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Abstract

We present a model of temptation and self-control for infinite horizon consumption

problems under uncertainty. We identify a tractable class of preferences called Dynamic

self-control (DSC) preferences. These preferences are recursive, separable, and describe

agents who are tempted by immediate consumption. We introduce measures comparing

the preference for commitment and the self-control of DSC consumers and establish the

following: In standard infinite-horizon economies equilibria exist but may be inefficient;

in such equilibria, agents’ steady state consumption is independent of their initial endow-

ments and increasing in their self-control. In a representative agent economy, increasing

the agents preference for commitment while keeping self-control constant increases the

equity premium. Removing non-binding constraints may change equilibrium allocations

and prices. Debt contracts with DSC agents can be sustained even if the only feasible

punishment for default is the termination of the contract.
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1. Introduction

In experiments, subjects exhibit a reversal of preferences when choosing between a

smaller, earlier and a larger, later reward (Kirby and Herrnstein (1995)). The earlier

reward is preferred when it offers an immediate payoff whereas the later reward is preferred

when both rewards are received with delay. This phenomenon is referred to as dynamic

inconsistency and has inspired theoretical work that modifies exponential discounting to

allow for disproportionate discounting of the immediate future.1

This paper proposes an alternative approach to incorporate the experimental evidence.

We extend our earlier analysis of self-control in two period choice problems (Gul and Pe-

sendorfer (2001)) to an infinite horizon. Our goal is to reconcile the experimental evidence

with tractable, dynamically consistent preferences and to apply the resulting model to the

analysis of problems in macroeconomics and finance.

As an illustration, consider a consumption-savings problem. A consumer faces a con-

stant interest rate r and has wealth b at the beginning of period 1. Each period, the

consumer must decide how much to consume of his remaining wealth. Let z(b) denote

the corresponding choice problem and let c denote the current consumption choice. Our

axioms imply that the consumer has preferences of the form:

W (z(b)) = max
c∈[0,b]

{u(c) + v(c) + δW (z(b0))− v(b)}

where u and v are von Neumann-Morgenstern utility functions and b0 = (b− c)(1 + r) is
the wealth in the next period. These preferences describe an individual who, every period,

is tempted to consume his entire endowment. Were he to do so, the term v(c) − v(b)
would drop out. When he consumes less than his endowment, he incurs the disutility

of self-control v(c) − v(b). The utility function v represents “temptation”, that is, the
individual’s urge for current consumption. Optimal behavior trades-off the temptation to

consume with the long-run self-interest of the individual, represented by u + δW . The

main theoretical result of this paper (Theorem 1) is a representation theorem yielding the

utility function W above.

1 See, for example, Strotz (1955), Laibson (1997), O’Donoghue and Rabin (1998), Krusell and Smith
(1999)
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The preferences developed in this paper depend on what the individual consumes

and on what he could have consumed. In a simple consumption-savings problem with no

liquidity constraints, the maximal temptation v(b) is the temptation utility of consuming

all current wealth. More generally, the maximal temptation depends on the set of possible

consumption choices for that period. For example, if there are borrowing constraints the

set of possible consumption choices will reflect these constraints.

To allow a direct dependence of preferences on opportunity sets we study preferences

over choice problems. Building on work by Kreps and Porteus (1978), Epstein and Zin

(1989) and Brandenburger and Dekel (1993) we develop the appropriate framework to

study infinite horizon choice problems. With the set of choice problems as our domain,

we define Dynamic Self-Control (DSC) preferences and derive a utility function for those

preferences. The formula above is a special case of this derived utility function.

In the literature on dynamic inconsistency non-recursive preferences of the form u(c1)+P∞
t=2 βδ

t−1u(ct) are specified for the initial time period (Phelps-Pollak (1968), Laibson

(1997)). In addition, it is assumed that the preferences governing behavior in period t are

given by u(ct) +
P∞
t0=t+1 βδ

t0−tu(ct0). Therefore at time t > 1, the individual’s period t

preferences differ from his conditional preferences - the preference over continuation plans

implied by his first period preferences and choices prior to period t. This preference change

is taken as a primitive to derive the individual’s desire for commitment.

In contrast, we start with preferences that may exhibit a desire for commitment.

The description of a “consumption path” includes both the actual consumption and what

the individual could have consumed in each period. On this extended space, preferences

are recursive and the conditional preferences are the same as period t preferences. Our

representation theorem shows that DSC preferences can be interpreted as describing an

individual whose temptation utility, v, interferes with his long-run self-interest represented

by u+ δW . The consumer uses self-control to mediate between his temptation utility and

his long-run self-interest.

The recursive structure of our model allows us to apply standard techniques of dynamic

programming to find optimal solutions. At the same time, the model is consistent with the

type of preference reversal documented in the experimental literature. Consider a consumer

2



who must decide between a smaller reward in period 1 and a larger reward in period 2.

Since the earlier reward would lead to a larger consumption in the decision period, the

consumer incurs a self-control cost when opting for the later reward. Now consider the

situation where the earlier reward is for period t > 1 and the later for period t+ 1. Since

the decision is taken in period 1, the choice does not affect consumption in the decision

period and therefore the later reward can be taken without incurring a self-control cost.

Thus, the agent’s behavior appears non-recursive when we only observe his consumption

choices.

Our framework is rich enough to accommodate the infinite horizon, stochastic dynamic

programming problems central to macroeconomics and financial economics. Techniques de-

veloped in those areas can be applied to DSC preferences to explore how self-control and

preference for commitment change the conclusions of standard (macro)economic models.

Section 5 contains applications of DSC preferences to competitive economies. In section

5.1, we analyze a deterministic exchange economy with DSC preferences. We give condi-

tions under which a competitive equilibrium exists and find that in general, competitive

equilibria are not Pareto efficient. We also examine steady state equilibria and show that

with DSC preferences the steady state distribution of wealth is independent of the initial

wealth distribution. In section 5.2, we observe that removing constraints that are not

binding given the original equilibrium allocations and prices, may change these allocations

and prices. In section 5.3, we analyze a simple stochastic exchange economy and find that

(under appropriate assumptions on u and v) increasing the preference for commitment

increases the predicted premium of risky over safe assets. Section 6 explores incentive

compatible debt contracts. If the only punishment for default is exclusion from future

borrowing, then standard preferences imply that there are no incentive compatible debt

contracts (Bulow and Rogoff (1989)). In contrast, with DSC preferences, “natural” debt

contracts turn out to be incentive compatible.
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2. Stationary Self-Control Preferences

Consider a decision maker (DM) who must take an action in every period t = 1, 2, . . ..

Each action results in a consumption for that period and constrains future actions. The

standard approach to this problem is to define preferences for the DM over sequences of

consumption realizations. This standard approach excludes preferences that depend not

only on outcomes but also on what could have been chosen. Such a direct dependence

on the opportunity set is natural in a context where individuals suffer from self-control

problems.

To allow for preferences to depend on opportunity sets we make choice problems the

domain of our preferences. Let C denote the compact metric space of possible consump-

tions in each period. An infinite-horizon consumption problem (IHCP) is a set of choices,

each of which yields a consumption c ∈ C for the current period and an infinite horizon

problem starting next period. Choices may yield a random consumption and continuation

problem. Hence, an IHCP is a set of probability distributions where each realization yields

a consumption today and a continuation IHCP.

Let Z be the set of IHCPs. Each z ∈ Z can be identified with a compact set of

probability distributions on C×Z. For any compact metric space X, let ∆(X) denote the
set of probability distributions on X and let K(X) denote the set of non-empty compact
subsets of X. We endow ∆(X) with the weak topology and note that ∆(X) is compact and

metrizable.2 We endow K(X) with the Hausdorff topology which implies that K(X) is a
compact metric space.3 The domain of preferences Z can be identified with K(∆(C×Z)).
Appendix A1 shows that Z is well-defined and a compact metric space.

We use x, y or z to denote elements of Z. When there is no risk of confusion, we write

∆ instead of ∆(C × Z). We use µ, ν or η to denote elements of ∆. A lottery that yields
the current consumption c and the continuation problem z with certainty is denoted (c, z).

For α ∈ [0, 1], let αµ+(1−α)ν ∈ ∆ be the measure that assigns αµ(A)+(1−α)ν(A)

to each A in the Borel σ-algebra of C×Z. Similarly, αx+(1−α)y := {αµ+(1−α)ν |µ ∈
x, ν ∈ y} for α ∈ [0, 1] denotes the convex combination of the choice problems x and y.

2 See Parthasarathy (1970).
3 See Brown and Pearcy (1995) p. 222.
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A preference is denotedº. We make the following familiar assumptions on preferences.

Axiom 1: (Preference Relation) º is a complete and transitive binary relation.

Axiom 2: (Continuity) The sets {x |x º z} and {x | z º x} are closed.

We say that the function W : Z → IR represents the preference º when x º y iff

W (x) ≥W (y). Axioms 1 and 2 imply that º may be represented by a continuous function
W .

A standard DM evaluates a set of options by its best element. Adding options to the

set can never make such a DM worse off. Thus, if x º y then the best option in x is

preferred to the best option in y and hence

x º y ⇒ x ∪ y ∼ x (∗)

Axioms 1, 2 together with (∗) imply that there is continuous utility function U such that

W (x) := maxµ∈x U(µ) represents º. Hence, Axioms 1, 2 and (∗) yield a standard DM. In
contrast, a DM who is susceptible to temptation may prefer a smaller set of options to a

larger set. That is, he may have a preference for commitment.

Definition: The preference º has a preference for commitment at z if there is x ⊂ z
such that x Â z.

When {µ} Â {µ, ν} ∼ {ν} the DM is worse off when ν is available and, in addition,

derives no benefit from the availability of µ. We interpret this as a situation where the

DM succumbs to the temptation presented by ν.

When {µ} Â {µ, ν} Â {ν} the DM is better off when µ is available, even in the

presence of ν. We interpret this as a situation where ν presents a temptation but the DM

exercises costly self-control and chooses µ in the presence of ν. More generally, we interpret

x Â x∪ y Â y as a situation where the DM has self-control. Theorem 2 shows that, within

the context of preferences analyzed here, this definition agrees with the everyday meaning

of the term “self-control” as the ability to resist temptation.

Definition: The preference º has self-control at z if there are subsets x, y with x∪y = z
and x Â z Â y.
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Axiom 3 allows both a preference for commitment and self-control.

Axiom 3: (Set Betweenness) x º y implies x º x ∪ y º y.

Our next objective is to characterize preferences that have self-control and a sta-

tionary, separable representation. A singleton set represents a situations where the DM

has no choice. Hence, we refer to the restriction of º to singleton sets as the commit-

ment ranking. The following axiom ensures that the commitment ranking satisfies von

Neumann-Morgenstern’s independence axiom.

Axiom 4: (Independence) {µ} Â {ν}, α ∈(0, 1) implies {αµ+(1−α)η} Â {αν+(1−α)η}.

Recall that (c, z) denotes a lottery that returns the consumption c in the current

period and the continuation problem z. Axiom 5 requires that the correlation between the

current consumption and the continuation problem does not affect preferences. The axiom

considers two lotteries: µ = 1
2(c, z) +

1
2(c

0, z0) returns either the consumption c together

with the continuation problem z or the consumption c0 together with the continuation

problem z0; ν = 1
2(c, z

0) + 1
2(c

0, z) returns either the consumption c together with the

continuation problem z0 or the consumption c0 together with the continuation problem z.

The axiom requires the DM to be indifferent between {µ} and {ν}.

Axiom 5: (Separability)
©
1
2(c, z) +

1
2(c

0, z0)} ∼ {12(c, z0) + 1
2(c

0, z)
ª
.

Axiom 6 requires preferences to be stationary. Consider the lotteries, (c, x), (c, y)

each leading to the same consumption in the current period. The axiom requires that

{(c, x)} is preferred to {(c, y)} if and only if the continuation problem x is preferred to the
continuation problem y.

Axiom 6: (Stationarity) {(c, x)} º {(c, y)} iff x º y.

Axiom 7 requires the individual to be indifferent to the timing of resolution of un-

certainty. In the standard model this indifference is implicit in the assumption that the

domain of preferences is the set of lotteries over consumption paths. The richer domain

used in this paper permits agents who are not indifferent to the timing of resolution of
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uncertainty.4 Since our purpose is to focus on temptation and self-control, we rule out

preference for early or late resolution of uncertainty.

