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Abstract

This paper uses Þeld evidence and a structural consumption-savings model to estimate dis-

count functions. Evidence on wealth accumulation implies that people act patiently when

considering long-term decisions, while data on credit card borrowing and consumption-income

comovement suggests impatient behavior in the short term. Using the Method of Simulated Mo-

ments we estimate an institutionally rich model that features stochastic labor income, liquidity

constraints, child and adult dependents, liquid and illiquid assets, revolving credit, retirement,

and quasi-hyperbolic discount functions. We Þnd benchmark estimates of 40% for the short-

term discount rate and 4.3% for the long-term discount rate. Most speciÞcations reject the

null hypothesis of time-consistent exponential discounting. Exact quantitative results depend

on assumptions about the return on illiquid assets and the coefficient of relative risk aversion.
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1 Introduction

Intertemporal preferences play a key role in almost all important decisions. To measure time

preference most authors have relied on laboratory studies in which the experimenter controls the

choices that subjects face. Laboratory experiments typically ask subjects to weigh immediate

rewards against delayed rewards. A typical study asks subjects if they would prefer $X now or

$Y in the future (e.g., a month from now). Researchers impute discount rates from such tradeoffs.

Despite the advantages of controlled laboratory experimentation, such studies may confound

time preferences with other considerations, like the trustworthiness of the experimenter or the

outside investment options of the subject. It is not clear whether laboratory experiments measure

market interest rates, the discount function, or something else entirely.

Research using field data has its own strengths and weaknesses. Field data reßect choices

from real-world markets and hence have greater external validity than abstract and unfamiliar

laboratory decisions. Research with Þeld data can also take advantage of existing large databases

on household behavior. However, Þeld data are difficult to interpret since it is impossible for the

researcher to know exactly what tradeoffs households actually face in real-world markets.

Given all of these considerations, laboratory and Þeld research complement each other. Each has

a useful role to play. Hence it is surprising that most of the efforts to estimate discount functions

have used laboratory evidence. This imbalance is particularly true of the recent research on

dynamically inconsistent time preferences. Hundreds of studies beginning with ? and summarized

in Ainslie (1992) have examined such time preferences with laboratory evidence while only a handful

have attempted to do this with Þeld data. Moreover, existing studies using Þeld and experimental

data, as surveyed by Frederick, Loewenstein and O�Donoghue (2002), have achieved little consensus

about the form and amount of time discounting in economic decisions.

The current paper uses Þeld data on lifecycle consumption choices to estimate intertemporal

time preferences and formally test for dynamically inconsistent time preferences. SpeciÞcally,

we use numerical methods to recursively solve and simulate a structural �buffer stock� model of

lifecycle consumption and investment choices. This model includes a rich array of constraints and

stochastic events that consumer face � stochastic labor income, liquidity constraints, liquid and

illiquid assets, revolving credit, household dependents, and retirement �, and thus controls for a
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number of relevant factors that affect intertemporal decisions.

We then estimate the model�s time preference parameters using a two-stage Method of Simulated

Moments (MSM) procedure (McFadden 1989, Pakes and Pollard 1989, Duffie and Singleton 1993).1

The MSM procedure extends the Generalized Method of Moments (GMM) to account for numerical

simulation error. In the Þrst stage of the MSM procedure we estimate inputs to the life-cycle

model, including the parameters of the stochastic labor income process, interest rates, credit card

borrowing limits, and parameters that describe variation in household size over the lifecycle. In

the second stage of the MSM procedure we use the simulation model to estimate time preference

parameters, which are identiÞed from key moments in the consumption literature that characterize

wealth accumulation, credit card borrowing, and consumption-income comovement. Uncertainty

in estimates of the Þrst stage parameters propagates to the standard errors for the time preference

parameters estimated in the second stage. Formal incorporation of the Þrst stage is critical since

it raises our second-stage standard errors by nearly an order of magnitude.

Our analysis has three key payoffs. First, this paper uses Þeld data to estimate the parameters

in both the dynamically consistent exponential discount function and a dynamically inconsistent

alternative, the quasi-hyperbolic discount function. Second, we run formal econometric horse races

between these discounting models, using both t-tests and overidentiÞcation tests. Finally, we ask

whether these models accurately predict the most important behavioral regularities in the lifecycle

literature.

When we adopt an exponential discount function, the MSM procedure estimates an annual

exponential discount rate of 15%. By contrast, when we adopt a quasi-hyperbolic discount function,

the MSM procedure estimates a short-run annualized discount rate of 40% and a long-run annualized

discount rate of only 4%. All of these estimates are statistically signiÞcant. Our quasi-hyperbolic

estimates imply a formal rejection of the exponential null hypothesis that the short-run discount

rate is equal to the long-run discount rate.

Our overidentiÞcation tests reinforce these conclusions. Only the exponential model is con-

1Gourinchas and Parker (2002) and French and Jones (2001) use MSM to estimate different aspects of consumption
models. Gourinchas and Parker identify the (exponential) discount rate and the coefficient of relative risk aversion
off lifecycle consumption proÞles. French and Jones assess how the opportunity to save and self-insure affects the
impact of legislated Social Security and Medicare eligibility ages on the retirement decision. Most other applications
of MSM have been in the Industrial Organization literature.
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sistently rejected by overidentiÞcation tests. Intuitively, the exponential model cannot simulta-

neously explain high levels of credit card borrowing and high levels of wealth accumulation. By

contrast, the quasi-hyperbolic model implies that consumers will simultaneously act patiently and

impatiently, because they have conßicting short-run and long-run discount rates.2 In theory, low

long-run discount rates explain why households accumulate substantial (illiquid) retirement wealth

at interest rates of about 5%, while high short-run discount rates imply that the same households

borrow regularly on credit cards at interest rates of 16%. By accumulating wealth in illiquid form,

households commit themselves to act patiently in the future (i.e., not spending down accumulated

assets). However, when liquid assets and unused credit card balances are available, households

splurge whenever they can and therefore appear impatient. Consumers seem to be of two minds,

acting patiently as they accumulate retirement wealth and acting impatiently in the credit card

market.

We conclude the paper by reporting a wide range of robustness checks that reinforce our earlier

Þndings, but identify the limits of our results. Most importantly we Þnd that our estimates are

relatively sensitive to assumptions about the return on illiquid assets and the coefficient of relative

risk aversion.

Our quasi-hyperbolic time preference parameter estimates approximately match those of other

authors who have estimated these parameters with structural models and Þeld data. Paserman

(2002) obtains identiÞcation from heterogeneity in unemployment durations and reservation wages

to Þnd estimates of a short-run discount rate that range between 10% to 60% and a long-run

discount rate of 0.1%. He rejects the exponential discounting null hypothesis for two of three

subsamples. Fang and Silverman (2002) estimate a model of �naive� quasi-hyperbolic discounting

in which decision-makers incorrectly believe that they will have exponential discount functions in

the future.3 Using data on welfare recipients, they Þnd a short-run discount rate of 57% and a long-

run discount rate of 8%, though they cannot reject the null hypothesis of exponential discounting.

When we constrain our model to exponential discounting, we estimate a constant discount rate

2See Angeletos, Laibson, Repetto, Tobacman and Weinberg (2001) and Laibson, Repetto and Tobacman (2003)
for expositions of this intuitive argument.

3See Akerlof (1991) and O�Donoghue and Rabin (1999a, 1999b) for theory on naive hyperbolic discounters. Hy-
perbolics who are aware that they will be hyperbolic in the future are called �sophisticates.� In most consumption
models sophisticates and naifs behave similarly (Angeletos et al. 2001). We focus on the sophisticated case. See
Section 6 for more discussion.
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of 15%. By contrast, most authors who calibrate exponential discount functions with lifecycle

consumption and wealth data have adopted discount rates that are around 5% (Engen, Gale and

Scholz 1994, Hubbard, Skinner and Zeldes 1994, Laibson, Repetto and Tobacman 1998, Engen,

Gale and Uccello 1999). Our results differ because we require our model to Þt simultaneosuly

wealth accumulation data and credit card borrowing data.

The empirical data we use to estimate our model are presented in Section 2. Section 3 char-

acterizes the model. We explain the MSM procedure in Section 4. Section 5 presents our results.

Section 6 discusses extensions and Section 7 concludes.

2 Wealth Accumulation, Credit Card Borrowing, and Consumption-

Income Comovement Data

We estimate exponential and quasi-hyperbolic discount functions by matching moments that char-

acterize wealth accumulation, credit card borrowing, and consumption excess sensitivity. Table

1 summarizes these moments and Appendix 1 contains a detailed description of the data sources

and estimation procedures. All of the analysis that we conduct applies to US households whose

head has a high school degree but not a college degree. These households constitute 59% of the

population (U.S. Census Bureau 1995).4

The Þrst statistic, % V isa, is the fraction of households who borrow on credit cards.5 Our

analysis Þnds that 67.8% of households pay interest on credit card debt each month. This per-

centage measures households who self-report that they did not pay their bill in full at the end of

the last month (SCF).

We construct the second statistic, mean V isa, by dividing age-speciÞc credit card borrowing by

mean age-speciÞc income. We then average this fraction over the lifecycle. The average household

has outstanding credit card debt equal to 11.7% of the mean income of its age cohort (SCF, Fed).

