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PREFERENCE REVERSALS

e Kirby and Herrnstein (Psychological Science, 1995): “Of 36
subjects, 34 reversed preference from a larger, later reward to a
smaller, earlier reward as the delays to both rewards decreased.”

e This evidence is not consistent with the standard model of geo-
metric discounting.

e T'wo theoretical responses:

1. The Strotz/Phelps-Pollak/Laibson model of hyperbolic, or
quasi-geometric, discounting. (Assume that the slope of
the discount function is a decreasing function of time.)

2. The Gul-Pesendorfer model of temptation and self-control.

(Assume that utility depends not only on the choice but also
on the set from which it is chosen.)



PREFERENCE REVERSALS
IN THE LAIBSON MODEL

Preferences of self 0: ¢y + 3dc; + 85%cs

Early reward | Late reward
Co 0 0
C1 a 0
() 0 b

Late reward chosen if fda < (36°0.

Early reward | Late reward
Co a 0
C1 0 b
() 0 0

Early reward chosen if a > (3.

Preference reversal if 30b < a < db.



THE LAIBSON MODEL:
QUASI-GEOMETRIC DISCOUNTING

Preferences:

Self 0: Uy=wug+ 0 (5’&1 + (52’&2 + 53U3 S i 5TUT)

Self 1: Uy ZU1+6(5UQ+5QU3—|—°"—|—5TUT>
Self 2: Uy=uy+ 0 <(5U3 + -+ 5TUT)
Behavior:

e The consumer cannot commit to future actions.

e The consumer is “sophisticated”: he realizes that his preferences
will change and makes the current decision taking this into ac-

count.

e The decision-making process is viewed as a dynamic game, with
the agent’s current and future selves as players.



MARKOV EQUILIBRIA IN THE LAIBSON MODEL

e Environment: A simple (finite-horizon) consumption-savings
problem.

e Intrapersonal equilibrium: Iterate backwards (the current self

correctly anticipates the decisions of his future selves).

e The period T — t self solves:

max u(f(kr—t) — kr—ss1) + BOWr_i1(kr_i41).

kr—t

This problem determines the period 1" — ¢ decision rule:
kr—iv1 = gr-i(kr—y).
e The “value function” of the period T — t self is:

Wr_i(kr—t) = u(f(kr—t) — gr—i(kr—¢)) +OWr_ii1(gr—i(kr—t)).



THE LAIBSON MODEL WITH AN INFINITE HORIZON

e Perceptions: The consumer perceives that future savings deci-

sions are determined by ki1 = g(ky).

e The current self solves the “first-stage” problem:

max u(f(k) — k') + BOW (K.

e IV is an “indirect” utility function: it must satisfy the “second-
stage” functional equation

W(k) = u(f(k) — g(k)) + oW (g(F)).

e A Markov equilibrium obtains if g(k) also solves the first-stage
problem.



DRAWBACKS OF THE LAIBSON MODEL

e Difficult to do welfare analysis:

1. Lack of axiomatic foundation.

2. When we evaluate policy, which self’s utility function do we
use? (Krusell, Kuruggu, and Smith (2000, 2001a) study time-
consistent government policy in the Laibson model.)

e Multiplicity of equilibria: Laibson (1994) studies trigger-stra-
tegy equilibria; Krusell and Smith (2000) study Markov equi-
libria.

e Computation: Multiplicity makes computation difficult (recent

progress: perturbation methods).



AN ALTERNATIVE APPROACH:
GUL AND PESENDORFER’S MODEL

e This recent approach is axiomatically-based decision theory.
e [t emphasizes temptation and self-control.
e It can address the experimental evidence.

e There is a dynamic version of the GP model that seems poten-
tially useful for macroeconomic analysis.



