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Abstract

This survey describes a central paradox of game theory, viz. the Para-
dox of Backward Induction (BI). The paradox is that the BI outcome is
often said to follow from basic game-theoretic principles—specifically,
from the assumption that the players are rational. Yet, for many
games, the BI prediction is both intuitively unsatisfying and experi-
mentally invalid. We describe recent work on resolving this paradox.
We suggest that the BI Paradox has proved to be very fruitful, in that
its resolution has furthered the development of several new conceptual
frameworks in game theory. These new frameworks are: (i) Belief Sys-
tems, which expand the traditional description of a game to include
the players’ beliefs, beliefs about beliefs ... about the game; (ii) Condi-
tional and Lexicographic Probability Systems, which extend the usual
Kolmogorov theory of probability to take account of probability-zero
events; (iii) Complete Belief Systems, which are systems that contain
every possible belief of each player; and (iv) Formal Languages, which
are models of how the players reason about a game. The survey ex-
plains the role of each of these concepts in resolving the BI Paradox.
We end with another paradox, akin to Russell’s Paradox from set the-
ory, that leads to an impossibility result on complete belief systems.
This result points to an open area in game theory.



1 Introduction

Discoveries of paradoxes have often played a very useful role in the devel-
opment of science. Among the best-known examples are Zeno’s Paradox
of Achilles and the tortoise, which stimulated understanding of the infinite;
Russell’s Paradox in set theory, which spurred the development of modern
mathematical logic; the paradoxical findings of the Michelson-Morley exper-
iment on the speed of light, which led to relativity theory; and the paradox
of the wave-particle duality of light, from which came quantum mechanics.

The role played by paradox has been described as follows: “Whenever,
in any discipline, we discover a problem that cannot be solved within the
conceptual framework that supposedly should apply, we experience an intel-
lectual shock. The shock may compel us to discard the old framework and
adopt a new one. It is to this process of intellectual molting that we owe
the birth of many of the major ideas in mathematics and science” (Rapaport
1967).1

Naturally, not everything that seems paradoxical turns out to be a true
paradox in this sense. Turning to game theory, we can see the distinction
clearly. Many findings of the subject feel paradoxical, at least when first en-
countered. Perhaps most famous is the Prisoner’s Dilemma, with its conflict
between the individually rational and mutually optimal courses of action.
There is the idea of ‘strategic inflexibility,’ in which a player may be able to
increase his payoff by deliberately discarding some of his available strategies.
And there are many other examples, of course.

However, after a period of assimilation, findings such as these have become
essential and ‘positive’ parts of game theory. If they appear counter-intuitive,
then that means that game theory is working. It is giving us non-obvious
insights into how strategic interactions operate, which is a sign of success
of the field. Moreover, to understand the Prisoner’s Dilemma or strategic
inflexibility, to take our two examples above, only standard game-theoretic
tools are needed; nothing new is required.

But there are other paradoxical-seeming ideas in game theory that remain

1The above list of paradoxes is also from Rapaport, op. cit.. See Barrow (1998) for a
thorough discussion of these matters.
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disturbing and troublesome, even after time has passed,2 and that turn out to
prompt the development of new frameworks. We will look at one of these—
the paradox of Backward Induction—and we survey recent work aimed at
resolving it. We will see that the Backward-Induction paradox is indeed a
true one, in that its resolution requires us to rethink some of the standard
tools of game theory and to develop some new ones.

This paper is not, of course, a substitute for the technical papers of the
literature. Nor, we should emphasize, is it a comprehensive survey.3 It tells
the ‘story’ of Backward Induction in a way that definitely reflects the author’s
biases. (However, we do refer in footnotes to various parts of the literature
that we don’t cover properly here.)

2 Paradox Found

Rosenthal (1981) introduced a game, now commonly referred to as the Cen-
tipede Game, that has become very important in both theoretical and ex-
perimental work. A version of the game is depicted in Figure 1 below.4

A B 

2, 1 1, 4 4, 3 

In 

Out 

Figure 1 

A 

Out 

In In 

Out 

B A 

In In 

Out Out 

2n, 2n - 1 2n - 3, 2n 

2n - 1, 2n + 2 

 

. . . 
In 

2For the record, we should note that Rapaport (1967), whom we quoted above, puts
the Prisoner’s Dilemma in this category. We do not. Aumann (1989, pp.21-22) empha-
sizes that the Prisoner’s Dilemma involves no real paradox, but simply, and importantly,
exhibits a very fascinating tension.

3Dekel and Gul (1997) is a very useful broad survey of foundational matters in game
theory.

4The first number at each terminal node is the payoff at that node to Ann, and the
second number the payoff to Bob.
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A story that goes with the game5 is that two players, Ann and Bob, are
sitting at a table. In front of Ann are two stacks of coins, one totalling $2
and the other $1. Ann can either take the larger stack, leaving the smaller
one for Bob, or pass both stacks to Bob. In the first case, the game is over;
in the second case, an umpire adds $2 to the larger stack. Bob then faces a
similar decision. He can end the game by taking the larger stack (totalling
$4), so that Ann then gets the smaller stack (totalling $1). Or he can pass
both stacks to Ann. If he opts for the latter, the umpire now adds $2 to the
smaller stack, and it is again Ann’s turn to decide. She can end the game, or
she can give the stacks back to Bob, in which case the umpire adds $2 to the
larger stack. The game continues in this way, with the umpire alternating
between adding $2 to the larger stack and adding $2 to the smaller stack.
There is a pre-specified number n such that the game ends either: (i) when
one of the players takes the larger stack; or (ii) when the stacks have ended
up in front of Ann for the nth time, and she passes them back to Bob, at
which point the umpire adds another $2 to the larger stack, and Bob must
take this stack.6

Notice that the payoffs to the players are designed so that the total pie
grows each time one player gives the move to the other—i.e.makes the choice
labelled In in Figure 1. But, at any point, a player would be better off ending
the game—i.e.making the choice labelled Out—rather than continuing, if the
other player should respond by ending the game. Intuitively, then, the game
involves an interesting tension between obtaining a safe payoff by ending the
game and trying to get more—which also involves a risk of ending up with
less—by continuing.