The third statistic, CY , represents the excess sensitivity of consumption in response to pre-

dictable income changes. We estimate that the marginal propensity to consume is 23% of the

4Laibson et al. (1998, 2003) also examine households whose heads do not have high school degrees and households
whose heads have college degrees, and Þnd qualitatively similar results.

5This is the fraction that borrows on any type of card, not just Visa cards.
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income change (PSID). This Þgure is consistent with other analyses in the literature.6

The Þnal statistic, wealth, approximately averages the wealth-to-income ratios for households

with heads aged 50-59, excluding �involuntary� accumulation like Social Security and other de-

Þned beneÞt pensions. To downweight outliers we apply the arctan function to each ratio before

averaging.7 This wealth measure equals 2.60.

These four moments reßect important empirical characteristics of lifecycle behavior. Two addi-

tional features of the data help us interpret our results. First, most household wealth is in illiquid

form. According to the SCF, adopting an expansive deÞnition of liquidity, the average household

has only 18.6% of assets in liquid form.8 Second, though there is considerable heterogeneity among

households, credit card borrowing is ubiquitous across the entire distribution of wealth. Table 2

reports the fraction of households borrowing on credit cards by age and by wealth quartile. Even

among the households with a head between ages 50-59 who are between the 50th and 75th wealth

percentiles, 56% did not repay their credit card in full the last time they paid their credit card bill.

3 Consumption-Savings Model

We adopt a partial equilibrium model based on the simulation literature pioneered by Carroll

(1992, 1997), Deaton (1991), and Zeldes (1989), and extended by Hubbard, Skinner and Zeldes

(1994, 1995), Gourinchas and Parker (2002), and Laibson et al. (1998, 2003). Our framework

incorporates all of the standard features of earlier lifecycle simulation models as well as credit

cards, age-dependent household size, illiquid assets, and quasi-hyperbolic time preferences. All of

the model�s features matter for its predictions, but we focus on the implications of Section 2�s data

for insight into the representation of time preferences. We divide the model summary into eight

parts: demographics, non-asset income, liquid assets and noncollateralized debt, illiquid assets,

budget constraints, preferences, equilibrium, and simulation. The values of our estimated inputs

of the model, the Þrst-stage parameters, can be found in Table 3.

6Most previous work on excess sensitivity has found coefficients between 0 and 0.5. See Deaton (1992) and
Browning and Lusardi (1996) for reviews.

7Our results are robust to different choices of this function.
8We include cash, checking and savings accounts, money market accounts, call accounts, CDs, bonds, stocks and

mutual funds (as long as they are outside retirement accounts).
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3.1 Demographics

We assume that independent economic life begins at age 20. Households face a time-varying,

exogenous hazard rate of survival, st, calibrated with data from the U.S. National Center for Health

Statistics (1994). To ease our computational burden, we assume that no household lives past age

90. Household composition varies deterministically and exogenously with age (calibrated from

the PSID) as children and adult dependents enter and leave the household. Following Blundell,

Browning and Meghir (1994) and Attanasio and Browning (1995), effective household size nt equals

the number of adults plus 0.4 times the number of children under 18. We assume households always

have both a head and a spouse and calibrate the model accordingly.

3.2 Income from transfers and wages

Let Yt represent all period t after-tax income from transfers and wages, including labor income,

inheritances, private deÞned beneÞt pensions, and government transfers including Social Security.

We assume labor is supplied inelastically, so Yt is exogenous. We model yt = ln(Yt) during working

life as the sum of a cubic polynomial in age, a Markov process ηt that approximates an underlying

AR(1) process, and an iid normally distributed error. During retirement, we model yt as the sum

of a linear polynomial in age and an iid mean-zero normally-distributed error. Retirement occurs

exogenously at age T . The income process and the retirement age are calibrated from the PSID.

3.3 Liquid assets and noncollateralized debt

Let Xt represent liquid asset holdings at the beginning of period t before receipt of income. If

Xt < 0 then credit card debt was held between t− 1 and t. We introduce a credit limit at age t of
λ times average income at age, i.e., Xt ≥ −λ · Ȳt. The limit is calibrated from the 1995 SCF. Our

model precludes consumers from simultaneously holding liquid assets and credit card debt, though

such behavior has been documented among a small fraction of consumers by Gross and Souleles

(2002a) and Bertaut and Haliassos (2001).

Positive liquid asset holdings earn a risk-free real after-tax gross interest rate of R, the average

of Moody�s AAA municipal bond yields from 1980-2000 (Gourinchas and Parker 2002). Households

pay a gross real interest rate on credit-card borrowing of RCC . Our estimate of RCC captures the
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impact of bankruptcy, default, and inßation, which lower consumers� effective interest payments,

using data from the FRB, the American Bankruptcy Institute, and the CPI.

3.4 Illiquid assets

Let Zt represent illiquid asset holdings at the beginning of period t, and assume that Zt ≥ 0,∀t.
Illiquid assets in our model generate two types of returns: capital gains and consumption ßows.

We set the gross rate of capital gains equal to RZ = 1 and the annual consumption ßows equal to

γ · Zt = 0.05 · Zt. We assume the return on Z is considerably higher than the return on X. We

adopt the assumption of complete illiquidity of Z: transaction costs are large enough that the asset

can never be sold. Angeletos et al. (2001) and Laibson et al. (2003) Þnd that assuming partial

illiquidity, i.e. Þxed and proportional costs of withdrawal from Z, generates similar simulations,

and in the robustness section we assess the impact of making Z more attractive. This asset is

obviously quite stylized, to preserve computational tractability, but we view Z as analogous to

home equity. See the discussion in Appendix 2.

3.5 Dynamic and static budget constraints

Let IXt represent net investment into the liquid asset X during period t, and let IZt represent net

investment into the illiquid asset Z during period t. Then the dynamic budget constraints are given

by,

Xt+1 = RX · (Xt + IXt ) (1)

Zt+1 = RZ · (Zt + IZt ). (2)

Since the interest rate on liquid wealth RX depends on whether the consumer is borrowing or

saving in her liquid accounts,

RX =

 RCC if Xt + I
X
t < 0

R if Xt + IXt ≥ 0
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Denote rCC = RCC − 1. The static budget constraint is:

Ct = Yt − IXt − IZt

The state variables Λt at the beginning of period t are liquid wealth (Xt + Yt), illiquid wealth

(Zt), and the value of the Markov process (ηt). The non-redundant choice variables are I
X
t and IZt .

Consumption is calculated as a residual.

3.6 Preferences

We adopt constant relative risk aversion instantaneous utility functions and quasi-hyperbolic dis-

count functions. For t ∈ {20, 21, ..., 90}, self t has instantaneous payoff function

u(Ct, Zt, nt) = nt ·
³
Ct+γZt
nt

´1−ρ − 1
1− ρ

and continuation payoffs given by

β
90−tX
i=1

δi
³
Πi−1
j=1st+j

´
[st+i · u(Ct+i, Zt+i, nt+i) + (1− st+i) ·B(Xt+i, Zt+i)] .

Here ρ is the coefficient of relative risk aversion, and B(·) represents the payoff in the death state,
which incorporates a bequest motive. The Þrst expression in the bracketed term is the utility

ßow that arises in period t + i if the household survives to age t + i. The second expression is

the termination payoffs in period t+ i which arises if the household dies between period t+ i− 1
and t+ i. The quasi-hyperbolic discount function

©
1, βδ, βδ2, βδ3, ...

ª
corresponds to a short-run

discount rate of − ln (βδ) and a long-run discount rate of − ln (δ) . The restriction β = 1 implies
time consistency and exponential discounting.

3.7 Equilibrium

Following the work of Strotz (1956) we model consumption choices as an intra-personal game.

Selves {20, 21, ..., 90} are the players in this game. Taking the strategies of other selves as given,
self t picks a strategy for time t that is optimal from its perspective. This strategy is a mapping
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from the Markov state variables, {t,X + Y, Z, u}, to the choice variables ©IX , IZª. An equilibrium
is a Þxed point in the strategy space, such that all strategies are optimal given the strategies of the

other players. We solve for the equilibrium strategies using a numerically implemented backwards

induction algorithm.

Our choice of the quasi-hyperbolic discount function simpliÞes the induction algorithm. Let

Vt,t+1 (Λt+1) represent the time t + 1 continuation payoff function of self t. Then its objective

function is:

u(Ct, Zt, nt) + βδEtVt,t+1(Λt+1) (3)

Self t chooses
©
IX , IZ

ª
in state Λt to maximize this expression. The sequence of continuation

payoff functions is deÞned recursively:

Vt−1,t(Λt) = st[u(Ct, Zt, nt) + δEtVt,t+1(Λt+1)] + (1− st)EtB(Λt) (4)

The induction continues in this way. Note that dynamic inconsistency in preferences is reßected in

the fact that β appears in Equation 3 � reßecting self t�s discount factor between t and t+ 1 �

but does not appear in Equation 4, since self t− 1 does not use it to discount between t and t+1.
Equations 3 and 4 jointly deÞne a functional equation which is not a contraction mapping.

