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The Existence of Perfect Equilibria
in a Model of Growth with
Altruism between Generations

WOLFGANG LEININGER
Universitii Bonn

An intertemporal model of consumption and bequest behaviour is specified and analysed
as a game between generations. The main feature of this game is that no a priori restrictions {like
linearity} are placed on the strategy choice of generations. The paper gives an exisience proof
for perfect (Nash} equilibria in finite and infinite horizon versions of the model and determines
characteristic properties of equilibrium strategies. The main result is to demonstrate existence of
stationary perfect equilibrium if the time horizon is infinite.

INTRODUCTION

The purpose of this paper is to give an existence proof for perfect equilibria in the context
of a highly aggregative model of growth. The model which is widely used in the literature
on the theory of growth (see Arrow (1973), Peleg and Yaari {1973), Dasgupta {(1974),
Kohlberg (1976) and Lane and Mitra (1981)) has the special feature that preferences of
different generations display altruism towards the next generation. The existence results
are derived under very general assumptions on praduction and preference structures; in
particular, no a priori restrictions are placed on strategies a generation may use. The
question whether such ¢ priori restrictions are necessary for the existence of equilibria is
answered in the negative.

Game-thearetical equilibrium cancepts were introduced into growth theory by Phelps
and Pollak (1968) with reference to a model in which the intertemporal preference structure
incorporates an imperfect kind of altruism between generations. They are used to describe
what might happen in such an economy in the presence of intertemparal conflicts about
the evaluation of different consumption and production programs by different generations.

This idea was taken up by Dasgupta (1974) to give the Rawlsian “‘just savings rule”
the interpretation of a Nash equilibrium. This proposal yields a time-consistent solution
to the Rawlsian problem because in a Nash equilibrium state no generation acting alone
can do better and all generations act so as to fulfill their expectations of the future savings
pattern. These equilibria also possess the alternative interpretation of time-consistent
planning behaviour over several periods by an individual planner who holds different
views at different points in time and, therefore, resolve the classical problem posed by
Strotz (1955).

However, all these papers {with the notable exceptions of Kohlberg (1976) and
Bernheim and Ray (1983)) specify a madel in which each generation is faced with the
problem of choosing a {constant) savings ratio given initial capital and the savings ratios
later generations may use. This, of course, is—as Dasgupta (1974) noted—
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“tantamount to allowing each generation to select its own savings schedule (i.c. its
total savings as a function of the capital stock) on the stipulation that the schedule
be linear and that it should pass through the origin, the two together implying that
the marginal and the average savings rates be equal”,

We will argue that this a priori restriction of strategy selection has no economic justification
and may well produce “artificial” equilibria. Peleg and Yaari (1973) employ it (in 2 more
general model) to derive an existance result for Nash equilibria, but—as Goldman (1980)
points out—these equilibria may not be perfect in the sense of Selten (1975}. He provides
an existence proof for perfect Nash equilibria in models with a finite time horizon. The
perfectness problem is extensively discussed in Lane and Leininger (1984a). They show
in the context of the infinite horizon model used in this paper that the linearity restriction
precisely implies non-perfectness of the equilibria obtained if the restriction is a binding
one. Moreover, they demonstrate that it is non-binding in only very special cases.

The basic underlying problem pointed to by Peleg and Yaari (1973) which led them
to intraduce the a priori assumption of linearity into their model may be described as
follows:

The sequential character of the decision-making process of successive generations
leads to an indeterminacy causing a problem known from the theory of dynamic program-
ming as “violation of the preservation property”. The actual structural properties of the
abjective function for a present stage problem crucially depend on the structural properties
of optimal plans for future {or past) stages once they are substituted into the present
stage problem. This may result in non-uniqueness of the present stage optimal plan and in
a plan having structural properties that are too weak to ensure existence at the next stage.!

So one has to search for structural properties of strategies strong enough to yield
existence of optimal reactions and which are preserved through the maximization exercise,
i.e. which are inherited by the derived optimal plan.

When discussing the problems of enlarging the strategy spaces Dasgupta (1974)
noted: “But ance we define a generation’s strategy as a complete savings schedule (and
not a savings ratio) there is nathing a priori to limit the functional form”. This motivates
our research strategy. We adopt a very general selection theory approach starting with
no restrictions placed on the functional or structural form of the elements of the strategy
spaces (besides being functions) and ask what minimal structural properties are necessary
to ensure existence. The argument is based on a generalization of Berge's “Maximum
Theorem’ due to Leininger (1984).

The existence results for the infinite horizon version of our model presented in
Sections 4 and 5 below were independently and simultaneously obtained by Bernheim
and Ray (1983). So it is of interest to examine the connection between their analysis and
the one presented here. This is done in Section 6 below.

The paper is organized as follows: Section 1 introduces the model and facuses on
the intertemporal optimization problem for each generation. Section 2 contains an
existence result for finite horizon truncations of the economy under consideration. In
Section 3 we derive and discuss properties of equilibrium schedules which will be used
in Section 4 to prove existence of a perfect Nash equilibtium in the infinite horizon case.
This result is strengthened to the existence of stationary equilibria in Section 3.

