
TEMPTATION AND TAXATION

Per Krusell

University of Rochester and IIES, Stockholm

Burhanettin Kuruşçu

University of Rochester and University of Texas at Austin

Anthony A. Smith, Jr.

Carnegie Mellon University

1



PREFERENCE REVERSALS

• Kirby and Herrnstein (Psychological Science, 1995): “Of 36

subjects, 34 reversed preference from a larger, later reward to a

smaller, earlier reward as the delays to both rewards decreased.”

• This evidence is not consistent with the standard model of geo-

metric discounting.

• Two theoretical responses:

1. The Strotz/Phelps-Pollak/Laibson model of hyperbolic, or

quasi-geometric, discounting. (Assume that the slope of

the discount function is a decreasing function of time.)

2. The Gul-Pesendorfer model of temptation and self-control .

(Assume that utility depends not only on the choice but also

on the set from which it is chosen.)
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PREFERENCE REVERSALS

IN THE LAIBSON MODEL

Preferences of self 0: c0 + βδc1 + βδ2c2

Early reward Late reward

c0 0 0

c1 a 0

c2 0 b

Late reward chosen if βδa < βδ2b.

Early reward Late reward

c0 a 0

c1 0 b

c2 0 0

Early reward chosen if a > βδb.

Preference reversal if βδb < a < δb.
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THE LAIBSON MODEL:

QUASI-GEOMETRIC DISCOUNTING

Preferences:

Self 0: U0 = u0 + β
(
δu1 + δ2u2 + δ3u3 + · · · + δTuT

)

Self 1: U1 = u1 + β
(
δu2 + δ2u3 + · · · + δTuT

)

Self 2: U2 = u2 + β
(
δu3 + · · · + δTuT

)

Behavior:

• The consumer cannot commit to future actions.

• The consumer is “sophisticated”: he realizes that his preferences

will change and makes the current decision taking this into ac-

count.

• The decision-making process is viewed as a dynamic game, with

the agent’s current and future selves as players.

4



MARKOV EQUILIBRIA IN THE LAIBSON MODEL

• Environment: A simple (finite-horizon) consumption-savings

problem.

• Intrapersonal equilibrium: Iterate backwards (the current self

correctly anticipates the decisions of his future selves).

• The period T − t self solves:

max
kT−t

u(f (kT−t)− kT−t+1) + βδWT−t+1(kT−t+1).

This problem determines the period T − t decision rule:

kT−t+1 = gT−t(kT−t).

• The “value function” of the period T − t self is:

WT−t(kT−t) = u(f (kT−t)−gT−t(kT−t))+δWT−t+1(gT−t(kT−t)).
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THE LAIBSON MODEL WITH AN INFINITE HORIZON

• Perceptions: The consumer perceives that future savings deci-

sions are determined by kt+1 = g(kt).

• The current self solves the “first-stage” problem:

max
k′

u(f (k)− k′) + βδW (k′).

• W is an “indirect” utility function: it must satisfy the “second-

stage” functional equation

W (k) = u(f (k)− g(k)) + δW (g(k)).

• A Markov equilibrium obtains if g(k) also solves the first-stage

problem.
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DRAWBACKS OF THE LAIBSON MODEL

• Difficult to do welfare analysis:

1. Lack of axiomatic foundation.

2. When we evaluate policy, which self’s utility function do we

use? (Krusell, Kuruşçu, and Smith (2000, 2001a) study time-

consistent government policy in the Laibson model.)

• Multiplicity of equilibria: Laibson (1994) studies trigger-stra-

tegy equilibria; Krusell and Smith (2000) study Markov equi-

libria.

• Computation: Multiplicity makes computation difficult (recent

progress: perturbation methods).
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AN ALTERNATIVE APPROACH:

GUL AND PESENDORFER’S MODEL

• This recent approach is axiomatically-based decision theory.

• It emphasizes temptation and self-control .

• It can address the experimental evidence.

• There is a dynamic version of the GP model that seems poten-

tially useful for macroeconomic analysis.
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BRIEF SUMMARY OF RESULTS

• Neoclassical growth analysis: We characterize steady states and

dynamics. In general, the model with temptation is not observa-

tionally equivalent to a model without temptation. In addition,

the curvature of the utility function plays a role in determining

the steady state.

• Connection to Laibson: We develop a formulation in which the

temptation is “quasi-geometric discounting”. If this temptation

is strong enough, our model coincides with the Laibson model.

