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It is widely thought that incomes risks can be shared by trading in financial assets. But
financial assets typically carry some risk idiosyncratic to them, hence, disposing incomes risk
using financial assets will involve buying into the inherent idiosyncratic risk. However, standard
theory argues that diversification would reduce the inconvenience of idiosyncratic risk to
arbitrarily low levels. This paper shows that this argument is not robust: ambiguity aversion can
exacerbate the tension between the two kinds of risks to the point that classes of agents may
not want to trade some financial assets. Thus, theoretically, the effect of ambiguity aversion on
financial markets is to make the risk sharing opportunities offered by financial markets less
complete than it would be otherwise.

1. INTRODUCTION

Suppose an agent’s subjective knowledge about the likelihood of contingent events is
consistent with more than one probability distribution. And further that, what the agent
knows does not inform him of a precise (second order) probability distribution over the set
of ‘‘possible’’ (first order) probabilities. We say then that the agent’s beliefs about con-
tingent events are characterized by ambiguity. If ambiguous, the agent’s beliefs are cap-
tured not by a unique probability distribution in the standard Bayesian fashion but instead
by a set of probabilities. Thus not only is the outcome of an act uncertain but also the
expected payoff of the action, since the payoff may be measured with respect to more than
one probability. An ambiguity averse decision maker evaluates an act by the minimum
expected value that may be associated with it: the decision rule is to compute all possible
expected values for each action and then choose the act which has the best minimum
expected outcome. This (informal) notion of ambiguity aversion inspires the formal model
of Choquet expected utility (CEU) preferences introduced in Schmeidler (1989). The
present paper considers a model of financial markets populated by agents with CEU
preferences, with the interpretation that the agents’ preferences demonstrate ambiguity
aversion.1

1. Recent literature has debated the merits of the CEU framework as a model of ambiguity aversion. For
instance, Epstein (1999) contends that CEU preferences associated with convex capacities (see Section 2, below)
do not always conform with a ‘‘natural’’ notion of ambiguity averse behaviour. On the other hand, Ghirardato
and Marinacci (1997) argue that ambiguity aversion is demonstrated in the CEU model by a broad class of
capacities which includes convex capacities.
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Typically, economic agents are endowed with income streams that are not evenly
spread over time or across uncertain states of nature. A financial contract is a claim to a
contingent income stream—hence the logic of the financial markets: by exchanging such
claims agents change the shapes of their income streams, obtaining a more even con-
sumption across time and the uncertain contingencies. A financial market is said to be
complete if contingent payoffs from the different marketed financial contracts are varied
enough to span all the contingencies. However, casual empiricism suggests that in just
about every financial market in the real world the span is less than the full set of con-
tingencies, i.e. the markets are incomplete. The primary implication of incompleteness
of financial markets is that agents may transfer income only across a limited set of
contingencies and are thus left to share risk in a suboptimal manner.2

Consider the following question: Take a (financial) economy with complete markets,
but suppose agents are not subjective expected utility (SEU) maximizers, but rather CEU
maximizers; are there conditions under which it is possible that at a competitive equili-
brium agents do not trade some assets and hence their equilibrium allocations are
equivalent to competitive allocations deriving from some incomplete market economy
wherein the allocations are not Pareto optimal? The answer to the question is a qualified
yes. The qualification is important and the essential contribution of the present paper is in
identifying this qualification. Imposing CEU maximization in a complete market economy
does not generate no-trade, but, as this paper shows, a robust sequence of incomplete
market economies which would converge to complete markets with SEU agents but does
not with CEU, can be constructed. The key characteristic of such a sequence of economies
is that they include, as non-redundant instruments of risk-sharing, financial assets which
are affected by idiosyncratic risk.3 We establish that trade in financial assets, whose payoffs
have idiosyncratic components, may break down because of ambiguity aversion. We find,
furthermore, that the no-trade due to ambiguity aversion is a robust occurrence, in the
sense that it takes place even in the limit replica economy, with enough replicas of the
financial assets such that idiosyncratic risk may be completely hedged. Hence, the beha-
viour of the limit replica economy is markedly different depending on whether agents are
SEU maximizers or CEU maximizers: in the former case the allocation is precisely that of
a complete markets economy whereas in the latter case, because of the endogenous
breakdown of trade, the equilibrium allocation, given a ‘‘high enough’’ level of ambiguity
aversion and idiosyncratic risk, is not Pareto optimal and the nature of risk-sharing is as in
an incomplete markets economy. These findings are of interest, both for the way it
complements the related literature and for the substantive economic insight it gives rise to.