To understand Axiom 7, consider the lotteries µ = α(c, x) + (1 − α)(c, y) and ν =

(c,αx+(1−α)y). The lottery µ returns the consumption c together with the continuation
problem x with probability α and the consumption c with the continuation problem y

with probability 1 − α. In contrast, ν returns c together with the continuation problem

αx+ (1− α)y with probability 1. Hence, µ resolves the uncertainty about x and y in the

current period whereas ν resolves this uncertainty in the future. If {µ} ∼ {ν} then the
DM is indifferent as to the timing of the resolution of uncertainty.

Axiom 7: (Indifference to Timing) {α(c, x) + (1− α)(c, y)} ∼ {(c,αx+ (1− α)y)}.

Axiom 8 requires that two alternatives, ν, η, offer the same temptation if they have

the same marginal distribution over current consumption. For any µ ∈ ∆(C × Z), µ1

denotes its marginal on the first coordinate (current consumption) and µ2 its marginal on

the second coordinate (the continuation problem).

Axiom 8: (Temptation by Immediate Consumption) ν1 = η1, {µ} Â {µ, ν} Â {ν} and
{µ} Â {µ, η} Â {η} implies {µ, ν} ∼ {µ, η}.

To understand Axiom 8, recall that {µ} Â {µ, ν} Â {ν} represents a situation where
the DM is tempted by ν but uses self-control and chooses µ. Similarly, {µ} Â {µ, η} Â {η}
means that the DM is tempted by η but chooses µ. Hence, the both situations lead to the

same choice. According to Axiom 8, if ν1 = η1 then the DM is indifferent between the two

situations and hence experiences the same temptation in both situations.

We call a preference “degenerate” if it never benefits from additional options. Thus

º is degenerate if for every IHCP x and y, x º x ∪ y.

Definition: The preference º is non-degenerate if there exists x, y such that y ⊂ x and
x Â y.

4 The domain of preferences used here is closely related to the domain of preferences used in Kreps
and Porteus (1978). Their “descriptive approach” defines preferences on the finite horizon analogue of ∆,
that is, lotteries over current consumption and continuation problems for the next period. They use this
framework to analyze agents that may have a preference for early or late resolution of uncertainty.
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Theorem 1 provides a recursive and separable representation of non-degenerate pref-

erences that satisfy Axioms 1-8.

Theorem 1: If the non-degenerate preference º satisfies Axioms 1−8 then there is some
δ ∈ (0, 1), continuous functions u, v : C → IR and a continuous function W that represents

º such that

W (z) := max
µ∈z

Z
(u(c) + v(c) + δW (z0)) dµ(c, z0)−max

ν∈z

Z
v(c)dν(c, z0)

for all z ∈ Z. Conversely, for any δ ∈ (0, 1), continuous u, v : C → IR, there is a unique

continuous function W that satisfies the equation above and the preference it represents

satisfies Axioms 1− 8.

Proof: See Appendix.

Note that ifW satisfies the equation in Theorem 1 for some δ, u, v, then the preference

represented by W is continuous only if W is continuous. Therefore, by Theorem 1 above,

there is a unique preference that satisfies Axioms 1− 8 for any δ ∈ (0, 1) and continuous
u, v. Theorem 1 extends our earlier representation for two-period choice problems. To

see the relationship to the earlier work, note that Axioms 4, 6 and 7 imply the following,

stronger version of the independence axiom:5

Axiom 4∗: x Â y, α ∈ (0, 1) implies αx+ (1− α)z Â αy + (1− α)z.6

In Gul and Pesendorfer (2001) we show that Axioms 1-3 and 4∗ imply that the pref-

erence can be represented by a utility function W of the form

W (z) = max
µ∈z {U(µ) + V (µ)}−maxν∈z V (ν)

where W,U and V are linear functions.

The choice problem {µ} represents an IHCP in which the DM is committed to the

choice µ. Since W ({µ}) = U(µ) we interpret U as representing the commitment ranking

5 To see this, note that x Â y implies {(c, x)} Â {(c, y)} by Axiom 6. Axiom 4 then implies {α(c, x) +
(1 − α)(c, z)} Â {α(c, y) + (1 − α)(c, z)} and by Axiom 7 {(c,αx + (1 − α)z)} Â {(c,αy + (1 − α)z)}.
Applying Axiom 6 again then yields the desired conclusion. Note that Axiom 4∗ applied to singleton sets
yields Axiom 4.

6 This axiom was first used by Dekel, Lipman and Rustichini (2001) in their analysis of preferences
over sets of lotteries.
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of alternatives. We interpret V as representing the temptation ranking. Note that the

DM prefers y ⊂ x to x only if maxµ∈y V (µ) > maxµ∈x V (µ). Hence, commitment to y is
desirable because x contains alternatives that are more tempting than the most tempting

element of y. The representation suggests that the DM chooses µ ∈ z that maximizes
U+V . That is, he compromises between his commitment ranking and temptation ranking.

However, the representation asserts only that the DM assigns utility to IHCP’s as if he

were behaving in this manner. The difficulty stems from the fact that the domain of

preferences is choice problems and not choices from those problems. This difficulty can be

overcome by extending preferences to choices from z. In Gul and Pesendorfer (2001) we

provide such an extension and give conditions that ensure that the DM indeed behaves

as suggested by the representation. Here, we simply assume that the DM behaves in this

way.

The contribution of Theorem 1 is to establish that U and V are of the following form:

U(µ) =

Z
u(c) + δW (x)dµ(c, z)

V (µ) =

Z
v(c)dµ(c, z)

(1)

To explain the role of the axioms, we outline the main steps in the proof. Axiom 5 implies

that U is separable, that is

U(µ) =

Z ³
ũ(c) + W̃ (z0)

´
dµ(c, z0)

for some ũ and W̃ . By Axiom 6, W̃ must represent the same preference as W , that

is, W̃ (x) ≥ W̃ (y) if and only if W (x) ≥ W (y). Axiom 7 implies that W̃ is linear, i.e.,

W̃ (αx + (1 − αy)) = αW̃ (x) + (1 − α)W̃ (y). Since W is linear, the uniqueness of von

Neumann-Morgenstern utility functions implies that W̃ = β+δW for some β, δ ∈ IR, δ > 0.
Let x, z be two choice problems that offer commitment to the consumption c in the

first T periods. The choice problem x0 yields the continuation problem x in period T + 1

whereas z0 yields the continuation problem z in period T +1. IfW is not constant, we may

choose z0, z00 so that W (z0) 6= W (z00). Note that x → z as T → ∞ and hence continuity

requires that δT+1(W (x0)−W (z0)) → 0 as T → ∞. Clearly, this implies that δ < 1. We
conclude that U(µ) =

R
(u(c) + δW (y)) dµ(c, y) for some u : C → IR and δ ∈ (0, 1).
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Axiom 8 considers a situation whereW ({µ, ν}) = U(µ)+V (µ)−V (ν) andW ({µ, η}) =
U(µ) + V (µ) − V (η) and requires that W ({µ, ν}) = W ({µ, η}) when µ and ν yield the

same distribution of current consumption. But this implies that V (ν) = V (η) when ν

and η yield the same current consumption and hence V (ν) =
R
v(c)dν(c, z) for some

v : C → IR. Non-degeneracy is used to establish the existence of the alternatives µ, ν, η

with the desired properties. Note that Axiom 8 is only used to establish the particular

form of the temptation utility. Without it and without the non-degeneracy assumption,

we would get an analogous representation with an unrestricted linear temptation utility

V : ∆→ IR.

We refer to non-degenerate preferences that satisfy Axioms 1−8 as dynamic self control
(DSC) preferences. If some W of the form given in Theorem 1 represents the preference

relation º, we refer to the corresponding (u, v, δ) as a representation of º and sometimes
as the preference (u, v, δ). Note that the preference (u, v, δ) also implies a behavioral rule

for any given choice problem. The DM chooses µ ∈ z to solve

max
µ∈z U(µ) + V (µ)

where U and V satisfy Equation (1). Substituting for U and V , the DM with the DSC

preference (u, v, δ) chooses µ ∈ z to solve

max
µ∈z

Z
(u(c) + δW (z0) + v(c)) dµ(c, z0) (2)

For any (Borel measurable) function f : C × Z → IR, let

C(z, f) :=
½
µ ∈ z ¯̄ Z f(c, z)dµ(c, z) ≥

Z
f(c, z)dν(c, z) for all ν ∈ z

¾
Hence, the set C(z, u+δW +v) denotes the choices from z whereas C(z, v) denote the most
tempting alternatives in z. Theorem 2 below shows that for DSC preferences our definition

of self-control is equivalent to the intuitive definition of self-control as the ability to resist

temptation.

Theorem 2: (Gul and Pesendorfer (2001)) The DSC preference (u, v, δ) has self-control

at z iff C(z, v) ∩ C(z, u+ δW + v) = ∅.
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Proof: See Theorem 2 of Gul and Pesendorfer 2001.

The next result establishes that the representation provided in Theorem 1 is unique

in the sense that (u, v, δ) and (u0, v0, δ0) represent the same preference if and only δ = δ0,

and u0, v0 are a common affine transformation of u, v, that is,µ
u0

v0

¶
= α ·

µ
u
v

¶
+

µ
βu
βv

¶
for some α,βu,βv ∈ IR. Therefore, C(·, u + δW + v), the choice behavior of any DSC-

preference is well-defined, that is, depends only on the preference and not the particular

representation (u, v, δ).

Theorem 3: Let º be a DSC preference with a preference for commitment at some

z ∈ Z and let (u, v, δ) be a representation of º. Then, (u0, v0, δ0) also represents º if and
only if δ = δ0 and there exist α > 0,βu,βv ∈ IR such that u0 = αu+ βu and v

0 = αv + βv.

Theorem 3 assumes that º is a DSC preference with a preference for commitment at
some z. This implies that if (u, v, δ) represents º then u and v are not constant.7 (A DSC
preference is non-degenerate and hence u is not constant. Since º has a preference for

commitment at some z, it follows that v is not constant.) When v is constant, the DM has

a “standard” preference that can be represented by maximization of a discounted sum of

utilities. When u is constant, the DM is indifferent between all choice problems. In both

cases, the representation is not unique in the sense of Theorem 3. When u is constant, any

choice of v yields the same preference. When v is constant, replacing v with αu+ βv for

any α ≥ 0 yields the same (standard) preference. In particular, a constant v and v = u

are indistinguishable cases.

7 Conversely, if º is represented by (u, v, δ) with u and v not constant then º is a DSC preference
with a preference for commitment at some z.
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3. Preference Reversal

Experimental evidence on time preference has been the main motivation for research

on preference for commitment. In a typical experiment a subject is asked to choose between

a smaller, earlier and a larger, later reward. Subjects tend to reverse their choices from the

smaller, earlier reward to the larger, later reward as the delay to both rewards increases

(see, for example, Kirby and Herrnstein (1995)). Such a preference reversal is inconsistent

with standard, exponential discounting. The following example demonstrates that DSC

preferences are consistent with this experimental evidence.

Suppose there is one good and C = [0, 1]. Let z0 denote the choice problem in which

the only option is to consume c each period and let z1 denote a choice problem in which

the DM chooses between a reward α ∈ (0, 1) in period 1 and a reward β ∈ (0, 1) in period
2. Hence, z1 := {(c, zβ), (c + α, z0)} where zβ := {(c + β, z0)}. When the DM chooses

(c+ α, z0) from z1 he incurs no self-control cost and enjoys the utility u(c+ α) in period

1 and u(c) thereafter. When the DM chooses (c, zβ) from z1 he incurs a self-control cost

Sα := v(c)− v(c+ α)

and enjoys u(c) in period 1, u(c+ β) in period 2 and u(c) thereafter. Let

Dγ := u(c+ γ)− u(c)

be the utility gain associated with the reward γ ∈ {α,β}. The DM will choose the smaller,

earlier reward α if

u(c+ α) + δW (z0) = u(c+ α) + δu(c) + δ2W (z0)

> u(c) + v(c)− v(c+ α) + δW (zβ)

= u(c) + v(c)− v(c+ α) + δu(c+ β) + δ2W (z0)

which is equivalent to

Sα > δDβ −Dα

Now consider a choice problem where both rewards are delayed by one period. In

that case, period 1 consumption in fixed at c and the choice is between the reward α
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in period 2 and the reward β in period 3. The corresponding choice problem is z2 =

{(c, {(c + α, z0)}), (c, {(c, zβ)})}. Note that the DM makes his only non-trivial choice in

period 1, before any temptation is experienced. The DM chooses the reward α if

u(c) + δu(c+ α) + δ2W (z0) = u(c) + δu(c+ α) + δu(c) + δ3W (z0)

> u(c) + δu(c) + δW (zβ)

= u(c) + δu(c) + δ2u(c+ β) + δ3W (z0)

which is equivalent to

δDβ −Dα > 0

In z2, the DM experiences no self-control costs with either choice and confronts the usual

trade-off between earlier smaller reward and a later larger one. We observe a “preference

reversal” if

Sα > δDβ −Dα > 0

When both of the inequalities above hold, the smaller, earlier reward is chosen if the reward

can be consumed immediately, that is, in the decision-period. But, if both rewards are

delayed by one period, the larger, later reward is chosen.

