(s0) and σ(s) ≥ σ(s0).

7.3 Proof of Proposition 3

Assume that σ(s) ≥ σ(s0). Let d0 be the maximal element in D(s0, z) and let

(b0, d0, x0) ∈ CU+v(s0, z) be a corresponding choice. Then,

u0(b
0, d0) + σ(s0)v0(d0) + δW (d0, x0) ≥ u0(b00, d00) + σ(s0)v0(d00) + δW (d00, x00)

for all (b00, d00, x00) ∈ z. Since σ(s) ≥ σ(s0), for any (b00, d00, x00) ∈ z such that d00 < d0

u0(b
0, d0) + σ(s)v0(d0) + δW (d0, x0) > u0(b00, d00) + σ(s)v0(d00) + δW (d00, x00)

Hence D(s, z) ≥ D(s0, z).
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7.4 Proof of Proposition 4

Let π(s) ≥ π(s0). Recall that advanced demand at state s refers to a choice made

prior to the consumption (b, s) at some state s0. Let d be the maximal element in DA(s, z)

and let ((b0, s), (b, d, x)) ∈ CU+v(s0, z) be a corresponding choice. Then,

u0(b
0, s)+σ(s0)v0(s) + δ[u0(b, d)− π(s)v0(d)] + δ2W (d, x) ≥

u0(b
0, s) + σ(s0)v0(s) + δ[u0(b

00, d00)− π(s)v0(d00)] + δ2W (d00, x00)

for all ((b, s), (b00, d00, x00)) ∈ z. Then, for any ((b0, s0), (b00, d00, x00)) ∈ z with d00 < d

u0(b
0, s)+σ(s0)v0(s

0) + δ[u0(b, d)− π(s0)v0(d)] + δ2W (d, x) ≥
u0(b

0, s0) + σ(s0)v0(s0) + δ[u0(b00, d00)− π(s0)v0(d00)] + δ2W (d00, x00)

Hence DA(s0, z) ≥ DA(s, z).

8. Proof of Theorems 1 and 2

8.1 DeÞnitions

Let Z1 := {{µ} |µ ∈ ∆}. For n > 1, deÞne Zn := {{µ} ∈ Z1 |µ2(Zn−1) = 1}.
For c ∈ C, deÞne Z1(c) := {{µ} ∈ Z1 |µ1(c) = 1}. For n > 1 and c1, . . . , cn ∈ C

deÞne Zn(c1, . . . , cn) := {{µ} ∈ Z1(c1) |µ2(Zn−1(c2, . . . , cn)) = 1}. Finally, we deÞne
Zn+11 (c2, . . . , cn+1) = {{µ} ∈ Zn+1 |µ2(Zn(c2, . . . , cn+1)) = 1}.

There is an obvious homeomorphism between Zn(c1, . . . , cn) and Z. This homeo-

morhism associates with each {µ} ∈ Zn(c1, . . . , cn), a particular {ν} ∈ Z by ignoring the
degenerate distribution of consumptions that µ yields from period 1 to n. Similarly, there

is a homeomorphism between Zn+11 (c2, . . . , cn+1)) and Z. This homeomorhism associates

with each {µ} ∈ Zn+11 a particular {ν} ∈ Z by ignoring the degenerate distribution of

consumptions that µ yields from period 2 to n+ 1. We use µT+2 to denote the marginal

distribution ν2 of the associated ν.

Let αx+(1−α)y := {αµ+(1−α)ν |µ ∈ x, ν ∈ y}. We say that a function f : Z → IR

is linear if f(αx+ (1− α)y) = αf(x) + (1− α)f(y) for all x, y ∈ Z.
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8.2 Proof of Theorem 1

Lemma 1: Assume º satisÞes Axioms 5 and 6. IfW is linear in its second argument and

represents º then W (s, (c̄0c̄1 . . . c̄ns0z̄)) +W (s, (c0c1 . . . cns0z)) = W (s, (c0c1 . . . cns0z̄)) +

W ((c̄0c̄1 . . . c̄ns0z)) for all n, (c̄0 . . . c̄n), (c0 . . . cn) ∈ Cn+1, s0 ∈ CK , z, z̄ ∈ Z.

