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On the Existence of a Consistent
Course of Action when Tastes
are Changing

BEZALEL PELEG and MENAHEM E. YAARI
The Hebrew University, Jerusalem

I. INTRODUCTION

Consider an economic agent whose preferences change over time. In this paper we would
like to address ourselves to the question of how such an agent might behave and whether
or not he can escape the predicament of yesterday’s actions being non-optimal, when
viewed from the vantage point of today’s preferences.

Before we embark on this discussion, we must acknowledge the fact that, from the
methodological point of view, the whole question of preferences that change over time is,
at the outset, rather troublesome. An agent’s preference ordering is nothing more than
a summary of his choices, when confronted with dichotomous alternatives. As such,
preferences are an ex-post concept, and there is a real methodological difficulty in talking
today about tomorrow’s preferences, since tomorrow’s preferences only become meaning-
ful after tomorrow’s potential choices are known. A case can therefore be made to the
effect that the assumption of constant preferences is the only possible one in economic
theory. Nevertheless, we shall speak here of preferences that change in a way that is known
in advance, thus knowingly placing ourselves on shaky methodological ground. But
changing tastes, such as through the formation of fads, fashions, and habits, is a real
phenomenon and we feel that it is worthy of examination, even at the cost of a certain
amount of methodological deficiency.

It is possible to give an alternative interpretation to the discussion that follows.
Rather than talk about a single decision-maker whose tastes are subject to change, one
could talk about a sequence of decision-makers, one for each period, without any of the
arguments being affected in any way. Each decision-maker has his own preferences which
depend, however, on the consumption rates in all periods. Unfortunately, this alternative
interpretation also gives rise to certain methodological difficulties, as discussed, for example,
by Phelps and Pollak [4].

Below we shall formulate two illustrative models describing the behaviour of an
economic agent through time. In one of these models, the agent is a producer-consumer
(to be interpreted, perhaps, as a central planning board in a planned economy ) with
investment in one period affecting output in the next period. In the other model, the
agent is a consumer operating successively in a sequence of competitive markets, with
saving in one period affecting income in the next period. In both models, the notion
of a feasible consumption plan may easily be defined. It has the form of a sequence

1 First version received July 1972; final version received November 1972 (Eds.).

2 This essay is closely related to an unpublished paper [3] by Bezalel Peleg.

The research that is being reported here has been supported, in part, by the Maurice Falk Institute
for Economic Research in Israel and by the National Science Foundation.
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y = {)¥(0), »(1), ...> of vectors satisfying certain constraints, where y(f) is to be inter-
preted as the commodity bundle to be consumed in period z. The set of all feasible con-
sumption plans will, in both models, be denoted by the symbol Y. We shall assume that,
in period ¢, the agent has a preference ordering that is representable by.a utility function
u,. If preferences were unchanging over time, then u, would be the same function, say u,
for all ¢, and the agent’s behaviour would be describable as a straightforward maximization
problem, namely to select in Y a plan y* such that u(y*) = u(y), forall y in Y. However,
when preferences do change over time, it becomes apparent that the agent’s behaviour
can no longer be described by means of a simple maximization problem. The agent’s
problem is to pick a feasible consumption plan y* in such a way that, in some sense, y*
would have an optimality property consistent with a// the utilities, and it goes without
saying that a plan y* which maximizes all the functions u,, u;, u,, ... simultaneously does
not, in general, exist. How, then, should the agent’s optimal behaviour be described?
Which plan, in the set Y of feasible plans, should he select? An answer to this question
was proposed by Strotz [6] and by Pollak [5]. To use the words of these authors, the
agent should pick “ the best plan that he would actually follow ”. The next section is
devoted to a spelling out of this suggestion.

II. THE STROTZ-POLLAK SOLUTION

Finding * the best plan that an agent would actually follow > turns out to be a dynamic
programming problem. Specifically, what Strotz and Pollak are saying is that the agent
pick a plan y* in Y having the property that, for each ¢, y*(¢) is the best action in period ¢,
on the assumption that future actions shall be optimal. Thus, the plan y* can, in principle,
be determined by means of a backwards recursion. It might be worthwhile to illustrate
this procedure in the framework of Strotz’s and Pollak’s own specific example.