Dow and Werlang (1992) showed, in a model with one risky and one riskless asset, a
single ambiguity averse agent with CEU preferences, exogenously determined asset prices,
and a riskless initial endowment, that there exists a non-degenerate price interval at which
an agent will strictly prefer to take a zero position in the risky asset. Recall, the logic of
this result essentially rests on the observation that a CEU agent when going short in the
risky asset will use a different probability to evaluate expected return as compared to when
going long, since an agent taking a short (long) position is relatively better (respectively,
worse) off in states where the asset payoff is shocked adversely. Having (robustly) ratio-

2. And, indeed, formal empirical investigations overwhelmingly confirm that the data on individual
consumption are more consistent with incomplete than complete markets. Among others, see Zeldes (1989),
Carroll (1992), Deaton and Paxson (1994) and Hayashi, Altonji and Kotlikof (1996). The evidence, however, is
not unanimous, see e.g. Mace (1991).

3. We will say an asset’s payoff has an idiosyncratic component if at least some component of the payoff is
independent of (1) the realized endowments of agents and (2) of the payoff of any other asset as well.
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nalized a zero position in a single decision-maker framework one might be tempted to
conjecture (even though such a conjecture is not made by Dow and Werlang) that it were
but a short step to generate no-trade in a full equilibrium model. But, as we remarked
above, simply imposing CEU maximization in a complete market economy does not
generate no-trade unless endowments are Pareto optimal to begin with. The point is that,
with complete markets, allocations are Pareto optimal and hence comonotonic (i.e. every
agent’s ranking of states, ranked in accordance with the agent’s ex post utility from the
given allocation, is identical) (Chateauneuf, Dana and Tallon (2000)). Comonotonicity
implies that all agents evaluate the returns of assets with the same probability measure in a
CEU world. Thus, closing Dow and Werlang model in the obvious way makes it apparent
that, for generic endowments, assets will surely be traded. Hence it is, at least, of academic
interest to find what condition actually generates an endogenous closure of some financial
markets and a consequent lessening of risk-sharing opportunities, when moving from an
SEU to a CEU world.

Perhaps, a more compelling reason for interest in our findings is their economic
significance. It is widely regarded that a crucial function of financial markets is that they
allow individuals to hedge their income (from, say, human capital/labour) risk even
though such risks are not, per se, contractible in appropriate detail because of usual
reasons of asymmetric information and/or transactions costs. For instance, take X, a
shopowner in Detroit, whose fortunes are heavily dependent on the fortunes of the
automobile industry centred in Detroit. While X would love to smooth consumption
across the various possible income shocks, it is hardly likely that an insurance company
would be willing to insure X against anything other than accidents like fire and theft. But,
standard economic/finance theory would argue, even though such personalized contracts
may not be available, X should be able to hedge his income shocks in the stock market. To
transfer income from the ‘‘good’’ states to the ‘‘bad’’, all that is required is that X take a
short position on a portfolio of shares of different firms in automobile (and related)
industry and a long position on a ‘‘safe’’ asset (e.g. a government bond). Of course, the
returns of any particular share will not be perfectly correlated with X’s income; in par-
ticular, each individual share return will be subject to some idiosyncratic risk. But, with a
large enough number of such equities in the portfolio, the idiosyncracies may be hedged
away, and X would find the (almost) perfect hedge for his income shocks. To X, therefore,
for all practical purposes, the economy is very much a complete markets economy.

However, what this paper shows is that the story only runs so far in an SEU world,
not in a CEU world. Consider two agents trading an equity subject to idiosyncratic risk,
with one agent taking a short position while the other goes long. Evidently, then, the
variation in the agents’ consumption across states which differ only in terms of the idio-
syncratic shocks would be exclusively determined by the nature and extent of the shocks
and the agents’ position on the asset. Moreover, the variation of each agent’s consumption
across such states will be inversely related, and therefore, their consumption will not be
comonotonic. Hence, given ambiguity aversion with CEU preferences, an agent will behave
as if he applies a different probability measure depending on whether he is choosing to go
short or to go long. Therefore, it may be that the minimum asking price of the agent when
choosing to go short will be higher than the maximum bid of the agent when choosing to
go long. Thus, no trade may result, and the paper provides sufficient conditions that
obtain the result. Indeed, as we show, the no trade outcome will survive even in the limit,
when there are an arbitrarily large number of (independent) replicas of the equity. The
intuition here is that the law of large numbers implies that the agents’ beliefs on the payoff
of a portfolio of risky assets, hit (in part) by idiosyncratic shocks, converge to some mean,
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but the mean is in principle different for agents taking differently signed positions on the
(relevant) assets. In this fashion, ambiguity aversion creates an endogenous limit to the
extent of risk sharing possible through financial markets, thereby providing a (theoretical)
justification for the basic premise of the general equilibrium with incomplete markets
model (GEI). To see it in the eyes of X, in a CEU world, unlike in an SEU world, there
may not exist prices that would allow X to go short on automobile industry equities as he
needs to do to ‘‘export’’ his income risk. The same market which offers possibilities of risk
sharing equivalent to complete markets when beliefs and behaviour are in accordance with
SEU, offers only the Pareto sub-optimal risk sharing possibilities of an incomplete market
economy when agents are CEU maximizers with beliefs that are ‘‘sufficiently’’ ambiguous.