Application of the Backward-Induction (BI) algorithm to the game re-
solves this tension in a stark way. Starting at the last decision node, which
belongs to Ann, we select Ann’s payoff-maximizing choice there, viz.Out.
(She takes the larger stack of money.) Turning to the second-to-last node,
which belongs to Bob, we select Bob’s payoff-maximizing choice, taking Ann’s
subsequent choice as just determined—i.e.we select Out for Bob. (He, too,
takes the larger stack.) Proceeding in this fashion, the BI algorithm con-
cludes that, at her first node, Ann will choose Out, thereby ending the game

5Similar to one given by Sigmund and Nowak (2000).
6Thus, different values of n determine different Centipede games, with different numbers

of ‘legs.’ For example, Figure 2 in the text is the three-legged Centipede.
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immediately. Apparently, continuing the game cannot be to a player’s bene-
fit; the prospect of a potential gain from doing so turns out to be illusory.

This prediction—that Ann will choose Out immediately—is falsified when
Centipede is actually played in laboratory experiments (see e.g.McKelvey
and Palfrey 1992). Intuitively, too, one would expect Ann and Bob both to
choose In, at least for the first few rounds, until one of them ‘loses nerve’
and decides to end the game.

Where is the paradox? The paradox is that, while the BI analysis is
both intuitively unsatisfying and experimentally invalid in a game such as
Centipede, use of the algorithm has been thought to follow inescapably from
very basic game-theoretic principles. Indeed, one often sees statements to
the effect that the BI path in Centipede must result if each of the players
is rational. If this is really right, then to explain observed behavior in Cen-
tipede, we would have to assume that at least one of the players is acting
irrationally. This is a possible assumption,7 but is it a good one? Must Ann
really be irrational to choose In at her first node? Wouldn’t the choice of
In be optimal, in fact, for Ann if she believed that Bob would then himself
choose In?

Further thought along these lines suggests that the appropriate hypothesis
might be not that the players are rational, but rather that they are rational
and there is common belief of rationality. The latter means that each player
believes that the other player is rational, each player believes that the other
player believes this, etc. Henceforth, we shall use the abbreviation CBR to
refer to the joint hypotheses of rationality and common belief thereof. The
argument now goes like this: Assume CBR. Then, since Ann is rational, she
will certainly choose Out at her last node. Turning to Bob at his last node,
since he is rational and believes that Ann is rational, he, too, will choose
Out. Continuing in this way leads to the conclusion that Ann will choose
Out right away, just as the BI algorithm implies.

Assuming that this argument is really sound, then a resolution of the
paradox of Backward Induction is at hand. After all, while the hypothesis
that the players are rational is reasonable,8 the hypothesis of CBR is far

7We shall see below how recent game models are able to formalize both rationality and
irrationality in games.

8Though certainly not an inevitable one, as just noted.
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more stringent.9 There would seem to be nothing unrealistic about a situ-
ation where, say, Ann is rational, but isn’t entirely sure that Bob is acting
rationally. Or, one might imagine that Ann is rational, believes that Bob,
too, is rational, but isn’t entirely sure that Bob believes that she, Ann, is
rational (though, in fact, she is). The point is that departures such as these
from the hypothesis of CBR presumably allow for departures from the BI
path of play in Centipede—i.e. situations in which Ann chooses In, perhaps
Bob does too, and the game continues in this way, at least for a while. The-
oretical and experimental investigation of Centipede would be brought back
in line with each other.

There is just one more thing. We need to show that what we have said
holds up in a precise mathematical treatment. We have to produce a formal
set-up in which, say, both players are rational and believe the other to be
rational, and yet they do not play the BI path. More generally, we want to be
able to understand, in a precise formalism, the effect on the play of the game
of various assumptions we might make about the players’ rationality and
beliefs. In doing this mathematics, we will discover that the theory beneath
Backward Induction is a lot deeper than it looks from what we have said so
far. We will find another paradox along the way and end up at a current
frontier of game theory. The “one more thing” turns out to be a big thing.10

3 Belief Systems

To begin a formal analysis, we first have to say, a bit more precisely, what we
mean by the rationality of a player. A rational player will choose a strategy
that maximizes his expected payoff, where this expectation is calculated us-
ing the player’s own (i.e. subjective) probability distribution on the possible
strategies chosen by the other players. So, to talk about the rationality of
the players, we need to talk about their beliefs (i.e. probability distributions)
about strategies. But we also want to talk about the players’ beliefs about

9Aumann (1995) calls an assumption such as this one “an ideal condition that is rarely
met in practice.... This is not a value judgment; ‘ideal’ is meant as in ‘ideal gas’.”
10Since Rosenthal (1981), several other papers have pointed out various difficulties raised

by the use of BI; see, inter alia, Basu (1990), Bicchieri (1989, 1992), Binmore (1987),
Bonanno (1991), and Reny (1992). Ben Porath (1997) is an early and influential formal
investigation of BI. The more recent papers described below build on these earlier ones.
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one another’s rationality. A little thought indicates that to do this, we need
to talk about what the players believe about one another’s beliefs. And so
on.

Evidently, for our purposes the traditional game tree is only a partial
description of the situation. It tells us the rules of play, and also gives the
payoffs that the players assign to the different possible plays of the game.
But there is a lot that the tree does not tell us. To go back to Centipede,
the tree does not tell us what Ann believes about the strategy Bob actually
decides to adopt, what Bob believes about Ann’s strategy, what Ann believes
Bob believes about her own strategy (which may not, of course, be what Bob
actually believes), etc.

An epistemic analysis of Centipede starts with a richer description of the
game, that includes the players’ beliefs about the game. Figure 3 below is an
example of such a richer description, for ‘three-legged’ centipede as depicted
in Figure 2:

A A B 

2, 1 1, 4 4, 3 

3, 6 
In In In 

Out Out Out 

Figure 2 

Let us explain the various ingredients of Figure 3, an object which is
usually called a belief system:

(i) There is one possible type of Ann, labelled ta.11

11The types encode the possible hierarchies of beliefs (about the game, about the other
player’s beliefs, etc.) that each player can hold. We will see right away how this works.
The device of types goes back to Harsanyi (1967-68), who introduced it to treat uncertainty
the players might have about the structure of the game (such as the payoffs). But the
same device can equally be used to treat uncertainty about the play of the game (as we
do here) or even to treat joint uncertainty about both the structure and the play of the
game.
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Out In-Out In-In 
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0 0 

  a 

t 1/2 

   b 

u Out In-Out In-In 
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(ii) There are two possible types of Bob, labelled tb and ub.

(iii) Associated with Ann’s type ta is a belief about what Ann is uncertain
about, viz.what strategy (Out or In) Bob chooses and what type (tb

or ub) Bob is. This belief—i.e. probability distribution—is depicted in
the first matrix. Thus, we see that ta assigns probability one to Bob’s
choosing In and being type ub, and probability 0 to the other three
strategy-type possibilities.