If we only observe the DM’s consumption paths, behavior appears to be inconsistent

with a recursive preference. The DM chooses {c + α, c, c, ...} over {c, c + β, c, ...} but
{c, c, c+ β, c, ...} over {c, c+ α, c, c, ...}. However, the behavior of individual’s analyzed in
this paper also depends on the temptations in the decision periods. If the DM chooses

in period 1 between a reward α in period 1 and a reward β in period 2, the reward α is

tempting because it leads to higher consumption in the decision period. On the other hand,

if the DM chooses in period 1 between a reward α in period 2 and a reward β in period

3, the consumption in the decision period is independent of the choice and therefore both

choices are equally tempting. The DM makes a different choice in z1 than in z2 because

the two problems imply different temptations in the decision period.
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4. Measures of Preference for Commitment and Self-Control

In this section, we introduce measures that allow us to compare the preference for

commitment and the self-control of decision makers. These measures are based on similar

concepts in Gul and Pesendorfer (2001). The versions here are weaker to facilitate the

analysis of the applications considered in the next section.

To distinguish between differences in impatience and differences in preference for com-

mitment (or self-control) we compare agents’ behavior in choice problems that involve no

intertemporal trade-offs. A choice problem z is intertemporally inconsequential if every

choice µ ∈ z has the same marginal distribution over continuation problems. Recall that
for µ ∈ ∆(C × Z), µ1 denotes the marginal on C (current consumption) and µ2 denotes

the marginal on Z (continuation problem). To simplify the notation below, we write u(µ1)

and v(µ1) instead of
R
C u(c)dµ

1 and
R
C v(c)dµ

1.

Definition: z is intertemporally inconsequential (II) if, for every µ, ν ∈ z, µ2 = ν2. Let

ZII denote the set of all intertemporally inconsequential IHCP’s.

The definition below presents a comparative measure of preference for commitment

and of self-control.

Definition: The preference º1 has more instantaneous preference for commitment [self-
control] than º2 if, for every z ∈ ZII , º2 has preference for commitment [self-control] at
z implies º1 has preference for commitment [self-control] at z. The preferences º1 and
º2 have the same instantaneous preference for commitment [self-control] if º1 has more
instantaneous preference commitment [self-control] thanº2 andº2 has more instantaneous
preference for commitment [self-control] than º1.

Our objective is to characterize these measures in terms of the representation (u, v, δ).

This characterization assumes that the preferences are regular. A DSC preference º with
representation (u, v, δ) is regular if and only if v is not an affine transformation of u.

Consider two regular preferences ºi with representations (ui, vi, δi), i = 1, 2. Let

z = {µ, ν} ∈ ZII be a two element choice problem with u1(µ
1) > u1(ν

1). If º1 has no
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preference for commitment at z then it must be that v1(µ
1) ≥ v1(ν1). Now suppose that

there are non-negative constants αu,αv,βu,βv such that

u2 =αuu1 + αvv1

v2 =βuu1 + βvv1

It follows that u2(µ
1) ≥ u2(ν1) and v2(µ1) ≥ v2(ν2) and hence º2 has no preference for

commitment at x. Theorem 4 in Appendix C demonstrates that this condition is necessary

and sufficient for º1 to have more preference for commitment than º2.
An analogous result characterizes our measure of self-control. Consider the two ele-

ment choice problems z = {µ, ν} ∈ ZII with u1(µ1)+v1(µ1) > u1(ν1)+v1(ν1). Then, µ is
the optimal choice from z. If º1 has no self-control at x then it must be that µ is at least
as tempting as ν and hence v1(µ

1) ≥ v1(ν1). Now suppose that there are non-negative
constants αu,αv,βu,βv such that

u2 + v2 = αu(u1 + v1) + αvv1

v2 = βu(u1 + v1) + βvv1

It follows that u2(µ
1) + v2(µ

1) ≥ u2(ν
1) + v2(µ

1) and v2(µ
1) ≥ v2(ν

2). Therefore, º2
has no self-control at z. Theorem 5 in Appendix C demonstrates that this condition is

necessary and sufficient for º1 to have more self-control than º2.
The following corollary analyzes situations where decision makers either have the same

preference for commitment and differ with respect to their self-control or have the same

self-control and differ with respect to their preference for commitment. Since we only

make instantaneous comparisons in this paper, henceforth, without risk of confusion we

say “preference for commitment” and “self-control” rather than “instantaneous preference

for commitment” and “instantaneous self-control”.

Corollary 1: Let ºi, i = 1, 2 be regular DSC preferences with representation (ui, vi, δi).
Then,

(i) º1 and º2 have the same preference for commitment and º1 has more self-control
than º2 if and only if there exist γ ≥ 1 and δ2 ∈ (0, 1) such that (u1, γv1, δ2) represents
º2;
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(ii) º1 and º2 have the same self-control and º2 has more preference for commitment
than º1 if and only if there exist γ ≥ 1 and δ2 such that (u1 + (1 − γ)v1, γv1, δ2) is a

representation of º2.

Proof: See Appendix.

Part (i) of the Corollary says that keeping u constant and changing v to γv for some

γ > 1 is equivalent to a decrease in self-control without changing preference for commit-

ment. Part (ii) of the Corollary says that keeping u + v constant and changing v to γv

for some γ > 1 is equivalent to increasing preference for commitment without changing

self-control. We utilize this observation in our analysis of competitive equilibria.

5. Competitive Economies

In this section, we present examples of competitive economies with consumers who

have DSC preferences. There are n consumers, i ∈ {1, ..., n} each with a DSC preference
(ui, vi, δi). We assume that each preference is regular, that is, vi is not an affine transfor-

mation of ui. This ensures that we can apply the results of Corollary 1 when using the

comparative measures of preference for commitment and self-control.

We also assume the functions ui and vi are strictly increasing; vi is convex and con-

tinuously differentiable; ui + vi is concave and continuously differentiable. The curvature

assumptions imply that the temptation utility is risk-neutral or risk loving and the commit-

ment utility is risk-neutral or risk averse. These assumptions ensure that the maximization

problems below have concave objective functions. Behaviorally, a risk loving temptation

utility implies that the consumer is tempted by instantaneous gambles, that is, gambles

that yield consumption in the current period. Since u+ v is assumed to be concave, this

temptation does not translate in risk-loving behavior.

There are L physical goods, indexed by l ∈ {1, ..., L}; the consumption in each period
is contained in the compact set C where C := {c ∈ IRL+ | 0 ≤ cl ≤ k}.

5.1 Deterministic Exchange Economies

We first consider a deterministic exchange economy with complete markets. Con-

sumers take prices as given and must choose a consumption vector each period subject to

16



an inter-temporal budget constraint. Consumer i has endowment ωi = (ωi1, . . . ,ωit, . . .).

Endowments are bounded away from zero, that is, there is an ε > 0 such that ωitl > 0 for

all i, t, l. We denote with ω = (ω1, . . . ,ωn) the vector of endowments.

The sequence p = (1, . . . , pt, . . .) ∈ (IRL+)∞ denotes the period 1 prices of consumption.
For a given price p we now define the choice problem of a consumer. Let b ≥ 0 denote the
consumer’s wealth at the start of period t in terms of period t consumption. The consumer

must choose (c, b0) in the budget set

Bt(p, b) := {(c, b0)|cpt + b0pt+1 = bpt, c ∈ C, b0 ≥ 0}

The corresponding IHCP is denoted by xt(p, b) and defined recursively as

xt(p, b) = {(c, xt+1(p, b0)) |(c, b0) ∈ Bt(p, b)}

For a consumer with DSC preference (ui, vi, δi), the utility of the IHCP xt(p, b) is:

Wi(xt(p, b)) = max
(c,b0)∈Bt(p,b)

{ui(c) + vi(c) + δiWi(xt+1(p, b
0))}− max

(c,b0)∈Bt(p,b)
vi(c)

= max
(c,b0)∈Bt(p,b)

{(ui(c) + vi(c) + δiWi(xt(p, b
0))}− max

{c | ptc≤b}
vi(c)

Hence, given the prices p and wealth b1, the consumer will choose a sequence (ct, bt+1)

that solves

max
(ct,bt+1)∈Bt(p,bt)

ui(ct) + vi(ct) + δiWi(xt+1(p, bt+1)) (3)

Let ci = (c1i, . . . , cti, . . .) denote consumer i’s consumption choices. Note that when a

consumer chooses a feasible ci, the corresponding b2, b3, . . . , are determined uniquely. We

say that ci is optimal for consumer i at prices p and wealth b1 if ci solves (3). The vector

c = (c1, . . . , cn) denotes an allocation for the economy.

If the maximization problem (3) has an interior solution, the following first order

condition must hold for all t ≥ 1:

u0i(ct) + v
0
i(ct) = δ

pt
pt+1

(u0i(ct+1) + v
0
i(ct+1)− v0i(bt+1)) (4)

To get an intuition for equation (4) suppose the consumer reduces consumption in period

t by a small amount to finance a corresponding increase in consumption in period t + 1.
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The left hand side represents the (temptation and commitment) utility loss due to the

reduction in period t consumption. The term δ pt
pt+1

(u0i(ct+1) + v
0
i(ct+1)) represents the

(temptation and commitment) utility gain due to the increase in period t+1 consumption.

The reduction in period t consumption increases the wealth in period t+ 1 by pt
pt+1

units.

Therefore, the most tempting consumption choice in period t+1 changes as a result of the

reduction in period t consumption. The term δ pt
pt+1

v0i(bt+1) represents the increase in the

temptation utility of the most tempting choice in period t + 1. This term has a negative

sign since it increases the cost of self-control. It is this last term that distinguishes DSC

preferences from standard time separable utility functions.

Definition: The pair (p, c) is an equilibrium for the economy ((ui, vi, δi),ωi)
n
i=1 if (i) for

all i, ci is optimal at prices p and wealth p · ωi; (ii)
Pn
i=1 ci =

Pn
i=1 ωi.

Proposition 1: An equilibrium for the deterministic exchange economy exists.

Proof: see Appendix.

To examine the welfare properties of equilibria we must define the appropriate notion

of efficiency. Recall that a consumer’s utility depends not only on his consumption but also

on the possible consumption vectors each period. Therefore, the definition of admissible

interventions for a social planner and hence the definition of Pareto efficiency must specify

not only the feasible allocations of consumption but also the ways in which the social

planner can restrict the set of feasible choices for consumers. If, for example, the social

planner can impose arbitrary restrictions on choice sets then he can improve welfare simply

by restricting the consumers’ choice sets to the singleton set containing only the equilibrium

allocation.

We assume that the planner may re-allocate resources or change prices but cannot put

additional restrictions on the feasible choices of consumers. Hence, the consumers’ choice

problem in period t must be of the form xt(p, b) for some price vector p and some wealth

b. Since we permit a limited set of interventions for the planner we obtain a weak notion

of Pareto efficiency. We will show that competitive equilibria with a representative DSC

consumer may fail even this weak notion of efficiency.
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Definition: The pair (p, c) is admissible if for all i ci is optimal at prices p, wealth

p · ci and if
Pn
i=1 ci ≤

Pn
i=1 ωi. An admissible pair (p, c) is Pareto optimal if there is no

admissible (p0, c0) with Wi(x1(p
0, p0 · c0i)) > Wi(x1(p, p · ci)) for all i.

The following example demonstrates that a competitive equilibrium may not be Pareto

optimal.

Example: Consider an economy with two physical goods and a representative consumer.

The utility function is given by

u(c1, c2) = log c1 − λc1 + c2

and

v(c1, c2) = λc1

The consumption set is C = [0, 2]2, the endowment is (1, 1) in every period and λ ∈ (0, 12).
Consider a policy where the planner confiscates (and destroys) ² > 0 units of good 1 in

every period. For ² small, this policy increases the consumer’s welfare. A more detailed

calculations can be found Appendix D. Here we provide the intuition. Recall that the

cost of self-control in period 1 is the equilibrium value of the temptation utility λ(1 − ²)
minus the maximal temptation utility. The maximal temptation utility is achieved by

converting all wealth into current consumption of good 1. In equilibrium, the reduction in

the endowment of good 1 has two effects: first it decreases the equilibrium consumption of

good 1, second it increases the price of good 1. The first effect reduces welfare while the

second effect increases welfare by reducing the number of units of good 1 the consumer can

afford in period 1 and hence reducing the cost of self-control. For the particular functional

forms we have chosen, the second effect dominates the first. Note that the government

could also levy a tax on good 1 and use the proceeds to buy (and destroy) good 1. This

policy is equivalent to the confiscation policy and hence the example shows that such a

tax policy may be welfare improving.