The rest of the paper is organized as follows. The next section provides an intro-
duction to the formal model of ambiguity aversion applied in this paper. Section 3 con-
tains the formal model of the finance economy and the main result. Section 4 concludes the
paper. Appendix A contains some technical material on independence and law of large
numbers for capacities. All formal proofs are in the Appendix B.

2. CHOQUET EXPECTED UTILITY AND THE RELATED LITERATURE

Let � ¼ !if g
N
i¼1 be a finite state space, and assume that the decision maker (DM) chooses

among acts with state contingent payoffs, z : �! R: In the CEU model (Schmeidler
(1989)) an ambiguity averse DM’s subjective belief is represented by a convex non-additive
probability function (or a convex capacity), � such that, (i) �ð;Þ ¼ 0, (ii) �ð�Þ ¼ 1 and, (iii)
�ðX [ Y Þ>¼ �ðX Þ þ �ðY Þ 
 �ðX \ Y Þ, for all X;Y � �: Define the core of �, (notation:
� �ð Þ is the set of all additive probability measures on �)

Cð�Þ ¼ f� 2 � �ð Þ j �ðX Þ>¼ �ðX Þ; for all X � �g:

Hence, �ðX Þ ¼ min�2C �ð Þ �ðX Þ: The ambiguity4 of the belief about an event X is measured
by the expression AðX; �Þ � 1
 �ðX Þ 
 �ðXcÞ ¼ max�2C �ð Þ �ðX Þ 
min�2C �ð Þ �ðX Þ.

Like in SEU, a utility function u : Rþ ! R, u0 �ð Þ>¼ 0, describes DM’s attitude to risk
and wealth. Given a convex non-additive probability �, the Choquet expected utility5 of an
act is simply the minimum of all possible ‘‘standard’’ expected utility values obtained by
measuring the contingent utilities possible from the act with respect to each of the additive
probabilities in the core of �

CE�u zð Þ ¼ min
�2C �ð Þ

X
!2� u z !ð Þð Þ� !ð Þ

� �
:

The fact that the same additive probability in C �ð Þ will not in general ‘‘minimize’’ the
expectation for two different acts, explains why the Choquet expectations operator is not
additive, i.e. given any acts z, w : CE�ðzÞ þ CE�ðwÞ<¼CE�ðzþ wÞ: The operator is additive,
however, if the two acts z and w are comonotonic, i.e. if ðzð!iÞ 
 zð!jÞÞðwð!iÞ 
 wð!jÞÞ>¼ 0.

In our analysis, we will need to consider the independent product of capacities. The
independent product of two convex capacities �1 and �2, according to the definition
(suggested by Gilboa and Schmeidler (1989)) we apply in this paper, may be (informally)
understood as the lower envelope of the set f�1 � �2j�1 2 C �1ð Þ; �2 2 C �2ð Þg: Unlike what

4. Fishburn (1993) provides an axiomatic justification of this definition of ambiguity and Mukerji (1997)
demonstrates its equivalence to a more primitive and epistemic notion of ambiguity (expressed in term’s of the
DM’s knowledge of the state space).

5. The Choquet expectation operator may be directly defined with respect to a non-additive probability,
see Schmeidler (1989). Also, for an intuitive introduction to the CEU model see Section 2 in Mukerji (1998).
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is true with ‘‘standard’’ probabilities, there is more than one way to define the independent
product of two capacities. As it turns out, the formal analysis in this paper is unaffected if
an alternative definition of independence were applied. We refer the interested reader to
the Appendix A and to the discussion at the end of Section 3 for more on the independent
product of capacities and turn next to the use of capacities and CEU in portfolio decision
problems.

Dow and Werlang (1992), as noted earlier, identified an important implication of
Schmeidler’s model. They showed, in a model with one risky and one riskless asset, that if
a CEU maximizer has a riskless endowment then there exists a set of asset prices that
support the optimal choice of a riskless portfolio. The intuition behind this finding may be
grasped in the following example. Consider an asset that pays off 1 in state L and 3 in state
H and assume that � Lð Þ ¼ 0�3 and � Hð Þ ¼ 0�4. Assuming that the DM has a linear utility
function, the expected payoff of buying an unit of z, the act zb, is given by
CE�ðzbÞ ¼ 0�6� 1þ 0�4� 3 ¼ 1�8. On the other hand, the payoff from going short on an
unit of z (the act zsÞ is higher at L than at H. Hence, the relevant minimizing probability
when evaluating CE�ðzbÞ is that probability in C �ð Þ that puts most weight on H: Thus,
CE�ðzsÞ ¼ 0�3� 
1ð Þ þ 0�7� 
3ð Þ ¼ 
2�4. Hence, if the price of the asset z were to lie in
the open interval 1�8; 2�4ð Þ, then the investor would strictly prefer a zero position to either
going short or buying. Unlike in the case of unambiguous beliefs there is no single price at
which to switch from buying to selling. Taking a zero position on the risky asset has the
unique advantage that its evaluation is not affected by ambiguity.