1. THE MODEL

In each time period 1(¢=0,1,2,...) a decision maker (generation), whose preferences
are altruistic towards the next generation, decides on the optimal use of the resources
available to him. The only good in the economy is capital which can also be consumed.
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Generation £'s utility function is given by
U, =ulc, ¢): Ri_) R

where u is assumed to be continuous and increasing in both components. ¢, denotes its
own consumption, while ¢, stands for the consumption of generation ¢+ 1.
Production possibilities are described by a production function

f:R, >R, suchthatf(0)=0

which is assumed to be continuous and increasing. :
Given any initial stock of capital y the consumption decision of any generation is
constrained by 0=¢ = p, which defines a feasibility constraint correspondence

B:R,—-P(R,) (P{R) denoting the power set of R}

y=>[0, y]

determining the set of feasible actions given the state of the system, y. 8 obviously is
non-empty, compact-valued, and continuous. The resulting “law of motion” of the
economy is then given by the following transition function

g:R. xR~ R,

me)=fy—cl=g(y )

g is continuous in (y, ¢) since f is continuous. The function g determines the new state
of the system as a function of the previous state and the action taken.
A feasible strategy (for any generation) is a function

c:R,>» R, st e(y)=y forall y (resp. c(y}e B8(y) for all y).

A generation’s maximization problem—expecting or knowing the next generation shall
use strategy ¢{y}—consists in solving

(P) max {u(g e(f(y-e)} forally.
cegly
Actual growth in the economy is determined by the Nash equilibrium concept:

Definition (*). A sequence of strategies {e3(¥),...,c¥(y), ...} is called a perfect Nash
equilibrium if for all =0 and for all y

u(cF(y), ctalf(y —f()))) 2 ulely), cta(f(y —a(yM)),

c{y) being an arbitrary, feasible strategy. If ¢(y) = c*(y) for all ¢t we call the sequence
a stationary perfect equilibrium.

Since each generation is only concerned with its own and its direct descendant’s
consumption and the consumption schedule of the next generation is treated as a constraint
in the intertemporal maximization problem this definition of an equilibrium also con-
stitutes what elsewhere is called a “sophisticated equilibrium™ or “Strotz-Pollak™ solution.
It therefore prescribes a time-consistent course of action. A perfect equilibrium is the
result of successively “internalising™ all externalities imposed on the present generation
by later players’ behaviour. It thus induces a Nash equilibrium of all subgames, ie. for
all states at all points in time.
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Nate that the objective function of the present generation in (P) after the next
generation’s schedule has been internalised, u(Z, ¢{g(y, £}}), is state-dependent and has
the single decision variable & Existence of a perfect equilibrium requires that there is a
solution to { P} for all possible values af the state variable y. Clearly, there always exists
a solution if e¢(y} is assumed to be continuous, since then u(Z, c(g(y, €))) is a continuous
function in € restricted to the compact interval [0, y]. The problem is that this selution
may not be unique and therefore there may not exist a continuous optimal reaction £(y);
i.e., continuity is not preserved. Uniqueness could be restored by assuming ¢(y) to be
concave, because then the objective function u would be concave in & The optimal
reaction then would be continuous but might not be concave, i.e. concavity would not
be preserved. Stronger and stronger assumptions on ¢(y} do not break this vicious cyele
unless we demand linearity of ¢(y) and severely restrict utility and production functions
{see Lane and Leininger (1984a)}.

QOne therefore has to accept the non-uniqueness problem and try to deal with it. In
what follows we describe the optimal response of generation { to a proposed schedule
of generation (t+1) by a correspondence rather than a function. The question then is
what structural properties this correspondence will have, dependent on the structure of
the next generations schedule e(y), and whether it will permit a selection having the same
structural properties as the schedule it is derived from.

The correspondence in question is defined by

Definition (C)
®,.:R.-»P(R,)
y->{¢|Ze B(y) and ¢ maximizes u{Z’, c(g(y, &}}) over B(y)}.

By definition of &, we have ®.(y)< B(y) for all y. A selection of &, i.e. a function &
satisfying (y) e ®.(y) for all y, is called an optimal reaction to c.

A general answer to the question what structural properties ©, will have provided
u(Z e(gly, €))) is continuous is given by Berge's (1963) Maximum Theorem. It states
that ¢, will be non-empty, compact-valued, and upper hemicontinuous. This continuity
cancept, however, is not strong enough to yield existence of a continuous selection.

The relevant continuity concept for cantinuous selection theory is lower hemi-con-
tinuity of a correspondence (see Michael (1956)). But this praperty is not implied by the
Maximum Theorem. The Maximum Theorem only yields the existence of an upper
semi-continuous selection from ®_. But if ¢(y) in (P} is only upper semi-continuous
then u itself is only upper semi-continuous and this is not strong enough to salvage the
conclusions of the Maximum Theorem. However, if u—while only being semi-
continuous—interplays with the constraint correspondence 8 in a certain way, which we
call graph-continuous, the conclusion is still valid. This is the content of the Generalized
Maximum Theorem proved in Leininger (1984}

2. EXISTENCE OF PERFECT NASH EQUILIBRIA—THE FINITE HORIZON
We cite the definition of graph-continuity and the generalized Maximum Theorem and

show its applicability to our problem.

Definition. u:R,x R, > R is called -graph-continuous w.r.t. g:R, - P(R,) if the
following is true:
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For all (y, ¢c) e graph (8)c R, X R, there exists a selection r{-, ¢): R, » R, from § such
that for all £ > 0 there exists a § >0 for which

ly—y|<8& implies [u(y',r(y,c))—u(y c)<e

The interpretation of this definition is the following: whenever there is a small change
in the state variable from y to y’ there always exists a feasible decision, r{y’, ¢), to restore
the pay-off or utility of state y (if decision ¢ is taken) “up to £ in state y’ by taking
action r(y’, ¢).

The generalized Maximum Theorem (Leininger, 1984) asserts that if « is upper
semi-continuous and graph-continuous with respect to 8, where 8 is compact-valued and
continuous, then the aptimal choice correspondence ®, as defined in () is non-empty,
compact-valued, and upper hemi-continuous. All we have to show therefore is that
u(é, e(g(y, €1}) is graph-continuous w.r.t. B(y) and upper semi-cantinuous in (y, &).2

Proposition 1. Let ¢{-) be continuous from the left. Therr u(¢, c(g(y, €))) is graph-
continuous w.r.t. 8.