Hence, the standard dynamic programming results do not apply to this problem. SpeciÞcally,

V does not inherit concavity from u, the objective function is not single-peaked, and the policy

functions are in general discontinuous and non-monotonic.9 We have adopted a numerically efficient

solution algorithm � based on local grid searches � which iterates our functional equation in the

presence of these non-standard properties.10

9See Laibson (1997b).
10Twenty-Þve minutes are required on a 1.4GHz Athlon machine to solve the 70-period lifecycle problem for a

single set of parameter values. Typically about 200 such solutions are required to obtain a (β, δ) parameter estimate
with standard errors, so the total run-time for an estimate is about 4 days.
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3.8 Simulation

We simulate the lifecycle choices of Js = 5000 individual households. We generate Js indepen-

dent streams of income realizations according to the process described above. Households make

equilibrium decisions conditional on their state variables. From the simulated proÞles of C, X,

Z, and Y , we calculate the moments used in the second stage of the MSM estimation procedure

described below. Note that the simulated proÞles, and hence the summary moments, depend

on the parameters of the model. Since the model cannot be solved analytically, its quantitative

predictions are derived from the simulated lifecycle proÞles. Imprecise replication of the exact

theoretical predictions, arising from the Þnite size of the simulation, is addressed in the estimation

procedure.

4 Method of Simulated Moments Procedure

We estimate the parameters of the model�s discount function in the second stage of a Method

of Simulated Moments procedure, closely following the methodology of Gourinchas and Parker

(2002). MSM allows us to evaluate the predictions of our model, to formally test the nested null

hypothesis of exponential discounting, β = 1, and to perform speciÞcation tests. We use MSM

rather than GMM because the model cannot be solved analytically, and because MSM provides a

way of accounting for additional uncertainty from simulation error.11 The current Section describes

our procedure. Appendix 3 presents derivations and some technical details.

We implement MSM in two stages. The Þrst stage estimates nuisance parameters using stan-

dard GMM techniques. Some authors describe this as the �calibration� stage. In our case

consistent estimates �χ of Nχ = 28 Þrst stage parameters χ are found, along with the variance Ωχ

of the estimate �χ.12 Our estimates in the Þrst stage match those of other researchers. The details

of this portion of the procedure were alluded to in the description of the model and can be found

in Laibson et al. (2003) and in Appendix 2.

11See McFadden (1989), Pakes and Pollard (1989), and Duffie and Singleton (1993) for the Þrst formulations of
MSM, and Stern (1997) for a review of simulation techniques.
12 Included in χ are seven pre-retirement income level coefficients, three pre-retirement income variability coeffi-

cients, the retirement age, Þve post-retirement income coefficients, one post-retirement income variability coefficient,
six effective household size coefficients, the credit limit, the coefficient of relative risk aversion, and three interest
rates. See Table 3.
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Given �χ and Ωχ, the second stage uses additional data and more of the model�s structure

to estimate Nθ additional parameters θ.13 The second stage, taking the Þrst stage parameters

Þxed at �χ, chooses θ to minimize the distance between the empirical and the simulated moments.

SpeciÞcally, we use Section 2�s data on wealth accumulation, credit card borrowing, and excess

sensitivity to estimate θ = (β, δ) in the second stage. MSM differs from a calibration exercise

followed by a one-stage estimation in that it propagates uncertainty in the Þrst stage parameters

into the standard errors of the second stage parameter estimates. In other words Ωθ, the variance

matrix of �θ, depends on Ωχ. For three of the model�s parameters that are not pinned down precisely

by available data, rCC , γ, and ρ, we perform additional robustness checks in Subsection 5.3.

Denote the empirical vector of Nm second stage aggregate moments by m̄Jm . Let Jm be the

numbers of empirical observations used to calculate the elements of m̄Jm.
14 Denote the theoret-

ical population analogue to m̄Jm by m (θ, χ) and let mJs (θ, χ) be the simulation approximation

to m (θ, χ). Let g (θ, χ) ≡ [m (θ, χ)− m̄Jm] and gJs (θ, χ) ≡ [mJs (θ, χ)− m̄Jm ] . The moment

conditions imply that in expectation

Eg (θ0, χ0) = E [m (θ0, χ0)− m̄Jm ] = 0,

where (θ0, χ0) is the true parameter vector. DeÞne derivatives of the moment functions with

respect to the parameters by Gθ ≡ ∂g(θ0,χ0)
∂θ and Gχ ≡ ∂g(θ0,χ0)

∂χ . Let Vg be the variance-covariance

matrix of the second stage moments in the population. Let Ωg ≡ E
£
g (θ0, χ0) g (θ0, χ0)

0¤ be the
variance of the second stage moment estimates m̄Jm , which is calculated directly and consistently

from sample data.15

13 In principle, θ and χ could be estimated simultaneously. We separate the task for three reasons (Gourinchas and
Parker 2002). First, lacking good consumption/savings panel data, we turn to population aggregates to identify θ.
This entails substantial loss of information. In the Þrst stage, we are able to use detailed longitudinal household data
on income and family characteristics to identify χ. Second, most of the data we use to identify θ and χ come from
separate datasets and are therefore uncorrelated. Exceptions are the credit limit and CY. Covariances between the
second stage moments and the credit limit we use are approximately zero, and CY �s large standard error means its
possible covariation with income process parameters can have little effect on the Þnal results. Third, with current
technology it is computationally infeasible to increase the number of parameters estimated using our model.
14Though the main text does not discuss it, the procedure accounts for the fact that Jm differs for different moments.

Appendix 3 contains details.
15 If the same number of empirical observations J̄m were available to calculate all of the second stage moments,

then we would have Ωg = Vg/J̄m.

12



Let W be a positive deÞnite NmxNm weighting matrix. DeÞne

q (θ, χ) ≡ gJs (θ, χ) ·W−1 · gJs (θ, χ)0 (5)

as a scalar-valued loss function, equal to the weighted sum of squared deviations of simulated

moments from their corresponding empirical values. Then our procedure is to Þx χ at the value of

its consistent Þrst-stage estimator, minimize the loss function q (θ, �χ) with respect to θ, and deÞne

the estimator as16

�θ = arg min
θ

q (θ, �χ) . (6)

Pakes and Pollard (1989) demonstrate that under regularity conditions satisÞed here �θ is a consistent

estimator of θ0, and �θ is asymptotically normally distributed. As shown in Appendix 3,

Ωθ = V ar
³
�θ
´
=
¡
G0θWGθ

¢−1
G0θW

£
Ωg +Ω

s
g +GχΩχG

0
χ

¤
WGθ

¡
G0θWGθ

¢−1
, (7)

where Ωsg =
Jm
Js
Ωg is the simulation correction.

This is the equation we use to calculate uncertainty in our estimates of θ. All derivatives are

replaced with consistent numerical analogues, which we calculate using the model and simulation

procedure.17 We estimate Ωg and Ωχ consistently from sample data. After obtaining estimates

using the weighting matrix W = Ω−1
g , we construct and use the optimal weighting matrix Wopt =£

Ωg +Ω
s
g +GχΩχG

0
χ

¤−1
. Many authors have found optimally-weighted GMM procedures lead to

biased estimates in small samples, so we emphasize the results from using W = Ω−1
g .

To interpret the expression for Ωθ, Þrst consider the simulation correction Ωsg. As the size of the

simulated population Js relative to the size of the sample Jm goes to inÞnity, the simulation correc-

tion approaches zero. Intuitively, as the simulation becomes an arbitrarily better approximation

for the true population than the sample, the simulation correction disappears. Next examine the

16We perform this minimization with Matlab�s built-in Nelder-Mead simplex algorithm. This algorithm is slower
but more robust than derivative-based methods, and here it is preferred because of the nonconvexities in quasi-
hyperbolic consumption functions discussed in Subsection 3.7.
17We take numerical derivatives on both sides of the optimum, and accept the derivative that has the most

conservative implications for Ωθ.
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Þrst stage correction GχΩχG0χ. This correction increases with the uncertainty Ωχ in our estimates

of the Þrst stage parameters; note that Ωχ itself is increasing in the underlying population variance

of χ and decreasing in the number of observations we use to estimate �χ. The Þrst stage correc-

tion also increases with the sensitivity of the second-stage moments to changes in the Þrst-stage

parameters, Gχ.

When neither the simulation correction nor the Þrst stage correction matter, we obtain,

Ωθ =
¡
G0θWGθ

¢−1
G0θWΩgWGθ

¡
G0θWGθ

¢−1
.

In the benchmark case where we assume W = Ω−1
g , this becomes the standard GMM variance

formula: Ωθ =
¡
G0θΩ

−1
g Gθ

¢−1.

MSM also allows us to perform speciÞcation tests. If the model is correct,

ξ
³
�θ, �χ

´
≡ gJs

³
�θ, �χ

´
·Wopt · g0Js

³
�θ, �χ

´
= gJs

³
�θ, �χ

´
· £Ωg +Ωsg +GχΩχG0χ¤−1 · g0Js

³
�θ, �χ

´
will have a chi-squared distribution with Nm −Nθ degrees of freedom. This test statistic equals

q
³
�θ, �χ

´
in the optimal-weighting case.

5 Results

In this section we arrive at the paper�s three payoffs discussed in the introduction. First, we report

estimates for the discount factors β and δ18, and we also report the effect of imposing exponential

discounting by requiring β = 1 (leaving δ as the only free parameter). Second, we econometrically

compare the predictive power of these discounting models, using both t-tests and overidentiÞcation

tests. Finally, we ask whether these models accurately predict the most important behavioral

regularities in the lifecycle literature.