Proof: By Axiom 5,

1

2
(c̄0c1 . . . cns0z̄) +

1

2
(c0c1 . . . cns0z) ∼s 1

2
(c0c1 . . . cns0z̄) +

1

2
(c̄0c1 . . . cns0z)

Assume that the lemma holds for n− 1. Then, Axiom 6 implies that

1

2
(c̄0c1 . . . cn−1s0z̄) +

1

2
(c̄0c1 . . . cn−1s0z) ∼s 1

2
(c̄0c̄1 . . . c̄ns0z̄) +

1

2
(c̄0c̄1 . . . c̄n−1s0z)

Therefore, we conclude that

W (s, (c0c1 . . . cn−1s0z̄))−W (s, (c0c1 . . . cn−1s0z))
=W (s, (c̄0c1 . . . cn−1s0z̄))−W (s, (c̄0c1 . . . cn−1s0z))
=W (s, (c̄0c̄1 . . . c̄n−1s0z̄))−W (s, (c̄0c̄1 . . . c̄n−1s0z))

and hence the Lemma holds for n. Observe that Axiom 5 implies that the Lemma holds

for n = 1.

It is easy to show that if º satisÞes Axioms 3, 6 and 7 then it also satisÞes the following
stronger version of the independence axiom:

Axiom 3∗: x Âs y, α ∈ (0, 1) implies αx+ (1− α)z Âs αy + (1− α)z.
Theorem 1 of Gul and Pesendorfer (2000) establishes that ºs satisÞes Axioms 1, 2, 4

and 3∗ if and only if there exist �W, �U, �V such that

�W (s, z) := max
µ∈z { �U(s, µ) + �V (s, µ)}−max

ν∈z
�V (s, ν)

for all z ∈ Z and �W represents º. Moreover, the functions �W, �U, �V are continuous and

linear in their second arguments. Fix s̄ and deÞne

W (s, y) := �W (s̄, {µ})
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where {µ} ∈ ZK(s) and µK+1(y) = 1. Since ZK(s) is homeomorphic to Z and �W is

continuous in its second argument, W is continuous in both arguments.

Claim 1: W represents º. Moreover, there exist continuous functions U, V such that

W (s, z) := max
µ∈z {U(s, µ) + V (s, µ)}−maxν∈z V (s, ν)

and W,U, V are linear in their second arguments.

Proof: Axiom 6 implies W (s, x) ≥ W (s, y) iff �W (s, x) ≥ �W (s, y). Therefore, W repre-

sents º. Note that �W is linear in its second argument. Let {µ}, {ν}, {η} ∈ ZK(s) with
µK+1(x) = νK+1(y) = ηK+1(αx+(1−α)y) = 1. Axiom 7 and linearity of �W in its second

argument imply that

W (s,αx+ (1− α)y) = �W (s̄, {η})
= �W (s̄,α{µ}+ (1− α){ν})
= α �W (s̄, {µ}) + (1− α) �W (s̄, {ν})
= αW (s, x) + (1− α)W (s, y)

Thus, W is linear in its second argument. It follows that W (s, z) = α(s) �W (s, z) + β(s)

for some α,β : S → IR such that α(s) ≥ 0. Since º is regular, α(s) > 0 for all s. Hence,

U = α �U + β, V = α �V and the W have the desired properties.

Claim 2: Let {µh}, {µl} ∈ ZK(s) with µK+1h (yh) = µ
K+1
l (yl) = 1. Then, W (s

0, {µh})−
W (s0, {µl}) =W (s00, {µh})−W (s00, {µl}) for all s0, s00.

Proof: Let {µ̄hl}, {µ̄hh} ∈ Z2K(s0, s) and {µ̄lh}, {µ̄ll} ∈ Z2K(s00, s) satisfy µ̄2K+1hh (yh) =

µ̄2K+1lh (yh) = 1 and µ̄2K+1ll (yl) = µ̄2K+1hl (yl) = 1. Let z = {.5µ̄hh + .5µ̄ll} and x =
{.5µ̄hl + .5µ̄lh}. By Lemma 1, x ∼s̄ z. Hence, �W (s̄, x) = �W (s̄, z) and thus

�W (s̄, {µ̄hh})− �W (s̄, {µ̄hl}) = �W (s̄, {µ̄lh})− �W (s̄, {µ̄ll}) (6)

Recall that

�W (s̄, {µ̄}) =W (s0, {µ})
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if {µ̄} ∈ Z2K(s0, s), {µ} ∈ ZK(s) and µK+1(y) = µ̄2K+1(y). Substituting W for �W in

equation (6) then proves the claim.