Proof. (i} Let (7, &) be an element from R lying below the diagonal, such that
&> 0; then define r(y, ¢} =+ (y—j)= ¢

Because of =&+ (y— j) =y(&— j) we have =y since &€ B(F}, i.e. = . In order
to have e B(y) we only need & = 0; but this is certainly true if |y — | = 6 = £ > 0. Moreaver,
by construction we have

y—é=y-¢ 1)
and from this it follows that
u(E, e( (7 —EN}—ulé e{ fly - 6))) = u(E &} — (¢, &) (2)
where €= c(f(§—¢€))=e(f(y—&)). By continuity of u(-, &) we know that
[u(e, e f(F—)))—ul(é e(f(y — €)))| < £ whenever | — & < 8,
but by (1} we have |¢—¢|=|7—y| and therefore the conclusion follows from |7 —y| < 8.

as well. If we set §, =min {8, §,} feasibility is also met.
(ii}) If (#, €} is such that £=0 define

) = vz
c=ﬂh0%={y Y LYy
0 if y<y
This definition satisfies the argument given in (i) for p= 7. If y << 7 then r{y,0) =0¢ B(y)
far all y and

lu(e, c(f(§—2))) —u(é (fy— N =u(0, e(f($))) — u(0, e(f(y)))| <&

whenever |7 — y| < 8. and ¥ > y since c¢(- ) (and therefore u} is continuous from the left. ||

Comment. Part (i} of the proof does not need any structural property of the schedule
¢(y}, because the device consists of neutralizing any change in the state with respect to
the bequest to the next generation, so that the next generation’s schedule is evaluated at
the same point in both situations. This is best seen from (1). It says that in both situations
bequests are the same. But for “boundary” wvalues of ¢, i.e. ¢=10, an arbitrarily small
decline in the state variable y cannot be offset by a corresponding reduction in cansump-
tion, since this would violate feasibility. It is here where we need continuity from the
left of the schedule ¢(y).
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Proposition 2. Let ¢(-) be upper semi-continuous. Then u(Z, c(g(y, 2))) is upper
semi-continuous (in (y, €)}.

Proaf. ¢(g) is upper semi-continuous in (y, £} and u is continuous and increasing
in its second component. ||

Propasitions 1 and 2 ensure that the optimal choice correspandence @, is non-empty,
compact-valued and upper hemi-continuous as a consequence of the Generalized
Maximum Theorem (if the schedule ¢(-), defining the objective function u, is upper
semi-continuous and continuous from the left).

An upper hemi-continuous correspondence @ allows an upper semi-continuous
selection. The Generalized Maximum Thearem therefore yields the desired “preservation
property” if we can also guarantee that the selection can be chosen to be continuous
from the left. But a schedule can only be simultaneously upper semi-continuous and
continuous fram the left if it is either continuous or all discontinuities consist of “down-
ward” jumps. That is, the schedule ¢* selected from @ should (in addition to upper
semi-continuity) also satisfy the following condition:

Condition (L)
cHy+A—c*(y)=A forall y=0, A0,
Equivalently, s(y) =y —c*(y) should be non-decreasing in y.

This then is a precise economic requirement for our existence result: the preference
structure of the present generation, after the externality imposed by the next generation’s
schedule has been internalised, should yield bequests as a “normal” good (i.e. (optimal)
bequests do not decrease with increasing initial capital holdings).?

Most importantly, requirement (L} can be guaranteed by assumptions about the
basic preferences before internalisation of the externality. That is to say, there is a class
of utility functions u{c,, ¢,+) such that—whenever u(e,, c(g(y, ¢,)) defines a non-empty
valued d,—any selection of &, satisfies (L). This class of (continuous and in both
variables increasing) utility functions is called U. The next proposition shows that U
contains all additively separable functions satisfying the condition:

Condition (S): u(c, ¢,41)=v(e)+bv(ew,), b>0 and v: R~ R is strictly concave
and increasing.

Proposition 3. Assume that u(c,, ¢,.,) satisfies (S) and let c(-) denote any feasible
sirategy. Then any selection c* of ®, satisfies (L}; ie.
cH(p+A)—c*(y)=A forallyandall A> 0.
Proof. Assume there is a selection ¢* that does nat satisfy (L). Then there exist y; .
and A> 0 such that ¢*(y,+A) — ¢*(y,) > A. This is equivalent to
=Xy +A) = c*(y ) FA= o T A, 1)
then the following inequalities hold:
v(es) +bo(E( S+ B — e} Z ole, +8) + bo(E(f((y+8) - (¢ +4))))
=v(e; +A) +bo(c(f(y— 1))
= v(e,+4) - o(e) + v(ey) — bo(c(f(y—e1))) (4}
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This inequality holds because ¢, maximizes for initial capital {y, + A} by assumption and
(e +A) is feasible under (y, + A) because of (3). Write this as

v{ey) —v(e) Zu(e +A)—v(e) + blo(é(f(y,— 1)) —o(c(f(3n+A-e)))]
Z (¢, +A)—v(¢)) +[v(e;~ B} —v(c,}] (5)

The last inequality follows from feasibility of ¢,— A under y, (¢, is feasible under y, +A)
and the fact that ¢, maximizes for initial capital y,; i.e.

o(ey) +bo(E(f(yi— ) 2 v{e,~A) + bo(E(f(3n +A - o))}
(5) reduces to
v(cy) —v{ea—A) Z v(e, +A)— v(ey). (6)

But (6) contradicts strict concavity of v since ¢, = ¢,+ A by hypothesis! ||

Condition (L), which we repeatedly exploit in the following sections, is also required to
hold for the method of proof praposed by Bernheim and Ray (1983). They identify a
different subclass of the set U The complete characterization of the set U is not known.