This view of the Laibson model says that period t utility should

be evaluated from the perspective of self t− 1!

• Taxation: Our policy analysis suggests that there should be a

subsidy to investment.

• Asset Pricing: Krusell, Kuruşçu, and Smith (2001b) study equi-

librium asset prices in a Mehra-Prescott model with GP con-

sumers, some of whom have an “urge to save” rather than an

“urge to consume”. These compulsive savers play a dominant

role in asset markets, driving down the risk-free rate.
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THE GUL-PESENDORFER MODEL:

A QUICK-AND-DIRTY INTRODUCTION

• “Second-period” preferences defined over ordered pairs (A, x),

where A is a choice set and x ∈ A.

• Definition: y tempts x if ({x}, x) is preferred to ({x, y}, x).

• Assumptions:

1. Removing temptations cannot make the consumer worse off.

2. If y tempts x, then x does not tempt y.

3. Adding y to A does not make the consumer worse off unless

y tempts every element in A.

• These assumptions imply that “tempts” is a preference relation.

Moreover, the utility of a fixed choice is affected by the choice

set only through its most tempting element.
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PREFERENCES OVER CHOICE SETS

• Second-period preferences induce “first-period” preferences over

choice sets themselves: A � B if and only if there is an x ∈ A

such that (A, x) is preferred to (B, y) for all y ∈ B.

• The above assumptions imply set betweenness :

A � B implies that A � A ∪B � B.

Choice sets cannot be compared simply by looking at their

best elements.
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PREFERENCE FOR COMMITMENT,

SELF-CONTROL, AND

SUCCUMBING TO TEMPTATION

Assume A � B. “Set betweenness” allows three possibilities:

1. Standard decision maker:

A ∼ A ∪B � B

2. Preference for commitment and self-control :

A � A ∪B � B

3. Preference for commitment and succumbing to temptation :

A � A ∪B ∼ B
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A REPRESENTATION THEOREM FOR

PREFERENCES OVER SETS

• Set betweenness (together with standard axioms) implies the

following representation of preferences over sets:

W (A) = max
x∈A

{U(x) + V (x)} −max
x̃∈A

V (x̃).

• Second-period preferences are represented by:

W ∗(A, x) = U(x) + V (x)−max
x̃∈A

V (x̃).

Interpretation:

• U determines the commitment ranking (i.e., the utility of sin-

gleton sets).

• V determines the temptation ranking (i.e., V gives higher values

to more tempting elements).

• The second-period choice (given A) maximizes W ∗(A, x). That

is, actual behavior maximizes U(x) + V (x).

• V (x)−maxx̃∈A V (x̃) is the disutility of self-control.
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A SIMPLE EXAMPLE

• Two alternatives: x and y.

• x maximizes the commitment ranking: U(x) > U(y).

• y maximizes the temptation ranking: V (y) > V (x).

W ∗({x}, x) = U(x) + V (x)− V (x) = U(x)

W ∗({x, y}, x) = U(x) + V (x)− V (y)

W ∗({x, y}, y) = U(y) + V (y)− V (y) = U(y)

W ∗({y}, y) = U(y) + V (y)− V (y) = U(y)

• The consumer has a preference for commitment .

• The consumer has self-control if

U(x) + V (x)− V (y) > U(y).

In this case, W ({x}) > W ({x, y}) > W ({y}).

• The consumer succumbs to temptation if

U(x) + V (x)− V (y) < U(y).

In this case, W ({x}) > W ({x, y}) = W ({y}).
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THE TWO-PERIOD CONSUMPTION-

SAVINGS MODEL

• Consumption today and tomorrow.

• Neoclassical production.

• Standard budget set (borrowing and lending at r).

• General equilibrium.

• With ũ(c1, c2) playing the role of U and ṽ(c1, c2) the role of

V , let the temptation function ṽ have a stronger preference for

present consumption. For example, let

ũ(c1, c2) = u(c1) + δu(c2)

and

ṽ(c1, c2) = γ (u(c1) + βδu(c2)) ,

with β < 1.
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THE CONSUMER’S PROBLEM

• The consumer’s budget set is:

B(k1, k̄1, k̄2) ≡ {(c1, c2) : ∃k2 :

c1 = r(k̄1)k1 + w(k̄1)− k2

c2 = r(k̄2)k2 + w(k̄2)}

• The consumer solves:

max
c1, c2

{(1+γ)u(c1)+δ(1+γβ)u(c2)}−max
c̃1, c̃2

{γu(c̃1)+γβδu(c̃2)}

subject to: (c1, c2) ∈ B(k1, k̄1, k̄2), (c̃1, c̃2) ∈ B(k1, k̄1, k̄2).