The ‘‘inertia’’ zone demonstrated by Dow and Werlang was simply a statement about
optimal portfolio choice corresponding to exogenously determined prices, given an initially
riskless position. However, it does not follow from this result at the individual level that
no-trade is an equilibrium when closing the model by allowing agents to trade their risks,
as we illustrate next using the Edgeworth box diagram in Figure 1.

The diagram depicts the possibilities of risk-sharing (one may think of the risk sharing
as being obtained through the exchange of two Arrow securities, one for each contingency)

FIGURE 1
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between two CEU agents, h ¼ 1, 2, with uncertain endowment in the two states !a and !b:
W is the endowment vector. Notice that, because of ambiguity aversion, the indifference
curves are kinked at the point of intersection with the 45� ray through the origin. The
shaded area in the diagram represents the area of mutually advantageous trade. Hence,
no-trade is an equilibrium outcome in this economy if and only if endowment is Pareto
optimal to begin with. Introduction of ambiguity aversion in an economy, seemingly,
would not impede the trade in risk sharing contracts and would not be a reason for
incomplete risk sharing. The reason for this ‘‘absence of no-trade’’ goes as follows: Pareto
optimal allocations lie within the ‘‘tram-lines’’, the 45� rays through each origin, i.e. they
are comonotonic. Hence, at a Pareto optimal allocation, the ranking of the states is
identical for both agents and is given by the ordering of aggregate endowment. Now with
complete markets, equilibrium allocations are Pareto optimal and therefore comonotonic
as well. Thus, agents use the same ‘‘minimizing probability’’ at equilibrium, and agree on
asset valuation. Risk sharing proceeds just as in an economy with SEU agents (see
Chateauneuf, Dana and Tallon (2000).

Thus, if one wants to obtain that equilibrium be characterized by absence of trade,
one has to move away from this (canonical) example, something that is accomplished by
introducing into the model assets with idiosyncratic payoff components. Epstein and
Wang (1994) recognized the role of first of the two conditions defining idiosyncratic risk
(as defined in this paper) in obtaining non-unique equilibrium asset prices in a CEU world.
That result is related to ours. The precise relationship between the results deserves careful
discussion. For expository purposes, we turn to this discussion at the end of the next
section, after the presentation of our model.

We end this section with a discussion of another model of behaviour under Knightian
uncertainty due to Bewley (1986), distinct from the one applied in this paper, which easily
generates a no-trade result. Bewley, essentially, drops Savage’s assumption that pre-
ferences are complete and adds an axiom of the ‘‘status quo’’. In our Edgeworth box this
would amount to assuming that indifference curves are kinked precisely at the endowment
point, irrespective of its position in the box. If indifference curves are ‘‘kinked enough’’,
the incompleteness of markets for contingent deliveries (the absence of trade) is then a
direct consequence of preference for status quo which is exogenously imposed as a part of
the definition of ambiguity aversion.

3. THE MODEL AND THE MAIN RESULT

The setting for our formal analysis is a model of a stylized two period finance economy
which we call an n-financial asset economy with idiosyncracy. Households (h ¼ 1; . . . ;H )
trade assets in period 0, before uncertainty is resolved, and consume the one (and only)
good in period 1. The assets available for trade are claims on deliveries of the consumption
good in period 1.

There are two sources of uncertainty. First, there is some ‘‘economic uncertainty’’:
agents do not know their endowments tomorrow. An economic state of the world, s,
s ¼ 1; 2, is completely identified by the endowment vector for that state
e s
1; . . . ; e s

h; . . . ; e s
H

� �
; where each component of the vector, e s

h 2 Rþ, gives a particular
household’s endowment of the consumption good in state s (arising in period 1). We have
restricted our analysis to the case of risk sharing across only two economic states, to make
the argument as transparent as possible. Secondly, there is idiosyncratic financial uncer-
tainty. An idiosyncratic state of the world completely characterizes the realization of the
idiosyncratic components of payoffs of the available financial assets (described below); it is
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identified by the vector t ¼ t1; t2; . . . ; tnð Þ, where ti 2 f0; 1g, i 2 1; 2; . . . ; nf g, and n is the
total number of financial assets. �n denotes the set of all t’s, i.e. �n � 0; 1f gn. Hence, to
obtain a complete description of a state of the world, exhausting all uncertainty relevant to
the model, the economic states s must each be further partitioned into cells denoted s; tð Þ.
A typical state of the world is denoted by the letter !, ! 2 � � fð1; tÞt2�n

; ð2; tÞt2�n
g.

The assets available for trade at date 0 are as follows:

1. Financial assets, zi; i ¼ 1; . . . ; n, with payoffs that have idiosyncratic components.
An asset zi yields a payoff of ys þ y tið Þ > 0 units of the good; s ¼ 1; 2,
ti 2 � � f0; 1g. y tið Þ is the idiosyncratic component, in the sense that it is
independent of the realized economic state and independent of the realization of
the payoff from any other financial asset z j, where j 6¼ i. It is assumed that
y 1ð Þ > y 0ð Þ and that y1 6¼ y2. Price of an asset zi is denoted by qzi

n :
2. A safe asset, b, which delivers one unit of the good irrespective of the realized state
of the world. Price of this security is normalized to 1.