We are then in a position to piece together the results of this section: Let u(-,-}e U;
i.e. for any feasible ¢(-) any selection of @, (if it exists} satisfies (L). The Generalized
Maximum Theorem then guarantees existence of an upper semi-continuous selection of
®, if ¢ is upper semi-continuous and continuous from the left. Since this particular
selection also satisfies (L) it is automatically continuous from the left.’ The argument
thus can be applied repeatedly.

Theorem 1. Let f be continuous and increasing and u,=u{c, c))c U for t=
0,1,..., T Then there exists a perfect Nash equilibrium. Equilibrium strategies are upper
semi-continuous and continuous from the left (and hence sarisfy (L))}

Proof. Let without loss of generality the consumption schedule of generation T be
given by ¢¥(y) =y, which is continuous. Generation {7 — 1) reacts to it with an upper
semi-continuous (and continuous from the left) schedule ¢%_ () by the abave derivation.
This leaves a well-defined problem to generation (T —2) which reacts optimally to ¢%_,(p)
and so on back to generation 0. |

By Proposition 3, Theorem 1 implies

Corollary. If f is eontinuous and increasing and u additively separable according to
(S) then there exists a perfect Nash equilibrium.

Remarks

(i) The fact that all generations evaluate consumption decisions with the same utility
function u( ;) has not been used. Theorem 1, therefore, generalizes to the case
of changing preferences; each generation may have its own distinct utility
function. The model may then be viewed as a subcase of Goldman’s (1980)
more general model. However, Theorem 1 is not contajined in Goldman’s
existence result on “‘consistent plans” which is stated for history-dependent
strategies and does not yield any regularity properties of equilibrium strategies.
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(ii) Na stationarity of the production function f isrequired. This allows the intraduc-
tion of technical progress.

In concluding this section we should emphasize that the way we have set up our
model requires strategies—by definition—to be state-dependent (or of Markov type), i.e.
no dependence of actions in period ¢ on values of decision or state variables before t is
possible. In a more general setting that would allow strategies at period ¢ of the game
to depend on the history (or parts thereof} of the game up to period ¢ equilibrium would
in general represent a weaker requirement. But nate that the Markav perfect equilibria
obtained in this model would also represent equilibria in a model which employs the
braader definition of (possibly) history-dependent strategies. As Theorem 1 indicates
such an enlargement of strategy spaces is not needed to obtain existence of equilibria.
The techniques used to prove Theorem 1 might therefore serve as a general device haw
to find Markov perfect equilibria for other models. Recall that in proving Theotem 1 the
application of the Generalized Maximum Theorem { GMT) has been crucial. This Theorem
depends on graph-continuity of the (state-dependent) ohjective function w.r.t. the feasibil-
ity constraint carrespondence, a property that, roughly speaking, requires the possibly
disconnected graph of the objective function to change “continuously” with changes in
the state variables. Graph-continuity holds whenever players choose certain well-specified
strategies.

The validity of the GMT, however, is not restricted to ane-dimensional vectors of
state and decision variables. Sa, in principle, the GMT gives rise to a general existence
result for Markov perfect equilibria in games with finitely many players provided one
can identify a class of Markov strategies, A, such that

(i} the derived state-dependent pay-off function of the present player is upper
semi-continuous and graph-continuous w.r.t. the feasibility constraint correspon-
dence (that is defined an the set of state variables) whenever later players choose
strategies from A, and

(ii) the well-defined optimal reaction correspandence of the present player allows
a selection which is an element of A.

The principal advantage of the GMT is that it considerably weakens the requirements
on A in order to have a well-defined decision problem for the present player. The weaker
the requirements on A the easier it is to recover them by way of a selection of optimal
reaction correspondences. Recoverability of those properties is essential for the applica-
tion of backwards inductive reasoning.

3. FURTHER PROPERTIES OF EQUILIBRIA
As indicated above the following Proposition is an immediate consequence of Theorem
1.
Proposition4. Let {c}(y)) be a sequence of equilibrium schedules (¢1=0,...,T). Then
the equilibrium savings functions
sE(v) =y i (y)
are increasing for all 1.

This suggests that an equilibrium schedule, ¢*(y), is of bounded variation on every
interval [0, 7], # € R, and thus is almost everywhere differentiable. Furthermare, if ¢*(y)
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is differentiable at a point y, then property (L) is equivalent to

di*( 4-.’..1.
dy =14

i.e. the marginal propensity to consume cannot exceed unity. In the case where consumption
schedules have to be linear this is equivalent to the feasibility constraint ¢*(y} =y for all
y. But in the general case where schedules may be non-linear this becomes an additional
constraint. Tt can be binding even when the feasibility constraint is not binding. Note
that the linearity restriction also provides for a lower bound on the marginal propensity
to consume via the feasibility constraint. This is not true here, the possiblity of a reduction
of consumption with increasing y {which increases savings at a high rate) does not even
allow us to write down (L} in the “proper” form as

Condition (L")
[e*(y+A) — e*(y)| = A, A>0.

However, one can show {L') to hold for a schedule closely connected with ¢*(y}; this
will give us the mathematical structure to carry out a limit argument yielding existence
of equilibrium if the horizon is infinite.

Suppose the schedule of generation (£+1) is given by ¢(y} and compare c(y) with
the schedule defined by

Condition (T}

&y)= max e(x).

Z(v) is well-defined {e(+} is upper semi-continuous}, non-decreasing and continuous. If
¢(y) is non-decreasing (and therefore continuous) then ¢(y) = &(y). By definition, &(y)=
¢(y} everywhere.