Next, we examine steady state equilibria of a particular class of deterministic exchange

economies. We assume that there is one physical good, i.e., L = 1 and that consumers
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share a common discount factor δ. In addition, all consumers have the same preference

for commitment but may differ in their self-control. By Corollary 1 this implies that there

is (u, v, δ) and (λ1, ...,λn) with λi > 0 such that i’s preferences are given by (u,λiv, δ). If

λi > λj then j has more self-control than i.

In a steady-state equilibrium each consumer’s consumption is constant over time and

prices are characterized by a fixed interest rate r. Clearly, for an economy to have a steady

state equilibrium, the aggregate endowment must be constant over time. Let ω̄ ∈ C be

the aggregate endowment in any period and let let pr := (1, (1 + r)−1, ..., (1 + r)−t, ...)

be the price sequence corresponding to the interest rate r. The interest rate r and the

consumption vector (c1, . . . , cI) ∈ CI are a steady state equilibrium for the aggregate

endowment ω̄ ∈ C if (1)
PI
i=1 ci = ω̄ and (2) (pr, c) with ci = (ci, . . . , ci, . . .) is an

equilibrium for the economy with endowments c.

Proposition 2 shows that to each aggregate endowment there is a unique steady-state

equilibrium. Hence, steady-state allocations are uniquely determined by the aggregate

resources and the DSC preferences.

Proposition 2: Suppose that u + λiv is strictly concave for all i and limc→0(u0(c) +

v0(c)) → ∞. Then, there is a unique steady-state equilibrium (r, c1, . . . cI) for every ag-

gregate endowment ω̄. Moreover, ci > cj iff λi < λj , that is, consumer i’s steady state

consumption is higher than consumer j’s if and only if i has more self-control than j.

Proof: See Appendix.

Note that the conditions of Proposition 2 guarantee an interior solution to the con-

sumer’s maximization problem. For a steady state equilibrium (r, c1, . . . cI), equation (4)

therefore implies that

(δ(1 + r)− 1) (u0i(ci) + v0i(ci)) = δ(1 + r)v0i(bi) (40)

where bi =
ci(1+r)

r denotes the (constant) wealth of consumer i. Since v0 > 0 we must have

δ(1 + r) > 1. The concavity of ui + vi and the convexity of vi imply that to each interest

rate r with δ(1+ r) > 1 there is a unique ci consistent with equation (4
0). The uniqueness

of the steady state then follows from the fact that a higher interest rate implies a higher

steady state consumption for all consumers.
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For standard consumers with vi ≡ 0 the steady state interest rate satisfies δ(1+r) = 1.
In that case, any consumption ci satisfies equation (4

0) and therefore there are many

possible steady state equilibria for any aggregate endowment. By contrast, aggregate

endowment and the distribution of preferences uniquely determine the steady state in an

exchange economy with DSC preferences.

As an example, let u(c) = log c and v(c) = c. In that case, (4) simplifies to

1 + λic = δ(1 + r)

Setting γi = 1/λi, the unique solution to these equations and the aggregate resource

constraint is

c =
ω̄γiP
i γi

and

1 + r =
ω̄ +

P
i γi

δ
P
i γi

Hence, a mean preserving spread in the γi’s will leave the interest rate unchanged but

result in greater inequality in the steady state. On the other hand, an increase in ω̄, the

aggregate endowment, will leave dispersion unchanged but lead to an increase in the steady

state interest rate.

DSC preferences have the feature that the marginal rate of substitution between con-

sumption in period t and t+ 1 depends on the maximal consumption in period t+ 1 and

hence on the consumer’s wealth in that period. Therefore, DSC preferences have similar

implications for time preference as the utility functions introduced by Uzawa (1968) and

Epstein and Hynes (1983). In these models, the marginal rate of substitution between pe-

riods t and t+1 may depend on the consumption in all periods t0 ≥ t and hence implicitly
on the wealth in period t+ 1.

5.2 Borrowing constraints

In this section we illustrate the effect of borrowing constraints on equilibrium con-

sumption and prices. Consider the following example of a deterministic exchange economy
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with one physical good. There are two consumers with identical preferences (u,λv, δ)

where

u(c) = c− λc2

2
, v(c) =

λc2

2

with δ > α,λ ∈ (0, δ−α3δ ) and α =
√
7−1
3 . The aggregate endowment is 3 every period and

ω1t = 3− ω2t =
n
2 if t odd
1 if t even

When there are no borrowing constraints this economy has a unique equilibrium in which

both consumers consume 32 in all but the first periods. To see this, note that for the exam-

ple considered in this section the first order condition for the consumer i’s maximization

problem (equation (4)) implies

1 =
pt
pt+1

δ(1− λbit+1) (400)

In equilibrium, the first order condition (400) can only be satisfied for both consumers if

b1t+1 = b2t+1 for all t ≥ 1. Therefore, both consumers must have the same wealth and
the same consumption in all but the first periods. Period 1 consumption is such that the

wealth of both individuals is the same starting in period 2. Equilibrium therefore predicts

consumption smoothing by both consumers. The equilibrium prices satisfy

pt
pt+1

=
2

1 + δ −p(1− δ)2 + 6δλ

Now assume that consumers face a borrowing constraint. In particular, the maximum

amount each consumer can borrow is next period’s endowment. Let s denote a consumer’s

savings at the end of the previous period. Consumer i’s budget set is denoted Bit(p, s)

where

Bit(p, s) = {(c, s0) | spt−1 + ptωit = pts0 + ptc, −s0 ≤ ωit+1, c ∈ C}
The first order condition of the consumer’s optimization problem is again given by (400).

The borrowing constraint affects the maximally feasible consumption bit. Suppose con-

sumers choose s = 0 in all periods and consume their endowment. Then bit = 3 (the sum

of current and next period’s endowment). If

pt
pt+1

=
1

δ(1− 3λ)
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then this choice satisfies the first order condition (400). Hence, ci = ωi and the price

sequence p with pt = (δ(1− 3λ))t−1 is an equilibrium of the economy with borrowing

constraints. Note that in equilibrium the borrowing constraint is not binding.

This example illustrates the consumers’ desire to smooth the maximally feasible con-

sumption. Smoothing of the maximally feasible consumption is achieved by refraining from

consumption smoothing. Since v is convex, it economizes on the cost of self-control. Note

that we have chosen a linear u + v and hence have eliminated the consumer’s incentive

to smooth actual consumption. In general, both motives for consumption smoothing are

present when consumer’s have DSC preferences.

The interest rate r = pt
pt+1
− 1 in the equilibrium with the borrowing constraint is

lower than the interest rate when there is no borrowing constraint. To see why this is the

case, note that in the equilibrium with no borrowing constraints the maximally feasible

consumption bt+1 is greater than 3 for both consumers. The introduction of a borrowing

constraint therefore reduces bt+1 and hence the cost of self-control. Equation (4
00) then

implies that pt/pt+1 must adjust downwards to offset this effect.

In the equilibrium above, consumption tracks income because borrowing opportunities

are much greater in low income periods than in high income periods. The individual

refrains from shifting funds to low income periods to avoid increasing the cost of self-

control. With a different borrowing constraint one could obtain the opposite result: that

is, consumption could be larger in periods where the individual has low endowment. For

example, if the individual may borrow 1 unit independent of his future endowment, then

equilibrium consumption in periods of high endowment could be lower than in periods of

low endowment.

5.3 Stochastic, Representative Agent Economy

In this subsection, we analyze a simple example of a stochastic representative consumer

economy (Lucas (1978)). There is one consumer who owns a productive asset that yields

a dividend in each period. Dividends are identically and independently distributed across

time and denoted by the random variable d. Let D denote the realized value of d. We

assume that d has mean 1, variance σ2 and support [0, 2].
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Let s denote the asset holdings of the representative consumer at beginning of the

current. Then, the consumer observes D, the realization of dividends in the current period,

and chooses consumption c ∈ C := [0, 4]. Given the price of the asset p, the choice

of c determines s0, the consumer’s holding of the asset for next period. The price of

consumption is normalized to 1. The price of the productive asset depends on the dividend

realization and is described by the function p : [0, 2]→ IR+. Let

B(s,D) := {(c, s0) | p(D)s+Ds = p(D)s0 + c}

denote the consumer’s budget set given the asset holding s and the realization of the

dividend D.

It is easy to see that the decision problem of the representative consumer defines an

IHCP for each initial asset holding s and each initial value of the dividend D. Let y(s,D)

denote this IHCP. Similarly, let y(s, d) denote the IHCP confronting the representative

consumer before the current period dividend is realized.

The utility of y(s,D) for a consumer with the DSC preference (u, v, δ) satisfies

W (y(s,D)) = max
(c,s0)∈B(s,D)

{u(c) + v(c) + δW (y(s0, d))}− v([D + p(D)]s)

Hence, a consumer with the DSC preference (u, v, δ) chooses consumption to solve

max
(c,s0)∈B(s,D)

u(c) + v(c) + δW (y(s0, d)) (5)

The first order conditions for a solution to (5) is

p(D)(u0(ct) + v0(ct)) =δE {(u0(c̃t+1) + v0(c̃t+1))(p(d) + d))}
− δE {v0(st+1(p(d) + d))(p(d) + d)}

(6)

In a competitive equilibrium ct = D, st+1 = 1, and c̃t+1 = d.

To illustrate the effect of temptation on asset prices we consider the following example:

u(c) = c− λc2

2
, v(c) =

λc2

2
, 0 < λ <

1

2

By Corollary 1, an increase in λ corresponds to an increase in the consumer’s preference

for commitment while keeping self-control constant. Note that for λ = 0 this consumer
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is a standard risk-neutral decision-maker. For λ > 0 the consumer remains risk-neutral

with respect to instantaneous consumption gambles, that is, gambles that replace current

consumption c with a lottery of consumptions with mean c. However, the consumer is

risk averse with respect to investments that affect future wealth. To illustrate this, we

compute the risk premium, that is, the difference in the expected return between a risky

and a risk-free asset, for this economy.

Equation (6) applied to this example together with the equilibrium conditions yield a

constant price p that satisfies

p = δ(1 + p− 2λp− λp2 − λ(σ2 + 1))

Let 1
1+r denote the price of a risk-free asset that pays off one unit of consumption in the

next period, irrespective of the dividend realization. In equilibrium, (see Appendix D for

details) the risk-free rate must satisfy

1

1 + r
= δ(1− λ(p+ 1))

Let R be the expected return on the productive asset, that is, 1 + R = ED+p
p = 1+p

p .

Appropriate substitution (see Appendix D) yields the following expression for the equity

premium:

R− r = λσ2
δ(1 + r)

p

The equity premium is positive for λ > 0 and increasing in λ (see Appendix D for detailed

calculations).

The utility of an individual with DSC preferences depends both on actual and maxi-

mally feasible consumption (wealth). When u+v is concave and v is convex, there are two

sources of risk aversion. First, as with standard concave utility functions, the consumer is

averse to consumption risk. Second, the consumer is averse to risk in wealth because the

cost of self-control is convex. Our example illustrates the second source of risk aversion.

In the example, the consumer is risk-neutral with respect to consumption (u+ v is linear)

but risk averse with respect to realizations of future wealth. Since investment in a risky

asset implies that future wealth is uncertain, risky assets must offer a risk premium.
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When choosing among lotteries that promise immediate (consumption) rewards the

DSC consumer exhibits less risk aversion than when choosing among assets that promise

risky future returns. In the former case, self-control costs are sunk and hence do not affect

the consumer’s choice whereas in the latter case self-control costs add to the consumer’s

risk aversion.

6. Sustainable Debt

In this section we show that for an agent with DSC preferences, incentive compatible

debt contracts are feasible even in an environment where the only punishment for default

is exclusion from future borrowing. Hence, the agent may save funds at the market interest

rate even after default. This restriction on feasible punishments after default is particularly

relevant in the case of sovereign debt. With standard preferences (i.e. no preference for

commitment), Bulow and Rogoff (1989) show that in this environment there is no incentive

compatible contract that allows the individual to borrow.

We assume that there are no investment opportunities that offer commitment. Thus,

the consumer always has the option of exchanging his savings for current consumption.

