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Consistent Planning’

Robert H. Strotz formulated the problem of consistent planping in 1955 in a paper
entitled * Myopia and Inconsistency in Dynamic Utility Maximization .2 In his intro-
duction, Strotz stated the basic problem as follows:

“ An individual is imagined to choose a plan of consumption for a future period
of time so as to maximize the utility of the plan as evaluated at the present moment.
His choice is, of course, subject to a budget constraint. Qur problem arises when we
ask: If he is free to reconsider his plan at later dates, will he abide by it or disobey it—
—even though his original expectations of future desires and means of consumption are
verified? Qur answer is that the optimal plan of the present moment is generally one
which will not be obeyed, or that the individual’s future behavior will be inconsistent
with his optimal plan. . . . If the inconsistency is recognized, the rational individual
will do one of two things. He may * precommit ™ his future behavior by precluding
future options so that it will conform to his present desire as to what it should be. Or,
alternatively, he may modify his chosen plan to take account of future disobedience,
realizing that the possibility of disobedience imposes a further constraint—beyond the
budget constraint—on the set of plans which are attainable.”

In his formal model, Strotz assumed that consumption takes place continuously and
that the individual is free to reconsider his consumption plan at every instant rather than
at a few * decision peints ”. He showed that inconsistency arises if and only if the
individual discounts the utility of future consumption with a non-exponential discount
function. If an individual’s discount function is non-exponential and if he cannot pre-
commit his future behaviour, Strotz proposed that he adopt a * strategy of consistent
planning . That is, some consumption plans which are feasible in the sense that thev
satisfy the budget constraint are not attainable because at some future date the remaining
portion of these plans will not appear optimal. The strategy of consistent planning is to
choose ““ the best plan among those he will actually follow .* The portion of Strotz’s
paper thus far summarized is a major contribution to the literature on intertemporal
allocation, and he argues persuasively that individuals often recognize that their preferences
are inconsistent and do attempt to precommit their future behaviour,

Strotz attempted to carry the matter a step further by showing how the consumption
plan corresponding to the strategy of consistent planning can be calculated. He proposed
the following procedure: Substitute for the individual’s true discount function the
exponential discount function which has the same slope as the true discount function
at £ = 0. Then determine the consumption plan which maximizes this newly constructed
utility functional subject to the budget constraint. Strotz claimed that this consumption
path is the best plan among those which the individual will actually follow. This is an
odd result, for, as Strotz himself pointed out, it implies that ** the only relevant char-
acteristic of his true discount function is the rate at which it changes at the present
moment ”.*

1 T wish to acknowledge gratefully the financial support of the National Science Foundation, the Ford
Faundation, the Woodrow Wilson National Fellowship Foundation and the Social Science Research Coun-
¢il, and the helpful advice and comments which I have received from Professors F. M. Fisher, P. A. Samuel-

son, R. M. Solow, R. H. Strotz and the anonymous referees.

This is not to be taken as an endorsement by any of the above of the views expressed in this paper,
I alone am responsible for its shortcomings.

1 Resiew of Economic Studies, 23 {3), 1955-56.

3 op. eir., p. 173, 4 op. eit., p. 175 Italics his.
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In this paper I show that Strotz’s result is incorrect. The plan of the paper is as follows:
Section 1 is devoted largely to spelling out the assumptions of the model and defining
terms. Section 2 considers the behaviour of an individual with a logarithmic instantaneous
utility function under the assumption that he is allowed to reconsider his consumption
only at a finite number of “ decision points . Section 3 provides a counter-example to
Strotz’s result. The limiting behaviour of the individual with a logarithmic instantaneous
utility function is considered, as the distance between adjacent decision points approaches
zero. A characterization of the best attainable consumption path is obtained, and it is
shown to be inconsistent with Strotz’s result.  Finally, Section 4 examines Strotz’s derivation
of his result and discusses where and why it goes wrong.

1. THE N DECISION POINT CASE:
ASSUMPTIONS AND DEFINITIONS

Consider an individual with an initial stock, X, of a homogeneous consumption good
to allocate over a finite time interval [0, T]. At time ¢ the individual is assumed to have
a utility functional 8,{7 x(z)} of the form

J'T b(z — u[x(z)]dz, .(1.1)

where x(z) is the instantaneous rate of consumption at time z. u is called the instantaneous
utility function and b the discount function; the discount function is normalized so that
50y = 1.1

If the individual can precommit his future behaviour, then at ¢ = 0 he will choose
the consumption plan which maximizes 8, {g x(z}} subject to the budget constraint

T
j x(2)dz = K. ..{1.2)
a

We call this path the “ commitment optimum path ** and denote it by {7 x(z)}!