(iv) In similar fashion, associated with each of Bob’s types is a belief about
what strategy (Out, In-Out, or In-In) Ann chooses and what type Ann
is. (In fact, since there is only one possible type of Ann, namely ta,
both types of Bob must assign probability one to this type.) The second
matrix gives type tb’s belief, and we see that this type of Bob assigns
probability one to Ann’s choosing In-Out. The third matrix shows that
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type ub assigns probability 1
2
to Ann’s choosing In-Out and probability

1
2
to Ann’s choosing In-In.

A state of the world specifies each player’s strategy and type. Suppose,
in fact, that the state is (In-Out, ta, Out, tb). Here, Ann chooses In and,
if she gets a second move, then chooses Out. She assigns probability one to
Bob’s playing In and being type ub. Since ub assigns probability 1

2
to Ann’s

playing In-Out and probability 1
2
to Ann’s playing In-In, we can also say

that Ann assigns probability one to Bob’s assigning probability 1
2
to Ann’s

playing In-Out and probability 1
2
to Ann’s playing In-In. Turning to Bob, he

chooses Out, and assigns probability one to Ann’s playing In-Out and being
type ta (Ann’s only type). Thus, we also have that Bob assigns probability
one to Ann’s assigning probability one to his (Bob’s) playing In. Continuing
in this same way, one can read off from Figure 3 all of the players’ higher-
order beliefs about beliefs about ... strategies. This richer description of the
game, beyond the tree itself, is exactly what we were after.

Two observations on belief systems: First, note that in the belief system
just given, Ann happens to be wrong about Bob’s strategy and type. She
assigns probability one to the strategy-type pair (In, ub), not the actual pair
(Out, tb). This kind of situation is fully allowed for in the epistemic approach
to game theory. There is no presumption that players have correct beliefs
about one another. Mistaken beliefs, misperceptions etc. can be part of the
picture. Second, a belief system is just a tool for describing what might
be happening in a game.12 A belief system (together with a state of the
system) is not a prediction about how the game must be played or about
what beliefs the players must hold. It is just a description of what happens
to be happening. Thus, in our present example, there is nothing inevitable
about the situation described by Figure 3. This is just one possible state of
affairs in the underlying Centipede game. There is no reason why the players
couldn’t make different choices or hold different beliefs. If they did, we would
simply describe that state of affairs instead.

This said, let us stay with Figure 3, and ask: Are the players rational at
the state (In-Out, ta, Out, tb)? Start with Ann. Since she assigns probability
one to Bob’s playing In, the strategy In-Out is clearly optimal for her. So,

12Aumann and Brandenburger (1995).

10



she is rational. Since Bob assigns probability one to Ann’s playing In-Out, he
is rational in playing Out. Next, ask: Does Ann believe that Bob is rational?
Ann’s type ta assigns probability one to Bob’s playing In and being type
ub, so we need to see whether the strategy In is optimal for ub. Since ub

assigns probability 1
2
to Ann’s playing In-Out and probability 1

2
to Ann’s

playing In-In, the answer is that In is indeed optimal. (It yields Bob an
expected payoff of 1

2
× 3 + 1

2
× 6 = 41

2
, greater than the payoff of 4 he gets

from Out.) We conclude that Ann does believe Bob to be rational. It is
also the case that Bob believes Ann to be rational. This is because Bob’s
type tb assigns probability one to Ann’s playing In-Out and being type ta,
i.e.Bob assigns probability one to Ann’s actual strategy-type pair, and we
have already checked that Ann is rational. Next: Does Ann believe that Bob
believes that she is rational? Now the answer is no. Ann assigns probability
one to Bob’s being type ub. And type ub assigns positive probability (in
fact, a probability of 1

2
) to Ann’s playing In-In and being type ta. But In-In

yields this type of Ann—who assigns probability one to Bob’s playing In—an
expected payoff of 3 versus an expected payoff of 4 from playing In-Out.
Thus ub assigns positive probability to Ann’s being irrational. We see that
Ann does not believe that Bob believes she is rational; in fact, she believes
that he considers it possible that she is irrational.

Summing up, we have now given a precise formulation of a situation in
which Ann and Bob are rational, each believes the other to be rational, and
Ann chooses In, thereby departing from the BI path. This is exactly the
kind of scenario that we asked for at the end of Section 2.13 True, Ann
believes that Bob considers it possible that she is irrational, not rational,
but we argued in Section 2 that a departure from CBR such as this is not
unreasonable.14 Indeed, the scenario is quite an intuitive one. There is a clear
verbal story associated with it, involving the idea of a ‘bluff,’ as follows. Ann
plays In-Out, anticipating a payoff of 4. She believes that Bob will choose In,
anticipating a payoff of 41

2
, because she believes that Bob puts probability 1

2

on her playing In (and not Out) at her second node. In a sense, then, Ann is

13And, in longer versions of Centipede (with more legs), we could use a similar con-
struction to get bigger deviations from the BI path, where the game continues for several
rounds before one of the players chooses Out.
14Sorin (1998) gives a method for making quantitative statements about how far from

CBR a particular situation is. Here, we make only qualitative statements of the kind in
the text.
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trying to bluff Bob into believing that she might play In at her second node
when, in fact, she plans to play Out. (As it turns out, Bob plays Out, not
In, so Ann’s bluff fails!)

We appear to have made good progress in bringing theoretical analysis of
Centipede in line with the experimental evidence. We have a formal analysis
that sounds intuitive and that permits the players to depart from the BI
path. There is just one more thing we have to check. Our idea was that while
CBR yielded the BI path, sensible-sounding departures from this assumption
would allow departures from the BI path. We have checked the second half
of this argument, but not the first half. Is it, in fact, true that CBR yields
the BI path? If yes, then everything hangs together. But if no, then we
have a problem. Our intuition (back in Section 2) was that CBR certainly
should yield the BI path. If the mathematical set-up of this section does
not deliver this result, then either our original intuition was wrong or the
formalism is somehow the wrong one. In either case, our understanding of
Centipede would be incomplete.

4 Probability Zero

It turns out that the assumption of CBR does not yield the BI path in
Centipede—at least it doesn’t if CBR is formalized using the tools of the
previous section. We now give an example to show how this happens. The
example won’t lead us to question our original intuition. Rather, it will
pinpoint a hole in our mathematical treatment thus far. Of course, we shall
then have to look at how the hole can be filled.

Consider Figure 4 below, which is another belief system (different from
that in Figure 3) for three-legged Centipede.