Claim 3: There exist δ : S × C → (0,∞) and u : S × C → IR such that U(s, ν) =R
[u(s, c) + δ(s, c)W (sc, z)]dν(c, z) for all s ∈ S, ν ∈ ∆.

Proof: Since U(s, ·) is linear and continuous, it has an integral representation. That is;

U(s, ν) =

Z
U(s, µ(c,z))dν(c, z)

By Axiom 6, U(s, µ(c,·)) and W (sc, ·) yield the same linear preferences over Z. By regu-
larity, neither function is constant. It follows that U(s, µ(c,·)) is a strictly positive affine

transformation of W (sc, ·). Hence, for some u, δ,

U(s, µ(c,·)) = u(s, c) + δ(s, c)W (sc, y)

where δ(s, c) > 0 for all s ∈ S, c ∈ C. Therefore,

U(s, ν) =

Z
[u(s, c) + δ(s, c)W (sc, y)]dν(c, z)

as desired

Claim 4: The function δ(·) in Claim 3 is constant.

Proof: Let k ∈ 1, ...,K + 1 denote the smallest integer such that cn = c̄n for n ≤ k

implies δ(c1, ..., cK+1) = δ(c̄1, ..., c̄K+1). Let (s, cK+1) := (c1, ..., cK+1) and (s∗, cK+1∗ ) :=

(c1∗, ..., cK+1∗ ) where cn = cn∗ ,∀n ≤ k − 1.
Pick any c ∈ C. Let s0 = (c, . . . , c, c1, c2, . . . , ck−1) and Þx any �s. By regularity there

are yh, yl ∈ Z such thatW (�s, yh) > W (�s, yl). Let {µ̄hl}, {µ̄hh} ∈ Z2K−k+1(ck, . . . , cK+1, �s)
and {µ̄lh}, {µ̄ll} ∈ Z2K−k+1(ck∗, . . . , cK+1∗ , �s) be such that µ̄2K−k+2hh (yh) = µ̄

2K−k+2
lh (yh) =

1 and µ̄2K−k+2hl (yl) = µ̄
2K−k+2
ll (yl) = 1. Let x = {.5µ̄hh + .5µ̄ll} and z = {.5µ̄hl + .5µ̄lh}.

By Lemma 1, x ∼s0 z. Hence, W (s0, x) =W (s0, z).
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Let {µh}, {µl} ∈ ZK(�s) be such that µK+1h (yh) = µK+1l (yl) = 1. Applying Claim 3

repeatedly and using the fact that δ(s, c) = δ(s̄, c̄) whenever cn = c̄n, ∀n ≤ k establishes
W (s0, x)−W (s0, z) = 0 iff

δ(s, cK+1)W (scK+1, {µh}) + δ(s∗, cK+1∗ )W (s∗cK+1∗ , {µl}) =
δ(s, cK+1)W (scK+1, {µl}) + δ(s∗, cK+1∗ )W (s∗cK+1∗ , {µh})

Rearranging, this implies

δ(s, cK+1)(W (scK+1, {µh})−W (scK+1, {µl}) =
δ(s∗, cK+1∗ )(W (s∗cK+1∗ , {µh})−W (s∗cK+1∗ , {µl})

By Axiom 6, W (s, {µh}) −W (s, {µl}) > 0. Hence, δ(s, cK+1) = δ(s∗, cK+1∗ ) by Claim 2.

Therefore k = 0, which is the desired conclusion.

Claim 5: Let δ ∈ IR denote the constant function in Claim 3. Then, 0 < δ < 1.

