Observational Implications of Non-Exponential
Discounting®

Stephen Morris and Andrew Postlewaite
Department of Economics, University of Pennsylvania

November 1997

1. Introduction

The standard assumption in economics is that individuals’ preferences are dynamically
consistent. That is, if a plan of action is optimal at time 0, the individual will have no
incentive to revise it at future times. If that individual is maximizing a time additively
separable utility function over consumption, dynamic consistency implies that the
individual must discount the future with an exponential discount function. Yet all
attempts to directly identify a discount function suggest that it is not exponential
(see Ainslie [1992]). In particular, individuals are prepared to accept a lower interest
rate to postpone consumption from f periods hence to ¢t + 1 periods hence than to
postpone consumption from today to the next period.

This issue was first studied in the economics literature by Strotz [1956]. How
should individuals with non-exponential discounting make intertemporal choices, given
their dynamic inconsistency? A savings rule was said to be a “consistent” savings
rule if it was optimal for an individual to follow the rule if he anticipated that his
future selves would follow that rule. Strotz claimed that individuals following such
consistent rules would act as if they were maximizing a utility function derived from
certain exponential weights. This claim implied that individuals with non-exponential
discounting would be observationally equivalent (in a stationary environment) to in-
dividuals with exponential discounting. There is a simple intuition for such a result:
when an individual makes a saving decision, we learn about the relative weights he
puts on the present and the future, but we learn nothing about the relative weights
he puts on different periods in the future.

Strotz’s particular characterization of consistent rules turned out to be false (see
Pollak [1968]). Nonetheless a large literature on dynamically inconsistent individual
choice and the formally equivalent problem of intergenerational altruism has built on
Strotz’s ideas (see Laibson [1996] and O’Donaghue and Rabin [1997] for recent con-
tributions and further references). The intergenerational altruism literature showed
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that the observational equivalence claim was false, in at least some settings. In par-
ticular, if a consumer has a smooth and strictly concave utility function and dis-
counts the future exponentially, his optimal savings rule must be differentiable. But
Kohlberg [1976] described an example (with non-exponential discounting) where no
differentiable consistent savings rule exists; Leininger [1986] and Bernheim and Ray
[1987] showed the existence of a consistent savings rule in the same setting. So
we have a non-constructive proof of the existence of intertemporal stationary sav-
ings problems where non-exponential discounting has observational implications (i.e.,
non-differentiable savings).

In this note, we provide (for a slightly different setting) an elementary example
with a concave utility function where the essentially unique consistent savings rule is
discontinuous; such a savings rule could not arise with exponential discounting. We
demonstrate this savings rule by construction. The construction has the advantage
that it provides simple intuition about what drives the discontinuity.

Examples making similar points have been constructed in related contexts. Laib-
son [1996] discusses examples with liquidity constraints and log utility where a similar
phenomenon occurs: exponential discounters would have continuous increasing con-
sumption rules, but non-exponential discounters have discontinuous and sometimes
decreasing consumption rules. O’Donaghue and Rabin [1997] describe a discrete
choice example where exponential discounters would have increasing consumption
rules, but non-exponential discounters have a decreasing consumption rule.

2. The Intertemporal Consumption Problem

An individual has a continuous, strictly increasing, concave utility function over con-

sumption, u : Ry — R, and discounts the future with discount weights {57}3020.
o0

Assume > §; exists and without loss of generality set 69 = 1. Thus the utility of the
=0

time ¢ self from consumption stream x = {z,}°7 , is

v (x) = Z S (Ter) .

A savings rule is a function s : R, — R, with s(y) < y for all y € R,.. Write
¥ (y) =y and s (y) = s (sk (y)) for each k = 0,1,2,... If the time ¢ self expects
his future selves to follow rule s and currently has wealth y, he will choose savings
z € [0,y] to maximize

uly—x)+ Z(STU (s7 ' (z)— 5" (2)).

Thus savings rule s is a consistent savings rule if for all y € R,

s(y) € argmax {u (y—z)+ Z(STU (s7 ' (x) — s (x))} . (2.1)

z€[0,y] r=1



3. Observational Equivalence with Constant Relative Risk Aver-
sion Utility Functions

Phelps and Pollak [1968] observed that in at least some environments, it is not possible
to distinguish exponential from non-exponential discounting. Consider the case where
u satisfies constant relative risk aversion (CRRA); i.e., with coefficient p € (0, 00),

' 7P—1
u(zx) = 1—p ,.1f,07£1
In(z),ifp=1
Let \* solve
N Nt \aeD)
1_)\:257)\ (3.1)
T=1

(such a A" always exists!).
Lemma 1. There is a consistent saving rule with s (y) = \"y.

This can be shown by substituting a linear saving rule into equation (2.1) and
solving first order conditions.? This solution coincides with the solution of Phelps
and Pollak [1968] in the case where, for all T > 1, §, = 367 for some 8 < 1 and
8 < 1.2 There is observational equivalence here since observing A* does not tell the
observer if the individual has exponential discount weights or not. This equivalence
is an artifact of the CRRA assumption, which ensures that an individual’s relative
marginal weights on current and future consumption are not influenced by any linear
rule allocating future consumption among different periods. In the next section, we
show that the equivalence does not survive without the CRRA assumption.