A point behind modelling the asset structure as above is to ensure that in order to
transfer resources across the two economic states the agents would have to rely on
financial assets whose payoffs are affected by idiosyncratic shocks.

Prior to the resolution of uncertainty, agents are endowed with a common belief
about the likelihood of state !. The (marginal) beliefs about particular idiosyncratic
component ti are described by a capacity �i, �i 0ð Þ þ �i 1ð Þ<¼ 1: To model the assumption
that the realization of ti and tj are believed to be independent, the beliefs on �n are
described by the independent product (defined in Appendix A), � �

Nn
i¼1 �i. For simpli-

city, we shall assume that �i ti ¼ rð Þ ¼ �j tj ¼ r
� �

¼ � r, r ¼ 0; 1, i; j 2 f1; . . . ; ng: The belief
on an economic state s is given by 	 sð Þ: To make it transparent that it is the ambiguity of
beliefs about the idiosyncratic realizations which is responsible for the possibility of no-
trade in financial assets, and also to make the computation less tedious, we assume
	 1ð Þ þ 	 2ð Þ ¼ 1: Finally, the common belief on � is given by the independent product
	
N

�.
Let e !

h;n and x !
h;n be h’s endowment and consumption, respectively, in state ! ¼ ðs; tÞ,

given that the total number of financial assets in the economy is n. Note, the definition of
an economic state implies e

s;tð Þ
h;n ¼ e

s;t 0ð Þ

h;n : Hence, we may use the notation es
h;n as a complete

description of state contingent endowment. Holding of the asset b by h is denoted bh;n and
holding of the asset z i by h is denoted z i

h;n. Agent h has a von Neumann–Morgenstern
utility index uh : Rþ ! R, which is assumed to be strictly increasing, smooth and strictly
concave. Furthermore, u 0hð0Þ ¼ 1 and e !

h;n > 0 for all h and all !.
Phn which denotes the maximization program of agent h, is as follows:

max
bh;n;z1h;n;...;z

n
h;n

CE	�� uh x s;t
h;n

� �

s:t:
bh;n þ

X
n
i¼1q

zi

n zi
h;n ¼ 0;

xs;t
h;n 
 es

h;n ¼ bh;n þ
X

n
i¼1 ys þ y tið Þð Þzi

h;n; s ¼ 1; 2; t 2 �n:

8<
:

An equilibrium consists of a set of asset prices, qn � f1; qz1

n ; . . . ; qzn

n g, a set of asset
holdings, bn; znð Þ � fðbh;n; z1h;n; . . . ; zn

h;nÞ
H
h¼1g, and also a consumption vector, xn �

ðx!
h;nÞh¼1;...;H;!2�, such that, given qn all agents solve Phn, and the asset markets clear, i.e.

X
h bh;n ¼

X
h zi

h;n ¼ 0; 8i 2 1; . . . ; nf g;
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and the consumption vector is feasible at each state, i.e.
P

h x!
h;n ¼

P
h e!h;n: Notice, a tuple

ðqn; ðbn; znÞÞ uniquely pins down the equilibrium, hence we may denote an equilibrium of
an n-financial asset economy using such a tuple.

In interpreting various aspects of the model it helps to bear in mind the economic
issue the model has been formulated to examine, which is, how economic agents may share
risks, inherent to their labour/human capital endowment, by trading in financial markets.
Hence, as it appears in the model, a household’s endowment income is distinct from the
household’s income obtained from the ownership of assets. Portfolio income is the
instrument the household is allowed to use to absorb the shocks it faces in its endowed
income. But the instrument is not a perfect one. The presence of idiosyncratic risk
embodies the notion that payoff from a financial asset is not only affected by some of the
same shocks that affect individual households’ endowment income and common to many
assets but also by risks specific to each asset. While most firms’ profits are naturally
affected by aggregate or sectorial demand shifts and supply shocks, other factors, more
idiosyncratic to the firm, do typically matter.6 Finally, notice, we have assumed that the
assets are in zero net supply. This implies that the asset trading our analysis applies to
include all manner of trade in corporate bonds;7 but for general assets (e.g. equities) the
analysis is (formally) restricted to those trades which involve one side of the market going
short. The main point of the assumption is that it allows us the abstraction to study how
an agent may use a financial asset (say, an equity) to share the risk in his exogenously
endowed income: by going short on an asset he issues contingent claims on his risky
income, thereby, trading out his risk. To fix ideas, it might help to refer back to the
example of X, the Detroit drug-store owner. X would be very representative of the agents
in our model presented above. Think of the economic states 1 and 2 as states defined by
shocks to X’s income from his drug-store. X may hedge his income shock by trading in a
‘‘safe’’ asset, such as a treasury bond, and financial assets, such as corporate bonds/
equities issued by the various automobile and ancillary firms located in and around
Detroit. Payoffs to each such financial asset is affected by the same income shock that
affects X’s drug-store profits. In addition, each financial asset is also affected by shocks
idiosyncratic to the issuing firm. Assuming, the firms’ profits and drug-store profits are
affected in the same direction by the income shock, X’s hedging strategy would be, pre-
sumably, to take a short position on a portfolio of the available financial assets while
simultaneously going long on the treasury bond. Our analysis, in effect, compares how
such a strategy would fare in an SEU world and in a CEU world.