BRIEF SUMMARY OF RESULTS

e Neoclassical growth analysis: We characterize steady states and

dynamics. In general, the model with temptation is not observa-
tionally equivalent to a model without temptation. In addition,
the curvature of the utility function plays a role in determining
the steady state.

e Connection to Laibson: We develop a formulation in which the

temptation is “quasi-geometric discounting”. If this temptation
is strong enough, our model coincides with the Laibson model.
This view of the Laibson model says that period ¢ utility should
be evaluated from the perspective of self ¢ — 1!

e Taxation: Our policy analysis suggests that there should be a
subsidy to investment.

e Asset Pricing: Krusell, Kuruggu, and Smith (2001b) study equi-

librium asset prices in a Mehra-Prescott model with GP con-
sumers, some of whom have an “urge to save” rather than an
“urge to consume”. These compulsive savers play a dominant
role in asset markets, driving down the risk-free rate.



THE GUL-PESENDORFER MODEL:
A QUICK-AND-DIRTY INTRODUCTION

e “Second-period” preferences defined over ordered pairs (A, ),
where A is a choice set and x € A.

e Definition: y tempts x if ({x}, x) is preferred to ({x,y}, x).

e Assumptions:

1. Removing temptations cannot make the consumer worse off.
2. If y tempts z, then x does not tempt y.
3. Adding y to A does not make the consumer worse off unless

y tempts every element in A.

e These assumptions imply that “tempts” is a preference relation.
Moreover, the utility of a fixed choice is affected by the choice
set only through its most tempting element.
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PREFERENCES OVER CHOICE SETS

e Second-period preferences induce “first-period” preferences over
choice sets themselves: A > B if and only if there is an z € A
such that (A, ) is preferred to (B, y) for all y € B.

e The above assumptions imply set betweenness:
A > B implies that A > AU B > B.

Choice sets cannot be compared simply by looking at their
best elements.
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PREFERENCE FOR COMMITMENT,
SELF-CONTROL, AND
SUCCUMBING TO TEMPTATION

Assume A > B. “Set betweenness” allows three possibilities:

1. Standard decision maker:

A~AUB>B

2. Preference for commitment and self-control:

A-AUB > B

3. Preference for commitment and succumbing to temptation:

A-AUB~B
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A REPRESENTATION THEOREM FOR
PREFERENCES OVER SETS

e Set betweenness (together with standard axioms) implies the
following representation of preferences over sets:

W(A) = max {U(x) + V(2)} — max V(7).

e Second-period preferences are represented by:
W*(A,z)=U(x)+V(z) — max V(z).
Interpretation:

e U determines the commitment ranking (i.e., the utility of sin-
gleton sets).

e V determines the temptation ranking (i.e., V gives higher values
to more tempting elements).

e The second-period choice (given A) maximizes W*(A, z). That
is, actual behavior maximizes U(x) + V (z).

o V(x) — maxzea V(Z) is the disutility of self-control.
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A SIMPLE EXAMPLE

e T'wo alternatives: x and y.
e r maximizes the commitment ranking: U(x) > Ul(y).

e y maximizes the temptation ranking: V(y) > V(x).

W*({z},z) = Ulz) +V(z) = V(z) =U(x)
W {z,y}t,x) = Ulz) +V(z) — V(y)

W {z,y},y) = Uly) +V(y) — V(y) = U(y)
W {yhy) = Uly) +V(y) —Viy) =Uly)

e The consumer has a preference for commitment.

e The consumer has self-control if
Ulx)+Viz) = Viy) > Uly).
In this case, W({z}) > W({x,y}) > W({y}).

e The consumer succumbs to temptation if
Ulz) +V(x) = Viy) <Uly).
In this case, W({z}) > W({z,y}) = W{y}).
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THE TWO-PERIOD CONSUMPTION-
SAVINGS MODEL

e Consumption today and tomorrow.

e Neoclassical production.

e Standard budget set (borrowing and lending at 7).
e General equilibrium.