The coefficient of relative risk aversion ρ, the return on illiquid assets γ, and the credit card

interest rate rCC affect the quantitative results and, as discussed in Appendix 2, these parameters

18First-stage results are reported in Table 3.
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are difficult to pin down empirically. As benchmarks we adopt the assumptions γ = 5%, rCC =

11.52%, and ρ = 2, but we also examine the robustness of our Þndings to changes in these parameters

in subsection 5.3. Sensitivity to the model�s other parameters is already accounted for by the Þrst

stage correction. We focus on the case W = Ω−1
g but include some representative results using the

efficient weighting matrix.

5.1 IdentiÞcation

IdentiÞcation of β and δ depends on the way the simulated moments mJs (θ, �χ) vary as functions

of β and δ. Globally, wealth increases in both β and δ while the other moments decrease in β and

δ. The wealth variable ranges approximately from the credit limit to 10 (i.e., the maximum value

permitted under the scaling transformation). The variables % V isa and CY range approximately

from 0 to 1 over the parameter space, while mean V isa varies from 0 to λ. In a region in the

middle of the parameter space, % V isa and mean V isa are essentially constant with respect to

δ. Empirically, wealth = 2.6, % V isa = 0.68, mean V isa = 0.13, and CY = 0.23, with standard

errors of 0.13, 0.015, 0.01, and 0.11, respectively.

IdentiÞcation of β and δ can be visualized by plotting q (θ, �χ) . Recall that q is a weighted sum

of squared deviations of the simulated moments from their empirical analogs. Smaller values of

q reßect closer Þts of the model to the data. Observe in Figure 1 that q looks like an upward-

opening paraboloid. As β and δ fall, wealth (θ, �χ) nears −λ and % V isa (θ, �χ) , mean V isa (θ, �χ) ,

and CY (θ, �χ) all approach 1. Conversely, as β and δ approach 1, wealth (θ, �χ) nears 10 and %

V isa (θ, �χ) , mean V isa (θ, �χ) , and CY (θ, �χ) all fall toward zero. In these regions none of the

moments can be matched and q becomes large.

Figure 1 exhibits an extended valley in the plot of q, traversing from high δ and low β to low δ

and high β. Parameter pairs in this valley minimize the gap between the empirical and simulated

moments. Notice that q is much more sensitive to δ than to β, because δ is exponentiated in the

discount function while β is not. In addition, the orientation of the valley indicates β and δ are,

to some extent, substitute forms of discounting. When δ is high, low values of β are required to

match the empirical facts, and vice-versa. In particular, the valley extends to the region of very

high δ and low β. However, q rises relatively quickly out of the valley as β approaches 1. As β

approaches 1, the model can not match all of the empirical moments, because matching the credit
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card data now requires a low value of δ, but with δ so low, wealth accumulation vanishes. Figure

2 displays a higher-resolution plot, which emphasizes the point that the model cannot match the

data when β is close to 1.

The Þgures reßect the key intuition that low long-term discount rates are necessary to match

observed levels of retirement wealth, while high short-term discount rates are demanded by the data

on credit card borrowing and excess sensitivity. Households will only accumulate for retirement in

illiquid form at interest rates of about 5% if their long-term discount rates are less than 5%, but

they will only borrow on credit cards at interest rates of about 12% if their short-term discount rates

are much higher than 12%. Evidently, quasi-hyperbolic discount functions with β < 1 accomodate

these seemingly dichotomous behaviors.

5.2 Benchmark Estimates

We report our Þndings under the benchmark assumptions in Table 4. In the quasi-hyperbolic

case (Column 1) we obtain �β = 0.7031, with a standard error (s.e.(i) in the Table) of 0.1093.

For this speciÞcation �β lies signiÞcantly below 1; the t-statistic for the β = 1 hypothesis test is

t = 1−0.7031
0.1093 = 2.72. The benchmark value for �δ corresponds to a long-term discount rate of

− ln(0.958) = 4.3%, close to values estimated or adopted by other authors. We Þnd that �δ is

estimated fairly precisely, with a standard error of about seven tenths of a percent.

At the estimated parameter values, the quasi-hyperbolic model generates the moment predic-

tions reported in Column 1 of Table 4. We can compare these simulated moments with the sample

moments m̄Jm , which are reproduced in Column 5. Qualitatively, the model predicts both active

borrowing on credit cards and accumulation of midlife wealth. Quantitatively, the model predicts a

fraction borrowing three standard errors from the sample value, a level of borrowing that differs by

Þve standard errors, and a consumption-income comovement coefficient and measure of wealth ac-

cumulation that are both off by about one standard error. The size of these deviations is mitigated

by the considerable Þrst stage uncertainty: high sensitivity to imprecisely-measured χ means the

model is actually doing a good job. The goodness-of-Þt measure ξ
³
�θ, �χ

´
= 3.01 reßects the quality

of the Þt, comparing favorably with the 5% critical value of 5.99 for a chi-squared distribution with

two degrees of freedom. For the benchmark case, we fail to reject the overidentiÞcation test.

We also estimate δ alone, imposing the restriction β = 1. This exponential discounting case
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yields the results in Column 2. We Þnd �δ = 0.8459 � a discount rate of 16.7% � and a standard

error of 0.0249. At these point estimates, the empirical facts about credit card borrowing and

excess sensitivity are matched quite well. However, with such a high discount rate the model

cannot account for observed wealth data. Instead, it predicts wealth = −0.05, since wealth
loses in the tug of war between Þtting wealth, which requires a low discount rate, and Þtting the

credit card variables % V isa and mean V isa, which requires a high discount rate.19 The best Þt

available under an exponential model predicts that typical households have negative total assets

in their peak accumulation years. Goodness of Þt naturally suffers: ξ (1, 0.8459, �χ) = 217 À
3.01 = ξ (0.7031, 0.958, �χ) . Since with the exponential restriction we estimate only one parameter,

we compare ξ (1, 0.846, �χ) to 11.34, the 99% critical value of a chi-squared distribution with three

degrees of freedom.20 The p-value represents the probability that the benchmark model could have

generated the observed data, so the overidentiÞcation test rejects the exponential model at the 1%

level. More important than the exact Þgures, though, is the fact that the quasi-hyperbolic p-value

exceeds the exponential one by many orders of magnitude.

The standard errors reported as �s.e.(i)� in Table 4 incorporate corrections for the Þrst stage and

for the simulation error. Without these corrections we Þnd the numbers reported as s.e.(ii), s.e.(iii),

and s.e.(iv) in the Table. Evidently the simulation correction matters little. Comparing s.e. (i)

and (ii), we see that if the simulation were inÞnitely large, so that it exactly captured the properties

of the theoretical population, the standard error on β would fall only from 0.1093 to 0.1090.

Comparing s.e. (iii) and (iv), the simulation correction would cause an increase in the variance

by about 20% if the Þrst stage correction were irrelevant. Twenty percent is the approximate

ratio of second stage moment observations Jm to simulation observations Js, as determined by our

implementation of Equation 7. However, the standard errors are strongly affected by the Þrst stage

correction. Comparing s.e (i) and (iii), if the Þrst stage parameters were known with certainty the

standard error on β would shrink from 0.1093 to 0.017. In other words, consistent estimates of Ωθ

19The empirical value of wealth is 2.6, twenty standard errors from its simulated value of wealth
³
�θ, �χ

´
= −0.05.

However, matching the empirical value of wealth could require % V isa to approach 0, forty standard errors from
its empirical value. If the returns to illiquid wealth (i.e., γ) were high enough, an exponential model could more
successfully match the facts simultaneously. The results from Case B in Subsection 5.3.2 provide suggestive evidence.
20Recall that above we compared ξ (0.705, 0.958, �χ) to a chi-squared distribution with only two degrees of freedom.

This difference accounts for the degree of improvement in goodness-of-Þt possible merely by adding an arbitrary
parameter.
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depend strongly on including the Þrst stage correction. If we had not incorporated the Þrst stage,

our standard errors would have been biased down by a factor of six.

Using the optimal weighting matrix largely preserves the pattern of the benchmark results. Our

optimal-weights Þndings are reported in Columns 4 and 5. The quasi-hyperbolic results with the

optimal weighting matrix are similar to those with W = Ω−1
g . The estimated �β and �δ are slightly

higher, the standard error on �β is lower, and the standard error on �δ is higher. In the exponential

case, �δ is found to be substantially larger than in the benchmark; now �δ is selected by the estimation

procedure to match the data on wealth at the expense of matching borrowing facts.

Uncertainty in all of the Þrst stage parameters except γ, rCC , and ρ has been incorporated into

the standard errors reported above21. However, γ, rCC , and ρ are difficult to pin down empirically

so in the next subsection we explore the robustness of our Þndings to changes in those parameters.

5.3 Robustness

5.3.1 Parameter Perturbations

We begin by perturbing γ, rCC , and ρ one by one from their benchmark values (i.e., γ = 5%,

rCC = 11.52%, and ρ = 2) and report the resulting estimates of β and δ in Table 5. In Column 1

we reproduce the benchmark results as a reference.

In Column 2 we set γ = 3.38%, corresponding to the average tax- and inßation-adjusted mort-

gage interest rate from 1980-2000, as calculated from Freddie Mac�s historical series of nominal

mortgage interest rates and the CPI-U, assuming a marginal tax rate of 25%. Intuitively, this

choice for γ reßects the return on a marginal dollar of home equity: it equals the savings in

avoided interest resulting from paying off a dollar of one�s mortgage. We interpret 3.38% as being

at the low end of a range of possible assumptions about returns to the illiquid asset Z. Actual

returns might be higher than this net mortgage interest rate if, for example, liquidity constraints

or transaction costs of loan renegotiation limit how fast people can invest in their homes.