Tllustration

Two possibilities of a non-increasing ¢{y) are given by Figures 1(a) and 1{b}. The dotted
lines represent &(y) at points where it is different from ¢(y}. We claim that this difference
between c{y) and Z(y) has no effect on the behaviour of a generation optimizing in
response to ¢(y) resp. &y).

Proposition 5. c¢*(y) is an optimal reaction to ¢{y) if and only if it is an optimal
reaction to &(y) (as defined in (T)).

Proof. (i) Assume c*(3) is an optimal reaction to ¢(y}, that is,
u{c*(y), c(f(y — (N 2 u(c*, e(f{y—¢*))) forallc*e[0, y]and forall y. (7}

We show that this implies that ¢<{ '), the next generation’s schedule, is never evaluated
at a point y?= f(y —e*(y)} at which ¢(y%) < &(3").
Assume it is, then there must exist y' with y* < y° and

c(y") Z e(y"). (8)
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This is true by the definition of ¢(y) and the hypothesis. Since the production function
[ is strictly increasing, y* can be realized by the aptimizing player by means of a lower
bequest than that necessary to yield y® (in the next period}. This, of course, allows for
additional direct consumption, say Ac¢>0; that is, consumption c¢*(y)+Ac leads to
y'=f{y - (e*(y)+Ac)).
But then we have
u(c*(y)+Ac, e(yh) > u(e*(y), c(3%) )

because of (2) and Ac>>0. This contradicts (1) since ¢*(y)+ Ac is feasible.

Thus, c¢(f(y —c*(¥)) = c(f{y—e*(y))) for all y if ¢*(-} is the optimal reaction to
c(-). But this means that ¢*(-) is also an optimal reaction to &(-), since ¢(-) in {7) can
be replaced by &(-).
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(ii) By the same argument it is true that ¢*{y) must be an optimal reaction to ¢(-)
if it is an optimal reaction to &(y). The crucial feature of the above argument, namely,
that &(y) can be realized at a lower capital level than y if &(y} > ¢(p), is still present. |

Players always react as if they were playing against continuous strategies of other
players (yet their optimal reactions may be discontinuous). Actual play always follows
a path along which the schedules ¢¥(y) and &¥(y) coincide (except possibly for £=0);
i.e. differences between c¥(y} and its “levelled” version ¢¥(¥) can only occur off an
equilibrium path (at least for ¢ = 1).

Let us illustrate this proof with respect to Figure 1(a): ¢(y) is now interpreted as
player {¢t+1)’s strategy to which player £ tries to react optimally.

Since generation t will not choose a level of consumption that determines consump-
tion of generation (¢+1) as lying in the ‘sink’ of its consumption schedule there has to
be a range of capital levels y, over which the marginal propensity to consume of generation
t exactly equals 1. Over this range bequests are constant and equal f'(y,). Thatis, ¢*(-)
looks like the solid curve in Figure 2. )

A
€y

45°

? 't yg 3&

FIGURE 2

In fact, there is a whole “equivalence class™ of schedules for (¢+1) leading to the
same optimal reaction of t. For example, in Figures 1{a} and 1{b) it does not matter for
the slope of ¢*(y) what the graph of ¢(y} looks like aver [y,, y] as long as it is defined
below &(y). The transition from equilibrium schedules ¢*(y) to £F(y), t= 1, yields the
following propasition.

Praposition 6. ¢¥{y) satisfies (L) for all t=0.

These properties of the schedules c¥(y) (resp. ZF(y)) which are derived from relatively
simple insights into a player’s decision problem will now be used to prove existence of
a perfect equilibrium in the infinite horizon case.
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4. EXISTENCE OF NASH EQUILIBRIA—INFINITE HORIZON

In order to prove the existence of a sequence of equilibrium schedules if the horizon is
infinite we shall use a technique proposed by Peleg and Yaari (1973). We construct a
sequence of equilibria for finite horizon games which converges to a limit sequence as
the harizon approaches infinity. This limit sequence then is shown to be an equilibrium
in the infinite horizon game. The convergence argument is based on the Theorem of
Helly. The two versions of this theorem we are going to use are taken from Natanson
(1969); they will be applied to schedules ¢(y) and &(y), respectively.

The procedure is as follows:

Start with an arbitrary, stationary sequence of feasible and contimious consumption
schedules {c*(y), ¢®(y), ..., %(p),...); that is, every generation (player) uses the same
schedule (strategy), and consider the following finite horizon games:

If the time horizon is given by T then players from { T + 1) onwards keep their schedules
while generation T reacts optimally to the schedule ¢°(y} used by generation (T+1),
generation (T —1) reacts optimally to the optimal response of generation T and so on
back to generation O; that is, the first T+1 components of this sequence contain a perfect
Nash equilibrium for the T-horizon economy. This produces the pattern in Table I.

TABLE 1
Generation

Harizon 0 1 2 Ces T
0 Ay £y) &(y) o (y)
1 ely) (y) &ty e (3}
2 *(y) e'(y) <ty e *ty)
3 Aty c*y) e'(y) .- Ay
T Tty T y) . 4y £(y)

b i 1
ed cHy) . e 3y}

For i=0,1,2,...,T,...,¢""'(y) is the optimal reaction to ¢'(y). Note, that the

sequence generated in the first column of Table I reappears in all later columns. All
functions in this sequence—besides being upper semi-continuous and continuous from
the left—are uniformly bounded on every interval [0, 7] and they are all of bounded
variation. The conditions of Helly’s Theorem {Natanson (1969), p.250) are therefore
shown to haold on every interval if we can show that the variation over all functions is
uniformly bounded on every interval [0, ¥]. This is the content of the following Lemma.