This assumption may be justified by allowing collateralized loans after default. To see

how this works, suppose that in period 1 the consumer invests in a contract that offers a

return of 1 unit of consumption in period 3. In period 2 the consumer is able to use that

contract as collateral for a loan on current consumption. Under this hypothesis there are

incentive compatible contracts that allow individuals with DSC preferences to borrow. In

the following we provide an example of such a contract.

Let ω = (0, 0, 4, 0, 0, 4, 0, 0, 4 . . .) be the agent’s endowment. The agent borrows and

lends at a fixed interest rate r. A generic debt contract is denoted (β1,β2,β3) with the

understanding that βj is the required outstanding balance at the end of any period 3t+ j.

If, at the end of any period, the agent’s balance is not at the required level, then he is

excluded from borrowing in all future periods. The individual may always invest funds at

a rate r > 0, even after default.
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The contract (β1,β2,β3) is incentive compatible if for any feasible debt level in period

t, there is an optimal plan in which the consumer does not default. Simple calculations

establish

β1 = (1 + r)β3 + c3n+1

β2 = (1 + r)β1 + c3n+2

β3 = (1 + r)β2 + c3n − 4
for n = 1, 2, . . .. Since consumption is nonnegative, the above equations imply that if there

is any borrowing (i.e., βj > 0 for some j) then β2 ≥ β1 ≥ β3. Hence, borrowing occurs if

and only if β2 > 0 and the maximal level of debt is β2. Finally, the above three equations

imply

c3n+2
(1 + r)2

+
c3n+1
(1 + r)

+ c3n = 4− [(1 + r)− 1

(1 + r)2
]β2 (7)

for all n ≥ 1. Under any contract with β2 > 0, a standard agent with no preference for

commitment has an incentive to default. To see this, suppose, instead of repaying the

debt the individual “deposits” c3n+1
1+r +

c3n+2
(1+r)2 into a savings account. By (7) this is feasible

and yields strictly more than c3 units of consumption for period 3 whenever β2 > 0.

This argument is a special case of the argument given by Bulow and Rogoff (1989) to

demonstrate that without direct penalties there can be no borrowing.

However, if the agent has a preference for commitment, then incentive compatible

borrowing is possible. Let (u, v, δ) be the agent’s utility function, where

u(c) =
n
2c if c ≤ 1
1 + c if c > 1

v(c) = λc

Assume that δ is close enough to 1, so that α := 1−δ2
δ3 + 1−δ4

δ4 < 2δ2−1
2δ2+δ . Let λ :=

α
1−α and

λ̄ := 2δ2−1
1+δ .

Proposition 3: If λ ∈ (λ, λ̄) then for all r ≤ 1−δ
δ , the debt contract β1 = 1,β2 =

2 + r,β3 = 0 is incentive compatible.

Proof: First, consider the optimal program for an agent who cannot borrow starting in

period 3 (the period when he will be tempted to default). Note that it cannot be optimal

to consume more than 1 in periods other than 3t. To see this recall that (1 + r)δ ≤ 1
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and consumption beyond 1 has a marginal utility of 1 in each period. Hence avoiding a

self-control penalty makes it optimal to consume less than or equal to one in all periods but

3t. On the other hand, consuming less than 1 in any period cannot be optimal: suppose

that the individual consumes less than 1 in period 5. Consider an increase in period 5

consumption financed by a decrease in period 3 consumption. The marginal utility of

consumption in period 5 is 2, discounted by two periods yields 2δ2. The marginal utility of

consumption in period 3 is 1. In addition, the transfer of resources from period 3 to period

5 increases self-control costs in periods 3 and 4. The marginal increase in self-control costs

is λ(1 + δ). Since λ < λ̄, the increase of period 5 consumption increases payoff. A similar

argument holds for period 4 and hence the individual will consume exactly one unit in

periods 3t+ 1, 3t+ 2, t ≥ 1. Therefore, the optimal utility starting from any period 3t is:

W 3
d =

1

1− δ3

·
5− 1 + λ

1 + r
− 1 + λ

(1 + r)2
+

µ
2− λ

1 + r

¶
δ + 2δ2

¸
Now, consider the consumer who does not default. In period 3t+2, the continuation utility

of the plan is

W 3
p =

1

1− δ3
£
5− (1 + λ)(1 + r)− (1 + λ)(1 + r)2 + 2δ + 2δ2

¤
Straightforward calculations, using the facts r ≤ 1−δ

δ and λ > λ establish that W 3
p > W

3
d .

Therefore, the individual has no incentive to default in any period 3t + 2. But this is

the period with the highest incentive to default. Hence, the debt contract is incentive

compatible.

The idea behind Proposition 3 extends to other utility functions: compared to the

savings program, the borrowing program leads to a lower self-control costs in periods 3t+1.

The reason is that an agent who enters period 5 with a debt (1+r)β1 is extended additional

credit equal to β2−(1+r)β1 > 0. These funds are not available to the agent in period 4 and
therefore he does not suffer the self-control costs associated with “transferring” them to

period 5. Unlike savings, “credit-worthiness” is not an asset that can be used as collateral.

Therefore, the commitment offered by the debt contract cannot be undone in the open

market.
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7. Conclusion

The starting point of the literature on dynamic inconsistency is a non-recursive pref-

erence º1 over consumption streams {ct}∞t=1. Then, it is assumed that the preference ºτ

over consumption streams starting at time τ is the same as º1. Since º1 is not recursive
this implies that the conditional preferences induced by º1 on consumption streams start-
ing at date τ is not the same as ºτ . That is, there exists some {c1, . . . , cτ−1, cτ , , . . .} and
{c1, . . . , cτ−1, ĉτ , . . .} such that

{c1, . . . , cτ−1, cτ , . . .} º1 {c1, . . . , cτ−1, ĉτ , . . .}
and {ĉτ , . . .} Âτ {cτ , . . .}

This “reversal” of preference is called dynamic inconsistency and the resulting preference

for commitment is its significant behavioral implication.

In contrast, the approach of Gul and Pesendorfer (2001) and the current paper is to

take a single preference, not over consumption, but over a class of choice problems and to

permit a strict preference for a smaller set of options. In our approach, this preference for

commitment arises not from a change in preference but from a desire to avoid temptation.

In this section, we focus on the connections between these two approaches. We refer to

the first as the preference reversal approach and to ours as the preference for commitment

approach.

The goal of any economic application is to relate parameters of preferences (demand

elasticities, measures of risk aversion, etc.) to the chosen (random) consumption sequences

in specific choice problems (utility maximization subject to budget constraints) and then

to the equilibrium values of the parameters that define those choice problems (prices and

wealth). The two approaches achieve this goal in different ways. In the preference reversal

approach, it is postulated that at each τ the agent behaves in a manner that maximizes ºτ

given the predicted behavior of his subsequent selves. For finite horizon choice problems

with a finite set of choice at each τ , this specification, together with a rule that describes

how the agent resolves ties, establishes an unambiguous relationship between preferences

parameters and predicted consumption paths. In other situations, technical and conceptual

difficulties are dealt with in a game-theoretic manner. Hence, the agent at each time period
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τ is treated as a different “player” and the predicted consumption paths are determined

as the subgame perfect Nash outcomes of this game.

In the preference for commitment approach agents preference relation over a class of

choice problems much larger than the structured class relevant for the particular applica-

tion is taken as primitive. Thus, a very general “indirect utility function” that not only

permits comparison of budget sets but also arbitrary compact sets is specified. Then, a

revealed-preference criterion is used to relate this utility function over choice problems to

the agent’s choice over consumption plans (i.e., to determine the direct utility function).

A consequence of the preference reversal approach is that a given choice problem may

not have a unique payoff associated with it. From a game-theoretic perspective, this is

not surprising; we almost never expect all equilibria of a given game to yield the same

payoff for a particular agent. In a multi-person context, subgame perfect Nash equilibrium

is meant to capture a rest point of the player’s expectations and strategizing. Then, the

multiplicity of such equilibria is a reflection of the fact that no single person controls the

underling forces that might lead to the particular rest point.8

But this multiplicity is more difficult to understand within the context of a single

person choice problem, even if the person in question is dynamically inconsistent. In that

case, the game-theoretic argument for multiplicity loses much of its force since it should be

straightforward to re-negotiate one’s self out of an unattractive continuation equilibrium.

And, foresight of this renegotiation would lead to the unraveling of the original plan. More

generally, the notion of (subgame perfect) Nash equilibrium is a tool for the analysis of

non-cooperative behavior, and its appropriateness often rests on the implicit assumption

of “independent” behavior and absence of communication. Therefore, analyzing the inter-

action between the agent at time τ and his slightly modified self at time τ +1 as the Nash

equilibrium of a game may not be appropriate.9

As demonstrated by Theorem 2, multiplicity does not arise in the preference for com-

mitment approach. Every (u, v, δ) corresponds to a unique preference over choice problems.

Hence, all optimal plans yield the same payoff.

8 Nevertheless, multiplicity has lead to some concerns. Various notions of renegotiation-proofness have
emerged as an expression of these concerns. See Kotcherlakota (1996).

9 For a related critique of the use of Nash equilibrium to model a (different) departure from fully
rational behavior, see Piccione and Rubinstein (1997)
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Within the preference reversal approach, the only formulation of self-control entails

using multiplicity of equilibria to construct equilibria in which the decision-maker sustains

a desirable plan by threatening himself with less desirable behavior after a deviation. Self-

control is therefore not a property of the agent’s preference but of the selected equilibrium

and a theory of self-control requires a theory of equilibrium selection. By contrast, the

preference for commitment approach identifies self-control as a property of the agent’s pref-

erence. This allows us to identify parameters of the agent’s utility function that measure

the amount of self-control this agent has.

8. Appendix A: Infinite Horizon Consumption Problems

Our treatment of dynamic choice problems is similar to the “descriptive approach” in

Kreps and Porteus (1978) extended to an infinite horizon.

Let X be any metric space. The set K(X), of all non-empty compact subsets of X
(endowed with the Hausdorff metric) is itself a metric space. If X is compact then so is

K(X) (see Brown and Pearcy (1995) p. 222). Let ∆(X) denote the set of all measures
on the Borel σ-algebra of X. We endow ∆(X) with the weak topology. If X is compact

then ∆(X) is also compact and metrizable (with the Prohorov metric) (see Parthasarathy

(1970)). For any metric space X, we use B(X) to denote the Borel σ-algebra of X.
Given any sequence of metric spaces Xt, we endow ×∞t=1Xt with the product topology.

This topology is also metrizable and ×∞t=1Xt is compact if each Xt is compact (Royden
(1968) pp. 152, 166).

Let C denote the compact metric space of possible consumptions in each period.

Let Z1 := K(∆(C)). An element of Z1 is a one period consumption problem. Each

choice µ1 ∈ z1 ∈ Z1 is a probability measure on C. For t > 1, define Zt inductively

as Zt := K(∆(C × Zt−1)). Thus, each zt in Zt is a t period consumption problem. An
element µt ∈ zt is a probability measure on (C,Zt−1), that is, a probability measure on
consumption in the current period and t− 1 period consumption problems.

Let Z∗ := ×∞t=1Zt. The set of infinite horizon consumption problems (IHCP) are
those elements of Z∗ that are consistent, that is, for z = {zt}∞t=1 ∈ Z∗ the t − 1 period
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consumption problem induced by zt is equal to zt−1. To be more precise, let G1 : C×Z1 →
C be given by

G1(c, z1) := c

and let F1 : ∆(C × Z1)→ ∆(C), F̄1 : K(∆(C × Z1))→ K(∆(C)) be defined as follows:

F1(µ2)(E) := µ2(G
−1
1 (E))

F̄1(z2) := {F1(µ2) |µ2 ∈ z2}

for E in the Borel σ-algebra of C. Thus, F1(µ2) is the probability measure over current

consumption induced by µ2 ∈ z2 and F̄1(z2) is the one period choice problem induced by

z2. Proceeding inductively, we define Gt : C × Zt → C × Zt−1 by

Gt(c, zt) := (c, F̄t−1(zt))

and Ft : ∆(C × Zt)→ ∆(C × Zt−1), F̄t : K(∆(C × Zt))→ K(∆(C × Zt−1)) by

Ft(µt+1)(E) := µt+1(G
−1
t (E))

F̄t(zt+1) := {Ft(µt+1) |µt+1 ∈ zt+1}

for E ∈ B(C×Zt−1). Then, F̄ (zt) is the t−1 period choice problem induced by zt. Finally,
we define

Z :=
©{zt}∞t=1 ∈ Z∗ | zt−1 = F̄t−1(zt)∀t > 1ª

to be the set of all IHCP’s.

Lemma 1: Let X,Y be compact metric spaces and g : X → Y be a continuous function.