In Column 2 we Þnd a much lower estimate of �β and a much higher estimate for �δ than in the

benchmark case. Intuitively, when the returns on illiquidity are close to those on positive liquid

21Our measure of rCC is constructed from aggregate data, so its true variability is underestimated in the Þrst stage.
See Appendix 2 for a discussion.
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assets (R − 1 = 2.79%), consumers must have signiÞcant short-run impatience (low β) to prefer

the illiquid asset. Quasi-hyperbolic consumers splurge liquid savings, so they can only accumulate

enough to match the wealth moment by saving in Z. Thus �δ rises sharply. Since �δ and �β are

substitutes globally, �β must fall to restore the optimal Þt of the other facts. In the bottom half

of Column 2, we Þnd exponential results that are identical to the benchmark case. This occurs

because simulated exponential households accumulate zero illiquid wealth at the estimated �δ in

both the benchmark case and in the perturbation.

In Column 3, we consider the case of γ = 6.59%. This is the Þgure Flavin and Yamashita (2002)

report as the total returns to housing. We view this Þgure as falling at the upper end of a range

of possible returns to home equity. In fact, γ may be lower than 6.59% because of transaction

costs of selling one�s home and moving. In addition, the costs of mortgage interest payments

must be netted out of the returns to Þnd the γ of our model.22 We now Þnd a higher estimate

of �β and a lower estimate for �δ than in the benchmark. As γ rises to approach the credit card

interest rate, the model can accomodate simultaneous illiquid wealth accumulation and credit card

borrowing more easily, even for more time-consistent consumers. Despite the increased estimate

�β, the smaller standard error means the β = 1 hypothesis is rejected at the 99% conÞdence level.

The comparative statics of increasing γ contrast with the less powerful perturbation of decreas-

ing rCC .23 In Column 4 we assume rCC = 10% and Þnd that �β rises and �δ falls relative to the

benchmark case. The standard errors change little. Column 5 shows similar effects in the oppo-

site direction for rCC = 13%. We introduce these perturbations for two reasons. First, formal

incorporation of uncertainty in rCC through the Þrst stage correction only accounts for variation in

population average interest rates. Additional tests in Columns 4 and 5 could capture individual-

level variation. In addition, these changes correspond to different perspectives on how bankruptcy

matters for the cost of credit card borrowing. Our benchmark value equals the debt-weighted aver-

age interest rate from the FRB, minus inßation, minus the personal bankruptcy rate. This ignores

(i) the fact that the marginal utility of consumption may be especially high in the bankruptcy state,

implying an underestimate of the correction, and (ii) that bankruptcy carries stigma, implying an

22 If on average half the mortgage has been paid off, then perhaps the appropriate returns to Z are 6.59%- 1
23.38% =

4.9%, which is close to our benchmark assumption of γ = 5%.
23Perturbations to γ inßuence parameter estimates more than perturbations to rCC because asset accumulation is

higher than borrowing.
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overestimate of the correction. We favor the middle speciÞcation as our benchmark, but observe

that changes in rCC of 150 basis points reported in Columns 4 and 5 have little quantitative effect

on the time preference estimates.

Finally, we examine the effect of varying the coefficient of relative risk aversion ρ. Economists

disagree notoriously about how to calibrate ρ. In order to account for the equity premium puzzle,

the consumption CAPM requires ρ > 25 (Kocherlakota 1996). Most consumption simulation

papers assume ρ ∈ [.5, 5] , consistent with typical introspective choices about hypothetical gambles
in the positive domain. When liquidity constraints do not bind, ρ is the inverse of the elasticity of

substitution. However, Euler Equation estimates of the EIS range roughly between 0 and 1. Using

a structural approach, Gourinchas and Parker (2002) identify ρ from lifecycle consumption proÞles.

For different speciÞcations they Þnd ρ between 0.2 and 5, with a precise benchmark estimate of

0.51.

In addition to this empirical ambiguity, recent theoretical work casts doubt on the prevailing

approach to modeling risk attitudes. Kahneman and Tversky (1979) and others propose and use

models of loss aversion that imply Þrst-order risk aversion. Rabin (2000) argues that seemingly-

reasonable attitudes toward small gambles imply totally unreasonable attitudes toward larger gam-

bles in an expected utility model with second-order risk aversion. Chetty (2002) proposes that

consumption commitments could cause different local and global levels of risk aversion. Rather

than entering this debate, above we adopted ρ = 2 for our benchmark. We now examine the effect

of perturbations to ρ = 1 and ρ = 3. Column 6 of Table 5 reports the effect of assuming ρ = 1.

We Þnd that �β and �δ both rise relative to the benchmark. In this speciÞcation, �β is marginally

signiÞcantly different from 1. When ρ = 3, as reported in Column 7, we Þnd that �β and �δ both fall

relative to the benchmark. Goodness-of-Þt worsens (i.e., q
³
�θ, �χ

´
rises) as ρ rises. Intuitively, as ρ

rises illiquid wealth accumulation and credit card borrowing both become less attractive. Illiquid

assets cannot be used as a buffer when bad shocks raise the marginal utility of consumption, and

anticipation of high future marginal utility reduces the temptation to splurge today at high interest

rates. Risk aversion is discussed further in the Extensions subsection below.
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5.3.2 Extreme Cases

We also consider two extreme cases. In Case A, we consider the effect of simultaneously assuming

γ = 3.38%, rCC = 13%, and ρ = 3, and in Case B we assume γ = 6.59%, rCC = 10%, and ρ = 1.

We consider both sets of assumptions implausible, but we present estimates for them to indicate

rough upper and lower bounds on estimates of β and δ.

For Cases A and B, q (θ, �χ) exhibits features similar to the benchmark. Though the upward-

opening paraboloid shifts with the assumptions about γ, rCC , and ρ, q rises quickly for high-β,

high-δ pairs and low-β, low-δ pairs; q has a valley proceeding from the high-β, low-δ region to the

low-β, high-δ region; and the minimum of the function lies away from β = 1.

Case A combines three perturbations of Þrst stage parameters that we saw above, in Table

5. Each of those perturbations lowered estimates of β, and in Column 1 of Table 6 we see that

their combined effect results in �β = 0.375. Again the exponential model, where β is restricted

to equal 1, results in a very low estimate of �δ. With such a low �δ, we see in Column 2 that the

model predicts credit card borrowing and excess sensitivity quite well, but predicts approximately

no wealth accumulation.

In Case B we combine the three other perturbations from Table 5 to Þnd �β = 0.9075. This

estimate carries a small standard error, implying that even under aggressive assumptions about γ,

rCC , and ρ, �β is signiÞcantly less than 1. In the exponential case in Column 4 we Þnd a much higher

estimate of �δ. Here the credit card and consumption-income comovement facts are still matched

reasonably well, and the model predicts nearly realistic levels of retirement wealth. Goodness-of-Þt

improves (ξ falls) for both the hyperbolic and exponential speciÞcations in Case B, relative to Case

A, as well.

6 Extensions

This paper�s Þndings suggest several directions for future work.

6.1 The coefficient of relative risk aversion

Given the sensitivity of the model�s quantitative results to the value of ρ, it would be interesting

to estimate ρ simultaneously with β and δ. We anticipate two characteristics of such an exercise.
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First, if ρ = 0 is inserted into the exponential Euler Equation, we would impute a discount rate

equal to the credit card interest rate. This discount rate would be higher than what other authors

assume, and surely too high to generate observed levels of wealth accumulation. Higher short-term

than long-term discount rates would likely still be needed to account for the facts.

Second, the curse of dimensionality implies that estimating ρ in addition to β and δ would

be computationally costly. Though we expect β would be identiÞed away from 1, β and ρ may

otherwise only be weakly separately identiÞed. Thus we might need a very large number of function

evaluations to Þnd the minimum of q (β, δ, ρ; �χ) .

6.2 Naivete

Our equilibrium deÞnition adopts the standard economic assumption of unlimited problem-solving

sophistication. The consumers in our model solve perfectly a complex backwards induction problem

when making their consumption and asset allocation choices. Though we view this assumption

as a reasonable starting point, we are not fully satisÞed with it. One alternative is the model

of �naif� behavior Þrst proposed by Strotz (1956) and more recently studied by Akerlof (1991)

and O�Donoghue and Rabin (1999a, 1999b). These authors propose that decision makers with

dynamically inconsistent preferences make current choices under the false belief that later selves

will act in the interests of the current self. Angeletos et al. (2001) Þnd that naive and sophisticated

quasi-hyperbolics similarly in many respects in lifecycle consumption models.

However, two puzzles remain which perhaps a model of partial naivete could address. First,

the sophisticated quasi-hyperbolics in these simulations would be better off if they had no access to

credit cards throughout their lifecycles. SpeciÞcally, according to a comparison of value functions,

at age 20 sophisticated quasi-hyperbolics would be willing to pay $2000 to get rid of their credit

cards immediately and never have access to them in the future. This leads naturally to the question

of why quasi-hyperbolic consumers do not in fact cut up their credit cards. Second, the spread

between the cost of funds and the credit card interest rate is �too high.� It cannot be accounted

for by standard explanations like default probabilities (Ausubel 1991). More generally, the interest

rate structure, including the ubiquitous teaser rates, clamors for an explanation. A model of naive
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overoptimism about future impatience might resolve these questions.24

6.3 Heterogeneity

A third natural direction for future work would be to relax the representative agent assumption

and consider population heterogeneity. SpeciÞcally, one might wonder whether two groups of

exponential consumers, one patient and the other impatient, could account for the facts. To us,

the data suggest that there is substantial heterogeneity in the population, but that it does not

explain why the median household both borrows on its credit cards and invests in illiquid assets.