Proof: That δ > 0 has already been established. Pick any c ∈ C and let s = (c, c, . . . , c).
Let zc denote the unique z = {µ} ∈ Z such that µ(c, z) = 1. Pick y1 ∈ Z such that

W (s, y1) 6= W (s, z). By regularity, such a y1 exists. DeÞne yn ∈ Z inductively as follows:
yn = {µ} such that µ(c, yn−1) = 1. Note that yn converges to z. Hence, by continuity,

W (s, z) −W (s, yn) must converge to 0. But, by Claims 3 and 4 W (s, z) −W (s, yn) =
δn−1(W (s, y1)−W (s, z)) 6= 0. Hence, δ < 1.

Claims 1− 5 establish the existence of the desired representation.
To conclude the proof, let δ ∈ (0, 1) and u : S ×∆(C) → IR and v : S × C → IR be

continuous functions.

Lemma 2 (A Fixed-Point Theorem): If B is a closed subset of a Banach space with

norm k·k and T : B → B is a contraction mapping (i.e., for some integer m and scalar

α ∈ (0, 1), kTm(W )− Tm(W 0)k ≤ α kW −W 0k for all W,W 0 ∈ B), then there is a unique
W ∗ ∈ B such that T (W ∗) =W ∗.

Proof: See [Bertsekas and Shreve (1978), p. 55] who note that the theorem in Ortega

and Rheinholt (1970) can be generalized to Banach spaces.
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Let Wb be the Banach space of all real-valued, bounded functions on S×Z (endowed
with the sup norm). The operator T :Wb →Wb, where

TW (s, z) = max
µ∈z {u(s, µ

1) + V (s, µ) + δ

Z
W (sc, x)dµ(c, x)}−max

ν∈z V (s, ν)

is well-deÞned and is a contraction mapping. Hence, by Lemma 2, there exists a unique

W such that T (W ) = W . To prove that W is continuous, repeat the above argument

for the subspace Wc ⊂ Wb of all continuous, real valued functions on S × Z. Note that
T (Wc) ⊂ Wc. Hence, again by Lemma 2, T has a Þxed point W

∗ ∈ Wc. Since W is the

unique Þxed-point of T in Wb, we have W
∗ =W . Hence, W is continuous.

For any W,u, V, δ such that

W (s, z) = max
µ∈z {

Z
[u(s, c) + V (s, (c, x)) + δW (sc, x)]dµ(c, x)}−max

ν∈z V (s, ν)

deÞne ºs by x ºs y iff W (s, x) ≥ W (s, z). Verifying that ºs satisÞes Axioms 1 − 7 is
straightforward.

8.3 Proof of Theorem 2

By Theorem 3, º can be represented by a continuous W where

W (s, z) = max
µ∈z {u(s, µ

1) + v(s, µ1) + δ

Z
W (sc, x)dµ(c, x)}−max

ν∈z v(s, ν
1)

for some continuous u, v and δ ∈ (0, 1). Moreover, W,u, V are linear in their second

arguments. Let U(s, µ) = u(s, µ1) + δ
R
W (sc, x)dµ(c0, x)

Claim 6: V (s, ν) = V (s, �ν) whenever ν1 = �ν1.

Proof: If V (s, ·) = αU(s, ·) + β for some α ≤ −1, then x ºs y for all x ⊂ y contradicting
regularity. If V (s, ·) = αU(s, ·) + β for some α ≥ 0 then x ºs y for all y ⊂ x ∈ Z

again, contradicting regularity. Hence, for each s ∈ S there are two possibilities: either
V (s, ·) is not an affine transformation of U(s, ·) or there exists α ∈ (−1, 0) such that
V (s, ·) = αU(s, ·)+β. In either case, there exist µs, νs ∈ ∆ such that U(s, µs)+V (s, µs) >
U(s, νs) + V (s, µs) and V (s, µs) < V (s, νs).
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Take any ν, �ν ∈ ∆ such that ν1 = �ν1. There exists α > 0 small enough so that

U(s, µs) + V (s, µs) > U(s,αν + (1− α)νs) + V (s,αν + (1− α)νs)
U(s, µs) + V (s, µs) > U(s,α�ν + (1− α)νs) + V (s,α�ν + (1− α)νs)

V (s, µs) < V (s,αν + (1− α)νs)
V (s, µs) < V (s,α�ν + (1− α)νs)

Then, linearity and Assumption I imply {αν + (1 − α)νs, µs} ∼s {α�ν + (1 − α)νs, µs}.
Since W represents º we have V (s,αν + (1 − α)νs) = V (s,α�ν + (1 − α)νs). Since V is

linear, we conclude V (s, ν) = V (s, �ν) as desired.