Then, (i) ḡ : K(X) → K(Y ) defined by ḡ(A) = {g(a) | a ∈ A} is also continuous. (ii) If g
is a bijection, then it is a homeomorphism.

Proof: Part (i) follows from exercise X, p. 222 in Brown and Pearcy (1995). Part (ii)

follows from Theorem 8.37, p. 207 in Brown and Pearcy (1995).

Note that F1 is continuous and hence by Lemma 1(i), so is F̄1. Then, an inductive

argument establishes that Ft, F̄t are continuous for all t ≥ 1. It follows that Z, the set of
all IHCP’s is compact.
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As described, every IHCP is an infinite sequence of finite choice problems. Alterna-

tively, an IHCP can also be viewed as a set of options, each of which results in a probability

distribution over current consumption and IHCP’s that describe the consumer’s situation

next period. Hence, the recursive view identifies an IHCP as an element of K(∆(C ×Z)).
Indeed, there is a natural mapping from Z to K(∆(C × Z)).

Theorem A1: There exists a homeomorphism f : Z → K(∆(C × Z)).

To illustrate how f identifies recursive IHCPs with IHCPs, consider the problem

{zt}∞t=1 ∈ Z and assume that each choice is deterministic, that is; each µt ∈ zt yields a
(certain) period 1 consumption, ct, and a (certain) continuation problem zt−1. Consider

a sequence {µt}∞t=1 such that µt ∈ zt and µt−1 = Ft−1(µt) for all t. Let (ct, zt−1) denote
the element of C × Zt−1 that occurs with probability 1 according to µt. Since {µt}∞t=1 is
consistent (µt−1 = Ft−1(µt)) it follows that ct = c1 for all t; that is, the period 1 consump-

tion induced by µt is the same as the period 1 consumption induced by µ1. Moreover,

the sequence of continuation problems z0 := {zt−1}∞t=2 is itself consistent. Hence, we can
identify {µt}∞t=1 with the unique element in ∆(C × Z) that puts probability 1 on (c, z0).
Repeating this procedure for every consistent sequence {µt} such that µt ∈ zt for all t
yields f(z).

The construction of the set of IHCP’s shares the following common structure with

several recent contributions. Let Y0 be a set with some property α and let C be an operator
that associates with each set that has property α a new set that also has property α. Let

Y1 := C(Y0) and Yt+1 := C(Y0 × Yt) for t ≥ 1 and let Y ∗ = ×∞t=0Yt. The goal is to identify
a subset Y of Y ∗ that is homeomorphic to the set C(Y0 × Y ∗).

In Mertens and Zamir (1985), Epstein and Zin (1989), Brandenburger and Dekel

(1993), Y0 is a topological space with some property (for example, a Polish space in Bran-

denburger and Dekel) and C(Y0) is a set of measures on Y0. In Epstein and Wang (1996),
Y0 is compact Hausdorff and C(Y0) are preferences over a set of functions from Y0 to [0, 1].
In Epstein and Peters C(Y0) is a set of upper hemi-continuous functions on Y0 and in Mar-
iotti and Piccione (1999), C(Y0) is the set of all non-empty compact subsets of the compact
set Y0. In our case, Y0 is a compact metric space and C(Y0) is the set of all non-empty,
compact subsets of probability measures on the Borel σ− algebra of Y0.
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Definition: LetX be a compact metric space. Let An ∈ K(X) for all n. The closed limit
inferior of the sequence An (denoted LAn) is the set of all a ∈ X such that a = liman

for some sequence {an} such that an ∈ An for every n. The closed limit superior of

An (denoted L̄An) is the set of all a ∈ X such that a = lim anj for some subsequence

{anj} such that anj ∈ Anj for every nj . The set LAn is the pointwise limit of An if
LAn = LAn = L̄An.

Lemma 2: Let X be a compact metric space. The sequence An ∈ K(X) converges to A
iff A = LAn.

Proof: The lemma follows from exercise X, p.132 in Brown and Pearcy (1995).

Definition: LetΥ1 := ∆(C) and for t > 1 letΥt := ∆(C,Z1, . . . , Zt−1). The sequence of

probability measures {µ̂t} ∈ ×∞k=1Υt is Kolomogorov consistent if margC,Z1,...,Zt−1 µ̂t+1 =
µ̂t for all t ≥ 1. Let Υkc denote all the set of all Kolomogorov consistent sequences in
×∞t=1Υt.

Lemma 3: For every {µ̂t} ∈ Υkc there exists a unique µ ∈ ∆(C × Z∗) such that
margCµ = µ̂1 and margC,...,Ztµ = µ̂t for all t ≥ 1. The mapping ψ : Υkc → ∆(C × Z∗)
that associates this µ with the corresponding {µ̂t} is a homeomorphism.

Proof: The first assertion is Kolmogorov’s Existence Theorem [Dellacherie and Meyer

(1978), p. 73]. Since every compact space is complete and separable, the second assertion

follows from Lemma 1 in Brandenburger and Dekel (1993).

Definition: Let Dt := {(z1, . . . , zt) ∈ ×tn=1Zt | zk = F̄k(zk+1)∀k = 1, . . . , t− 1}, Mc :=

{{µt} ∈ ×∞t=1∆(C)×∆(C × Zt) |Ft(µt+1) = µt ∀t ≥ 1} and Υc := {{µ̂t} ∈ Υkc | µ̂t+1(C×
Dt) = 1∀t ≥ 1}.

Lemma 4: For every {µt} ∈Mc there exists a unique {µ̂t} ∈ Υc such that µ̂1 = µ1 and
margC,Zt−1 µ̂t = µt for all t ≥ 2. The mapping φ :Mc → Υc that associates this {µt} with
the corresponding {µ̂t} is a homeomorphism.

Proof: Let m0 be the identity function on C and let m1 be the identity function on

C ×Z1. For t ≥ 2, define mt : C ×Zt → C × (×tk=1Zk) as follows: mt(c, zt) = (ĉ, ẑ1 . . . ẑt)

iff ĉ = c, ẑt = zt and ẑk−1 = F̄k−1(ẑk) for all k = 2, . . . , t. Note that mt is one-to-one
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for all t. Also, mt(C × Zt) = C × Dt. Let π0 and π1 be the identity mappings on C

and C × Z1 respectively. For t ≥ 2, let πt(c, . . . , zt) = (c, zt) for all (c, . . . , zt) ∈ C ×Dt.
Clearly, πt is continuous for all t. Since C×Dt is a compact set πt can be extended to all of
C× (×tk=1Zk) in a continuous manner. Hence, πt is continuous function on C× (×tk=1Zk)
and its restriction to C × Dt is the inverse of mt : C × Zt → mt(C × Zt). Since F̄t is
continuous for all t, so is mt.

For {µt} ∈ Mc, define {µ̂t} by µ̂t(E) := µt(m−1(E)) for all E ∈ B(C × (×tk=1Zk)).
Clearly, the {µ̂t} defined in this manner is the unique element in Υc such that µ̂1 = µ1 and
margC,Zt−1 µ̂t = µt for all t ≥ 1. Define φ({µt}) to be this unique {µ̂t} and note that φ is
one-to-one. Pick any {µ̂t} in Υc. Define {µt} as follows µ1 = µ̂1 and µt(E) := µ̂t(π−1t−1(E))
for all E ∈ B(C × Zt−1). Note that φ({µt}) = µ̂t hence, φ is a bijection. Observe that

the t’th element of φ({µt}) depends only on µt. Hence, without risk of confusion we write
φt(µt) to denote this element. Note that for any continuous real-valued function ĥ on

C × (×tk=1Zk) and h on C ×Zt,
R
ĥdφt(µt) =

R
ĥ ◦mtdµt and

R
hdφ−1t (µ̂t) =

R
h ◦ πtdµ̂t.

Hence, the continuity of φ and φ−1 follows from the continuity of mt and πt for all t.

Lemma 5: ψ(Υc) = {µ ∈ ∆(C × Z∗) |µ(C × Z) = 1}.

Proof: Let Γt = C ×Dt ×∞k=t+1 Zk for all t ≥ 1 and µ = ψ({µ̂t}). Observe that µ(Γt) =
µ̂t(C×Dt) = 1∀t if {µ̂t} ∈ Υc. Hence µ(C×Z) = µ(

T
t≥1 Γt) = limµ(Γt) = 1. Conversely,

if µ(C × Z) = 1 then µ(Γt) = 1∀t and hence there is a corresponding {µ̂t} ∈ Υc.

Lemma 6: Let ξ(z) := {{µt} ∈ Mc |µt ∈ zt∀t ≥ 1}. Then ξ : Z → K(Mc) is a

homeomorphism and {µt} ∈ ξ(z) iff µt ∈ zt for all t.

Proof: Step 1: Let z = {zt} ∈ Z, µτ ∈ zτ . Then, there exists {νt} ∈ ξ(z) such that

ντ = µτ .

Proof of Step 1: Let ντ = µτ . For k = 1, . . . , t − 1, define ντ−k inductively as ντ−k :=
Fτ−k+1(µτ−k+1). Similarly, define ντ+k, for k ≥ 1 inductively by picking any ντ+k ∈
F̄−1τ+k(zτ+k−1) ∩ zτ+k. The {νt} constructed in this fashion has the desired properties
concluding the proof of step 1.

By Step 1, ξ(z) 6= ∅. To see that ξ(z) is compact, take any sequence {µnt } ∈ ξ(z)

for z = (z1, z2, . . .). We can use the diagonal method to find a subsequence {µnjt } such
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that µ
nj
t converges to some µt for every t. Since each zt is compact, µt ∈ zt for all t.

Then, the continuity of Ft for all t, implies {µt} is in Mc and therefore in ξ(z). So, ξ(z)

is compact. Suppose z 6= z0 for some z, z0 ∈ Z. Without loss of generality, assume there
exists some τ and µτ such that µτ ∈ zτ\z0τ . By Step 1, we obtain {νt} ∈ ξ(z) such that

ντ = µτ . Clearly, {ντ} ∈ ξ(z)\ξ(z0). Therefore, ξ is one-to-one. Take any z̄ ∈ K(Mc).

Define zτ := {µτ | µ̄τ = µτ for some {µ̄t} ∈ z̄}. Let z = (z1, z2, . . .). Since z̄ is compact

we have z ∈ Z. Clearly, z̄ ⊂ ξ(z). Using the compactness of z̄ again and the continuity of

each Ft implies ξ(z) ⊂ z̄. So, ξ is onto.
To prove that ξ is continuous, let zn converge to z. By Lemma 2, this is equivalent

to Lznt = zt for all t. We need to show that ξ(z
n) converges to ξ(z). Take any convergent

sequence {µnt } such that {µnt } ∈ ξ(zn) for all n. Then, limµnt ∈ zt for all t and therefore
lim{µnt } ∈ ξ(z). Let {µt} ∈ ξ(z). Since Lznt = zt, there exists µ

n
t converging to µt such

that µnt ∈ znt for all n. By step 1, for each µττ we can construct {νt}(τ) ∈ Mc such

that ντ (τ) = µττ . Since Ft is continuous for all t, νk(τ) converges to µk for all k ≤ τ .

Consequently, {νt}(n) converges to {µt} as n goes to infinity. Hence, Lξ(zn) = ξ(z).

Again by Lemma 2, this implies ξ(zn) converges to ξ(z) and hence ξ is continuous.

To conclude the proof recall that Z is compact and ξ is a continuous bijection. It

follows from Lemma 1(ii) that ξ is a homeomorphism.

Proof of Theorem A1: Note that by Lemmas 3−5, ψ ◦φ is a homeomorphism fromMc

to ∆(C × Z). Hence, by Lemma 1(i), the function ζ : K(Mc)→ K(∆(C × Z)) defined by
ζ(A) := ψ ◦ φ(A) for all A ∈ K(Mc) is also a homeomorphism. Then, by Lemma 6, ζ ◦ ξ
is the desired homeomorphism from Z to K(∆(C × Z)).

9. Appendix B: Proof of Theorem 1

Lemma 7 (A Fixed-Point Theorem): If B is a closed subset of a Banach space with

norm k·k and T : B → B is a contraction mapping (i.e., for some integer m and scalar

α ∈ (0, 1), kTm(W )− Tm(W 0)k ≤ α kW −W 0k for all W,W 0 ∈ B), then there is a unique
W ∗ ∈ B such that T (W ∗) =W ∗.