Table 2 indicates that credit card borrowing is pervasive across the entire wealth distribution.

6.4 Institutional assumptions

It would be natural to allow households to declare bankruptcy, relax the assumption that the Z

asset is perfectly illiquid, and consider the option to purchase Z with collateralized debt. However,

these computationally-costly modiÞcations have been shown by Laibson et al. (2003) to have little

effect on the predictions of similar models. The current paper incorporates bankruptcy through

the credit card interest rate as a reduced-form. Further discussion of the characteristics of Z can

be found in Appendix 2.

6.5 Second stage moment sets

Estimates of discount functions could perhaps be reÞned by identifying off different sets of empirical

facts. One could try to identify the parameters with higher-resolution information derived from

fewer observations, like wealth-to-income ratios at every age. That would provide a stricter test

for both the exponential and quasi-hyperbolic models. We could also analyze the consumption

drop at retirement documented by Banks, Blundell and Tanner (1998) and Bernheim, Skinner and

Weinberg (1997). Both the exponential and quasi-hyperbolic benchmark models, evaluated at the

estimated parameters, predict a consumption drop of 20% in a 4-year window around retirement.

In addition, we Þnd in the SCF that households hold almost all of their wealth in illiquid

form. Even with an expansive deÞnition of liquid assets, only 18.6% of total US household wealth

24See also the very interesting experimental results of Ausubel (1999) and the theoretical contribution of DellaVigna
and Malmendier (2001).
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is liquid.25 The exponential model overpredicts this share, while the quasi-hyperbolic model

overpredicts it by a smaller � but still very large � amount.26 Intuitively, quasi-hyperbolics tend

to splurge liquid assets more often than exponential households.

Dynan (1993) Þnds that estimates of the coefficient of relative risk aversion using second-order

log linearizations of the Euler Equation are negative and hence anomalously low. Laibson et al.

(1998) show that these results could be explained by omitted variables bias: an omitted term

derived from an expansion of the quasi-hyperbolic Euler Equation correlates negatively with the

second-order term in the exponential Euler Equation linearization. Values of ρ imputed through

these regressions could be used to identify β.

Also, the calibrated quasi-hyperbolic model predicts a small consumption boom early in life

when credit cards are acquired. One could search for this in the data and try to compare with

the model. Finally, many facts about the behavior of the elderly remain unexplained. Economic

models that do not impose perfect illiquidity of assets have difficulty explaining why the elderly do

not decumulate, borrow extensively, and/or default on their debt.

7 Conclusion

This paper uses Þeld evidence to contribute to the discussion about the form and amount of time

discounting. Central facts from the consumption literature identify the quasi-hyperbolic discount-

ing parameters β and δ in an institutionally rich lifecycle model. U.S. households accumulate large

stocks of wealth before retirement, borrow frequently and extensively on credit cards, and exhibit

excess sensitivity of consumption. These phenomena can be explained best in our benchmark

speciÞcation when β = 0.703 and δ = 0.958. Intuitively, low long-term discount rates account

for observed levels of (illiquid) wealth accumulation, and high short-term discount rates explain

observed levels of credit card borrowing and excess sensitivity. The MSM procedure rejects the

exponential null hypothesis and usually fails to reject the overidentiÞcation restrictions on the

quasi-hyperbolic model.

25The methodology for calculating the share is analogous to that for calculating % V isa, mean V isa, and wealth
described in Appendix 1. The deÞnition includes cash, checking and savings accounts, money market accounts, call
accounts, CDs, bonds, stocks and mutual funds.
26The calibrated hyperbolic model predicts a share equal to 37%.
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Exact quantitative results are still somewhat sensitive to the speciÞcation, and some overidenti-

Þcation tests fail. However, the evidence reported here suggests that consumption-savings models

can perform better vis à vis the data when they incorporate quasi-hyperbolic discount functions,

and discount rates in the short run exceed discount rates at longer horizons. Estimation meth-

ods like those employed in this paper can help evaluate the implications of Þeld evidence for deep

behavioral parameters.

25



Appendix 1

We now discuss the procedures used to construct the second-stage moments. We used the SCF

to derive wealth, % V isa, and mean V isa, and the Panel Study of Income Dynamics (PSID) to

construct CY . Procedures are very similar for the share of liquid assets, an SCF moment described

in the discussion section.

SCF Moments

We use the 1983, 1989, 1992, 1995, and 1998 SCF�s to compute the wealth moment. We derive

% V isa and mean V isa from the 1995 and 1998 SCF�s. We control for cohort effects, household

demographics, and business cycle effects to make the characteristics of the population and the

simulated data fully analogous. We assign to households in our simulations the mean empirical

cohort, demographic, and business cycle effects. The procedure is this:

For each variable of interest x Þrst use weighted least squares, using the SCF population weights,

to estimate

xi = FEi +BCEi +CEi +AEi + ξi (8)

Here FEi is a family size effect that consists of three variables, the number of heads, the number

of children, and the number of dependent adults in the household. BCEi is a business cycle

effect proxied by the unemployment rate in the household�s region of residence. In 1983, the

unemployment rate is the rate in the state of residence. In 1992, 1995, and 1998, it is the rate

in the Census Division. In 1989 the nationwide rate was used because information on household

location is not available in the public use data set. CEi is a cohort effect that consists of a full set

of Þve-year cohort dummies, AEi is an age effect that consists of a full set of age dummies, and ξi

is an error term.

Next, we deÞne the �typical� household to be identical to the simulated household (i.e. with

two heads, exogenous age-varying numbers of children and adult dependents, an average cohort

effect, and an average unemployment effect27). Then for each variable we create a new variable bxi
27These averages are the means used in the calibration of the income process, which is based on the PSID�s. Refer
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that captures what xi would have been had household i been typical. For example, if household i

is identical to the �typical� household except for having more children, we set bxi = xi+ β(nkids−
nkidsi), where β is the coefficient for number of kids in the regression above and nkids is the

average number of children in a household as a function of the head�s age. All moments were

estimated using bxi.
For wealth, we restrict the sample to households with heads aged between 50 and 59. We

include all real and Þnancial wealth (e.g., home equity and CDs) as well as all claims on deÞned

contribution pension plans (e.g., 401(k)). The measure does not include Social Security wealth and

claims on deÞned beneÞt pension plans, since these ßows appear in our calibrated income process.

If a household had a negative net balance in any illiquid asset, we set the balance equal to zero

(e.g., we set home equity equal to max(0, value of home − mortgages − used portion of home

equity lines of credit)). Since there is no separate information on the amount borrowed against

home equity lines of credit in the 1983 SCF, we assume that in that year no household had an

outstanding home equity line balance28.

Let κ = 10 · 2
π . Then wealth is the mean of κ · arctan

³ bxi
κ

´
in the sample, applying the SCF

population weights. We use this arctan scaling in order to downweight outliers. This function

has noteworthy properties. First, it is symmetric around the origin. Second, it is approximately

linear in a neighborhood of the origin. Third, as bxi gets very large, it asymptotes to 10. We

compute the standard error of wealth directly from the sample values of κ · arctan
³ bxi
κ

´
.

To construct % V isa we create a dummy variable hasdebt equal to one for household i if i has

a positive outstanding credit card balance in the SCF. We correct hasdebt to generate bxi. We

then regress bxi on a full set of age dummies. % V isa is a linear combination of the estimated

coefficients on the age dummies, where the weights are derived from the same conditional survival

probabilities we use in the simulations. The standard error is computed directly from the weights

and the standard errors on the age dummy estimates.

Construction of mean V isa is confounded by the fact that aggregate credit card borrowing

data from the Federal Reserve Board indicate that 1995 and 1998 SCF borrowing magnitudes are

to Table 3 and Laibson et al. (2003) for details.
28 In the 1983 SCF, 1.7% of homeowners with a high school degree reported having a credit line secured by home

equity.
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biased downward by a factor of three. We correct for this bias as follows. First we compute

average outstanding interest-bearing balances. According to the Fed, aggregate debt outstanding

at year-end 1995 and 1998 were $443 billion and $561 billion, respectively. From these Þgures we

subtract an upper bound on the ßoat (the balances that are still in their one-month grace period

which do not accrue interest). This upper bound is obtained by dividing total purchase volume,

approximately $1 trillion in 1998, by 12. We then divide by the number of US households with

credit cards, using Census Bureau data on total households and SCF data on the percentage of

households with cards. We obtain average household borrowing conditional on having a card of

$5115 in 1995 and $6411 in 1998. These Þgures are consistent with those from a proprietary

account-level data set analyzed by Gross and Souleles (2002a, 2002b).