Here, there are two possible types of Ann, labelled ta and ua, and one pos-
sible type of Bob, labelled tb. Suppose the true state of the world is (In-Out,
ta, Out, tb). We assert that CBR holds at this state—and this is so even though
Ann plays In at her first node, and not Out as BI dictates. Certainly, Ann
is rational, since type ta assigns probability one to Bob’s playing In, making
In-Out optimal for Ann. As for Bob, his type tb assigns probability one to
Ann’s playing Out. It follows that Bob is indifferent between playing In or

12



Out himself; he expects a payoff of 1 in either case. In particular, then, he is
rational in playing Out. For the same reason, Ann believes that Bob is ratio-
nal since she assigns probability one to Bob’s being the type he is (i.e. type
tb) and playing In. Bob believes Ann is rational since he assigns probability
one to Ann’s being type ua and playing Out, and ua assigns probability one
to Bob’s playing Out, which makes Out optimal for Ann. Does Ann believe
that Bob believes that she is rational? Yes. Ann assigns probability one to
Bob’s unique type tb (as she must), and we already saw that Bob believes
that Ann is rational. Note that this is different from the situation in our
earlier example (Figure 3), where the answer to this last question was no. A
little more thought along these lines indicates that, indeed, CBR holds at the
state (In-Out, ta, Out, tb). The essential observation is that all three types
assign probability one to a rational strategy-type pair of the other player, so
that we never ‘run into’ any irrationality.15

  a 

t 

Out In-Out In-In 

0 

1 0 0 

0 0 

Figure 4 

   a 

u 

  b 

t 

0 1 

Out In 

  b 

t 

  a 

t 
Out In 

  b 

t 1 0 

   a 

u 

15This is different from the previous example, where the type ub of Bob assigned positive
probability to an irrational strategy-type pair of Ann. The formal proof that CBR holds
at the state (In-Out, ta, Out, tb) in the belief system of Figure 4 is an easy induction
argument.
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But there is something odd about the situation in Figure 4, as the reader
may well already have sensed. Ann plays In at her first node because she
believes that Bob will play In. This belief is, in turn, justified by her belief
that Bob believes that she plays Out (so that Bob then ‘doesn’t mind’ choos-
ing the strategy In). But Ann knows that when she goes ahead and actually
plays In, Bob will see this. So, Ann, by her own action, will falsify the belief
(that she plays Out) that she is attributing to Bob. Ann’s reasoning looks
suspect, if not downright contradictory.

Let us make the same point a bit more formally. Bob’s choice of strategy
affects his payoff only in the zero-probability event that Ann plays In. His
choice doesn’t affect his expected payoff, then, and in this sense he can safely
ignore the zero-probability event. This, of course, is just as things are in
probability theory, where statements of the form “such-and-such is true with
probability one” are commonly made. But the present example shows that
in game theory, things are fundamentally different. Here, the key feature
is that Ann believes that Bob assigns something probability zero (that she
plays In), but she can bring that probability-zero event about, and in fact
does! So, Ann should realize that Bob will not be able to ignore this event
after all. Ann needs to have some model of how Bob treats the unexpected.

Note that this is an intrinsically game-theoretic—i.e.multi-player—effect.
It could not arise in a one-player game. Moreover, it is only with recent
investigations into the foundations of Backward Induction, and related con-
cepts, that this effect has been clearly isolated. In the next section, we shall
review recent work that develops and applies a different probability theory
from the usual one, in order to deal with the effect. But before that, let us
suggest that we now have good justification for the claim we made back in
the Introduction that the BI paradox is a real one. To try to resolve the
paradox, we have indeed had to develop new theoretical tools—exactly what
Rapaport (1967) says is the hallmark of paradox. The first new tool was that
of a belief system (Section 3 above), which we needed because the traditional
game tree turned out to be an inadequate description of an interaction. Now,
we find that ordinary probability theory is inadequate for game theory, and
we are going to need a modified probability theory.
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5 Extended Probabilities

Twomodifications of probability theory have arisen recently to deal appropri-
ately with zero-probability events. One involves the concept of a conditional
probability system (CPS), the other the concept of a lexicographic probability
system (LPS). Here, we will give just the very basic idea of each approach and
refer the reader to the relevant technical papers for complete mathematical
treatments.16

A CPS consists of a number of “If ... then ...” statements, where each
statement is of the form “If the player should observe some event E, then
he would have beliefs given by an associated probability distribution pE.”
In short, a CPS specifies what the player believes, given what he knows.
Contrast this with ordinary probability theory, where we specify only one
(prior) probability distribution q, which gives the player’s beliefs before he
learns anything. If the player then comes to know the event E, we calculate
the conditional probability distribution q(·|E) in the usual fashion. The key
difference arises when q(E) = 0—i.e. the player does not expect the event E
to occur—for then the conditional probability q(·|E) is undefined. But a CPS
does tell us what the player would then believe since the distribution pE is
actually specified as part of the definition of the system.

An LPS deals with the ‘unexpected’ by simply ruling it out, as follows.
An LPS specifies a sequence of probability distributions, with the property
that every state receives positive probability under one and exactly one dis-
tribution.17 The interpretation is that the states that get positive probability
under the first distribution make up the player’s primary ‘hypothesis’ about
what is the true state. But the player recognizes that his primary hypothesis
might be mistaken, and so he also forms a secondary hypothesis, consisting of
16Battigalli and Siniscalchi (1999, 2001) develop the theory of CPS’s and apply it to

games. Myerson (1991) provides an axiomatic derivation of CPS’s. The CPS concept was
introduced by Rényi (1955), who proposed it as an alternative to the usual Kolmogorov
theory of probability.
Blume, Brandenburger, and Dekel (1991a) introduce LPS’s and give them an axiomatic

foundation. Asheim (1999), B-B-D (1991b), Brandenburger and Keisler (2000), and Stal-
naker (1996, 1998), inter alia, apply LPS’s to games.
Formally, both the CPS and the LPS theories extend the Kolmogorov theory—hence the

title of this section.
17Technical note: The property as stated applies in the case of a finite state space, but

can easily be modified for infinite spaces.
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the states that get positive probability under the second distribution. And
so on. We can say that the primary states are considered infinitely more
likely than the secondary states, which, in turn, are considered infinitely
more likely than the tertiary states, etc. But no state, and hence no event
E, is considered entirely impossible; nothing is entirely unexpected.