Proof: See [Bertsekas and Shreve (1978), p. 55] who note that the theorem in Ortega

and Rheinholt (1970) can be generalized to Banach spaces.
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Lemma 8: Let u : C → IR, v : C → IR be continuous and δ ∈ (0, 1). There is a unique
continuous function W : Z → IR such that

W (z) = max
µ∈z

½Z
(u(c) + v(c) + δW (z0)) dµ(c, z0)

¾
−max

ν∈z

Z
v(c)dν(c, z0) (8)

for all z ∈ Z.
Proof: LetW be the Banach space of all continuous, real-valued functions on Z (endowed

with the sup norm). The operator T :W →W, where

TW (z) = max
µ∈z

½Z
(u(c) + v(c) + δW (z0)) dµ(c, z0)

¾
−max

ν∈z

Z
v(c)dν(c, z0)

is well-defined and is a contraction mapping. Hence, by Lemma 7, there exists a unique

W such that T (W ) =W . Hence, W satisfies (8).

By Lemma 8, for any continuous u, v, δ, there exists a unique continuous W that

satisfies (8). It is straightforward to verify that Axioms 1− 8 hold for any binary relation
represented by a continuous function W that satisfies (8).

In the remainder of the proof we show that if º is non-degenerate and satisfies Axioms
1− 8 then the desired representation exists. It is easy to show that if º satisfies Axioms
4, 6 and 7 then it also satisfies the following stronger version of the independence axiom

(see footnote 5):

Axiom 4∗: x Â y, α ∈ (0, 1) implies αx+ (1− α)z Â αy + (1− α)z.

Theorem 1 of Gul and Pesendorfer (2001) establishes that º satisfies Axioms 1 − 3
and 4∗ if and only if there exist linear and continuous functions U, V such that the function

W defined by

W (z) := max
µ∈z {U(µ) + V (µ)}−maxν∈z V (ν) (9)

represents º. To complete the proof we will show that there exist continuous functions
u, v and δ ∈ (0, 1) such that for all z ∈ Z,

W (z) = max
µ∈z

Z
(u(c) + v(c) + δW (z0)) dµ(c, z0)−max

ν∈z

Z
v(c)dν(c, z0)

U(µ) =

Z
u(c) + δW (x)dµ

V (µ) =

Z
v(c)dµ1
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Lemma 9: There exists a continuous u : C → IR, δ ∈ (0, 1), γ ∈ IR such that U(ν) =R
(u(c) + δW (z))dν(c, z) + γ for all ν ∈ ∆(C × Z).

Proof:

Step 1: There are continuous u : C → IR and W̄ : Z → IR such that U(ν) =
R
(u(c) +

W̄ (z))dν(c, z) for all ν ∈ ∆.
Proof: Since U is linear and continuous there exists a continuous ū : C × Z → IR such

that U(µ) =
R
ū(c, z)dµ(c, z). By Axiom 5, U(.5(c̄, z̄) + .5(c, z)) = U(.5(c̄, z) + .5(c, z̄)).

Therefore,

ū(c, z) = ū(c, z̄) + ū(c̄, z)− ū(c̄, z̄)

Then,

U(ν) =

Z
ū(c, z)dν(c, z)

=

Z
ū(c, z̄)dν(c, z) +

Z
ū(c̄, z)dν(c, z)−

Z
ū(c̄, z̄)dν(c, z)

Setting u := ū(·, z̄)− ū(c̄, z̄) and W̄ := ū(c̄, ·) gives the desired result.

Step 2: There exists some δ > 0, γ ∈ IR such that W̄ (z) = δW (z) + γ for all z ∈ Z.
Proof: Define K := maxZW (z), k := minZW (z), K̄ := maxZ W̄ (z), k̄ := minZ W̄ (z). By

non-degeneracy, U is not constant. Then, it follows that W is not constant. Axioms 6

implies that W̄ (x) ≥ W̄ (y) iff W (x) ≥ W (y). Hence, W̄ is not constant. Therefore,

K̄ > k̄,K > k. To establish the desired conclusion we will show that

W̄ (z) :=
K̄k −Kk̄

(K − k)(K̄ − k̄) +
K̄ − k̄
K − kW (z) (10)

for all z ∈ Z. For any z ∈ Z there exists a unique α such that

W̄ (z) = αK̄ + (1− α)k̄ (11)

Let z∗ maximize W̄ and z∗ minimize it. By (9), the linearity of U and the that W̄ (x) ≥
W̄ (y) iff W (x) ≥W (y),

W ({(c̄, z)}) =W ({α(c̄, z∗) + (1− α)(c̄, z∗)})
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Applying Axiom 7 yields

W ({(c̄, z)}) =W ({(c̄,αz∗ + (1− α)z∗)})

Apply Axiom 6 to get

W (z) =W (αz∗ + (1− α)z∗)

Linearity of W together with the fact that W̄ (x) ≥ W̄ (y) iff W (x) ≥W (y) implies

W (z) = αK + (1− α)k (12)

Solving (12) for α, substituting the result into (11) and re-arranging terms then yields (10)

and proves step 2.

Step 3: The δ in Step 2 is strictly less than 1.

Proof: Let zc be the unique z ∈ Z with the property that zc = {(c, zc)}. Let z be such
thatW (z) 6=W (zc). Let y1 = {(c, z)} and define yn inductively as yn = {(c, yn−1)}. Then
yn converges to zc. Hence, by continuity W (yn)−W (zc) must converge to zero. But

W (yn)−W (zc) = δn(W (z)−W (zc))

Since W (z)−W (zc) 6= 0 it follows that δ < 1.

Note that steps 1− 3 prove Lemma 9. Let U 0 = U − γ
1−δ and W

0 =W − γ
1−δ . Then,

W 0, U 0 are continuous and linear with

W 0(z) := max
µ∈z {U

0(µ) + V (µ)}−max
ν∈z V (ν)

Moreover, W 0 represents º and

U 0(ν) =
Z
(u(c) + δW 0(z))dν(c, z)

Therefore, without loss of generality, we can set γ = 0 in Lemma 9.

Lemma 10: Assume there exists µ̄ and µ such that U(µ̄) + V (µ̄)− U(µ)− V (µ) > 0 >
V (µ̄) − V (µ). Then, there is a continuous linear v : ∆(C) → IR such that V (ν) = v(ν1)

for all ν ∈ ∆.
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Proof: Fix µ2 ∈ ∆(Z) and define v : ∆(C)→ IR by

v(µ1) := V (µ1 × µ2)

Take any ν ∈ ∆ and let µ be the product measure ν1 × µ2. By continuity, there exists
α > 0 small enough so that

U(αν + (1− α)µ) + V (αν + (1− α)µ) < U(µ̄) + V (µ̄)

U(αµ+ (1− α)µ) + V (αµ+ (1− α)µ) < U(µ̄) + V (µ̄)

V (αν + (1− α)µ) > V (µ̄)

V (αµ+ (1− α)µ) > V (µ̄)

Axiom 8 implies that W ({αν + (1 − α)µ, µ̄}) = W ({αµ + (1 − α)µ, µ̄}). It now follows
from (9) that V (αν + (1 − α)µ) = V (αµ+ (1 − α)µ). Since V is linear, we have V (ν) =

V (µ) = v(ν1) as desired.

To complete to proof, we show that the conclusion of Lemma 10 holds in all cases.

By non-degeneracy U is not constant. If V is constant the conclusion of Lemma 10 holds

trivially. So, we assume that neither U, nor V is constant.

Suppose V = αU + β for some α,β ∈ IR. Since V is not constant α 6= 0. If α > 0,
replace V with V 0 = 0. Then, W (z) := maxµ∈z{U(µ) + V 0(µ)} −maxν∈z V 0(ν) and the
conclusion of Lemma 10 holds.

Note that non-degeneracy also rules out α ≤ −1. If α ∈ (−1, 0) or if V is not an affine
transformation of U then V is not a positive affine transformation of U + V . Hence, the

preferences represented by V and U + V are different and non-trivial (i.e. neither V nor

U+V is constant). Therefore, there exists ν̄, ν such that either U(ν̄)+V (ν̄) ≥ U(ν)+V (ν)
and V (ν̄) < U(ν) or U(ν̄) + V (ν̄) > U(ν) + V (ν) and U(ν̄) ≤ U(ν). In either case, since
neither U nor V is constant, we can use the linearity of U and V to find µ̄ close to ν̄ and

µ close to ν for which all of the above inequalities are strict and apply Lemma 10.

9.1 Proof of Theorem 3

A DSC preference º represented by (u, v, δ) has the property that U := u+δW is not

constant. Furthermore, since º has a preference for commitment at some z ∈ Z it follows
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that v is not constant. Consequently, there exists no α,β ∈ IR such that v = αU+β. Then,

we may apply the proof of Theorem 4 in Gul and Pesendorfer (2001) to conclude that if

(u, v, δ) and (u0, v0, δ0) both represent º then u0 + δ0W 0 = α(u+ δW ) + βu, v
0 = αv + βv

and therefore W 0 = αW + βu for some α > 0,βu,βv ∈ IR. Since u is not constant this
implies that δ0 = δ and u0 = αu+ (1− δ)βu. The proof of the converse is straightforward

and therefore omitted.

10. Appendix C: Measures

Theorem 4: Letºi, i = 1, 2 be a regular DSC preferences with representation (ui, vi, δi).
Then, º2 has more instantaneous preference for commitment than º1 if and only if there
exist a non-singular, non-negative matrix Θ0 and β0 ∈ IR2 such thatµ

u1(µ
1)

v1(µ
1)

¶
=Θ ·

µ
u2(µ

1)
v2(µ

1)

¶
+ β0

for all µ ∈ ∆.

Proof: Let º∗ be a binary relation on A := K(∆(C)). Gul and Pesendorfer (2001) show
that º∗ satisfies Axioms 1− 3 and 4∗ if and only if there exists (u∗, v∗) such that

W ∗(A) := max
µ1∈A

{u∗(µ1) + v∗(µ1)}− max
µ1∈A

v∗(µ1) (13)

represents º∗. Then, they define comparative measures of preference for commitment,
self-control as in section 4, but without the restriction to intertemporally inconsequential

choice problems. If there isW ∗, (u∗, v∗) satisfying (13) such thatW ∗ represents º∗ we say
(u∗, v∗) represents º∗. The preference º∗ with representation (u∗, v∗) is regular∗ if v∗ is
not an affine transformation of u∗. Theorem 8 of Gul and Pesendorfer (2001) establishes

that if º∗i with representations (u∗i , v∗i ), i = 1, 2 are regular∗ preferences then º∗2 has more
preference for commitment than º∗1 if and only if

u∗1 = αuu
∗
2 + (1− αu)v

∗
2

v∗1 = αvu
∗
2 + (1− αv)v

∗
2
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for αu,αv ∈ [0, 1]. We note that any binary relation º on Z that satisfies Axioms 1 − 8
induces the following binary relation º∗ onK(∆(C)): A º∗ B iff x º y for some x, y ∈ ZII
such that A := {µ1 |µ ∈ x}, B := {µ1 |µ ∈ y} and µ2 = µ̂2 for all µ ∈ x, µ̂ ∈ y. The
preference º∗ is well-defined since it can be represented as in Theorem 2 for some (u, v, δ).
Let u∗ = u, v∗ = v and defineW ∗ as in (13). It is easy to verify thatW ∗ represents º∗ and
since º is regular, it follows that v∗ is not an affine transformation of u∗ and hence º∗ is
regular∗. Also, if º∗1,º∗2 are two preference relations induced respectively by º1,º2, then
º2 has more instantaneous preference for commitment than º1 iff º∗2 has more preference
for commitment than º∗1. Therefore we may apply Theorem 8 in Gul and Pesendorfer

(2001) and the uniqueness result of section 2 (Theorem 3) to yield the desired result (that

Θ is nonsingular follows from the regularity of º1).

Theorem 5: Let ºi, i = 1, 2 be a regular DSC preference with representation (ui, vi, δi).
Then, º1 has more instantaneous self-control than º2 if and only if there exist and a
non-singular, non-negative matrix Θ0 and β0 ∈ IR2 such thatµ

u2(µ
1) + v2(µ

1)
v2(µ

1)

¶
=Θ0 ·

µ
u1(µ

1) + v2(µ
1)

v1(µ
1)

¶
+ β0

for all µ ∈ ∆.

Proof: We note that Gul and Pesendorfer (2001) provide a definition of comparative

self-control analogous to one in section 4 but without the restriction to intertemporally

inconsequential choice problems. In Theorem 9 they show that if º∗i with representations
(u∗i , v

∗
i ), i = 1, 2 are regular

∗ preferences then º∗1 has more self-control than º∗2 if and only
if

u∗2 + v
∗
2 = αu(u

∗
1 + v

∗
1) + (1− αu)v

∗
1

v∗2 = αv(u
∗
1 + v

∗
1) + (1− αv)v

∗
1

for some αu,αv ∈ [0, 1]. Define º∗i , u∗i and v∗i for i = 1, 2 as in the proof of Theorem 4.