• The consumer’s first-order condition:

1 + γ

δ(1 + γβ)

u′(c1)

u′(c2)
= r(k̄2)

• Compare to:

1

δ

u′(c1)

u′(c2)
= r(k̄2) and

1

βδ

u′(c1)

u′(c2)
= r(k̄2)

• Note that:
1

βδ
≥ 1 + γ

δ(1 + γβ)
≥ 1

δ
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COMPETITIVE EQUILIBRIUM VS. AUTARKY

• In equilibrium, k = k and r(k) = f ′(k).

• Consumer’s first-order condition becomes:

1 + γ

δ(1 + γβ)

u′(c1)

u′(c2)
= f ′(k̄2).

• This is the same first-order condition as in autarky. (In this case,

the “budget set” is the production possibility set determined by

c1 = f (k1)− k2 and c2 = f (k2).)

• BUT: the consumer is better off in autarky because the tempta-

tion is weaker (the disutility of self-control is higher in competi-

tive equilibrium).
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POLICY IN THE TWO-PERIOD MODEL

• Command policy: The government chooses for the consumer,

eliminating self-control problems. The command policy is there-

fore first-best: it maximizes u(c1) + δu(c2) and there is no disu-

tility of self-control.

• Taxation policy in competitive equilibrium: The gov’t taxes in-

come and investment (savings) in the first period. It chooses

the tax rates to maximize welfare given a budget-balancing con-

straint. Result : The gov’t subsidizes investment and taxes in-

come. Given “log-Cobb” assumptions, the optimal allocation is

the same as under the command policy. But welfare is lower

because of the self-control cost.
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OPTIMAL PROPORTIONAL TAXES

• The consumer’s budget set is:

{(c1, c2) : ∃k2 :

c1 = [r(k̄1)k1 + w(k̄1)](1− τy)− (1 + τi)k2

c2 = r(k̄2)k2 + w(k̄2)}

• The government budget constraint is:

τyf (k̄1) + τik̄2 = 0.

• Should investment be subsidized? Yes! The representative con-

sumer’s (indirect) utility is a decreasing function of τi at τi = 0.
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WHY SUBSIDIZE INVESTMENT?

• At τi = 0, there is no first-order effect on max U +V of changing

τi.

• So τi should be decreased (from 0) if doing so decreases temp-

tation utility (i.e., if doing so decreases max V ).

• The effect of increasing τi on temptation utility is twofold:

(i) c̃1 increases , by the amount k̄2 − k̃2;

(ii) c̃2 decreases , by the amount (k̄2 − k̃2)r
′(k̄2)

dk̄2
dτi

.

In utility terms, this means that an increase in τi increases temp-

tation utility if

(k̄2 − k̃2)

1− (M̃RS)r′(k̄2)
dk̄2

dτi

 > 0,

i.e., if

(MRS)r′(k̄2)
dk̄2

dτi
< 1.

• Equilibrium requires: MRS(τi)r(k̄2(τi)) = 1 + τi.

This means that:

(MRS)r′(k̄2)
dk̄2

dτi
+ r(k̄2)

dMRS

dτi
= 1.

Since dMRS
dτi

> 0 (increasing τi lowers savings, thereby decreasing

c2 and increasing c1), it must be that (MRS)r′(k̄2)
dk̄2
dτi

< 1.
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QUASI-GEOMETRIC TEMPTATION

• Idea: temptation can only occur if it involves the immediate

present.

• The two-period model determines preferences over two-period

choice problems.

• Longer-horizon choice problems are defined recursively: every

choice problem requires choosing today’s consumption and to-

morrow’s choice problem.

• Iterating backwards, one obtains:

WT−t(kT−t) = max
kT−t+1

{u(f (kT−t)− kT−t+1) +

δWT−t+1(kT−t+1) +

VT−t+1(kT−t, kT−t+1)}
− max

k̃T−t+1

{VT−t+1(kT−t, k̃T−t+1)},

where

VT−t(kT−t, kT−t+1) ≡ γ{u(f (kT−t)− kT−t+1) +

βδWT−t+1(kT−t+1)}.

• Notice:

1. When γ = 0 or β = 1, the consumer does not have self-

control problems: standard model.