In our simulations we focus on households headed by people with high school degrees, so next

we use the SCF data on borrowing to scale the Fed average borrowing Þgure for just the high school

educated group. In particular, deÞne α such that

debtFedall = α · (wnhsdebtSCFnhs +whsdebt
SCF
hs +wcolldebt

SCF
coll )

with weights wnhs, whs, and wcoll deÞned by the proportion of educational categories in the pop-

ulation (0.25, 0.5, 0.25, respectively) and debtsourceeduc equal to the average debt reported by source

for educational group educ. Focusing now exclusively on the HS educational group, let debtSCFi

be the level of credit card debt reported in the SCF for household i. Let debti = α · debtSCFi be

the corrected credit card debt. Calculate age speciÞc income means (yt) and create debtinci as

debti/y 29. Then, we correct debtinci, creating bxi, and regress bxi on a full set of age dummies.
The moment mean V isa is a linear combination of the estimated coefficients on the age dummies,

again using the weights derived from the conditional survival probabilities used in the simulations.

Again, the standard error on is computed directly from the weights and the standard errors on the

age dummy estimates.

Covariances between the SCF moments were constructed by jointly estimating the above means.

29When calculating the age-speciÞc income means we group together ages 20-21, 70-74, 75-79, and 80 and over
because we have very few observations at those ages.
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PSID Moment

We use PSID data from 1978 to 1992 to estimate the CY moment. In the data, we deÞne

consumption to include food, rent, and utilities (the most general deÞnition available in the PSID).

The rental value of an owner-occupied home is assumed to be 5% of the value of the home. If

the household neither owns nor rents, rent is the self-reported rental value of the home if it were

rented.

We construct the CY moment by using 2SLS to estimate

∆ ln(Cit) = αEt−1∆ ln(Yit) +Xitβ + εit,

where Cit is just food, rent, and utilities. We assume an MA(1) process for the error term and

instrument for Et−1∆ ln(Yit) with lnYit−3 and lnYit−4. The overidentiÞcation test does not reject

this speciÞcation. The vector Xit includes age, cohort, and business cycle effects, the change

in effective family size, the mortality rate, and lagged wealth. Since wealth is observed in the

PSID only in 1984 and 1989, in the other years we estimate wealth using the intertemporal budget

constraint and a projected value of total consumption. Total consumption was projected from the

PSID�s partial measure using the CEX: in the CEX we regress total consumption on food, rent

and utilities consumption, and then we use the coefficients to infer total consumption from the

available PSID measure.

Appendix 2

Most details of the Þrst stage estimation are standard and exactly follow Laibson et al. (2003).

Additional notes are included here.

1. Our assumption about the credit card interest rate ignores several offsetting effects. One

might believe the effective rate would be lower for two reasons. Without declaring bankruptcy,

households might be able to default. In addition, consumption may be unusually low in the

bankruptcy state, causing the marginal value of un-repaid dollars to be unusually high. Conversely,

the model does not account for the substantial stigma associated with bankruptcy (Gross and

Souleles 2002b) or for the cost of future exclusion from credit markets. We feel that the estimated
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interest rate does reßect the typical cost of credit card borrowing. To check for robustness, we also

perform the estimation under the assumptions rcc = 10% and rcc = 13%.

2. Three main issues arise when interpreting the illiquid asset Z. First, the speciÞcation is

quite stylized, but Z shares some similarities with home equity. Consider a consumer who owns a

house of Þxed real value H and derives annual consumption ßows from the house of γH. Suppose

the consumer has a mortgage of size M , and hence home equity of H −M. The real cost of the
mortgage is ηM, where η = i · (1− τ)− π is the nominal mortgage interest rate corrected for the
tax deductibility of interest payments and inßation. If we assume η ≈ γ, the net beneÞt to the

homeowner is γH − ηM. ≈ γ(H −M) = γZ.
Second, the assumption of total illiquidity increases the motive for credit card borrowing in both

the exponential and quasi-hyperbolic models. When illiquid assets have favorable returns but are

highly illiquid, consumers will want to hold those illiquid assets and use credit card borrowing to

smooth consumption volatility due to high frequency shocks in the income process.

Finally, for quasi-hyperbolic consumers even small delays between requests for liquidity (i.e.,

applications for home equity lines) and actual access to liquidity (i.e., approval of applications and

release of funds) have a behavioral effect equivalent to total illiquidity (Laibson 1997a). In other

words, even fairly small actual or perceived transaction costs involved in extracting liquidity from

home equity will deter quasi-hyperbolics from applying for home equity loans. Hence, the extreme

illiquidity assumption is particularly appropriate for the quasi-hyperbolic model.

3. To obtain an estimate for R, we take a �typical� value from a standard series. We do

not necessarily think AAA municipal bonds are the relevant saving margin for most consumers.

However, other authors in the simulation literature assume values between R = 1 and R = 1.05,

giving us a reasonable benchmark. The choice of R is plausibly bounded below by the aftertax real

risk free rate and above by the aftertax real return to an equity index. We assume returns are

certain, so if you believe in perfect markets and no behavioral explanations for the equity premium,

we should adopt the risk-free rate of return. Since it is not obvious what alternative is best,

we adopt a procedure that follows precedent and yields an intermediate value. In addition, for

R− 1 . γ − .01, the parameter estimates are not very sensitive to the choice (though goodness of
Þt is somewhat sensitive). The more important margin is the difference between γ and RCC .
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Appendix 3

Since m (θ; bχ) is difficult to evaluate we replace it with an unbiased simulator, calculated by Þrst
taking Js draws of the initial distribution and then constructing the corresponding simulated ex-

pectations. DeÞne mJs (θ; bχ) as the vector of simulated moments. Now we can Þnd the vector bθ
that minimizes g0Js (θ; bχ)WgJs (θ; bχ), where gJs (θ; bχ) = m̄Jm −mJs (θ; bχ).

The Þrst order condition for the second stage (incorporating the use of simulation) is given by

gJsθ

³bθ; bχ´WgJs ³bθ; bχ´ = 0.
Following Gourinchas and Parker (2002) and Newey and McFadden (1994), an expansion of

gJs

³bθ; bχ´ around θ0 to Þrst order leads to

g0Jsθ
³bθ; bχ´W h

gJs (θ0; bχ) + gJsθ (θ0; bχ)³bθ − θ0

´i
= 0.

Rearranging terms and deÞning �Jm as the (scalar) rate of convergence of bθ,q
�Jm
³bθ − θ0

´
= −

h
g0Jsθ

³bθ; bχ´WgJsθ (θ0; bχ)i−1
g0Jsθ

³bθ; bχ´Wq �JmgJs (θ0; bχ) .
Let Π ≡

h
g0Jsθ

³bθ; bχ´WgJsθ (θ0; bχ)i−1
g0Jsθ

³bθ; bχ´W . Expanding gJs (θ0; bχ) around χ0,

q
�Jm
³bθ − θ0

´
= −Π

·q
�JmgJs (θ0;χ0) +

q
�JmgJsχ (θ0;χ0) (bχ− χ0)

¸
. (9)

To evaluate Equation 9, Þrst note that

q
�JmgJs (θ0;χ0) =

q
�Jm [m̄Jm −mJs (θ0;χ0)]

=

q
�Jm [m̄Jm −m (θ0;χ0)] +

q
�Jm [m (θ0;χ0)−mJs (θ0;χ0)]

The two bracketed terms represent independent sets of draws from the same population. The

Þrst term equals
p
�Jmg (θ0;χ0) , which is asymptotically normally distributed:

p
�Jmg (θ0;χ0) →
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N (0, Vg) . We estimate Ωg =
Vg
Jm
= E

£
g (θ0;χ0) g (θ0;χ0)

0¤ directly from its sample counterpart.30

The second term represents the simulation error. At the true value of θ, the simulated moments

were generated from a Þnite number of random draws from the true population. Therefore, the

second term is also asymptotically normal (as the size of the simulated sample goes to inÞnity)

with mean 0 and variance �Jm
Vg
Js
. Finally, since variation in the simulation and the data are

independent,
p
�JmgJs (θ0;χ0) → N

³
0,
³
1 + Ĵm

Js

´
Vg
´
. To operationalize this expression for the

variance, given the different numbers of observations Jm in the sample, we conservatively use the

pairwise maximum numbers of observations, max (Jma, Jmb) , to weight the (a, b)�th cell of Vg in

the simulation correction.

Now turn to the second term of Equation 9. In the main text we have deÞned the variance of

the Þrst stage parameter estimates bχ as Ωχ = E £(bχ− χ0) (bχ− χ0)
0¤.

Thus,
p
�JmgJsχ (θ0;χ0) (bχ− χ0)→ N

³
0, �JmGχΩχG

0
χ

´
, and

p
�Jm
³bθ − θ0

´
→ N (0, Vθ) ,where

Equation 9 implies

Vθ =
¡
G0θWGθ

¢−1
G0θW

"Ã
1 +

�Jm
Js

!
Vg + �Jm ·GχΩχG0χ

#
WGθ

¡
G0θWGθ

¢−1
, (10)

by the asymptotical Normality of bχ and g (·) and by the Slutsky theorem, assuming zero covariance
between the Þrst and second stage moments. Dividing by �Jm we obtain our key equation,

Ωθ = V ar
³
�θ
´
=
¡
G0θWGθ

¢−1
G0θW

£
Ωg +Ω

s
g +GχΩχG

0
χ

¤
WGθ

¡
G0θWGθ

¢−1
.

Standard errors reported in the text and tables equal the square roots of the diagonal elements of

Ωθ.