Lemma. There exists Me R, M <, such that
;;/(c*)éM
Jor all ¢|4 5 of Table I (i/(c"] denotes the variation of ¢’ on [0, 7]).
Proof. Use the fact that ¢’(y} =y —s'(y) to get
if(c") = zV(y]-l- ;{/(si) =29=M forall e

since y and s' are increasing. ||
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Helly’s Theorem thus yields the existence of a convergent subsequence of {c‘(y)}‘:io,
which converges pointwise everywhere to a limit function ¢*(y) of bounded variation.
This holds for every interval [0, 7]. Denote this convergent subsequence by {¢™@(y)}
and think of it as a subsequence of the sequence in column § of Table I. Denote its litmit
by c#(y). {c™@(y)} also determines a subsequence of rows of Table I. From this sequence
of rows choose a subsequence ¢ in column 1 of Table I which converges—again by
Helly's Theorem—to a limit function ¢}{y) of bounded variation. Repetition of this
procedure yields a sequence of limit functions {cX(y), cF(¥),..., ¢¥y), ...}

We claim that this sequence of schedules represents a perfect Nash equilibrium for
the infinite horizon game. This will be proved via the levelled schedules &{y) as defined
by (7).

Analogously we can apply a stronger version of Helly's Theorem (Natanson (1969),
p. 248) to {&'(¥)};2y. The following Lemma shows that convergence of these sequences
is uniform.

Let {i,} be a subsequence of the natural numbers, then

Lemma 2. If {c™(y)}%_, converges to *(y) then it converges uniformly to &*(y).

Proof By Propasition 6 all &'-functions satisfy the Lipschitz condition (L'} with
respect to the same Lipschitz-constant k=1. This implies that the family of functions
{&(y)}5., is equicontinuous. Convergence to the limit ¢*(y) is therefore uniform. ||

Furthermore, we claim that one can interchange limit and ( T)-operation.

Proposition 7. lim,.. €°(y) = &*(y) = ¢*(y) =lim,00 e (¥).

Proof. It is immediate from ( T) that for all y we have &*(y} = ¢*{y). Suppose that
for a yoe R, &*(yy)=> ¢*(yq) halds. We then can without loss of generality assume that
this happened at a y, for which ¢*(y,) = ¢*(¥). This implies that there is a sequence
V.~ Vo such that e™(y,) > c*(y) and ¢*{y,) = ¢*(y,}=&"(y,) for n big enough. But
&+(y,) must converge to Z*(y,} and thus strict inequality cannot hold. |

We can now prove one of the main results of this paper.

Theorem 2. {c¥(y))i%q, the sequence of limit functions from Table I, is a perfect Nash
equilibrium of the infinite horizon economy.

Proof. Assume this is not true. Then there exists at least one realization of y, say
Vo, such that some player ¢ could do better by not consuming ¢¥*(y,) L.€. since the objective
function of player t is given by u(¢,, ¢ (f{y —¢,))) if everyone else uses {c¥(y}) we have:
There must exist ¢, [0, y,] such that

u(cF{(yo), €l f(yo— € (y0)))) < ulco, i (f(po—co}}}. (10}

Note that equation (10} is continuous in the values taken by ¢ and cf.,; i.e. there
exist positive numbers £,, £, and &3, and neighbourhoods U, , U,,, and U, such that

u(cy, ¢3) <ulcg, 1) (11}
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whenever
{c1, €2y €3} € Up (ef{y0)) X U eEy (f (o — € (90)))) % U (F1(f (W6 — €0))).
Now divide the interval [0, 2y,] into two regions, A and B, where
A={y|ef(y) =¥y}
B={y|eHy)<eXy)}
and assume
(i) yoecA

Let {¢'ern} =t {ep ,} be the subsequence chosen in column ¢+ 1 of Table I, which converges
ta ¢f(¥). Pick the same subsequence (of rows) in column & This is possible since by
construction {i,,.,)} is a subsequence of {i,.}; call the resulting sequence of schedules
{ep}. {cr} then is chosen from {c™(y)} and must therefore converge to ¢F(y).

It is then a consequence of the uniform convergence {Lemma 2} and the uniform
continuity of the “levelled” schedules that

(Er(yo), Eni(f(¥o—E2(¥o)))s Eenr{f(3a— ca)))
€ U (€8 (y0)) X U {85 (f(3o— €X(30))) X U, (8t f(Jo— ca}}) (12)

for large enough n holds. But é¥(y,) = c¥(y,) by hypothesis and &¥,(f(yo—¢)) =
ch(f(yo— o)), if we assume (without loss of generality) that ¢, is optimal at y, against
¢¥,(+), because of Propasition 5; thus {12} becomes

(Ei"(}’o)a Ei'h(f(yo - Ei’h(}’o))), E:"Jrl(f(}’a_ E:.'Sﬁl(f(yﬂ ~€)))
€ U (e¥(po)) x U, (8 (f(yo— eHyo) ) X U (cEl{f (3o — ¢a)))) (12)

This means that we can replace &{(y,) and Zpn ((f(yo— co}} by ci(yo) and ¢l {F{po— o)),
respectively, by Proposition 7 without violation of the above inclusion relation. Note
then, in particular, that continuity of Zn,(-} allows to substitute c~(y,) for &r(y,} in
the argument of i, (-); that is, we have

(Ci"(}’a), E:"Jrl(f(}’a' C:“(J’o))), Ciﬂn(f()’a —¢y)))
€ U, (cF(30)) x U, (851 (f(yo— cF (o)) % U (i f(¥0— <o) (127