It should be clear that both CPS’s and LPS’s are well-suited to fixing the
problem we found with the belief system of Figure 4. Here, the relevant event
E is the event that Ann chooses In rather than Out. Bob gave this event
probability zero, and, with ordinary probabilities, that was all that could be
said. But, as we saw, this led to an unsatisfactory analysis, and what was
really needed was a model of how Bob would react to this unexpected event.
We will now show how LPS’s provide such a model. But the treatment with
CPS’s is equally important, and the reader is urged to refer to the relevant
papers.18

Figure 5 below is another belief system for three-legged Centipede (Figure
2). It is very similar to the previous belief system (Figure 4), but uses LPS’s
rather than ordinary probabilities. Start with the (unique) type tb of Bob.
As before, this type assigns probability one to Ann’s playing Out and being
type ua. But now, this is actually Bob’s primary hypothesis about Ann.
Bob has also to form a secondary hypothesis, and so on. His secondary
hypothesis is depicted by the (point) distribution in square parentheses—
i.e.Bob assigns second-order probability one to Ann’s playing In-Out and
being type ta. Bob’s tertiary hypothesis is depicted by the distribution in
double square parentheses, i.e.Bob assigns third-order probability of 1

4
to

each of the remaining four strategy-type pairs. Turning to Ann, we see that,
just as in Figure 4, her type ta assigns probability one to Bob’s playing In.
18Technical note: CPS’s are appropriate when epistemic analysis is done directly on

the game tree; LPS’s are used when the analysis is done on the strategic form of the
tree. This is clear from the definitions of the two concepts. CPS’s involve conditioning
on observations, which is, of course, what happens along the game tree. LPS’s involve
what might be called ‘full consideration of possibilities’ (Harborne Stuart suggested this
term), which fits with choosing a strategy at the outset of the game, without knowing
what strategies the other players are choosing.
Here, we use LPS’s and so, formally, we are doing analysis on the strategic-form of

the tree. But we certainly aren’t ignoring the tree. (Our whole interest is in Backward
Induction.) Kohlberg and Mertens (1986) explain the philosophy behind taking a strategic-
form approach. All this said, the direct analysis on the tree is obviously very important.
This is done in Battigalli and Siniscalchi (2001), which we come back to shortly.
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But this is now ta’s primary hypotheses. Type ta’s secondary hypothesis is,
as it must be, to give probability one to the complementary event that Bob
plays Out. The situation with Ann’s other type ua is similar.
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Continuing to parallel what we did with the belief system of Figure 4, we
take the true state to be (In-Out, ta, Out, tb). Before, we had that Bob’s type
tb was rational in playing In (since he was indifferent between In and Out).
It followed that Ann’s type ta, in assigning probability one to tb’s playing
In, thereby believed Bob was rational. What is true now, given that we are
working with LPS’s and not ordinary probabilities? Now, Bob’s type tb is
irrational in playing In. The reason is that while both In and Out yield the
same expected payoff under Bob’s first-order probability distribution (the
payoff of 1 that results when Ann plays Out), Bob’s choice of Out yields
a higher expected payoff under his second-order distribution than does the
choice In (a payoff of 4 versus 3). With LPS’s, rationality is defined exactly in
this lexicographic fashion: One strategy is better than another if the sequence
of expected payoffs associated with the first is lexicographically greater than
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the sequence of expected payoffs associated with the second.19 The upshot
is that (Out, tb) is a rational strategy-type pair of Bob, and (In, tb) is not.

Now, Ann assigns first-order probability zero to (Out, tb). Presumably,
then, Ann does not believe that Bob is rational, contrary to the situation
in Figure 4. This is indeed so, but to be quite precise, we have first to
define the term “belief” in the lexicographic context. (We defined the other
ingredient—rationality—above.) With ordinary probabilities, we said that a
player believes an event E if he assigns probability one to E. With LPS’s
the appropriate definition is: A player believes E if he considers states not in
E to be infinitely less likely than states in E. That is, the player recognizes
that E may not happen, but he is prepared to ‘count on’ E versus not-E.20

With this definition in hand, we see that the intuitive thing is indeed true:
Ann does not believe that Bob is rational. In fact, since she considers Bob’s
irrational strategy-type pair (In, tb) to be infinitely more likely than the
rational pair (Out, tb), she believes that Bob is irrational.

If Ann does not believe that Bob is rational, certainly we do not have
CBR (common belief of rationality), again unlike the situation in Figure 4.
But perhaps we caused difficulties for ourselves by the choice of LPS for
Bob’s type tb. After all, if Bob assigned second-order probability one to
Ann’s playing In-In rather than In-Out, then In would yield him a higher
expected payoff under his second-order distribution than would the choice
Out (a payoff of 6 versus 3). Thus, the rational choice for tb would be In,
and now Ann would, in fact, believe that Bob is rational. (Recall that her
type ta considers (In, tb) infinitely more likely than (Out, tb).) However, now
something else unravels. With this change, Bob would no longer believe that
Ann is rational. The reason is that the rational strategy-type pairs of Ann
are (In-Out, ta) and (Out, ua). With his LPS as shown in Figure 5, Bob
indeed believes that Ann is rational since the other four strategy-type pairs
of Ann are each considered infinitely less likely than the two rational pairs.
But with the modified LPS, there would now be an irrational strategy-type
pair (involving the strategy In-In) that Bob considers infinitely more likely

19If the first sequence is (x1, . . . , xn) and the second (y1, . . . , yn), then the requirement
is that there is a j = 1, . . . , n such that xj > yj and xi = yi for all i < j.
20See Brandenburger-Keisler (2000) for a full discussion of this definition. B-K argue

that in the lexicographic case the terminology “the player assumes E” works better than
“the player believes E.” But we shall stick to talking about belief rather than assumption
here.
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than the rational pair (In-Out, ta).21 It would no longer be true that Bob
believes Ann to be rational.

It turns out that this unraveling of CBR is unavoidable. When rationality
and belief are formalized using LPS’s, as in this section, we have the following
theorem: Fix n-legged Centipede, for some n. Fix also an associated belief
system with LPS’s, and a state of the system at which there is CBR. Then,
Ann will play Out.22

With this result, we have found what we said at the end of Section 3
was missing. We wanted CBR to yield the BI path in Centipede. This
would be a kind of baseline, we said, given which we could then see how
sensible-sounding departures from CBR allow departures from the BI path.
Section 4 showed that this baseline result was false if we formalized the
ingredients (rationality and belief) using ordinary probabilities. Now we
have an alternative formalism, using an extended notion of probability, in
which the baseline result is true. Moreover, departures from the BI path are
as easy to arrange in the LPS set-up as in the usual set-up. (In Section 3, we
gave an example of a non-BI outcome using ordinary probabilities. The same
example can easily be modified to work with LPS’s, or with CPS’s for that
matter.) So, at this point, we have a pretty complete, and also intuitively
satisfying, picture of Centipede.