Now suppose that the individual is unable to precommit his future behaviour. Strotz
focused directly on the case in which the individual reconsiders his consumption plan at
every instant, but we shall not consider that case until Section 3. In this section and the
next, we suppose that the individual can reconsider his consumption plan at enly a finite
number of ¢ decision points >* which are specified in advance.

Formally, the decision points are a set of N numbers, {#;}, such that (a) ¢, =0,
(b} t;<t;,, and (¢) ty<T. Inthe N decision point case, the individual begins by choosing
a consumption path from the first decision point to the second, or, more technically, a
consumption path for the half-open interval [z,, t;). At t, the individual chooses a
consumption path for the half-open interval [z,, £;), and so on. At ty, the individual
chooses a consumption path for the closed interval [2y, T]. The commitment optimum
path is, by definition, the optimal path in a one decision point problem.

In the Ndecision points case, itsimplifies the notation to append to the set of decision points
a final element, ¢y, ,, which is defined by 7y, , = 7. The ** decision points ™ in the N
decision point case are now a set of N+ 1 numbers, {¢,, ..., fy+,} which we denote by Dy.

The * naive optimum path  is defined as the path which an individual would follow
if, at every decision point, he believed that he could precommit his future behaviour.
Such an individual would begin by following the commitment optimum path, but, at the
second decision point, he would reconsider his plan. Instead of continuing to follow the
commitment optimum path, he would find the consumption path which maximizes

6‘,2{3;x(z)} subject to the budget constraint imposed by the remaining stock:

1 Strotz used the more general instantaneous utility function ulx(z}, z]; for present purposes nothing
essential is lost by working with the less general form.
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T 2
'[ x(z)dz = K—J x(z)dz. )
15 i

The naive individual believes at ¢, that he will carry out this consumption plan, but at ¢,
he again reconsiders his plan and, instead of carrying out the plan he adopted at ¢,, he

begins to follow the path which maximizes 6,3{3;;:(2)} subject to the budget constraint

T t3
J. x(z)dz = K- j x{z)dz. ..(1.4)
£ ty
The naive individual persists in assuming that he can precommit his future behaviour
despite the fact that his behavicur at each decision point contradicts this assumption.
We denote the naive optimum path by {g x(2)"}.

In the N decision point case, it is convenient to define consumption vectors corre-
sponding to consumption paths. We denote the consumption vector corresponding to the
consumption path {7 x(z)} by (C,, ..., Cy) where

LIRS

Ci=.|‘ x(z)dz. ..(L.5)
4]

We denote the consumption vector corresponding to the naive optimum path—the *“ naive

optimum vectar *—by (C§, ..., Cy).

A sophisticated individual, recognizing his inability to precommit his future behaviour
beyond the next decision point, would adopt a strategy of consistent planning and choose
the best plan among those he will actually follow. Although the mathematics is tedious,
in principle the determination of the *‘ sophisticated optimum path  is straightforward.

The definition of the sophisticated optimum path in the & decision point problem
proceeds by induction on K{(z), the stock remaining at z,, We begin by examining the
allocation of a hypothetically given stock remaining at ¢y over the subinterval [ty, 7.
That is, we determine the path, {3; x[z, K(ty)]*}, which satisfies the budget constraint

T
j x(z)dz = K(1) ..(1.6}
and is preferred at ¢ to all other paths satisfying (1.6). This path is, of course, a function
of K(t).
Having defined the path {f:x[z, K(2)1’} we define the path {f:_l x[z, K(t;—,)]'} by the
requirements: (a)
{;‘:x[z, Kt )F} = {ix[z, K@)} 1.7
where
ti
K(t) = K(t;_ ) — x[z, K(t;_,)]'dz, ...(1.8)
and (b) {¥  x(z, K(t;,)T*} is preferred to all other consumption paths on[z;._,, T]satisfying
@
We denote the sophisticated optimum path by {gx(z)’} and the sophisticated optimum
vectar by (Ci, ..., C§}