2. When β = 0: temptation by immediate consumption as in

Gul and Pesendorfer (2000b).
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THE LAIBSON LIMIT CASE

• If β 6= 1 and γ goes to infinity, we move toward the Laibson

case: (i) the agent puts so much weight on the temptation that

he succumbs to βδ behavior; and (ii) he views the future period

utils as being compared with δ’s alone. (Gul and Pesendorfer

(2001) also study this case.)

• Focusing on the Laibson limit case, this approach tells us how

to evaluate policy (which “self’s” utility function to use): the

current self maximizes V , but W corresponds to his utility over

sets. This is effectively utility as perceived by his most recent

self.
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PREFERENCE REVERSALS

IN THE GUL-PESENDORFER MODEL

Let u(c) = c and v(c) = γc. Set β = 0 for simplicity.

Early reward Late reward

c0 0 0

c1 a 0

c2 0 b

Late reward chosen if δa < δ2b. (No self-control problems since both

rewards occur after the current period.)

Early reward Late reward

c0 a 0

c1 0 b

c2 0 0

Early reward chosen if a > δb + γ(0− a).

Preference reversal if δb− γa < a < δb.
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EULER EQUATIONS

• There is a pair of Euler equations, one for realized behavior and

one for temptation behavior :

u′(ct) = δ
1 + βγ

1 + γ
f ′(kt+1) {u′(ct+1) + γ[u′(ct+1)− u′(c̃t+1)]}

u′(c̃t) = δβγf ′(kt+1)
{
u′(c̃t+1) + γ[u′(c̃t+1)− u′(˜̃ct+1)]

}

• These are functional equations in a “realized” decision rule k′ =

g(k) and a “temptation” decision rule k̃′ = g̃(k):

• Compare and contrast with the generalized Euler equation in the

Laibson model:

u′(ct) = βδu′(ct+1){f ′(kt+1) + (1/β − 1)g′(kt+1)}.
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MACROECONOMIC APPLICATIONS

• We consider long horizons: the limit of the finite-horizon prob-

lems.

• We study competitive equilibrium under two kinds of parametric

restrictions:

1. Isoelastic utility and no restrictions on technology : char-

acterization and existence in the neighborhood of a steady

state.

2. Logarithmic utility, Cobb-Douglas production, and full

depreciation: full analytical solution of recursive competi-

tive equilibria.
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BARRO ANALYSIS: COMPETITIVE EQUILIBRIUM

• The consumer takes as given: factor prices and a law of motion

k̄′ = G(k̄).

• The consumer’s problem in recursive form:

W (k, k̄) = max
k′

{u(r(k̄)k + w(k̄)− k′) + δW (k′, k̄′) +

γ
(
u(r(k̄)k + w(k̄)− k′) + βδW (k′, k̄′)

)
} −

γ max
k̃′

{u(r(k̄)k + w(k̄)− k̃′) + βδW (k̃′, k̄′)},

given k̄′ = G(k̄).

• This problem determines:

1. A “realized” savings rule k′ = g(k, k̄).

2. A “temptation” savings rule k̃′ = g̃(k, k̄).

• Equilibrium requires g(k̄, k̄) = G(k̄).
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THE LOG-COBB MODEL

Parametric assumptions: logarithmic u, full depreciation, Cobb-

Douglas production.

1. Autarky

Realized savings rule:

g(k) =
αδ

αδ+ ( 1− αδ) 1+γ
1+βγ

Akα

Temptation savings rule:

g̃(k) =
αδβ

1− αδ + αδβ
Akα

2. Competitive Equilibrium

Realized savings rule:

g(k, k̄) =
δ

δ + (1− δ) 1+γ
1+βγ

r(k̄)k

Temptation savings rule:

g̃(k, k̄) =
δβ

1− δ + δβ

(
r

(
k̄

)
k + w

(
k̄

))
− ϕ (1− δ)

1− δ + δβ
G(k̄)
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ISOELASTIC UTILITY AND

ANY CONVEX TECHNOLOGY

One can show that the following properties hold:

g(k, k) = λ(k)k + µ(k)

g̃(k, k) = λ̃(k)k + µ̃(k)

where (λ(k), µ(k), λ̃(k), µ̃(k)) solves the following functional equa-

tions:

µ(k) +
w(k

′
)− µ(k

′
)

r(k
′
)− λ(k

′
)

=
w(k)− µ(k)

r(k)− λ(k)
λ(k)