But it turns out that Centipede is a special game. There are other game
trees in which CBR, even when formulated with LPS’s, does not yield the
BI path. We give an example next, and go on to describe the new condition
needed to get the BI outcome. Examination of this new condition will also
lead us to another paradox, different from the BI Paradox with which we
started, and to a current area of research.

6 Adding Types

Consider the game depicted in Figure 6, which is one of pure coordination.
Ann and Bob rank the outcomes the same way; in particular, there is a
21This latter pair would have to get positive probability under one of Bob’s higher-

order distributions (beyond the second order), since every strategy-type pair gets positive
probability under some distribution.
22Brandenburger and Friedenberg (2002).
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common best outcome, which arises when Ann plays In-In and Bob plays
In. This is also the BI outcome, as can easily be checked. Even so, we now
give a belief system with LPS’s for this game, such that CBR holds and yet
Ann plays Out. This will establish the claim made above that the conditions
that give the BI outcome in the case of Centipede do not always give the BI
outcome.

A A B 

2, 2 1, 1 0, 0 

3, 3 
In In In 

Out Out Out 

Figure 6 

The belief system is depicted in Figure 7. (Note that there happens to be
just one type of either player.) We suppose that the true state is (Out, ta,Out,
tb). Then, Ann assigns first-order probability one to Bob’s playing Out, and
so is rational in playing Out herself. Bob assigns first-order probability one
to Ann’s playing Out, and then second-order probability one to her playing
In-Out. This makes Out rational for Bob. Moreover, Ann believes Bob to
be rational since she considers (Out, tb), which we just saw is a rational
strategy-type pair of Bob, to be infinitely more likely than the irrational pair
(In, tb). Turning back to Bob, does he believe Ann to be rational? Yes. Of
the three strategy-type pairs of Ann, only (Out, ta) is rational; both (In-In,
ta) and (In-Out, ta) are irrational. Since Bob considers the second and third
pairs infinitely less likely than the first pair, he does indeed believe that Ann
is rational. Some further thought leads to the conclusion that, in fact, CBR
holds at the state (Out, ta, Out, tb).23

What is going on here? After all, the (3, 3) outcome, quite apart from
being the BI outcome, seems very salient, almost inevitable. It is the best
outcome for both players. How then, could rationality—let alone CBR—allow
the players to get the (2, 2) outcome instead? In particular, isn’t there some-
thing ‘funny’ about Bob’s beliefs in the system of Figure 7? Okay, he assigns

23The formal proof of this assertion is a straightforward induction.
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first-order probability one to Ann’s choosing Out. But, after that, shouldn’t
he consider In-In a more probable choice by Ann than In-Out? Surely, if
Ann forgoes the payoff of 2 she can get by playing Out at her first node, she
must be planning to play In at her second node and thereby get 3. Playing
Out at her second node gets her 0, less than the payoff of 2 she gave up at
her first node. And, if Bob does consider In-In more probable than In-Out,
then he himself will rationally play In rather than Out. But then it seems
that Ann would rationally play In-In, and not Out as we had earlier. We
end up at the BI outcome (3, 3), and not the (2, 2) outcome as in Figure 7.
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This is a very interesting line of argument, and we are going to examine
it shortly. But, before that, we emphasize that there is nothing formally
incorrect about our scenario where CBR holds and the (2, 2) outcome results.
True, we just said that, contrary to that scenario, Bob should consider In-In
a more probable choice by Ann than In-Out. But must he? The key is to
see that Ann believes that Bob will play Out. In this case, both In-In and
In-Out are irrational choices by Ann; neither is rational! The assumption
that Bob believes Ann to be rational therefore has much less bite than one
might think. Bob must give first-order probability one to the rational choice
for Ann, namely Out, but that is all. He is ‘free’ to consider In-Out more
probable than In-In, as indeed he does.
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We can say that the players find themselves, quite literally, trapped in the
wrong belief system. Their particular beliefs prevent them from getting the
(3, 3) outcome that they would both prefer. The situation described by the
belief system of Figure 7 may be a surprising one, at least at first blush, but
there does not appear to be anything pathological about it. Indeed, perhaps
it points to an interesting way in which the players in a game find themselves
‘trapped by their beliefs.’ Still, our question remains: What would the belief
system have to look like for CBR to lead to (3, 3)?

To proceed, note that the ‘problem’ in the belief system of Figure 7 is
that it does not include the ‘right’ kinds of beliefs. Specifically, there is no
type of Ann that believes that Bob will play In. So, suppose now that there
were such a type. That is, we add a second type of Ann (labelled ua, say)
that has the ‘opposite’ belief about Bob—i.e. that gives first-order probability
one to Bob’s playing In. With this change, there would now be two rational
strategy-type pairs of Ann, viz., the pair (Out, ta) as before, but also the
pair (In-In, ua). As a result, the assumption that Bob believes Ann to be
rational would now require Bob to consider In-In infinitely more likely than
In-Out. But then, as we said above, Bob himself would rationally play In
rather than Out. And then, presumably, Ann would play In-In. If so, the
(3, 3) outcome would result, just as we want.

Intuitively, what we are doing here is letting Bob ‘do his best’ to ratio-
nalize Ann’s moving In. That is, by adding more types to the system, we
are letting Bob try to find a belief to attribute to Ann that explains her
behavior.24 (In the present example, that belief is that Bob will play In, a
belief that was absent from the system of Figure 7.) And it seems that by

24Note on the literature: This is the notion of forward induction, introduced by Kohlberg
and Mertens (1986). A player looks back (!) up the tree, to take account of moves that
another player could have made but didn’t make, to try to infer something about what
that player must believe to have made the choice he did. In a sense then, the player tries to
‘induce forwards’ from other players’ past behavior to their future behavior. By contrast,
the term backward induction obviously reflects the fact that the backward-induction algo-
rithm starts at the end of the tree and then works backwards. In a sense, past behavior is
inferred from future behavior.
In fact, what we now see is that one really can’t talk separately about backwards and

forwards reasoning in the tree. In trying to understand what is underneath backward
induction, one has to bring in so-called forward induction. Ex post, this is perhaps no
surprise. The tree has to be analyzed as a whole, and cannot be understood by going only
backwards or only forwards.
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doing this, we may be able to make the assumption of CBR yield the BI path
after all.