Assume, for simplicity, that there is only a finite number, say N+ 1, of planning periods,
and consider a consumer operating in a world of a single commodity. Let y(¢) be the
amount of the commodity to be consumed in period ¢, so that a consumption plan is now
an (N + 1)-tuple of real numbers of the form {y(0), ..., ¥(N)>. Define the set of feasible
consumption plans.by :

y@® =0 for t=0,..,N
and ) y(H) =K
t=20

where K is a fixed positive real number. ' Thus, we have here a pure storage model, in
which a given stock (of size K) of the commodity is to be divided up for consumption in
the various periods. Let u, be the consumer’s utility in period #, and assume that u, depends
only on the consumption in periods from ¢ onwards, that is, assume that the arguments of
u, are ¥(f), ..., y(N). Assume also that, for each ¢, u, is continuous, concave, and non-
decreasing. The Strotz-Pollak suggestion may now be stated as follows: let K(f) be the
stock of the commodity at the beginning of period ¢ (in particular, K(0) = K) and look
first at the Nth period. Solve the problem of maximizing uy(y(N)), under the restriction
0 = y(N) < K(N). Since uy is monotone, we may assume without loss of generality
that y(V) = K(N) is a solution. Now look at the (N—1)st period, and solve the problem
of maximizing uy_,(y(N—1), y(N)) under the restrictions 0 < y(N—1) £ K(NV—1) and
y(N) = K(N—1)—y(N—1). In view of this last condition, the maximization takes place
only over y(N—1), and its solution must be of the form

YN—1) = hy_1(K(N—1)), y(N) = K(N—1)—hy_,(K(N— 1)),
for some real function 4y_,. Now look at period (N—2), and solve the problem of
maximizing uy _ ,((N—2), »(N—1), (IV)), under the restrictions

0 = y(N-2) £ K(N-2), y(N—1) = hy_1(K(N—2)—p(N-2)),
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and y(N) = K(N—2)—y(N—2)—hy_(K(N—2)—y(N—2)). The last two equations imply
that the maximization takes place only over y(N—2), and a solution must therefore be of
the form p(N—2) = hy_,(K(N—2)), for some real function Ay_,. It is clear now that this
procedure can be repeated successively, for the periods N—3, N—4, and so on, until we
reach the period 0, in which we must solve the problem of maximizing u((0), ..., ¥(N))
under a set of restrictions having among them the equations

(1) = hy (K1), ¥(2) = hp(K(Q2)), ..., y(N—1)) = hy_1(K(N—-1)),

and y(N) = K(N), where hy, hy, ..., hy_, are known functlons determined in previous
stages of the process. Since, by deﬁnltlon K() = K— Y21, y(s) for >0, we conclude
that y(¢) is a known function of y(0), so the max1mlzatlon of u, takes place over y(0) alone.
This procedure thus provides an appealing way to define what is meant by a consumption
plan belng optimal with respect to all the utilities, ug, 4y, ..., Uy.

It is not immediately clear how to generalize the Strotz Pollak procedure to the case
where there are infinitely many planning periods, or to the case where the utility in period ¢
depends also on consumption in periods before z. Both things can, however, be done. In

Section IV, we shall give a formal definition of the Strotz-Pollak solution for this general
case.

III. EXISTENCE OF A STROTZ-POLLAK SOLUTION

Does an optimal plan, in the Strotz-Pollak sense, always exist? In terms of the specific
example that we have just discussed, we might ask whether the functions 4, (for ¢ = 0, ...,
N—1), which associate the optimal consumption in period # with the stock of the commodity
at the beginning of period ¢, are always guaranteed to exist. Unfortunately, the answer
to this question, in general, is negative. To see this, we turn'to a four-period example,
for which a Strotz-Pollak solution fails to exist.

Consider the pure storage model of the previous section, and let N = 3. We begin
by writing u3(»(3)) = »(3), which leads to y(3) = K(3) as being optimal in the last period.
Now, for period 2, let u, be given by

1,(3(2), y(3)) = min (2y(2), y—(zi—ﬂ) +50).

Then, we find that /,(K(2)) = min (K(2), 1). Proceeding to period 1, we let #; be given by

L 1)+3
uy(y(1), y(2), ¥(3)) = min (2y(1), &;——) +y(3),
which leads to two policies, h¢ and h%, both of which are optimal. Specifically, we have

. _ K@) for 0<K(1)<3

1K) = {1 for K(1)>3
and

K() for 0=K(1)<3
8 =
Hi(K(1) = {1 for K(1)= 3.
Moving now to period 0, we write
uo(3(0), ¥(1), ¥(2), y(3)) = YOy ()* +y(1)-

It is now easily seen that an optimal policy for period 0 does not exist. Using the previously

computed optimal policies, #; and £,, to substitute for y(1) and y(2)in u,, we arrive at the
following result: If, in period. 1, the policy h{ is used, then we get

. y(O0)*+1 for 0= y(0)<K-3
7 ]K—y(0) for K—3=<y0) =K.
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And if, in period 1, the policy A% is used, then

e y(0)*+1 for 0= y(0)<K-3
7 |K—y(0) for K—3<y(0)<K.