1 The essence of this procedure for determining the sophisticated optinium path can be illustrated most
simply by a discrete, three period example. Consider an individual whose present utility function is given
by U(Cy, €, Ci) and whose next period utility function is given by U2(Cs, €3). Any amount of his
initial stock, XK, which the individual does not consume during the first period will be allacated between
Cyand C3 50 as to maximize s, Hence, 3 = A2(K3) and C3 = A3(K3), where K is the portion of the
initial stock remaining at the beginning of the second period. The sophisticated individual will recognize
that his future preferences impose a constraint on his ability to select a consumption path, and that only
consumption paths of the form [Cy, A2A(K—Cy), A3(K—Cy)] are attainable. Hence, he will choose €, so
as to maximize U1[Cy, hAK —C1), WK —C))]1. Notice that the budget constraint has been absorbed into:
the utility function.
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2. THE N DECISION POINT CASE: THE LOGARITHMIC
INSTANTANEOUS UTILITY FUNCTION

This section is devoted to establishing a theorem which underiies the construction
of the counter-example in Section 3. The theorem can be stated in one sentence: In the
XN decision point case, if the instantaneous utility function is [ogarithmic, then the najve
optimum path and the sophisticated optimum path coincide. The proof, unfortunately,
is not so simple.

2.1. We begin by abserving that, if the naive optimum vector coincides with the
sophisticated optimum vector, then the naive optimum path coincides with the sophisticated
optimum path. In order to maximize 6, {] x(z)} the naive individual will allocate C’
over the subinterval [z, £, ;) s0 as to maximize

J‘ bt x(z)]dz 1)
subject to "’

f x(z)dz = C.. L (2.2)

i

The sophisticated individual knows that how he allocates C§ over [1;, £;,,) will not alter
N

the allocation of ) C, over [¢,,,, T], so maximizing G,E{fx(z)} implies allocating
k=Ti+1 !

C? over [t,, £, ) s0 as to maximize (2.1) subject to (2.2).

2.2, We next assert a result about intertemporal decision problems jn which con-
sumption takes place in N discrete periods instead of continuously. Suppose that the
individual’s utility function at the beginning of period j is given by

N
UJ(CJJ +aay CN)= _Z_aﬁlog Ci' ..,(2.3)
L=
Then the discrete sophisticated optimum vector is given by
C] = A,K,
J=1
Cj = AJK I—[ (l"—Ai), j= 2, aars N_l ...(2.4)
i=1
N=1
i=1
where
a;
A=~ ...(2.5)
>
k=1

The reader can easily verify that (2.4) holds for N = 3, The genera! result is established
by induction, and we omit the proof.?

2.3. We now establish a relation between an N-decision point problem in which
the instantaneous utility function is logarithmic and an N period decision problem in
which the period utility function is logarithmic: the saphisticated optimum vector corre-
sponding to the utility functional

! The meaning of the discrete sophisticated optimum vector should be obvious from the discussion
of Section I and the example of the previous footnote, We call the solution to a discrete N period decision pro-
blem a ** discrete sophisticated optimum vector ** to distinguish between it and the sophisticated optimum
vector constructed from the sophisticated optimum path of the continuous N decision point problem.

2 Tt is quite easy to show by induction. that for (2.3) the discrete naive optimum vector coincides with
the discrete sophisticated optimum vector. This result is highly suggestive, but it does not actually help
us prove the continuous tinte result which we need.
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9,{fx(z)} = fT bz —1)log x(z)dz ...(2.6)

!

is equal to the discrete sophisticated optimum vector corresponding to (2.3), where

ay = J‘ b(z—t))dz. ex)

i
To show this, it is necessary to derive an explicit expression for the utility of an arbitrary
consumption vector, (C,, ..., Cy). Since C, will be allocated over [1;, 1,4 () s0 as to maximize
(2.1) subject to (2.2), it is easily verified that

b(z— f[)Ci
rm Blw—t)dw

t;

x(z)= Iigz<l‘i+1. ..<(2.8)

Hence

6,1{3 x(z)} = _[T b(z—1,) log x(z)dz = %

ty t=rJy

L

1 b(z—1,) log x(z)dz

-5 U b(z-‘ﬂd"] log Ci# 3 [ b(z—1;) log P DC gz .. (2.9a)

& biv1
£ =1y I b(w— t‘-)dw
L5
Since the second term is a constant, the utility functional is equivalent to
N iy g N
> lij b(z— rj)dz} logC;= Y a;logC; ...{2.9h)
= i=i

as asserted above.