Formally, the analysis compares equilibrium allocations across two cases: one, where
beliefs about idiosyncratic outcome is unambiguous �0 þ �1 ¼ 1

� �
, and the other where

beliefs about the idiosyncracy is ambiguous ð�0 þ �1 < 1Þ: In order to make the compar-
ison stark, the analysis will relate the two cases to two benchmarks. One benchmark is a
complete market economy which we call an economy without idiosyncracy, that is, an
economy which is identical to the n-financial asset economy with idiosyncracy described in
the last section in every respect except that there is only a single financial asset z which

6. For instance, suppose a firm introduces a new product line, an innovation, into the market. In such a
case, typically, it is not just the shocks commonly affecting firms in the same trade that will affect the sales of the
new product but also more (brand) specific elements, e.g. whether (or not) the innovation has a ‘‘special’’ appeal
for the consumers. Another example of idiosyncratic shocks are shocks to firms’ internal organizational
capabilities.

7. In this context it is worth noting that it is reported almost 70% of corporate borrowing in the U.S. is
through bonds. Default rates on bonds are also significant. Financial Times, 13 October 1998, in its report
headlined ‘‘US corporate bond market hit,’’ notes, ‘‘the rate of default on U.S. high-yield bonds was running at
10% in the early 1990s . . . ; today the default rate is hovering around 3% but creeping higher’’.
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pays off y sþ E�y tð Þ � �yys units in the economic states s ¼ 1; 2. Correspondingly, qz denotes
the price of z and zh denotes the amount held by household h. (Note, when denoting
endogenous variables in the economy without idiosyncracy we may omit the subscript n:)
The second benchmark is an incomplete market economy which is identical to the n-
financial asset economy with idiosyncracy in every respect except that the only asset
available is the safe asset. The following lemma simplifies the analysis greatly.

Lemma. Let ðqn; ðbn; znÞÞ be an equilibrium of the n-financial assets economy with
idiosyncracy. Suppose �0 þ �1<¼ 1: Then, z i

h;n ¼ z i 0

h;n, 8i; i 0 2 1; . . . ; nf } 8h 2 1; . . . ;Hf g:

According to the lemma, at an equilibrium, agents will hold all the financial assets in
the same proportion. This is essentially a consequence of the fact that agents are risk
averse and that the n financial assets are simply ‘‘independent replicas’’. Let ~zzn denote an
unit of a portfolio composed of 1/n unit of the asset zi, i ¼ 1; . . . ; n; ~zzh;n is the amount held
of this portfolio by h and ~qqn is the price of an unit of this portfolio. Given the lemma, we
may assume, without loss of generality, that it is only the asset ~zzn, instead of the individual
assets zi, that is available for trade in the economy. Hence, an equilibrium of an n-financial
assets economy with idiosyncracy, ðqn; ðbn; znÞÞ, may equivalently be denoted by the tuple
ð~qqn; ðbn; ~zznÞÞ, ~qqn�f1; ~qqng and ðbn; ~zznÞ � fðbh;n; ~zzh;nÞ

H
h¼1g:

The above characterization of the equilibrium in turn facilitates a simple definition of
what it means to satisfy the conditions of equilibrium when n is arbitrarily large. We say
~qq1; b1; ~zz1ð Þ; x1
� �

satisfies the conditions of equilibrium of the n-financial assets economy
with idiosyncracy where n is arbitrarily large, i.e. n!1 if:8

1. Given ~qq1, b1; ~zz1ð Þ; x1ð Þ is a solution to the problem ~PPh;1 defined as follows:

maxCE	��uh xs;t
h;1

� �

s:t:

bh;1 þ ~qq1 ~zzh;1 ¼ 0

xs;t
h;1 
 es

h;1 ¼ bh;1 þ ~zzh;1 limn!1

Xn
i¼1 y s þ y tið Þð Þ

n

 �
;

s ¼ 1; 2 with probability 1;

8>>>>><
>>>>>:

2.
P

h bh;1 ¼
P

h ~zzh;1 ¼ 0, and the consumption vector is feasible at each state, i.e.P
h x!

h;1 ¼
P

h e!h;1 with probability 1:

Theorem. Suppose �0 þ �1 ¼ 1. Then ð~qq1; ðb1; ~zz1ÞÞ satisfies the conditions of equili-
brium of the n-financial assets economy with idiosyncracy where n is arbitrarily large, if and
only if, ð~qq1; ðb1; ~zz1ÞÞ describes an equilibrium of an economy without idiosyncracy, wherein
the price of a unit of z is equal to ~qq1, and a household’s holding of the asset z, zh, is equal to ~zzh;1:

The theorem shows that equilibrium allocations of the n-financial assets economy
with idiosyncracy are essentially identical to that of the economy without idiosyncracy, in
which financial markets are complete, provided the number of available financial assets is
large enough and agents’ beliefs are unambiguous. The result follows from an application
of the usual diversification principle stating that in the limit idiosyncracies are ‘‘washed
away’, in conjunction with the assumption that y1 6¼ y2. However, if the model of the n-

8. Werner (1997) considers a finance economy of which this is just a special case. There are standard
arguments that ensure the existence of equilibria of such economies (op. cit., pp. 100).
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financial assets economy with idiosyncracy were to be reconsidered with the sole
amendment that beliefs about idiosyncracies are ambiguous, i.e. �0 þ �1 < 1, then the
result no longer holds. In such an economy, however large the n, given sufficient ambi-
guity, the equilibrium allocation is bounded away from Pareto optimal risk-sharing. The
allocation actually coincides with the allocation of an incomplete market economy in
which it is impossible to transfer resources between states 1 and 2, as we show in our main
theorem, below. But, first, we present an example to convey an intuition for the result.

Example 1. Consider a 2-period finance economy with two risk averse agents,
h ¼ 1; 2, and two economic states. There are two assets available, b and z: b is a safe asset;
it delivers one unit of the good in each of the two economic states. The payoff of z in state
s; tð Þ is y s þ y tð Þ, s ¼ 
; �; t ¼ 0; 1: Fix, y
 ¼ 1, y� ¼ 2, y 0ð Þ ¼ 0, y 1ð Þ ¼ 2:

First consider the case where �0 þ �1 ¼ 1: The model reduces to a standard incom-
plete market equilibrium with two assets and four states, in which, for ‘‘generic’’
endowments, there is trade, i.e. some partial insurance among agents.9 Next, suppose, to
simplify matters drastically, that �0 ¼ �1 ¼ 0. Consider an agent h contemplating buying
the uncertain asset at a price qz, given the safe asset is priced qb ¼ 1. h may buy zh units of
the uncertain asset and take a position bh in the safe asset such that bh þ qzzh ¼ 0�His
utility functional is then given by

CE	��uhðe
s
h þ zhð y

s þ y tð ÞÞ þ bhÞ

¼ uhðe


h þ zhð y


 þ yð0ÞÞ þ bhÞ	ð
Þð1
 �1Þ þ uhðe


h þ zhð y


 þ yð1ÞÞ þ bhÞ	ð
Þ�
1

þ uhðe
�
h þ zhð y

� þ yð0ÞÞ þ bhÞ	ð�Þð1
 �1Þ þ uhðe
�
h þ zhð y

� þ yð1ÞÞ þ bhÞ	ð�Þ�
1:

Once we substitute in �1 ¼ 0, it is clear from the above functional that the payoff matrix
the agent (as a buyer of z) will consider is

1 1

1 2

" #
:

If qz >
¼ 2, any balanced portfolio with zh > 0 yields negative payoffs and is therefore not

worth buying. Thus, an agent will wish to buy the uncertain asset only if qz < 2. Next
consider an agent h0 who contemplates going short on asset z. His utility functional is
therefore

CE	��uh0 ðe
s
h0 þ zh0 ð y

s þ yðtÞÞ þ bh0 Þ

¼ uh0 ðe


h0 þ zh0 ð y


 þ yð0ÞÞ þ bh0 Þ	ð
Þ�
0 þ uh0 ðe



h0 þ zh0 ð y


 þ yð1ÞÞ þ bh0 Þ	ð
Þð1
 �0Þ

þ uh0 ðe
�
h0 þ zh0 ð y

� þ yð0ÞÞ þ bh0 Þ	ð�Þ�
0 þ uh0 ðe

�
h0 þ zh0 ð y

� þ yð1ÞÞ þ bh0 Þ	ð�Þð1
 �0Þ:

Notice now the functional is dependent on �0 since the agent is going short, i.e. zh0 < 0.
Substituting �0 ¼ 0, we find the payoff matrix the agent h0 will consider

1 3

1 4

" #
:

9. This has to be qualified since there exists some non-generic constraints among endowments in different
states, namely e s;t

h ¼ e s;t 0

h � e s
h:
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For qz <
¼ 3 any balanced portfolio with zh0 < 0 yields negative payoffs. Thus, an agent will

wish to sell the risky asset only if qz > 3. Thus, buyers of asset 1 will not want to pay more
than 2, while sellers will not sell it for less than 3. Hence, there does not exist an equili-
brium price such that agents will have a non-zero holding of the uncertain asset.