Now, in the former case, u, fails to attain a maximum for values of K satisfying K>11.
In the latter case, u, fails to attain a maximum for values of K satisfying 3 £ K<11. In
either case, an optimal policy for period O fails to exist. Note that it is not possible to
resolve this difficulty by having the consumer decide in advance (that is, in period 0) to
use the policy k¢ in period 1 if K satisfies 3 < K< 11, and to use the policy k% in period 1
if K>11. Suppose, for example, that K>11. A decision in advance to use the policy h#
in period 1 works against the consumer’s own interest in period 1, because it results in
K(1)—and consequently also u;—being lower than it would be if it were known in period 0
that the policy 4 would be used in period 1. Specifically, with K> 11, a decision in advance
to use h? results in u, = 3, whereas a decision in advance to use h¢ results in u; = 3+e¢,
for some £>0.

It is important to note also that, while the utilities in the above example are not
strictly concave, this has nothing to do with the non-existence of a Strotz-Pollak solution.
In fact, the very same example can be modified slightly, to make all the utilities strictly
concave, and a Strotz-Pollak solution will still fail to exist.?

We see, then, that the Strotz-Pollak procedure cannot be relied upon to yield a solution
to the problem of characterizing optimal behaviour when tastes are changing. To the best
of our knowledge, the only case where the Strotz-Pollak solution can be shown to exist
is that of stationary preferences.2 By stationary preferences we mean that the problem
has infinitely many planning periods and, in period ¢, the utility u, is defined on the rates
of consumption from period ¢ onwards, i.e. on y(¢), y(¢+1), ..., and is given by the same
function for all z. But this assumption, on preferences being stationary, negates the very
phenomenon—changing tastes—that gives rise to the present discussion. Thus, it seems
that a solution concept other than that suggested by Strotz and Pollak must be sought,
in order to describe optimal behaviour under changing tastes.

IV. NASH EQUILIBRIUM AS A WAY TO DESCRIBE OPTIMAL BEHAVIOUR
WHEN TASTES ARE CHANGING

Consider, once again, an economic agent whose tastes in period ¢ are described by a utility
u, ;,where u, is a real function defined on the set Y of all feasible consumption plans. A
typical consumption plan in Y is a sequence of the form {y(0), y(1), ...», where y(¢) is the
commodity bundle to be consumed in period z. Now consider the non-cooperative game
in which the set of players is given by the non-negative integers, and in which player #’s
move is to pick y(¢), and his payoff, after all players have made their moves, y(0), y(1), ...,
is given by u,(3(0), (1), ...). Player s move (that is, his choice of y(¢)) is, of course,
restricted in such a way that the sequence <3(0), »(1), ...», describing the moves made by
all the players, shall belong to the set Y. A strategy for player ¢ is a function s, that
associates a feasible move y(¢) for player ¢ with every z-tuple <{3(0), ..., (t—1)) of feasible
moves by players O, ..., t—1. Thus, specifying a sequence {sq, §;, ...» of strategies for
all players determines a feasible consumption plan uniquely. Let {s§, sf ...) be a

1 A referee, to whom we are very much indebted, has suggested an elaboration of the following sort
at' this point: suppose that the functions u, ..., u3 are all strictly concave in their arguments. This does
not imply that they remain even weakly concave, after future optimal policies are substituted in them,
in the variable over which the maximization takes place. In particular, the only way to guarantee that
u; be concave in y(1), after substitution of 4, and 43 as functions of y(1), is to have 4,(K(2)) linear, which
is obviously not the case in general. Now, if, as a function of y(1), u; is not concave, then its maximum
may occur at a set of points which is not connected, so that /;(K(1)) fails to be continuous. When, in turn,
hy is substituted in ug, one finds that ug is not continuous in y(0), so the maximum fails to exist.