e With u(cy,c2) playing the role of U and ©(cq, ¢) the role of
V', let the temptation function v have a stronger preference for
present consumption. For example, let

u(cy, c2) = u(ey) + dul(es)

and
v(c1, o) =7y (u(er) + Boulea))
with 6 < 1.
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THE CONSUMER’S PROBLEM

e The consumer’s budget set is:

B(kl,kl, /%2) = {(61702) : 3]62 :
C1 = T(];Jlﬂfl + w<]%1) — kz
Co = 7“(]2’2)]{2 + UJ(]%Q)}

e The consumer solves:

pax {(1+y)ulen)+9(1+yB)ulen) } - mmax {yu(ér)+v80u(és)}

Subject to: (Cl, CQ) c B(kl, ]%1, /272), (él, 62) € B(kl, ];71, ]%2)

e The consumer’s first-order condition:

L+ () -
St B (e
e Compare to:
Lu'(er) - Lu'(c) 5
315/(02) =riky)  and %UI(CQ) = i)
e Note that:
1 1+~ S 1
B6 ~ 6(14+~8) — 9
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COMPETITIVE EQUILIBRIUM VS. AUTARKY

e In equilibrium, k = k and r(k) = f'(k).
e Consumer’s first-order condition becomes:

L4y W(@) -
S+ B wley) T )

e This is the same first-order condition as in autarky. (In this case,

the “budget set” is the production possibility set determined by
C1 = f(]ﬁ) — ]CQ and Co — f(kg))

e BUT: the consumer is better off in autarky because the tempta-
tion is weaker (the disutility of self-control is higher in competi-
tive equilibrium).
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POLICY IN THE TWO-PERIOD MODEL

e Command policy: The government chooses for the consumer,

eliminating self-control problems. The command policy is there-
fore first-best: it maximizes u(c;) + du(ce) and there is no disu-
tility of self-control.

e Taxation policy in competitive equilibrium: The gov’t taxes in-

come and investment (savings) in the first period. It chooses
the tax rates to maximize welfare given a budget-balancing con-
straint. Result: The gov’t subsidizes investment and taxes in-
come. Given “log-Cobb” assumptions, the optimal allocation is
the same as under the command policy. But welfare is lower
because of the self-control cost.
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OPTIMAL PROPORTIONAL TAXES

e The consumer’s budget set is:

{(01,62) Ekg
= [r(k)ky + w(k)](1 = 7y) = (1 + 7)k,
T(kg)/ﬂz +w(k2)}

e The government budget constraint is:
Tyf(/h) + TZ'];JQ = 0.

e Should investment be subsidized? Yes! The representative con-
sumer’s (indirect) utility is a decreasing function of 7; at 7; = 0.
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WHY SUBSIDIZE INVESTMENT?

o At 7; = 0, there is no first-order effect on max U +V of changing
T;.

e So 7; should be decreased (from 0) if doing so decreases temp-
tation utility (i.e., if doing so decreases max V).

e The effect of increasing 7; on temptation utility is twofold:

(i) & increases, by the amount ky — ko:
(ii) &y decreases, by the amount (ky — /;2)7“’(152)2]2.

In utility terms, this means that an increase in 7; increases temp-
tation utility if

(ko — ko) (1 — (MT{S)T’(/@)CC?Z) > 0,

ie., if

dks

dT;

e Equilibrium requires: MRS(7;)r(ko(73)) = 1+ 7.
This means that:

< 1.

(MRS)r'(k2)

dko _ dMRS
k
dr; (k) dr;

(MRS)r (k) ~1.