Since c(ys) is the optimal reaction at y, to cr{ ) by construction of Table I and the
definition of ¢y resp. f—_’:h (they are taken from the same row) we finally conclude that
Er1(f(po = cr(yo))) = € f{po— €(y0))) by Proposition 5, which yields

(er(¥a)s etri(¥a— 0 (¥a))), eirlyo = ca)))
€ U, (c¥(99)) % U, (c¢hii(f(yo— ¥ (pa)))) X UL (¢ { f(¥o— ca}})- (12)
But by definition of the neighbourhoods this means that
u(cp(¥o); cn(f (ot cr(¥a)))) < uleo, er{f(¥a—¢o)))

This is contradictory to the fact that ¢(y,) is an optimal reply to ¢ix,{-).
Thus y, cannot be an ¢element of A,

{(ii} so assume y,€ B.
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Neither can this proposition hold. By Proposition 7, ¢¥(ya) < &¥(y,) implies that cf(y,) <
€r{yo) for large enough n. But the proof of Proposition 5 established that the preceding
player would never make a bequest leading to the realization of y, if he plays against
¢r(+). This means that, if y, is realized, ¢ (y,} = & #{yo) for all n which implies, by taking
limits, that ¢f(yo) = &¥{yo). This contradicts the initial hypothesis.

From {i} and (ii) it follows that y, & AU B =[0, 2y,], a contradiction. Thus, y, cannot
exist and (¢7(y)} is a perfect Nash equilibrium. ||

Next we show that the limit schedules ¢} have the same structural properties as their
finite-horizon counterparts. Firstly, since all the ¢”s satisfy (L)} it is trivial that their
{pointwise) limits do. The following argument then shows that the ¢*-schedules can be
assumed to be upper semi-continuous.

Define the schedules éF(y) by

E:k(y):= C:k(y_o)zli-my,,‘]‘y C*(}’), t=05 19"‘

¢¥(p) is well-defined and continuous from the left. Hence ¢¥(y) is upper semi-continuous
(since it satisfies (L)). Moreover, {(é(y)) is a perfect Nash equilibrium:

By Proposition 5 we have for all ¢ that ® .« = @, (as defined by (C)), the latter has
a closed graph. Thus, if ¢¥{y) is a selection from ®;,, s0 is ¥(y). But ¢f, = ¢, which
implies that $,» =P =Pz =D, and thereforc & (yye®a,,+(y) for all y and all

Ce+t

t. This proves that' (without loss of generality)

Lemma 3. The equilibrium schedules {c¥(y)) satisfy (L) and are continuous from the
left (hence they are upper semi-continuous and differentiable almost everywhere).

Again, no use has been made of the stationarity of u and £, Thus the results contained
in Theorem 2 and Lemma 3 also hold for non-stationary models.

Theorem 2 does not yield existence of a stationary equilibrium since one cannot
guarantee that the limits taken in different columns of Table I (w.r.t different subsequences)
converge to the same limit function.® However, on¢ of the main advantages of Theorem
2 is the constructiveness of its proof. It shows that the infinite horizon case corresponds
to the finite horizon case through a continuous limit process. For a discussion of the
advantages of this result see Peleg and Yaari (1973, pp. 395-396). Of course, it would
be interesting to know under what conditions the convergence process yields a stationary
(resp. non-stationary) equilibrium. That there always exists a stationary equilibrium is
proved in the next section in a non-constructive way.

5. STATIONARY EQUILIBRIA

In this section we prove existence of a stationary equilibrium via Schauder’s Fixed Point
Theorem. Again we make extensive use of the “levelling”-operation {T) and Propasition
5. This enables us to apply the fixed point argument over a space of continuous schedules,

Cuase a. Let us first assume that the production function f crosses the 45%line at a
level 30 (i.e. f{¥)=7) and stays below thereafter. We can then restrict attention to
[0, 7]; since for any y, (0, 7] the evolving capital sequence must stay inside [0, ¥]. (The
same applies to y,> y with respect to [0, y.]).
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Let C([0, ¥]) be the space of continuous, bounded functions from [0, 7] intoe R
endowed with the sup-norm. Define the following subset;

£={c|ce C{0, 1), ¢ increasing, feasible and satifies (L)}.
¢ is a convex and compact subset of C([0, 7]). Now define
K:t>? by
¢ h(®,)
where &, is the aptimal reaction correspondence defined by (C), the schedule
h(®.):[0, y]1=[0, 7]
y->max {®.(y}}

is the “maximal” selection of the correspondence . {which is upper semi-continuous),
and - denotes the “levelling”-operation {T). Clearly, K(e)e{ for all ce{ and K is
well-defined. The key observation is expressed by the next propaosition.

Proposition 8. A fixed point of K, ¢*, generates a stationary perfect equilibrium
(¥ y)={*p)).

Proof. ¢*=K{c*)=h(®,.) implies that h(P ) is an optimal reply to ¢* and thus
{by Proposition 5) optimal reply to itself, ||

Since ¢ is compact and convex all we have to show is that K is continuous. Existence
of a fixed point then follows fram Schauder’s Theorem (Smart (1974)).

Proposition 9. K :{ > { is continuous.

Proof. Let ¢,—»c¢ in ¢ and define k,= K(¢,). {k,} must contain a convergent
subsequence, which we assume to converge to ke {. Show: k= K{c¢), ie. k=h{(D,).
Because of (T) it suffices to show that k is the “maximal” reply ta ¢ for all y’s at which
the --operation has no effect on k. Let Y denote this set; i.e. ye Y if there exists a
sequence y, >y such that k(y)=1im, k,(y,} and k,(v,)=h(D_){(y,). k is continuous
from the left on ¥ since all the (P, )’s are continuous from the left. Moareover, k is
optimal response to ¢ an Y, If not, there is y € Y such that ¢® = k(y) daes not maximize
u(c', e(f(y —¢'))); ie. there is ¢°2[0, y] such that

u(ch c(fly =N =ulc*, e{fly—c*N) +e,  e>0.