2 If production is allowed, then it, too, must be stationary.
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sequence of strategies, and let (y*(0), y*(1), ...> be the consumption plan determined
by it. It is common to say that (s, sf, ...) is an equilibrium point (in the sense of Nash)
if, for t = 0, 1, ..., we have u,(3*(0), y*(1), ...) = u,(3(0), (1), ...), for any consumption
plan {»(0), y(1), ...> determined by a sequence of (feasible) strategies of the form

(S ey S S S 1, D

That is, {s§, s, ...) is an equilibrium point if, for each ¢, s¥ maximizes u,, over all feasible
choices of s,, under the restriction that player 7, for all t # ¢, sticks to the strategy sX
If s* = {(s§, sf, ...> is an equilibrium point, then we shall refer to the associated con-
sumption plan, y* = {3*(0), y*(1), ...>, as an equilibrium consumption plan. An equi-
librium consumption plan is optimal, in the sense that it has the following consistency
property: the agent has no motivation to change his action in period ¢, nor does he have
reason to regret his action in any period, given his actions in other periods. The notion
of equilibrium in the sense of Nash thus provides a way to describe consistent behaviour
in the face of changing tastes. But before this way of describing behaviour can be of
any use, it is necessary to show that an equilibrium consumption plan exists in a sufficiently
rich setting. It is to this question that we wish to devote the remainder of the present
investigation.

It should be noted that if a consumption plan y is optimal in the Strotz-Pollak sense,
then it is also an equilibrium plan. To show this, we give a definition of optimality in the
Strotz-Pollak sense, this time in terms of the game-theoretic concepts introduced above.
A sequence {s¢, si, ...> of strategies is optimal in the Strotz-Pollak sense if, for each ¢,
s; maximizes u,, over all feasible choices of s,, under the restriction that the players #+1,
t+2, ... stick to the strategies s}, ;, s¥, ,, ... and the players 0, 1, ..., #—1 use any feasible
strategies. In particular, therefore, we have that s* maximizes u, when the players 0, 1, ...,
t—1 choose the strategies s, sf, ..., s,* ;. This argument makes it clear that the converse
of our assertion does not hold: an equilibrium plan need not be optimal in the Strotz-
Pollak sense. For this reason, an existence theory for equilibrium plans may have a better
chance of success than an existence theory for plans that are optimal in the Strotz-Pollak
sense.

V. SHORTCOMINGS OF THE CONCEPT OF AN
EQUILIBRIUM CONSUMPTION PLAN

An equilibrium consumption plan is not necessarily Pareto-efficient. In other words, if
y* is an equilibrium consumption plan, then there may exist a feasible plan y, such that
u(y) = u,(y*) for all ¢, with a strict inequality for some ¢. This fact may be viewed by
some readers as a serious drawback of the concept of an equilibrium consumption plan.
However, we feel that the consistency property that characterizes equilibrium plans is a
minimal property. A consumption plan that does not have this property cannot be
advocated seriously as a reasonable course of action for an agent with changing tastes.
Ideally, one should look for a plan that is simultaneously consistent and Pareto-efficient.
The existence of such plans depends on the specific model under consideration, and it
will not be examined here.

Perhaps a more serious shortcoming of the concept of an equilibrium consumption plan
lies in the enormous amount of information which it requires the economic agent to
possess. Specifically, in each period, the agent is assumed to know the utilities of all
periods, since the concept of equilibrium in the sense of Nash assumes that each player
knows the pay-off functions of all the players. In other words, the agent knows in advance
precisely how his tastes are going to change, throughout the future. This is surely rather
far fetched. Some day, the theory of games with incomplete information might be brought
to bear upon this question, and this might lead to results that would be more immune
to this criticism. As for us, we can offer only a partial consolation. It has to do with the
method that we shall use to prove our main existence theorem (Theorem 6.2). To establish
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the existence of an equilibrium sequence of strategies, we shall use a convergence argument
in which, for some integer 7, the players 7+ 1, T+2, ... use some arbitrary fixed strategies
and only the players 0, 1, ..., T optimize. Then we shall take the limit, as 7'— oo, to obtain
the desired equilibrium sequence of strategies. What this procedure amounts to is that,
up to an approximation, the agent is required only to know what tastes will be in a number
of periods hence. Beyond that, he can assume any arbitrary behaviour and, no matter
what he assumes, he is guaranteed to be close to the equilibrium action in the present
period. This means, roughly speaking, that the farther into the future we look, the less
the amount of information which the agent is required to possess.