Hence, the sophisticated optimum vector corresponding to (2.6} is equal to the
discrete sophisticated optimum vector corresponding to (2.3). Using this result, we can
now adopt a two-stage procedure for determining the sophisticated optimum path corre-
sponding to (2.6). First, we set up the corresponding N period problem and use (2.4)
to obtain the sophisticated optimum vector; then we use (2.8) to allocate the C;’s over the
appropriate subintervals. We remark that the conditions which determine the allocation
of K among the C;’s are quite different from those which determine the allocation of the
C;'s within subintervals.

2.4, It remains to be shown that if the instantaneous utility function is logarithmie,
then the naive optimum vector coincides with the sophisticated optimum vector.

The naive individual begins by following the commitment optimum path, and it is
easily verified that

x(z) = & 0=z=T .(2.10)
b(w)dw
al 0
Hence
x(z)" = ,.Tb(z)l‘ 0= z<iy, L{2.01)
b(w)dw
il
80

K[%@m
Jo _ anuk

Cl = J‘ ’ x(z)'dz = =A,K (20D

J‘T b(w)dw ZN ay;

a i=1
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as required by (2.4). By means of a simple induction proof it can easily be shown that
the naive optimum vector is (2.4) and hence coincides with the sophisticated optimum
vector. By 2.1, the corresponding paths also coincide.

3. THE CONTINUOUS DECISION CASE: A COUNTER-EXAMPLE

Corresponding to each set of decision points, Dy, is a naive optimum path, {J x(z)"**}.
We define the * continuous decision naive optimum path * as the limit of these paths as
the norm of Dy approaches zero, and we denote this limit path by {3 x(2)"}." Similarly,
if there is a sophisticated optimum path {7 x(z)*°*} corresponding to each set of decision
points, we define the “ continuous decision sophisticated optimum path * as the limit
of these paths as the norm of Dy approaches zero; we denote this limit path by {7 x(2)"}.>

We want to characterize the continuous decision sophisticated optimum path of an
individual whose utility functional is of the form (2.6). From Section 2 we know that in
this case the N-decision point sophisticated optimum path coincides with the N-decision
point naive optimum path. Since these two paths coincide for every N, their limits must
also coincide. We begin, then, by considering the continuous decision naive optimum
path.

At time ¢ the naive individual plans to allocate the stock remaining at time 1, K(2),
over [¢, T] so as to maximize

r b(z—t) log x(z)dz, 3.1

subject to the budget constraint
T

x(z)dz = K(2). (3.2

t

It is easy to show that the path which the naive individual plans to follow is given by
(7) = b(z—HK(t)

- t=zz T ..(3.3)
Jq b(w— )dw

This implies that at time ¢ the individual’s rate of consumption is given by
K(t
x(l) = T#‘
J. blw—1)dw

The consumption path of a najve individual must satisfy (3.4) for all ¢.
We can eliminate K(¢) from (3.4) by observing that

(3.4)

1]

E(t) = K(0)— I *(2)dz. (3.5

0
Substituting (3.5) into (3.4) we readily obtain

4

x(t)j‘T bz—1)dz = K(0)— f x(z2)dz. ...(3.6)
()

Differentiating (3.6) with respect to ¢ and solving for % yields
X

1 We have not shown that this limit exists for any particular sequence of sets of decisiont points, not
that, if it exists, it is the same for all admijssible sequences.
2 The reservations of the previous footnote apply here as well.
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(0 _-‘[ b(z—t)dz _ B(T—1)—1 | 6

) r b(z—1)dz r b(z—t)dz

where x(f) denotes the derivative of x{z} with respect to ¢. (3.7), together with the budget
constraint, uniquely determines the continuous decision naive optimum path. And since
the continuous decision naive optimum path coincides with the continuous decision
sophisticated optimum path, (3.7) also characterizes the continuous decision sophisticated
optimum path.

This contradicts Strotz's assertion that the continuous decision sophisticated optimum
path coincides with the commitment optimum path of the utility functional constructed
by replacing the true discount funetion by a properly chosen exponential discount function.
For if we replace the true discount function in (2.6) by the exponential discount function
™" and compute the commitment optimum path we obtain

e”"K(0)

xt) = <% 0st=<T ..{(3.9)
e—r:dz
]
This implies
1)
il Y ...(39
" (3.9

where r is a constant. It is easily verified that (3.9) is not satisfied by (3.7) unless b is itself
exponential.