7 Paradox Lost

The idea of using a large belief system that contains many different types of
each player is a key step forward in the theoretical understanding of BI. It
is due to the previously cited Stalnaker (1998) and Battigalli and Siniscalchi
(2001). The latter paper, in fact, uses what is called a complete belief sys-
tem, which is one that contains, in a certain sense, every possible type of each
player.25 This is an elegant formulation that solves at one stroke the prob-
lem we had above of having to add more types to the belief system. Now,
there are no missing types; they are all automatically present. Moreover,
Battigalli-Siniscalchi show that the completeness assumption is, indeed, the
final missing ingredient in our quest for the conditions that yield BI. They
prove that if CBR is formulated in a complete belief system, then, yes, the
play of the game will always be along the BI path.26

Just to be clear, let us also note that the terms “backward induction” and “forward
induction” aren’t parallel. The first refers to a precise algorithm, while the second refers
to an informal notion. Of course, we now see that an understanding of the first concept
involves formalizing the second concept, anyway.
25Thus, the belief system of Figure 7 is certainly not complete. For one thing, as we

noted above, there is no type of Ann that believes that Bob will play In.
We give a more precise definition of completeness in Section 9 below. For the formal

definition, see Brandenburger and Keisler (1999). The concept is closely related to uni-
versality (Armbruster and Boge 1979, Boge and Eisele 1979, Mertens and Zamir 1985,
Brandenburger and Dekel 1993, et al.).
26This is a loose statement of their theorem. Battigalli-Siniscalchi use CPS’s, i.e. the

conditional probability systems we described at the beginning of Section 5. So, they have
to give formal definitions of “rationality” and “belief” in the CPS context, just as we had
to do above in the LPS context. B-S show that their conditions imply that the players
choose so-called extensive-form rationalizable strategies (Pearce 1984), which are known
to yield the BI path in a perfect-information (PI) tree.
Brandenburger-Keisler (2000) use LPS’s (as in this survey) together with completeness.

They get that the players choose iteratively admissible strategies, which also yield the BI
path in a PI tree.
Note on the literature: As we warned in the Introduction, this survey is not compre-

hensive. There are other papers giving conditions for BI that we do not discuss here. See
Aumann (1995, 1998), Samet (1996), and Halpern (1998, 1999), inter alia; and also the

23



We said back in Section 2 that if it is really the case that it is CBR—and
not mere rationality of the players—that yields the BI path, then this would
provide a nice resolution of the BI paradox.27 The reason we gave was that
the hypothesis of CBR is a very stringent one, and so departures from it
are only to be expected. Now we see that there are games, such as that in
Figure 6, where even CBR (appropriately formulated with LPS’s) does not
yield the BI path. In addition to CBR, we have to assume that the players
operate in a complete belief system. This gives us still another reason, then,
why players might not actually play the BI path; they simply may not be in
a complete belief system.

Summing up, the BI path is often not played in practice. But, contrary to
what used to be thought, the BI path is also not an inevitable game-theoretic
prediction. It rests on a number of specific assumptions about the players’
rationality and beliefs, as we have described, and there is nothing inevitable
about these assumptions. They may or may not hold. And, of course, if the
BI path is not played in a particular case, then we simply conclude that at
least one of these assumptions did not hold.

Paradox definitely lost? Not quite.

8 Paradox Regained

Let us go back to what we have just seen is a crucial condition for BI, that
the players are in a complete belief system—i.e. a system that contains every
possible type of each player. Now, whether this is a meaningful idea is not
immediately obvious. Does such a system actually exist? There is good rea-
son to ask the question. After all, a system of all types sounds rather like
the kinds of “sets of everything” that are well known to cause difficulties in

exchange between Binmore (1996) and Aumann (1996). Formally, these papers are rather
different from those we are surveying. (For one thing, they use knowledge systems rather
than belief systems.) But they do appear to involve similar issues at the conceptual level;
see the excellent presentation in Halpern (1998).
27By now, we have certainly seen that the rationality of the players alone does not suffice

for BI. Witness the example of Figure 3, which, as we noted earlier, could be modified to
work with LPS’s (or CPS’s) as well as with ordinary probabilities.
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mathematics. Indeed, we already mentioned the most famous of these diffi-
culties, viz.Russell’s Paradox, in the Introduction.28 So, somewhat strangely,
we have now come full circle. We began by noting that paradoxes—Russell’s
Paradox among them—have played important roles in several disciplines, and
said that we were going to make the case that the BI Paradox has worked
similarly in game theory. Now, we find that there may be a real connec-
tion, not just a parallel, between the BI Paradox and Russell’s Paradox in
particular.

Here is the argument that a complete belief system does not exist. First,
recall that the notion of self-reference is at the heart of the impossibility
results of mathematical logic—Gödel, Russell, Tarski, Turing, etc.29 Now,
self-reference looks to be pretty much built in to the notion of a game, as
follows. A type of Ann has a belief about what type Bob is. But each
type of Bob has a belief about what type Ann is. Thus, a type of Ann
ends up referring to itself, in some sense. To get the actual impossibility, we
have to find the right—i.e. contradictory—self-referential statement involving
the players’ beliefs. This turns out to be:

Ann believes that Bob believes that Ann believes that

Bob has a false belief about Ann

To see the contradiction, ask: Does Ann believe that Bob has a false
belief (about Ann)? If so, then the statement that Ann believes Bob believes
(“Ann believes that Bob has a false belief about Ann”) is true. But then
Ann does not believe that Bob has a false belief, and we get a contradiction.
So, suppose, instead, that Ann does not believe that Bob has a false belief.
But now the statement that Ann believes Bob believes is false, and so Ann
does believe that Bob has a false belief, and we again we get a contradiction.
Thus, the above configuration of beliefs is impossible. But a complete belief
system would, presumably, contain this configuration of beliefs (among many
other configurations of beliefs in it). The conclusion is that such a system
cannot exist.
28To remind the reader, Russell’s Paradox concerns “The collection of all sets which are

not members of themselves.” The contradiction arises if this collection is a set, since then
it is a member of itself if and only if it is not a member of itself. A good reference on
paradoxes in logic is Barwise and Etchemendy (1987).
29Marek and Mycielski (2001) is a nice recent survey.
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Of course, we now have to explain how this impossibility result fits with
our mention of complete belief systems in the previous section! Do such
systems exist or not? The quick answer is that this depends on exactly how
complete we require the system to be. To get to a more helpful answer,
we must first note that the impossibility argument we just gave is only a
verbal one, and a bit slippery at that. But it can be made mathematically
precise,30 as we shall sketch below. Making the argument precise will allow
us to pinpoint what determines whether we get a ‘positive’ (existence) result
or a ‘negative’ (non-existence) result.