VI. EXISTENCE OF EQUILIBRIUM POINTS FOR GAMES
WITH COUNTABLY MANY PLAYERS

Before turning to a description of consistent behaviour in two specific economic models
with changing tastes, we would like to state and prove a general existence theorem. For
games with finitely many players, the following result is known (see, for example,
Friedman [1]):

Lemma 6.1. Let Sty ooy Sy be non- empty convex compact subsets of ﬁnzte dzmenszonal
Euclidean spaces. For each z, i=1,..,n, let 'H; be a continuous real functzon deﬁned on
S =98%XS,%...x8,. Iffor each A i= 1, ..., n, and for every choice ofs € Sl,for] # z,
the function H (sl, cees ST 1y Sy ST 15 vees s*) is quasz—concave in s; on S;, then the game
(815 eey Syy Hy, .. H) has an equtltbrlum point.

The proof of this assertlon can be obtamed by a stralghtforward application of
Kakutani’s fixed point theorem.

The theorem that we need is a generahzatlon of Lemma 6.1 to games with countably
many players.

Theorem 6.2. For i =1, 2, ..., let S; be a non-enipty convex compact subset of E*,
the Euclidean space of dimension k;. For each i, i=1,2, ..., let H; be a continuous real-
. . C 0 . . '
valued function on the (topological) product space S= X S;. If, fori=1, 2, ..., and
o Co = '
JSfor each choice of s¥ € S;, i #j, the function H(s{, ..., "1, Si» Si+1, --.) IS quasi-concave
in s;.0n S;, then the game 2 (S, Sy, ...; Hy, H,, ... has an equilibrium point, ‘
- Proof. Let s° be an arbitrary point of S. - For each natural number n, consider the
n-person game <S,, ..., S,; Hi, ..., H}), where the function H" is defined by

! H';(Sl, LA sn) Hl(sl’ AR snb S,,+1, sn+25 )

for sy, ...,.s, satisfying ‘sj €S;,j=1,..,n By‘Ler'nma 6.1, this game has an eqhilibrium
point (5%, ..., . Foran = 1,2, ..., define \ :

n i R4 0
§ = <Slp coos Sy Snt1s S,,+2, >

Smce the sets .S; are compact, we may use the Cantor diagonal process and obtain a sub-
sequence (5", for j = 1,2, ..., which converges to a point § of S. We claim that § is'an
equilibrium point of the original game. For 'suppose, contrary to this claim, that there
exists a natural number g and that there ex1sts a strategy 5,€ S, such that

H () <H51, -+.» S5-15 Sgp Sga15 +++)-
1 The reference here is to games in normal form, that is, to games that,are completely spec1ﬁed by the
strategy spaces of the players and by the pay-off functlons
2 See the previous footnote.
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Since H, is continuous, there exists an integer j such that n; = ¢ and
Hq(5n1)<Hq(§'{J’ ceey §;J 1 S sq+1, ):

‘which is impossible, since {57/, ..., §,7> is, by construction, an equilibrium point of the
finite game of size n;. This completes the proof of the theorem.

VII. A MODEL OF ECONOMIC GROWTH WITH CHANGES
IN THE PLANNER’S PREFERENCES

Our first application of Theorem 6.2 will be in the analysis of an optimal growth model,
in which utility changes over time. The problem of describing consistent behaviour in
such a setting has been discussed by Inagaki [2] and by Phelps and Pollak [4].

The model is made up of three components. First, a non-negative vector x,, describing
the initial resources of the economy; second, a sequence {So> fl, ...y of production
functions, where f; describes the efficient way of using resources in perlod ¢t to obtain
resources in period 7+41; third, a sequence <{u, u;, ...» of utility functions, where u,
describes the preferences prevailing in period .

There is no need to assume that the number of commodities is the same in every period.
Indeed, everything that will be said here is valid also if we let n, be the number of com-
‘modities in period ¢, and the sequence {n,> of positive integers need not even be bounded.
However, so as not to create a typographical nuisance, we shall write the model as though
the number of commodities is a fixed positive integer, say n. We shall let the non-negative
orthant of the Euclidean space of dimension # be denoted E",.

For each t, the productlon function f; is defined on E” to E", and we shall assume
that f, is, non-decreasing, concave, and continuous. If we let x(f) stand for the vector of
capital goods that the economy has in the beginning of period ¢, and if we let y(¢) be the
vector describing total consumption in the economy in period ¢, then the evolution of the
economy is given by ‘

x(t+1) = f(x@®)—y@®), t=0,1, ... .
x(0) = xo. ()

This specification views the consumption y(¢) as taking place at the end of period ¢. The
difference between this specification and others is merely notational. '

Let Y be the set of all sequences <{3(0), ¥(1), ...> of vectors in E" which satisfy (1) and,
in addition, satisfy the inequalities

0 < () < fi(x(®), -(2)
for t =0, 1, .... Thus, Y is the set of all feasible consumption plans. It is a convex,
compact subset of the space formed by taking the countable Cartesian product of E" w1th
itself.