Since d%TRS > () (increasing 7; lowers savings, thereby decreasing
(3

¢ and increasing c¢q), it must be that (MRS)r’ (kg)% < 1.
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QUASI-GEOMETRIC TEMPTATION

e [dea: temptation can only occur if it involves the immediate
present.

e The two-period model determines preferences over two-period
choice problems.

e Longer-horizon choice problems are defined recursively: every
choice problem requires choosing today’s consumption and to-
morrow’s choice problem.

e [terating backwards, one obtains:

Wr_i(kr—y) = max {u(f(kr—t) — kr—t31) +

T—-t+1

OWr_pi1(kr_ss1) +
Vi1 (kr—s, kr—i41) }

— max {Vi_p1(kr_p, kr_ii1)
ki1

where

Vi_i(kr—t, kr—iy1) = v{u(f(kr—t) — kr—431) +
BOWr_i1(kr—i41)}-

e Notice:

1. When v = 0 or 8 = 1, the consumer does not have self-
control problems: standard model.

2. When (8 = 0: temptation by immediate consumption as in
Gul and Pesendorfer (2000b).
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THE LAIBSON LIMIT CASE

o [f 3 4 1 and v goes to infinity, we move toward the Laibson
case: (1) the agent puts so much weight on the temptation that
he succumbs to 46 behavior; and (ii) he views the future period
utils as being compared with §’s alone. (Gul and Pesendorfer
(2001) also study this case.)

e Focusing on the Laibson limit case, this approach tells us how
to evaluate policy (which “self’s” utility function to use): the
current self maximizes V', but W corresponds to his utility over

sets. This is effectively utility as perceived by his most recent
self.
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PREFERENCE REVERSALS
IN THE GUL-PESENDORFER MODEL

Let u(c) = ¢ and v(c) = ye. Set B = 0 for simplicity.

Early reward | Late reward
Co 0 0
C1 a 0
() 0 b

Late reward chosen if da < §?b. (No self-control problems since both
rewards occur after the current period.)

Early reward | Late reward
Co a 0
C1 0 b
(6)) 0 0

Early reward chosen if a > 6b + (0 — a).

Preference reversal if 6b — va < a < b.
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EULER EQUATIONS

e There is a pair of Euler equations, one for realized behavior and
one for temptation behavior:

1+ By

wle)=d-— S (k) {u'(cra) + [ (c4) — W' (@)]}

U,(5t> = 55’Yf/(kt+1) {Ul(étﬂ) + ’Y[U/<ét+1) - Ul(ét+1)]}

e These are functional equations in a “realized” decision rule k' =
g(k) and a “temptation” decision rule k' = g(k):

e Compare and contrast with the generalized Euler equation in the
Laibson model:

u'(cr) = Bou' (cor )L (kerr) + (1/8 — 1)g' (ki) }-
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MACROECONOMIC APPLICATIONS

e We consider long horizons: the limit of the finite-horizon prob-
lems.

e We study competitive equilibrium under two kinds of parametric
restrictions:

1. Isoelastic utility and no restrictions on technology: char-
acterization and existence in the neighborhood of a steady
state.

2. Logarithmic utility, Cobb-Douglas production, and full
depreciation: full analytical solution of recursive competi-
tive equilibria.
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BARRO ANALYSIS: COMPETITIVE EQUILIBRIUM

e The consumer takes as given: factor prices and a law of motion

F = G(R).

e The consumer’s problem in recursive form:

Wk, k) = mﬁx {u(r(k)k +w(k) — k) + W (K, K) +

v (u(r(k)k +w(k) — k') + B6W (K, k') } —

v max {ulr(k)k +w(k) — k') + BOW (K, K')},

given k' = G(k).

e This problem determines:

1. A “realized” savings rule k' = g(k, k).

2. A “temptation” savings rule &' = g(k, k).

e Equilibrium requires g(k, k) = G(k).
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THE LOG-COBB MODEL

Parametric assumptions: logarithmic w, full depreciation, Cobb-
Douglas production.