9 Language

A brief recap may be helpful. Back in Section 3, we took the step of making
the players’ beliefs about the game a part of the game. This took us from the
traditional game tree to the belief-system concept—and what more generally
is called the epistemic approach to game theory. We are now going to add
another new ingredient to the analysis of games. This is the idea of specifying
a precise mathematical language that a player uses to formulate his beliefs
about the game.31 Alternatively put, the epistemic approach says that a
player thinks or reasons about the game. He forms a view about the other
players—their strategies, beliefs, rationality, etc.—which affects his own choice
of strategy. Now we bring in an explicit model of that thinking or reasoning
process.

We’ll say in a moment just what language a player might use to think
about the game. But first let us note that once we have the idea of such a
language, we can give a more precise definition of completeness than we have
so far. A belief system will be complete if every belief of a player that can
be stated in the given language is, in fact, present in the system; otherwise,
it is incomplete. Thus, we first say how a player thinks—i.e.what language
he uses. Then we ask whether or not a belief system contains everything he
can think of.
30Brandenburger-Keisler (1999).
31Papers on this idea include Aumann (1999); Fagin, Geanakoplos, Halpern, and Vardi

(1999); Heifetz (1999); and other papers in the Special Issue on Interactive Epistemology,
International Journal of Game Theory, 28, 1999. An important precursor is Samet (1990).
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Now, back to the matter of what particular language a player might use.
There is an obvious ‘baseline’ assumption, which is that the belief system
itself is his language. (This might sound a little circular, but it isn’t. We
construct exactly this situation in the next paragraph.) Why look at this
case? Because the whole idea of a belief system is that it is a mathematical
structure that we, the game theorists, use to think about the game.32 Unless
we want to accord the theorist a ‘privileged’ position that is somehow denied
to the players, it is only natural to ask what happens if a player can think
about the game the same way.33

So, we want to make the belief system into a formal mathematical lan-
guage with which a player thinks about the game. This is where the tools
of mathematical logic come in, to set up the language properly. We won’t
give the details here,34 but will simply assume that this has been done. Once
this is done, we can give a precise statement of the impossibility theorem
that we described informally in the previous section. We begin with a belief
system. We then set up the formal language that is implied by the system.

32Recall our discussion of this point in Section 3.
33It is important to be very careful about what we are, and what we are not, saying

here. We are saying that the player himself is aware of, and uses, the belief system. We
are not saying that he is aware of the true state of the system. To assume the latter would
be quite contrary to the spirit of the epistemic approach to game theory. It says that if we,
the analysts, make a certain prediction about the play of the game—i.e. specify a certain
state as the true state—that prediction must be available to the players themselves. So,
if we predict that Ann will play a certain one of her strategies, and that Bob will play a
certain one of his strategies, then Ann and Bob will know this. But then, provided Ann is
maximizing, her strategy must be optimal against Bob’s strategy; and vice versa with Ann
and Bob interchanged. In short, the pair of strategies must constitute a Nash equilibrium.
This is an old line of argument in game theory—saying that rationality of the players

alone, with no other assumptions, implies Nash equilibrium. The ‘trick’ here is that in
assuming that the players know the true state, we rule out the possibility that a player
is ever mistaken about another’s strategy choice. By contrast, the epistemic approach
definitely does not require the players to know the true state. It can therefore model
situations where players have incorrect beliefs, as we have already mentioned, in addition to
the special case where beliefs are correct. (And Nash equilibrium does not then follow from
rationality alone; further assumptions are needed. See Aumann-Brandenburger 1995.)
34See Brandenburger-Keisler (1999). The language B-K set up is a first-order logic,

with symbols for elements of the belief system. This seems like the natural choice, given
that first-order logic is widely considered to be the basic language of mathematics (see
e.g. Barwise 1977). A game is a mathematical structure, so a player uses first-order logic
to reason about it.
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And we then ask whether the system is complete relative to this language—
i.e.whether every belief that can be stated in this language is present in the
system. This is the precise question, to which the impossibility theorem gives
a negative answer: no system contains all these beliefs.35

What, then, of our use back in Section 7 of completeness as a condition
for Backward Induction? The situation is now clear. Completeness of a belief
system is defined relative to a language. (We have to say how the players
think, before we can say whether everything they can think of is present.) If
we choose a different language from the one we just looked at, perhaps we
can get a belief system that is complete relative to that language.

Presumably, the theorems on BI that we described in Section 7 must work
this way. They must, implicitly at least, use the ‘right’ language. That is, the
language must be rich enough that a belief system that is complete relative
to this language contains enough types to get us BI.36 At the same time the
language cannot be as rich as the one we just looked at since, then, we know
we cannot get completeness.37 But there aren’t actually any explicit formal
languages in these treatments since they are carried out using probability
theory and not mathematical logic.38

So, here we arrive at an open research problem: give conditions for BI
where the various ingredients are defined in explicitly logical terms. Part of
doing this, as we have been discussing, will be getting just the right language
for the players. Finding this language will tell us exactly how the players
must be reasoning about the game, if the BI outcome is to result.

35The proof is essentially the one we gave in the text in Section 8. The key is to show
that all the beliefs in the italicized configuration of beliefs there are definable in our formal
language. They are, so a complete system would have to contain this configuration. But
we saw that this configuration is impossible. Q.E.D.
36Recall the example of Section 6, which showed that if CBR is formulated in a belief

system with only certain types present, then the BI path need not result.
37In particular, the language must be such that the italicized configuration of beliefs at

the beginning of Section 8 cannot arise in that language. The contradiction we got won’t
then arise.
38Just as we used only probability theory in this survey—until Section 8 when we started

mentioning mathematical logic.
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10 Conclusion

This new problem may sound rather like the problem we began the paper
with—viz. to give conditions for BI. So, have we simply gone around in a
circle? No. The theoretical basis of BI is now a lot better understood than it
used to be, as this survey has tried to show. We now have precise conditions
on the players’ rationality and beliefs that lead to BI, and we can see that
these conditions are far from inevitable. Game trees and BI are no longer
synonymous. The BI Paradox is resolved—at least at a certain level. But, not
surprisingly, there are further levels of analysis to be done. Having a precise
logic of BI will be another level of understanding.

We don’t have this logic yet,39 so saying too much more here would be
premature. But it is tempting to hope that when we do have this logic,
we will learn something about reasoning in games in general, beyond the
specifics of BI. If so, this will be another way in which the BI Paradox has
spurred the development of new conceptual frameworks in game theory.

39Though Meier (2001) is a very promising step in this direction.
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