The utility functions u,, uy, ... are assumed defined on the set Y to the real numbers.
The function u, describes the planner’s preferences in period ¢ among feasible consumption
programmes. We shall make the following assumptions on the utility functions. For
each #, t =0, 1, ..., u, is non-decreasing, quasi-concave, and continuous. It should be
noted that, while continuity of u, in the product topology is usually regarded as a rather
strong assumption, we are assuming contmulty on the compact set Y only, and this is
considerably weaker than continuity on the entire space. Thus, for example, if ¥ happens
to be a compact subset of 1., then our continuity assumptlon is equivalent to 1. -continuity,
in the norm topology.

Now let us consider the game G such that the set of players is given by the non-
negative integers, and such that a strategy for player ¢ is a function which associates a
feasible capital vector x(¢+ 1), for period ¢+ 1, with every feasible choice of capital vectors
x(1), ..., x(#), for the periods 1, ..., . More precisely, we have the following: a strategy
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for player O is a vector s,, satisfying the requirement

0 = 59 = fo(xo), -3

and a strategy for player ¢, for £>0, is a function s, defined for every #-tuple {x(1), ..., x(£)>
that satisfies the inequalities

0= x(g) S fp-s((g=1) =1, .1, (4
with x(0) = x,, and the function s, itself satisfies
0 = s5,(x(1), ..., x()) < fu(x(£)). (9

Let s = {so, 51, ...) be a sequence of strategies for all the players. This sequence
determines a unique feasible consumption plan, to be denoted y*, in the following manner:

V(O = £(x(0) = s(x(1), ..., x(2)),

fort = 1,2, ..., and y*(0) = fo(xo)—so. Thus, it is possible to define the pay-off to player ¢,
associated with the strategy sequence s, by

v(s) = uy®).
We now have the game G completely described (in normal form) and we may proceed
to inquire about the existence of an equilibrium sequence of strategies.

In order to be able to make use of Theorem 6.2, and also in order to eliminate the
pathological case where the behaviour consisting of completely ignoring the intertemporal
structure turns out to be an equilibrium, we now proceed in the following manner: an
a priori restriction on the choice of a strategy for each player will be imposed, and an
equilibrium sequence of strategies will be sought, in the resulting restricted class of
strategies. The question of the existence of an equilibrium (and particularly; a non-
pathological one) in a wider class of strategies remains open.

Define a set S<E”, in the following manner:

S={{6y, .., 0,0 €E"|0=Z0;=Z1,i=1,..,n}.

Also, for i = 1, ..., n, let f, (x(?)) be the ith component of the vector f,(x(z)). We shall
assume that player #’s strategy s, (for #>0) is restricted to be of the form

$(x(1), ..., X(0) = o1 [, 1(x(1)), ..., . fr, (XD, -+-(6)
for some (o4, ..., 6, € S. For player 0, we assume, likewise, that
o = <01 fo, 1(X0), -++» Gnfo,n(X0))s ...(6")

for some {0, ..., 6,> € S. In other words, player £’s strategy depends directly only on
x(#), and not on x(1), ..., x(—1), and the dependence on x(¢) takes the following simple
form. The player picks an n-tuple <o}, ..., 6,) of constants, all lying in the unit interval,
and sets the ith component of s, equal to a fraction ¢; of the ith component of f,(x(¢)).

By the notation s, € S, we mean that s, is a strategy for player ¢, satisfying (6)—or
(6"). We shall use the symbol & to denote the countable Cartesian product, Sx Sx ...,
of S with itself. Thus, & is taken to be the strategy space of the game G.

It should be noted that restricting the strategy space of the game G to the set & does
not, in any way, restrict the set of attainable consumption plans. That is, for each 5 € ¥,
there exists a sequence of strategies s, with s € &, such that ys = 7.

Let s be a sequence of strategies in &, and let o, = {7y, ..., 0,,» belong to the set S.
We shall write s | o, for the strategy sequence s’ given by

s,=s, for g#t

=g, for g=t.



PELEG & YAARI CHANGING TASTES 399

A sequence s* € & is said to be an equilibrium sequence if, for each ¢, £ = 0, 1, ..., we have
v(s* | o) S v(s*), for all g,€8.

Theorem 7.1. Under our assumptions on the production functions fy, f1, ..., and on
the utility functions ugy, u,, ..., there exists an equilibrium sequence of strategies in & .