1. Autarky

Realized savings rule:

ad
k) = Ak®
9(k) ad+ (1 — ad) 11++5ny
Temptation savings rule:
ad
g(k) = Ak
g(k) 1 —ad+adf
2. Competitive Equilibrium
Realized savings rule:
ok k) = e (R
o+ (1—19) 115y
Temptation savings rule:
) ; oy P =9)
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ISOELASTIC UTILITY AND
ANY CONVEX TECHNOLOGY

One can show that the following properties hold:

gk, k) = Ak)k + u(k)
gk, k) = Ak)k + (k)
where (A(k), u(k), AM(k), i(k)) solves the following functional equa-

I+~ _
5 (1+ By)r (F)
(r(®) = AEVAE)] T [r(®) = AENWAR)] T
{(1 Sl v ] T k) = A(R) ] }
1L+

opr (k)
_ (r(®) = AEVAER)] T [r(®) = AE)AR)]
- {(1 T - AW T m = A®) ] }
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STEADY STATE

e The steady-state interest rate is unique and given by:

1+5y

(kss)

| — (ﬁ(lﬂ))l/" i

Table 1:
Steady-State Interest Rate

oc=20.>5

o=1

o=2

o=3

o=29

=10

3=04
B3 =07

8.724%
6.303%

7.519%
6.192%

7.123%
6.142%

7.012%
6.127%

6.930%
6.114%

6.872%
6.105%

e As v — 00, the steady state converges to that of the Laibson
model (and o no longer matters).

e When 8 = 0 (myopic temptation), g(k,k) = 7;/2;0)@1 and the
steady state interest rate is given by:
I - y 7”(/2’35) -
6r(kss) L+ (r(ky) —1]

e The linearity of the savings rules implies that the steady-state
wealth distribution is indeterminate (contrast with Gul and Pe-
sendorfer (2000b)).
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DYNAMICS: NUMERICAL RESULTS

e Given isoelastic utility, dynamics can be computed using numer-
ical methods.

e On observational equivalence: varying 8 and o, while adjusting
0 to keep the steady-state interest rate constant:

Table 2:
Speed of adjustment to the steady state

B3=025]8=05|8=075] =1
o=0.5] 0.79093 | 0.79757 | 0.80155 | 0.80477
o=1 | 086039  0.86039 | 0.86039 |0.86039
o=3 | 093254 |0.93075 | 0.92854 | 0.92643
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POLICY IN THE INFINITE-HORIZON MODEL

For the log-Cobb model:

e The first-best is (again) the command policy: give the consumer
the consumption path that he would choose given no self-control
problems and a discount rate equal to 9.

e [f the government chooses tax rates to maximize the welfare of
the representative agent in a competitive equilibrium, then it will
subsidize investment: 7, > 0 and 7,7 < 0.

The realized savings decision in equilibrium is:
Gk, ") = ad Ak g (k, k, ") = ér(k)k.

This is the same allocation as under the command policy, but
with lower welfare because of the self-control cost.

e When v > 0, the savings rate is higher in competitive equilib-
rium than in autarky. This is a dynamic response to the larger
temptation faced by a consumer in competitive equilibrium.

e The gap between the two savings rates is increasing in . Conse-
quently, for low values of v, autarky is better than a laissez-faire
competitive equilibrium (without taxation); for high values of ~,
competitive equilibrium dominates.
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PRELIMINARY CONCLUSIONS

e The Gul-Pesendorfer framework is in some ways more attractive
as a vehicle for addressing preference reversals and a “bias toward
the present”.

e We to develop the Gul-Pesendorfer model toward non-standard
discounting and connect it to the Laibson model.

e The Laibson model appears as a limit case. This case implies
that utility should be interpreted as that perceived by one’s pre-
vious self.

e In a neoclassical growth setup, we characterize steady states and
local dynamics. Observational equivalence does not hold in gen-
eral.

e We characterize optimal policy: the government should restrict
the agent’s choices as much as possible subject to not eliminating
those choices that are “good”.

1. Informed command policy is best.

2. Taxation policy in a competitive equilibrium involves subsi-
dizing investment.

3. If the government can influence the extent of price-taking

behavior, then perhaps it should.

e In separate but related work, we show how to compute asset
prices in a Mehra-Prescott economy with GP consumers. This
model can help to explain the low risk-free rate.
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