µ̃(k) +
w(k

′
)− µ(k

′
)

r(k
′
)− λ(k

′
)

=
w(k)− µ̃(k)

r(k)− λ̃(k)
λ̃(k)

1 + γ

δ (1 + βγ) r
(
k
′) =

(1 + γ)

(r(k
′
)− λ(k

′
))λ(k)

r(k)− λ(k)


−σ

− γ

(r(k
′
)− λ̃(k

′
))λ(k)

r(k)− λ(k)


−σ

1 + γ

δβr
(
k
′)

=

(1 + γ)

(r(k
′
)− λ(k

′
))λ̃(k)

r(k)− λ̃(k)


−σ

− γ

(r(k
′
)− λ̃(k

′
))λ̃(k)

r(k)− λ̃(k)


−σ
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STEADY STATE

• The steady-state interest rate is unique and given by:

1 + γ

r(k̄ss)δ(1 + βγ)
= 1 + γ − γ

1−
1−

(
β(1+γ)
1+βγ

)1/σ

r(k̄ss)


σ

.

Table 1:

Steady-State Interest Rate

σ = 0.5 σ = 1 σ = 2 σ = 3 σ = 5 σ = 10

β = 0.4 8.724% 7.519% 7.123% 7.012% 6.930% 6.872%

β = 0.7 6.303% 6.192% 6.142% 6.127% 6.114% 6.105%

• As γ → ∞, the steady state converges to that of the Laibson

model (and σ no longer matters).

• When β = 0 (myopic temptation), g̃(k, k̄) = −w(k)
r(k)−1

and the

steady state interest rate is given by:

1

δr(k̄ss)
= 1− γ

1 + γ

 r(k̄ss)

r(k̄ss)− 1


−σ

.

• The linearity of the savings rules implies that the steady-state

wealth distribution is indeterminate (contrast with Gul and Pe-

sendorfer (2000b)).
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DYNAMICS: NUMERICAL RESULTS

• Given isoelastic utility, dynamics can be computed using numer-

ical methods.

• On observational equivalence: varying β and σ, while adjusting

δ to keep the steady-state interest rate constant:

Table 2:

Speed of adjustment to the steady state

β = 0.25 β = 0.5 β = 0.75 β = 1

σ = 0.5 0.79093 0.79757 0.80155 0.80477

σ = 1 0.86039 0.86039 0.86039 0.86039

σ = 3 0.93254 0.93075 0.92854 0.92643
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POLICY IN THE INFINITE-HORIZON MODEL

For the log-Cobb model:

• The first-best is (again) the command policy: give the consumer

the consumption path that he would choose given no self-control

problems and a discount rate equal to δ.

• If the government chooses tax rates to maximize the welfare of

the representative agent in a competitive equilibrium, then it will

subsidize investment: τ ∗y > 0 and τ ∗i < 0.

The realized savings decision in equilibrium is:

G(k̄, τ ∗) = αδAk̄αg
(
k, k̄, τ ∗

)
= δr(k̄)k.

This is the same allocation as under the command policy, but

with lower welfare because of the self-control cost.

• When γ > 0, the savings rate is higher in competitive equilib-

rium than in autarky. This is a dynamic response to the larger

temptation faced by a consumer in competitive equilibrium.

• The gap between the two savings rates is increasing in γ. Conse-

quently, for low values of γ, autarky is better than a laissez-faire

competitive equilibrium (without taxation); for high values of γ,

competitive equilibrium dominates.
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PRELIMINARY CONCLUSIONS

• The Gul-Pesendorfer framework is in some ways more attractive

as a vehicle for addressing preference reversals and a “bias toward

the present”.

• We to develop the Gul-Pesendorfer model toward non-standard

discounting and connect it to the Laibson model.

• The Laibson model appears as a limit case. This case implies

that utility should be interpreted as that perceived by one’s pre-

vious self.

• In a neoclassical growth setup, we characterize steady states and

local dynamics. Observational equivalence does not hold in gen-

eral.

• We characterize optimal policy: the government should restrict

the agent’s choices as much as possible subject to not eliminating

those choices that are “good”.

1. Informed command policy is best.

2. Taxation policy in a competitive equilibrium involves subsi-

dizing investment.

3. If the government can influence the extent of price-taking

behavior, then perhaps it should.

• In separate but related work, we show how to compute asset

prices in a Mehra-Prescott economy with GP consumers. This

model can help to explain the low risk-free rate.
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Figure 4

34



-

6

c1

c2
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