We shall prove this theorem by proving two lemmas which, together with two
corollaries, imply that the game G satisfies the conditions of Theorem 6.2.

Lemma 7.2. Let s € &, and denote the capital sequence associated with s by x*. Then,
JSfor each non-negative integer t, x* is a concave function of s, on S, for fixed s, € S, q # t.

Proof. Let r be a non-negative integer. We must show that x*(r) is concave, as a
function of s,, with s, € S fixed for ¢ # ¢. Now, for values of r satisfying r < ¢, we have
that x%(r) is independent of s,, and therefore, trivially, it is concave in s,, as asserted. For
values of r satisfying r>¢, we prove our assertion by induction on r. First let r = +1,
and assume that s, = {6y, ..., 0,0, 0 £ 0;, < 1. Then, the ith component of x*(r) is
given by o1, (x°(¢)), so that x*(r) is linear in s,, Now assume that r = 741 and that x*(r)
has been shown to be concave in s, We have to show that x*(r+1) is also concave in s,.
But the ith component of x*(r+ 1) is given by ¢} f, ,(x°(r)), for some real number g satisfying
0 £ 0! £ 1. Sincef,is non-decreasing and concave, and x*(r) is assumed, by the induction
hypothesis, to be concave in s,, we have the desired result.

Corellary 7.3. y® is concave in s, on S, for fixed s, € S, q # t.

Proof. Let yi(r) be the ith component of y*(r). Then, y{(r) = (1—o0;,)f, (x°(r)), for
i=1,..,n<04,..,0pyeSand forr =0, 1, .... If r < ¢, then f,(x*(r)) is constant for
fixed s,, g<t. If r>t, then, by Lemma 7.2 and by our assumptions on f,, we have that
f(x%(r)) is concave in s,, as asserted.

Corollary 7.4. v,(s) is quasi-concave with respect to s, on S, for fixed s, € S, q # 1.
Proof. Letse &, and select o, and o in S, and a in (0, 1). Then,
0as [ 0)+(1—)(s | 7)) = u (1 20+ =00 D)
2 u(ay* |+ (1 —a)y*! )
= min [u,(y*!7), u(y*')]
=min [v(s | 6,), v(s]0})]

Lemma 7.5. y* is a continuous function of s on &. Therefore, v(s) is continuous in
son&.

We omit the proof, which is straightforward.
Theorem 7.1 now follows directly from Corollary 7.4 and Lemma 7.5, when used in
conjunction with Theorem 6.2.

VIII. A CONSUMER OPERATING IN COMPETITIVE MARKETS,
WITH CHANGING TASTES

For another application of Theorem 6.2, let us turn now to a description of the decisions
made by a consumer unit over time. The unit will be characterized by a sequence
{ug, U, ...y of utility functions, and by a sequence <z(0), z(1), ...) of positive real numbers,
describing the unit’s non-interest income in the various periods. The real function u,,
which describes the unit’s preferences in period ¢, is assumed to be defined for every feasible
consumption plan {y(0), (1), ...> and to be continuous, non-decreasing and quasi-concave.
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The environment in which our unit is assumed to operate is given by two sequences:
a sequence of price vectors {p(0), p(1), ...>, and .a sequence of interest factors,

<), r(D), )
The vector p(f), describing market prices in period ¢, belongs to E" ! and we assume that
it is positive (in every component) for each ¢z. The real number r(¢), describing the rate of
exchange of wealth in period 7+ 1 for wealth in period ¢, is also assumed positive for all z.
For t = 1, 2, ..., the unit’s action in period ¢ is to pick a vector y(¢) in E”, and a non-
negative real number x(z), subject to the obvious restriction—

() y()+x(t) = z(t) +r(t—Dx(t—1), ..
and for 7 = 0, the unit has to pick y(0) and x(0) under the restriction
p(0)- y(0)+x(0) = z(0). - ...(2)

The unit’s action in period ¢ will be called feasible if it satisfies (1) [or (2)].

We now proceed to consider the game G’, whose set of players is given by the non-
negative integers, and such that a strategy for player ¢ is a function associating a feasible
choice of x(f) and y(¢) with every configuration <x(g), »(¢)>, ¢ = 0, ..., t—1, of feasible
choices for players O, ..., t—1. To make this notion precise, let us introduce the following
notation: if v is a vector in E"*!, then we shall write v° for the first component of v, and
we shall write ¢ for the vector in E” obtained from v by deleting the first component. Given
this, we may define a strategy for player 0 as a vector s, in E"*? satisfying

p(0) - 5o+ s3 = z(0). ...