Again, it is easy to verify that º1 has more instantaneous self-control than º2 iff º∗1 has
more self control than º∗2. Therefore we may apply Theorem 9 in Gul and Pesendorfer

(2001) and Theorem 3 of section 2 to yield the desired result.

Proof of Corollary 1: The “if” parts of both statements are straightforward and omitted.
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By Theorem 4, if º1 has more preference for commitment than º2 and (ui, vi, δ) is a
representation of ºi for i = 1, 2 there is a non-singular, non-negative matrixΘ and β ∈ IR2
such that µ

u1(µ
1)

v1(µ
1)

¶
=Θ ·

µ
u2(µ

1)
v2(µ

1)

¶
+ β (14)

for all µ1.

Similarly, by Theorem 5, if º1 has more self-control than º2 and (ui, vi, δ) is a rep-
resentation of ºi for i = 1, 2 there is a non-singular, non-negative matrix Θ0 and β0 ∈ IR2
such that µ

u2(µ
1) + v2(µ

1)
v2(µ

1)

¶
=Θ0 ·

µ
u1(µ

1) + v2(µ
1)

v1(µ
1)

¶
+ β0

for all µ1.

Suppose º1 and º2 have the same preference for commitment and º1 has more self-
control than º2. Without loss of generality we can choose (u1, v1) such that β = (0, 0) in
(14). That is, for some non-singular, non-negative matrix Θµ

u1(µ
1)

v1(µ
1)

¶
= Θ ·

µ
u2(µ

1)
v2(µ

1)

¶
(15)

for all µ1. Similarly, reversing the roles of (u1, v1) and (u2, v2) in (14) yields a non-singular,

non-negative Θ̂ and β̂ ∈ IR2 such thatµ
u2(µ

1)
v2(µ

1)

¶
= Θ̂ ·

µ
u1(µ

1)
v1(µ

1)

¶
+ β̂ (16)

for all µ1. Equation (15) implies that β̂ = 0 and Θ̂ = Θ−1. But since both Θ̂ and Θ are

non-negative, this implies

Θ̂ =

µ
α 0
0 γ

¶
,Θ =

µ 1
α 0
0 1

γ

¶
(17)

for some α > 0, γ > 0. Again, without loss of generality, we assume α = 1. To conclude

the proof, we show that γ ≥ 1. Since º1 has more self-control than º2, the regularity
of º2, equations (14) − (17) and the fact that β̂ = 0 imply that for some non-negative,

non-singular Θ̃ and β̃,µ
u2(µ

1) + v2(µ
1)

v2(µ
1)

¶
= Θ̃ ·

µ
u1(µ

1) + v1(µ
1)

v1(µ
1)

¶
+ β̃ = Θ̃ ·

µ
u2(µ

1) + 1
γ v2(µ

1)
1
γ v2(µ

1)

¶
+ β̃
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for all µ1. Since, º2 is regular and Θ̃ is non-negative, we conclude 1 + b = γ for some

b ≥ 0. Hence, γ ≥ 1 as desired.
Suppose º2 has more preference for commitment than º1, and º1 and º2 have

the same self-control. Following the line of argument above, we obtain (u2, v2, δ2), a

representation of º2 such that u2+v2 = u1+v1 and v2 = γv1 for some γ > 0. Then, since

º2 has more preference for commitment than º1, (14) implies that there is a non-negative,
non-singular Θ and β such thatµ

u1(µ
1)

v1(µ
1)

¶
=Θ ·

µ
u2(µ

1)
v2(µ

1)

¶
+ β =Θ ·

µ
u1(µ1) + (1− γ)v1(µ

1)
γv1(µ

1)

¶
+ β

for all µ1. It follows from the regularity of º2 that γ = 1
1−b for some b ≥ 0 and since

γ > 0, we have γ ≥ 1 as desired.

11. Appendix D: Competitive Economies

Proof of Proposition 1We first show existence of equilibrium in a “truncated” economy

in which from period τ on every consumer is committed to the consumption of ωit ∈ C in
every period. Let xit = {(ωit, xit+1)} be a choice problem in which the agent is committed
to consume the endowment. Let

xτit(p, b) =

( {(c, xit(p, b0) | (c, b0) ∈ Bt(p, b)} if t ≤ τ − 1
{(ct, xit+1) | (c, 0) ∈ Bt(p, b)} if t = τ
xit if t ≥ τ + 1

Let v∗i : IR+ → IR+ be defined as

v∗i (pt, b) = max
{c|pt·c≤b}

vi(c)

and note that v∗i is convex since vi is convex. It is straightforward to show that the optimal

consumption choices in periods 1 ≤ t ≤ τ given the IHCP xτ1(p,
Pτ
t=1 pt · ωit) solve the

following maximization problem:

max
{ct}

τX
t=1

δt−1
"
ui(ct + vi(ct)− v∗i

Ã
pt,

τX
k=1

pk · ωik −
t−1X
k=1

pk · ck
!#

subject to

ct ≤
τX
k=1

pk · ωik −
t−1X
k=1

pk · ck
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Note that the objective function is strictly concave, strictly increasing, and the feasible

set of consumption choices is compact. Therefore, we may apply a standard argument

(for example, Proposition 17.C.1 in Mas-Colell et.al.) to establish the existence of an

equilibrium in the truncated economy.

Normalize equilibrium prices in the truncated economy so that p11 = 1. For periods

t > τ set ptl = δt. (Note that in the truncated economy, prices for t > τ can be chosen

arbitrarily as all consumers are committed to consuming their endowments.) Since endow-

ments are bounded away from zero it follows that there is an h <∞ such that ptl ≤ δt−1h

for all (t, l) and every truncation τ . This follows from a standard argument since v is

increasing, u is continuous, strictly increasing and since aggregate endowment is bounded

away from zero.

Let (pτ , cτ ) denote the equilibrium price and consumption pair of the τ period trun-

cation. Let (p, c) denote the limit of a convergent subsequence. We claim that (p, c) is

an equilibrium for the economy. Since market clearing holds for every τ it must hold

also in the limit. It suffices therefore to show that ci solves the optimization problem for

individual i. Observe that pτ · ωi ≤ h
P∞
t=1 δ

t−1P
l ωitl < ∞. Hence, by the dominated

convergence theorem, pτ · ωi → p · ωi and therefore, the set of feasible consumption plans
given the IHCP xτ1(p,

Pτ
t=1 p

τ
t · ωt) converge to the set of feasible consumption plan given

x1(p,
P∞
t=1 pt · ωt). Now a routine argument (using the continuity of the agent’s utility

function) shows that ci is an optimal consumption choice from x1(p,
P∞
t=1 pt ·ωt), that is,

ci is optimal for i at prices p.

Example of Pareto Inefficiency The utility function is

u(ct1, ct2) = log ct1 − λct1 + ct2

and

v(ct1, ct2) = λct1

Let (α, 1) be the endowment in every period and λ ∈ (0, 12 ). Normalize prices so that the
price of good 1 in period 1 is equal to 1. Straightforward calculations yield

pt1 = δt

pt2 = αδt
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The equilibrium welfare of the representative household as a function of α, denoted W²

can be written as

Wα =u(α, 1) + v(α, 1)− max
{(a1,a2) | a1+αa2≤b}

v(a1, a2) + δWα

Wα =logα+ 1− λb+ δWα

where b = 2α
1−δ is the equilibrium value of the agent’s endowment. Hence, db

dα =
2

(1−δ) and

therefore dWα

dα < 0 at α = 1. It follows that destroying ² = 1 − α units of good 1 each

period increases welfare, for ² sufficiently small.

Proof of Proposition 2: The standard necessary condition for an optimal plan is

u0(cit) + λiv
0(cit) = δ(1 + r) (u0(cit) + λiv

0(cit)− λiv
0(bit+1))

where bit+1 is the period t+1 wealth agent i in terms of the period t+1 consumption. In

a steady state cit = ci and bit =
ci(1+r)

r yielding

u0(ci) + λiv
0(ci) = δ(1 + r)

µ
u0(ci) + λiv

0(ci)− λiv
0
µ
ci(1 + r)

r

¶¶
Choose i0 such that λi0 = minλi. We define r̄ by the equation

δ(1 + r̄)− 1
δ(1 + r̄)λi0

(u0(ω̄) + λi0v
0(ω̄)) = v0

µ
(1 + r̄)ω̄

r̄

¶
(18)

Note that r̄ is well-defined since the l.h.s. of the above equation is increasing in r and the

r.h.s. is decreasing. Moreover, as r →∞, the l.h.s. converges to u0i(ω̄)+λi0v
0
i(ω̄)

λi0
> v0(ω̄) and

the r.h.s. converges to v0(ω̄). Hence, there is a unique r̄ that satisfies the above equation.

Furthermore, r̄ > 1−δ
δ .

Let r ∈ (1−δδ , r̄]. For every r in that range there is a unique ci0(r) ≤ ω̄ that satisfies

(18) (i.e., ci0(r) such that (18) is satisfied when r̄ is replaced with r and ω̄ is replaced with

ci0(r)). To see this observe that since u
0
(c) + λi0v

0
(c) → ∞ as c → 0, the l.h.s. goes to

infinity as ci0 → 0. Since v is convex, the r.h.s. is bounded. For r ≤ r̄, we have

δ(1 + r)− 1
δλi(1 + r)

(u0(ω̄) + λiv
0(ω̄)) ≤ δ(1 + r̄)− 1

δλi0(1 + r̄)
(u0(ω̄) + λi0v

0(ω̄))

= v0
µ
(1 + r̄)ω̄

r̄

¶
≤ v0

µ
(1 + r)ω̄

r

¶
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Since u0 + λiv
0 is decreasing and v0 is increasing, there is a unique solution, ci0(r).

Define ci(r) for each i by replacing λi0 with λi in (18). Now, observe that ci(r) is

strictly increasing in r. To see this, note that holding consumption constant, the l.h.s. of

(18) is strictly increasing in r while the convexity of v implies that the r.h.s. is decreasing.

Then, the strict concavity of u+λiv ensures that consumption has to increase to maintain

the equality of the two sides.

Thus,
P
i ci(r) is increasing in r with

lim
r→ 1−δ

δ

X
i

ci(r) = 0 and
X
i

ci(r̄) ≥ ω̄

Continuity implies that there is a unique rd such that
P
i ci(r

d) = ω̄.

Finally we need to show that ci > cj if λi < λj . Examine

δ(1 + r)− 1
δλi(1 + r)

(u0(ci) + λiv
0(ci)) = v0

µ
(1 + r)ci

r

¶
to see that if λi < λj and ci ≤ cj then the necessary condition for an optimum must be

violated for either i or j.

Stochastic Representative Agent Economy

As shown in the text, the equilibrium price of the productive asset is constant and

satisfies

p = δ(1 + p− 2λp− λp2 − λ(σ2 + 1)) (19)

and hence

p = − 1

2δλ

³
1− δ + 2δλ−

p
(1− δ)2 + 4δλ(1− δλσ2)

´
It can easily be checked that for λ < 1

1+σ2 the price is strictly positive. Since σ
2 ≤ 1 this

implies that for λ ∈ (0, 1/2) the price is strictly positive.
The risk free rate satisfies the following no-arbitrage condition:

u0(ct) + v0(ct) =δ(1 + r)E {(u0(c̃t+1) + v0(c̃t+1))}
− δ(1 + r)E {v0(st+1(p(d) + d))}
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Using the equilibrium conditions ct = D, c̃t+1 = d, st+1 = 1 this implies for our special

case that

1 + r =
1

δ(1− λ(p+ 1))

=
2

1 + δ −p(1− δ)2 + 4δλ(1− δλσ2)

Equation (19) and p > 0 imply that 1 − λ(p + 1) > 0 and hence 1 + r > 0. To see that

R− r is positive and increasing note that

R− r = 1 + p

p
− 1

δ(1− λ(p+ 1))
=
(1 + r)δ(1 + p)(1− λ(p+ 1)− p)

p

Equation (19) and some simplification yields

R− r = λδσ2
1 + r

p

It remains to show that R− r is increasing in λ. Equation (19) implies

p(1− δ) = δ(1− 2λp− λp2 − λ(σ2 + 1))

It follows that p is decreasing in λ and since p > 0 that 1−2λp−λ > 0. We conclude that

∂

∂λ

µ
1 + r

p

¶
=

∂

∂λ

µ
1

δp(1− λ(p+ 1))

¶
=
(1− 2λp− λ)(−∂p/∂λ) + p+ p2

δ (p(1− λ(p+ 1)))2
> 0

which in turn implies that R− r is increasing in λ.
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