4. STROTZ'S “PROQOE”

This section examines Strotz’s derivation of his result and shows where it went wrong.
Unfortunately, the criticisms are not constructive and do not lead to an zalternative general
formula for the continuous decision sophisticated optimum path. Indeed, the whole
thrust of this section is that such a formula will be very hard to come by, except in certain
exceptional cases.

Stratz derived his result from the following argument: Suppose that the individual
can precommit himself over small intervals, and suppose that we know the total amount
he will consume on the subinterval 1, t*}; call this amount C. If the individual’s utility
functional is (1.1) he will allocate C over [{, t*} s0 as to maximize

.[ b(z — B[ x(z)]dz, ...(4.1)
#
subject to the budget constraint

jv x(z)dz = C. ..(4.2)

£

By a simple calculus of variations argument, it can easily be shown that the optimal path
must satisfy

wix(z)] _ Bz-D)
u'[x(2)] b(z—1)

Since this holds for all z, I < z<t*, at z = 7 we have

1Sz25 ...(43)

IOk _ b(0) . (44)
uw'[x(1)] b(0)
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In the continunous decision case, where every point is a decision point, this must hold for
all 1, 0 £ ¢t £ T, so the continuous decision sophisticated optimum path must satisfy

@[] _ b(o)
w'[x(1)] b(0)
for all ¢.!

Strotz’s argument fails at several points. First, the N decision point sophisticated
optimum path need not be continucus, much less differentiable, at the decision point i.
Second, it is not in general true that

lim (M) _ 2% (4.6)

I pw 10 \x(8*°% ) x(6)”

Since the derivative of a function is, by definition, a limit, there are two limits involved in

(4.6); in generzal, the order in which these two limits are evaluated cannot be interchanged.

To find %, the proper procedure, in general, is to calculate {g x(z)*"} as the limit of
x(t

(4.9

{gx(z)"n"} and then to calculate xg;s‘ from {% x(z)s}.
X
Strotz’s result does tell us something about the N decision point sophisticated optimum
path and naive optimum path when N is ““large ”’ and the maximum distance between
adjacent decision points is ““small ™. It is true that @'[x(®?¥)u'[x()*"*] and
i [x(0)"% ) fu'[x()*P™] are close to % at almost every point, and that the approximation

becomes closer as N becomes larger. Strotz's condition tells us a good deal about how
CiP% and CPP% are allocated over [1,, ¢;,,); but it does not tell us anything about how K
would be allocated among the C’s by either a naive or a sophisticated individual

As we saw in Section 2, the conditions which determine the allocation of the C,’s
within a subinterval are quite different from those which determine the allocation of X
among the C;s. Furthermore, the conditions which determine the allocation of the
C's within a subinterval are the same for a naive and a sophisticated individual; but,
in general, the conditions which determine the allocation of X among the C;'s are different
for naive and sophisticated individuals.® Strotz’s result suggests that as the size of the
subintervals approaches zero, the conditions which determine the zllocation of the C/s
within subintervals become all-important and the conditions which determine the allocation
of K among subintervals drop out entirely. Intuition leads us to expect just the oppasite,
and our result contirms this.*

University of Pennsyivania R. A. PoLLAK.

L If the instantaneous utility function is logarithmic, (4.5) becomes (3.9} sinceé(ﬂ]/b(O] is a constant.
We shawed in Section 3 that (3.9) is not a correct characterization of the continuous decision sophisticated
optimutn path in the logarithmic case. .

2 Think of the sequence of M decision point sophisticated optimum paths as a sequence of functions
approximating {:x(z]“‘}. Strotz's condition {4.5) is essentially a restriction on the slopes of these approxi-
mating functions. But these slapes imply nothing about the slope of {:x(z)" .

Suppose, for example, that we required the individual to allocate C; over the ith subinterval so that the
rate of consumption was constant, instead of allowing him to allocate €, optimally over the subinterval.
This certainly does not imply that the corresponding continuous decision sophisticated optiraum path would
exhibit a constant rate of consumption {i.e. zero slope) an [0, TL.

3 The logarithmic case is, of course, an exceptian.

4 This also suggests a further difficulty. Tt would seem that Strotz’s derivation applies as well to the
continuous decision naive optimum path as to the continuous decision sophisticated optimum path. Thus,
if one accepts Strotz’s derivation of the sophisticated optimum path, one must argue that {a) the derivation
is not valid for the continuous decision naive optimum path or (b} the continuous decision naive optimurm
path coincides with the continuous decision sophisticated optimum path regardless of the form of the
instantaneous utility function.