Similarly, a strategy for player ¢z, for ¢>0, is a function s,, with values in E"*?, defined for
every 2¢-tuple of the form <x(0), ¥(0), ..., x(¢—1), y(—1)) and satisfying the requirement

P(8) - 8,(-)+52(+) = 2(f) + r(t — D)x(t—1). (@)

If s = <{sq, 54, ...p is a sequence of strategies for all the players, then we can define
the pay-off to player t, associated with s, in the following manner:

v(s) = uy®), ...(5)

where, once again, we let y* be the sequence of consumption vectors determined by s.
This definition completes the description of the game G’, in normal form.

In order to be able to apply Theorem 6.2, we must, once again, restrict the strategy
space of the game G’ quite considerably. The restriction that we need is that x(¢) and
¥(¢) should both be concave in x(t—1). But, in view of the budget constraint (1), if both
x(#) and y(f) are concave in x(¢—1), then they must, in fact, be linear as well as homo-
geneous, not directly in x(#—1), but in z(f)+r(t—1)x(¢t—1). Thus we are led to restricting
the strategy space in such a way that, in each period, the consumer’s Engel curves are
straight lines, passing through the origin. In other words, the budget constraint, together
with the concavity of x(¢) and y(¢) in x(z—1), lead us to the same kind of restriction on the
strategy space that was encountered in the previous section.

Let A be the unit simplex in E"*!. We shall say that a strategy s,, for player ¢, belongs
to the set A if, for each j = 0, ..., n, the jth component of the value taken on by s, is a
fraction o;/p;(f) of the quantity z(¢)+r(t—1)x(z—1), where p,(?) is the jth component of
p(f) and <ay, ..., a,> belongs to the simplex 4.2 Thus, a, is the fraction of the consumer’s
total resources devoted to saving, o, is the fraction of total resources devoted to the purchase
of the first commodity, and so on. For >0, our assumption is that player ¢’s strategy,

1 As in Section VII, the assumption that the number of commodities is the same in all periods is
merely a typographical convenience.
2 Here, we define po(z) = 1, for all ¢.
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s,, 18 restricted to belong to the set 4. That is, s, is restricted by

S,(X(O), y(O), eeey x(t_l)a y(t_l)) = <(ZOW(t), o‘lw(t)/pl(t)s ceey (Z,,W(t)/pn(t)>
for some <oy, ..., @,» € 4, where w(t) = z(£)+r(t—1)x(t—1) and p(%) is the jth component
of p(¢¥). As for ¢t = 0, we assume that s, is restricted to lie in A4, i.e. to be of the form

So = <OCOZ(O)3 Cxlz(())/pl(o)’ cees Cxnz(o)/pn(o)>5
for some <ay, ..., a,» € A. We shall use the symbol &/ to denote the countable Cartesian
product of 4 with itself. The reader is referred to Section VII for a definition of what is
meant by a strategy sequence s being an equilibrium for the game G’ in 7.

Theorem 8.1. Under our assumptions on utilities, on prices, and on interest factors,
there exists an equilibrium sequence of strategies for the game G’ in /.

The proof of this assertion is similar to that of Theorem 7.1, and will be omitted.

IX. TWO REMARKS IN CONCLUSION

Our first remark is a technical one. If, in Theorem 7.1, we restrict the choice of a strategy
in period ¢ to some non-empty, closed, and convex subset S, of S, then the Theorem still
holds true, with & defined to be the Cartesian product S, X S; x.... Such a restriction
may be used to incorporate various kinds of a priori information about consumption
(such as the existence of a minimum subsistence level) into the model. The proof of the
modified theorem remains unchanged. Similarly, in Theorem 8.1, one may redefine the
set & to be a Cartesian product of the form 4, x 4, x ..., where 4, is a non-empty, closed,
convex subset of A4, without affecting the validity of the theorem.

Our second remark is about a recent contribution, [7], by C. C. von Weizsicker, in
which he discusses consumer behaviour under endogenously changing tastes. In
Weizsidcker’s formulation, the assumption is that today’s consumption determines to-
morrow’s tastes. It should be noted that the framework presented here does not exclude
the case discussed by Weizsdcker, since we have certainly allowed the utility in period ¢
to depend upon consumption rates in periods prior to z. However, Weizsicker is able,
in a very elegant fashion, to avoid the whole issue of the consistency of actions and
preferences at different points of time. This is done through the adoption of a revealed
preference approach that starts from the demand functions. Starting out from the demand
functions obviates the need to inquire about their existence.
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