Regularity implies that neither U(s, ·) nor v(s, ·) is constant. Claim 6 then implies

that v(s, ·) is not an affine transformation of U(s, ·). Hence, we may apply Theorem 7 of

Gul and Pesendorfer (2000a) to yield the following implications:

Fact 1: (Theorem 7 (Gul and Pesendorfer (2000a)) s0Ps iff for some αu,αv ∈ [0, 1], γ >
0, γu, γv ∈ IR

γU(s, µ) = αuU(s
0, µ) + (1− αu)v(s0, µ1) + γu

γv(s, µ1) = αvU(s
0, µ) + (1− αv)v(s0, µ1) + γv

for all µ.

By Assumption P, s0Ps or sPs0. Without loss of generality assume s0Ps. By regularity

there exists c, x, y such that U(s, (c, x)) > U(s, (c, y)). Since v(s, (c, x)) = v(s, (c, y)) it

follows that αv = 0. Pick any s
0 ∈ S. We conclude that for all s ∈ S

U(s, µ) = αu(s)U(s
0, µ) + βu(s)v(s

0, µ1) + γu(s)

v(s, µ1) = βv(s)v(s
0, µ1) + γv(s)

(7)

for some functions αu,βu,βv, γu, γv such that αu(s) > 0,βv(s) > 0 for all s. Note that U

and v are continuous and hence αu,βu, γu, γv,βv are continuous. Hence,Z
[u(s, c) + δW (sc, z)]dν(c, z) =Z
[αu(s)u(s

0, c) + βu(s)v(s
0, c) + γu(s) + αu(s)δW (s

0c, z)]dν(c, z)

(8)
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The only terms on either side of (8) that depend on ν2 are δW (sc, z) and αu(s)δW (s
0c, z).

Since regularity implies that neither of these terms is constant it follows that

W (sc, ·) = αu(s)W (s0c, ·) +A(s, c)

Then, Claim 2 (in the proof of Theorem 1) implies that αu(s) = 1 for all s. It follows that

W (s0c, ·) represents ºsc. Hence, K = 1. That is, sc = c for all s, c. Henceforth, we write

c instead of sc.

Let W0(c, z) =W (c, z)− γu(c), �u0(c) = u(s0, c)+ δγu(c) for all c. Let �v0(c) = v(s0, c)
and �v0(ν

1) =
R
�v0(c)dν

1(c). Then,

W0(c, z) =W (c, z)− γu(c) = max
µ∈z {U(c, µ) + v(c, µ)}−maxν∈z v(c, ν)− γu(c)

= max
µ∈z {U(s

0, µ) + βu(c)v(s
0, µ) + βv(c)v(s

0, µ)}−max
ν∈z βv(c)v(s

0, ν)

= max
µ∈z

Z
[u(s0, c0) + βu(c)v(s0, c0) + βv(c)v(s0, c0) + δW (c0, x)]dµ(c0, x)}

−max
ν∈z βv(c)�v0(ν)

= max
µ∈z

Z
[�u0(c

0) + βu(c)�v0(c0) + βv(c)�v0(c0) + δW0(c
0, x)]dµ(c0, x)}

−max
ν∈z βv(c)�v0(ν

1)

Let β̄u := max βu(s),βu := minβu(s) and βv := minβv(s). By continuity β̄u,βu,βv are

well-deÞned and since each ºs is regular βv > 0. Let

u0 = �u0 + βu�v0

If β̄u > βu, let

�π =
βu − βu
β̄u − βu

�σ = βv + π(β̄u − βu)
Otherwise, let

�π ≡ 0
�σ = βv

It is easy to verify that W0 represents º. Fix any b0 and let v0(d) := �v0(b
0, d), π0(d) :=

�π0(b
0, d) and σ0(d) := �σ0(b

0, d). By Assumption N, �v0(b, d) = v0(d), �π0(b, d) = π0(d)
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and �σ0(b, d) = σ0(d) for all b ∈ [0, 1]l−1. Assumption N also implies that v0 is strictly

increasing. Hence, u0, v0, π,σ, δ satisfy all the desired properties.
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