30 In fact, the (a, b)�th cell is Ωg (a, b) =
Vg(a,b)

min(Jma,Jmb) .
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TABLE 1 

SECOND-STAGE MOMENTS 

Description and Name 
mJm  se(

mJm ) 

% Borrowing on Visa 0.678 0.015 

    (% Visa)   

Mean (Borrowingt / mean(Incomet)) 0.117 0.009 

    (mean Visa)   

Consumption-Income Comovement 0.231 0.112 

    (CY)   

Average weighted 
income

wealth  2.60 0.13 

    (wealth)   
 

Source:  Authors’ calculations based on data from the Survey of 
Consumer Finances, the Federal Reserve, and the Panel Study on 
Income Dynamics.  The variables are defined as follows:  %Visa is the 
fraction of US households borrowing and paying interest on credit cards 
(1995 and 1998 SCF); meanVisa is the average amount of credit card 
debt as a fraction of the mean income for the age group (1995 and 1998 
SCF, weighted by Fed aggregates); CY is the marginal propensity to 
consume out of anticipated changes in income (1978-92 PSID); and 
wealth is the weighted average wealth-to-income ratio for households 
with heads aged 50-59 (1983-1998 SCF). 



 
TABLE 2 

FRACTION OF HOUSEHOLDS BORROWING ON CREDIT CARDS 
ACROSS THE DISTRIBUTION OF WEALTH 

 Wealth Distribution Percentile 
Age Group Less than 25 25-50 50-75 Over 75 

     
20-29 0.89 0.78 0.82 0.75 
30-39 0.92 0.83 0.82 0.63 
40-49 0.85 0.79 0.74 0.49 
50-59 0.80 0.73 0.56 0.41 
60-69 0.64 0.40 0.27 0.23 
70+ 0.47 0.29 0.11 0.12 

     
     Source:  Authors’ calculations based on the 1995 and 1998 SCF’s. 



 
TABLE 3 

FIRST STAGE ESTIMATION RESULTS 

Demographics      Liquid assets and noncollateralized debt 
 Number of children     Credit limit λ   

 k= β0*exp(β1*age-β2*(age2)/100)+ε    0.318    
       (0.017)    
 β0 β1 β2         
 0.006 0.324 0.005     Return on positive liquid assets R 
 (0.001) (0.005) (0.007)     1.0279    
        (0.024)    
 Number of dependent adults         
 a= β0*exp(β1*age-β2*(age2)/100)+ε    Credit card interest rate Rcc  
        1.1152    
 β0 β1 β2     (0.009)    
 8.0E-09 0.727 0.007         
  (0.000) (0.016) (0.016)               
Illiquid Assets       Preference Parameter  
 Consumption flow as a fraction of assets γ   Coefficient of relative risk aversion ρ 
 0.05       2    
 -       -    
Income from transfers and wages               
 Income process - In the labor force       

 y =ln(Y)= β0+β1*age+β2*(age2/100)+β3*(age3/10000)+β4*Nheads+β5*Nchildren+β6*Ndep.adults+ξ  
 ξt = µt + υt = αµt-1 + εt + υt        
           
 β0 β1 β2 β3 β4 β5 β6 α σ2

ε  σ2
υφ  

 7.439 0.118 -0.201 0.081 0.548 -0.033 0.170 0.782 0.029 0.026 
 (0.340) (0.021) (0.050) (0.035) (0.019) (0.005) (0.008) (0.017) (0.008) (0.011) 
           
 Income Process - Retired     Retirement age T  
 y =ln(Y)= β0+β1*age+β2*Nheads+β3*Nchildren+β4*Ndep.adults+ξ 63   
        (0.730)   
 β0 β1 β2 β3 β4 σ2

ξ      
 8.433 -0.002 0.554 0.199 0.204 0.051     
 (0.849) (0.013) (0.084) (0.172) (0.102) (0.013)     
                      
Source: Author's estimation based on data from the PSID, SCF, FRB, and American Bankruptcy Institute. 
Note: Standard errors in parentheses. The constant of the deterministic component of income includes 
a year of birth cohort effect, and a business cycle effect proxied the unemployment rate.  
The dynamics of income estimation includes a household fixed effect.     
Illiquid asset consumption flows and the coefficient of relative risk aversion are assumed to be exactly known in 
the context of the first stage; see, however, the section on Robustness. 
This table only reports standard errors, but the full covariance matrix is used in the second-stage estimation. 

 



 
TABLE 4 

BENCHMARK STRUCTURAL ESTIMATION RESULTS 

  (1) (2) (3) (4) (5) 

  
Hyperbolic Exponential Hyperbolic 

Optimal Wts 
Exponential 
Optimal Wts 

Data 

Parameter estimates θ̂       
 β̂  0.7031 1.0000 0.7150 1.0000 - 
 s.e. (i) (0.1093) - (0.0948) - - 
 s.e. (ii) (0.1090) - - - - 
 s.e. (iii) (0.0170) - - - - 
 s.e. (iv) (0.0150) - - - - 
 δ̂  0.9580 0.8459 0.9603 0.9419 - 
 s.e. (i) (0.0068) (0.0249) (0.0081) (0.0132) - 
 s.e. (ii) (0.0068) (0.0247) - - - 
 s.e. (iii) (0.0010) (0.0062) - - - 
 s.e. (iv) (0.0009) (0.0056) - - - 
Second-stage moments      
 % Visa 0.634 0.669 0.613 0.284 0.678 
       
 mean Visa 0.167 0.150 0.159 0.049 0.117 
       
 CY 0.314 0.293 0.269 0.074 0.231 
       
 wealth 2.69 -0.05 3.22 2.81 2.60 
       
Goodness-of-fit      
 )ˆ,ˆ( χθq  67.2 436 2.48 34.4 - 
 )ˆ,ˆ( χθξ  3.01 217 8.91 258.7 - 
 p-value 0.222 <1e-10 0.0116 <2e-7 - 

 
Source:  Authors’ calculations.   
Note on standard errors:  (i) includes both the first stage correction and the 
simulation correction, (ii) includes just the first stage correction, (iii) includes just 
the simulation correction, and (iv) includes neither correction.



 
TABLE 5 

ROBUSTNESS 
  (1) (2) (3) (4) (5) (6) (7) 

 Benchmark %38.3=γ  %59.6=γ  %10=CCr  %13=CCr  1=ρ  3=ρ  
Hyperbolic        
   Parameter Estimates θ̂         
 β̂  0.7031 0.5071 0.8024 0.7235 0.6732 0.8186 0.5776 
 s.e. (i) (0.1093) (0.0441) (0.0614) (0.1053) (0.1167) (0.0959) (0.1339) 
 δ̂  0.9580 0.9731 0.9425 0.9567 0.9595 0.9610 0.9545 
 s.e. (i) (0.0068) (0.0188) (0.0093) (0.0071) (0.0045) (0.0037) (0.0096) 
   Goodness-of-fit        
  )ˆ,ˆ( χθq  67.2 108.4 49.7 64.1 70.7 63.0 67.7 
 )ˆ,ˆ( χθξ        3.01 16.79 5.27 12.09 10.97 7.97 1.85 
  p-value 0.222 0.0002 0.0717 0.0024 0.0041 0.0186 0.3965 
Exponential        

   Parameter Estimates θ̂         

 β̂  1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
 s.e. (i) - - - - - - - 
 δ̂  0.8459 0.8459 0.8459 0.8520 0.8354 0.8924 0.7841 
 s.e. (i) (0.0249) (0.0249) (0.0250) (0.0267) (0.0262) (0.0204) (0.0357) 
   Goodness-of-fit        
 )ˆ,ˆ( χθq  435.6 435.6 435.6 434.7 436.6 438.1 435.5 
 )ˆ,ˆ( χθξ     217 217 263 177 339 349 310 
 p-value <1e-10 <1e-10 <1e-10 <1e-10 <1e-10 <1e-10 <1e-10 

 
Source:  Authors’ calcuations. 
Note:  The benchmark assumes gamma=5%, rcc=11.52%, and rho=2.  Columns (3) through (8) perturb parameters one at a time. 



 
TABLE 6 

EXTREME CASES 

  Case A Case B 
  (1) (2) (3) (4) 
  Hyperbolic Exponential Hyperbolic Exponential 
Parameter Estimates θ̂      

 β̂  0.3750 1.0000 0.9075 1.0000 
 s.e. (i) (0.4859) - (0.0285) - 
 δ̂  0.9717 0.7695 0.9434 0.9359 
 s.e. (i) (0.0228) (0.0262) (0.0059) (0.0071) 
Second-stage moments     
 % Visa 0.650 0.680 0.643 0.506 
      
 mean Visa 0.188 0.153 0.155 0.097 
      
 CY 0.504 0.297 0.230 0.141 
      
 wealth 2.55 -0.06 2.62 2.52 
Goodness-of-fit     

 )ˆ,ˆ( χθq  106.1 436.1 38.9 145.2 
 )ˆ,ˆ( χθξ  16.06 319.5 7.52 19.68 
 p-value 0.0003 <1e-10 0.0233 0.0002 

 
Source:  Authors’ calculations.   
Note:  Case A assumes gamma=3.38%, rcc=13%, and rho=3.  Case B assumes gamma=6.59%, rcc=10%, 
and rho=1.  The benchmark assumes gamma=5%, rcc=11.52%, and rho=2. 