But then we have by the same argument as in Theorem 2 {unifarm convergence of ¢, to
¢, convergence of k,(y,) to ¢* and uniform continuity of u) that

u(c®, ea(f(y —<)) 2 ulka(¥a), €l f (¥ —ka(3))) +§ for n = ny

in contradiction to the fact that k,{y.) is optimal reply to ¢, by construction. Hence, k
is optimal reply to ¢ on Y. That K is the “maximal” optimal reply to ¢ is seen from the
fact that it is continuous from the left. Because it follows from (L) that the only selection
of @, which is continuous from the left is the “maximal” one. |

Case b. If f does not cross the 45°line then f(y}—» 20 as y— 0. Consider then the
game with a truncated version of the production £ For any y> 0 define

Fon= {10 Er=2
¥ ify=p
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Note that this truncation does not affect the game over the interval [0, £ {#)] and
that £ {§)»> o as j-»oo, This yields the desired stationary equilibrium. Because of
Proposition 8 every game with a truncated version of f, f, has a stationary equilibrium,
which over [0, f(7)] reproduces the game with the untruncated original . By the same
continuity arguments as those used in the last section (namely, the uniform convergence
of the “levelled” schedules) it follows that the limit {for ¥} of these stationary
equilibria is a stationary equilibrium of the original game.

We have proven

Theorem 3. In the infinite horizon game there exists a stationary perfect equilibrium.
The equilibrium schedule is almost everywhere differentiable, upper semi-continuous and

satisfies (L).

6. COMMENTS ON THE LITERATURE

We first relate Theorem 3 to Kohlberg’s paper (1976). Kohlberg defines equilibrium to
be stationary and assumes from the beginning that strategies be differentiable schedules.
He studies the problem in terms of the resulting first-order condition which is a functional
differential equation and shows by means of a counter-example, in which no equilibrium
exists, that this functional differential equation does not admit a general solution.
Specifically, it does not admit a solution in the space of differentiable schedules. The reason
for this is perfectly clear as has been shown above. Since our model contains Kaohlberg’s
as a special case we get the existence of a not everywhere differentiable schedule (to be
precise: an almost everywhere differentiable schedule) whereas he concludes “non-
existence”.

Bernheim and Ray (1983) have examined a model essentially the same as the one
posed in this paper. Their method to prove existence of a (stationary) perfect equilibrium
is different from the one proposed here. To overcome the analytical difficulties caused
by discontinuities they transform the original problem in terms of consumption schedules
into a problem defined in a space of “filled” graphs of correspondences which are derived
from the original schedules. This space endowed with the Hausdorft topology is then
shown to have the fixed point property. Furthermore, the correspondences in question
satisfy the “Keynesian property” (Bernheim and Ray (1983), p. 9} which is equivalens to
our property (L) of schedules. In view of the discussion preceding Proposition 3 this
implies that their method, too, requires bequests to be a normal good. However, the
observation in the present paper that discontinuities of the schedules of other players
can be “levelled out™ without proveking any change in the optimal behaviour of a given
player greatly simplifies the mathematics and has a straightforward economic interpreta-
tion. It allows (by taking limits) a unified treatment of the existence problem in finite
and infinite horizon models. Bernheim and Ray (1983) do not refer to finite horizon
models.

7. CONCLUDING COMMENTS

In the light of the constructiveness of the proof of Theorem 2 it would be interesting to
know, whether it is always possible to approximate a stationary equilibrium by choosing
an appropriate “starting point™. One certainly cannot hope that any starting point would
do, since there may exist cyclical equilibria. It would also be interesting to know under
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what conditions equilibria must be stationary and whether they are unique. From examples
solved explicitly in Leininger (1983) a likely conjécture is that a uniqueness result for
stationary interior equilibria haolds (this result is known to hold in case the schedules are
continuous for the model used by Kohlberg (1976)), but there are examples in which
both stationary and non-stationary equilibria exist. A more promising route probably is
to use the method of proof in section 4 to show that under certain conditions there must
exist non-stationary equilibria. Finally, a natural question to ask is whether these results
generalize to the case of an n-goods economy. Here the main obstacle is to get an
equivalent of property (L) that made the application of the Generalized Maximum
Theorem in the finite horizon case possible. If that could be achieved, it should also be
possible to apply a multi-dimensional version of Helly’s theorem to carry over the result
to the infinite horizon model. This is a point for future research.
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NOTES

1. A detailed discussion of this point is contained in Blackorby, Primont and Russell (1978}, Chapter 14.
2. Note that because of the feasibility constraint u is anly defined on the “lower half” of R, x R, (we
could easily extend it in a continuous way to all of the positive orthant of R? by defining u(Z g(y, &) = u(y, 0)
it 2> k).
3. Far a reformulation and welfare analysis of this problem in teems of “shadow™ prices see Lane and
Leininger (1984b).
4. Bernheim and Ray (1983, Theorem 3.1.) show that U also contains all continuous and increasing utility
functions which instead of (8) satisfy the following condition:

forall ¢, e}, ¢, , With e, Z ¢} =0, ¢,, 2 ¢t 20
IJ(C" ':H"l) - H(C:, CH-I)! = !.I(C" c:+l) - u(c.:1 Cl:+l)

5. The requirements (L) and left-continuity are eguivalent for the set of upper semi-continuous functians.
6. A particularly interesting class of non-stationary equilibria are cyclical equilibria which we found to
exist in specific examples. See Leininger (1983), Chapter 1.
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