4. Discontinuous Savings

Consider the concave, piecewise linear utility function
z, ifx <1
u(z)=< 1+p8(x—-1),if 1<z <2
1+8+y(x—2),if2<z

LConsider what happens as A increases from O to 1. The left hand side increases continuously
from 0 to co. The right hand side varies continuously from either a positive number (if p < 1) or co
(if p>1) to Y 7 6.

If p > 1, the right hand side is strictly decreasing, so there is a unique solution. There is also a

. . . i . % fo's} [sS]
unique solution in the case of log utility (i.e., p = 1): A* = (ZT:I 57—> /(1 + Zq—:l 57—> . There
may be multiple solutions if p < 1.

2 Assuming future selves follow linear savings rule s(y) = Ay, utility from consuming # out of

o0

1—

current wealth y is equal to :l:lTp (y — )P+ E br ((1 - ) )\Tflsl:) ?|. This is maximized
=1

o0
setting (yfz>p =(1- )\)lfp Z §AA=P(T-1) gatting © = Ay gives equation (3.1).
=1
3Setting 6r = 367 in equation (3.1), we have % = 1—7;)\51%; re-arranging gives \? —

§(B+ (1 — B)A); this is equation (46b) of Phelps and Pollak [1968] (with different notation; they
also allowed for a linear production technology).



where 1 > 3> 2y > 0. Let 6, =0 for all 7 > 2 and 6; satisfy 1 > 61 > § > 6,0 >
2y > 26;7y. With commitment, the optimal consumption rule (see figure 1) would be

y,if0<y <1
Lifl<y<?2
c'(y) =9 y—-1,if2<y <3
2,if3<y<4
y—2,if4<y

| Figure 1 about here |

The corresponding savings rule (see figure 2) is

s*y)=4¢ 1,if2<y<3

| Figure 2 about here |

Lemma 1. The essentially unique consistent savings rule s is:

0,if0<y <1
y—1,if1<y<2
Lif2<y <4+ 53—
10r2+$,ify:4+$
y—2,ifd+ 53— <y<5
3,if5<y

See figure 3.

| Figure 3 about here |

Proof. Suppose the individual could commit to any optimal consumption rule; he
would choose to consume everything this period or next. In particular, his desired
consumption next period would be equal to his commitment savings, s* (y). Thus
any consistent savings rule has s (y) = 0 for all 0 < y < 1. But then setting s (y) =
{ Lif2<y<3

to the individual of leaving savings = to the next period under savings rule s. We
must have

must uniquely achieve the first best. Now let v () be the value

bz, if0<x <1
v(z)=4¢ 6,if 1<z <2
§1(1+8(x—2),if2<2<3

While we have not identified s(y) for y > 3, we know that the marginal util-
ity to the current self is at most §;7v for any extra units passed on, so v (x) <
61 (14 B+ (x —3)) for all x > 3. The individual’s problem becomes one of maxi-
mizing % (y — x) + v (x) (where v is not concave). Note that at a maximum z may



never exceed 2 (where the marginal utility of savings is §1y) and may never be in the
interval (1,2) (where the marginal utility of savings is 0). Thus for ¥ > 3, savings
must be 1 or in the interval [2,3]. If 3 < y < 4, this is maximized setting = 1; if
5 < y, this is maximized setting x = 3. If 4 < y < 5, local maxima have x = 1 and
z =y — 2. The former gives utility 1+ 8+ (y — 3) + 61, while the latter gives utility

14+ 84614 618 (y —4). The former exceeds the latter if y >4 + 51gfv' |

The corresponding consumption rule (see figure 4) is

y,if0<y <1
Lifl<y <2
) y—l,if2§y<4+mt—w
c\y) = e
201«3_'_@%’&9_44_@%
: o
2,1f4+m<y§5
y—3,i[b<y

| Figure 4 about here |

Let us make a few observations about this example.

e The utility function is rather special. But it could easily be perturbed (for ex-
ample, in such a way that it was continuously differentiable) without altering
the qualitative features of this example. Similarly, we could allow strictly posi-
tive but small discount weights 6, for 7 > 2 without qualitatively changing the
results.

e There is a simple intuition for the discontinuity. The current self wishes to save
only if the savings will be consumed by his next period self. At some point,
he will refrain from saving until he has enough resources to ensure increased
consumption in the next period. But then he will save a lot (and his savings
will jump discontinuously).

e Following Phelps and Pollak [1968], discount weights of the form é, = 367 (for
some § < 1 and § < 1) have been used in the literature to capture the idea of
“hyperbolic” discounting (e.g., Laibson [1996]). In this case, non-exponential
discounting corresponds to the assumption 5 < 1. We can similarly use piece-
wise linear utility functions to construct examples with discontinuous savings
schedules within this class of discount weights (with non-exponential discount-
ing). In this case, the intuition is reversed. The current self wishes to save only
if the savings will be passed on beyond his next period self. At some point he
will refrain from saving until he has enough resources to ensure increased saving
in the next period, at which point he will save a lot.

e By focussing on consistent savings rules, we are restricting attention to sta-
tionary Markov perfect equilibria of the underlying infinite savings game (i.e.,
subgame perfect equilibria where strategies depend only on current wealth and
not on either past payofl-irrelevant history or the calendar date). But the as-
sumption of bounded marginal utility of consumption at zero in our example



ensures that all subgame perfect equilibria will be essentially identical to the
one we study.
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