Next, consider another extreme, a case in which ambiguity appears only on the
economic states while the agents are able to assess (additive) probabilities for the idio-
syncratic states. In fact, to keep matters stark, assume 	 
ð Þ ¼ 	 �ð Þ ¼ 0, though the
additive probability on idiosyncratic states is arbitrary, simply ensuring that �0 þ �1 ¼ 1:
Suppose that, for agent h, e 


h > e �
h : Then, for zh 2 
"; "ð Þ, for " small enough,

CE	��uhðe
s
h þ zhð y

s þ yðtÞÞ þ bhÞ

¼ �0uhðe
�
h þ zhð y

� þ yð0ÞÞ þ bhÞ þ �1ðe �
h þ zhð y

� þ yð1ÞÞ þ bhÞ;

since for zh small enough e 

h þ zh y
 þ y tð Þð Þ þ bh > e �

h þ zhð y
� þ yðtÞÞ þ bh: Hence, zh ¼ 0

if and only if

qz ¼ y � þ �0y 0ð Þ þ �1y 1ð Þ;

(the fact that endowments and the utility function do not appear in this expression is due
to the extreme form of ambiguity assumed, i.e. a maximin behaviour). Thus, the only
candidate for a no-trade equilibrium price is qz ¼ y� þ �0y 0ð Þ þ �1y 1ð Þ: Now, assume that
for at least one other agent, the order of the endowment is reversed, i.e. e �

h > e 

h , then a

computation similar to the one above shows that such agents will not want to trade the
risky asset if and only if

qz ¼ y
 þ �0y 0ð Þ þ �1y 1ð Þ:

Hence, if both types of agents are present in the economy, trade will occur as y
 6¼ y�: If
we were not to assume the extreme maximin form of preferences but that 	 
ð Þ þ 	 �ð Þ < 1
with, say, 	 
ð Þ > 0 and 	 �ð Þ > 0, the no trade price for agent h (say with e 


h > e �
h) depends

on his initial endowment and utility function (i.e. relative attitude to risk). In that case,
even if endowments of all agents were comonotonic (i.e. e 


h
>
¼ e �

h for all h) there would not
exist, for the generic endowment vector, an asset price qz that would support no-trade as
an equilibrium of this economy. jj

The two more significant ways in which the main theorem, below, generalizes the
demonstration in Example 1 are: (i) it shows that no-trade obtains even when beliefs have
a degree of ambiguity strictly less than 1; (ii) it allows for any arbitrary number of financial
assets, in particular, for n!1: We consider the intuition for each of these general-
izations in turn. First, consider a 2-(economic)-state, 2 agent, 1-financial asset (and 1 safe
asset) economy with idiosyncracy, in which the financial asset’s payoffs are as in Example
1. Consider an agent thinking of buying the financial asset. The maximum payoff he
expects in any economic state is 2þ 0� ð1
 �1Þ þ 2� �1 � V Bð Þ, the amount he expects
in state �. This implies, whatever his utility function, whatever his endowment vector,
whatever his beliefs about the economic uncertainty, he will not want to buy the asset for
more than V Bð Þ. Now, instead, if an agent were to go short with the asset, the least he
expects to have to repay in any economic state is 1þ 0� �0 þ 2� ð1
 �0Þ � V Sð Þ, and
therefore, will not want to sell the asset if the price is less than this. Clearly, if �0 and �1

were small enough, V Bð Þ < V Sð Þ: Therefore, if �0 and �1 were small enough, agents will not
trade in the financial asset.
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Intuition about the second bit of generalization is difficult to obtain without some
understanding of how the law of large numbers works for non-additive beliefs. Specifi-
cally, let us consider an i.i.d. sequence fXngn>¼1 of f0; 1g
valued random variables. Sup-
pose, �ðfXn ¼ 0gÞ ¼ �ðfXn ¼ 1gÞ ¼

1
4 for all n>¼ 1: As is usual with laws of large numbers,

the question is about the limiting distribution of the sample average, ð1=nÞ
Pn

i¼1Xi: The
law10 implies

�
1

4
<
¼ lim inf

n!1

1

n

Xn
i¼1Xi

<
¼ lim sup

n!1

1

n

Xn
i¼1Xi

<
¼
3

4

� �
¼ 1:

This shows that the DM has a probability 1 belief that the limiting value of the sample
average lies in the (closed) interval 1

4 ;
3
4

� �
: However, unlike in the case of additive prob-

abilities, the DM is not able to further pin down its value. Thus, even with non-additive
probabilities the law of large numbers works in the usual way, in the sense that here too
the tails of the distribution are ‘‘cancelled out’’ and the distribution ‘‘converges on the
mean’’. But of course here, given that the DM’s knowledge is consistent with more than
one prior, there is more than one mean to converge on; hence, the convergence is to the set
of means corresponding to the set of priors consistent with the DM’s knowledge. Hence, a
CEU maximizer whose (ex post) utility is increasing in X (e.g. when the DM is a buyer of
an asset with payoff X ) will behave as if the convergence of the sample average occurred at
1
4, the lower boundary of the interval, while a DM whose utility is increasing in 
X (e.g.
when the DM is a seller of an asset with payoff X ) will behave as if the convergence of the
sample average occurred at, 34, the upper boundary of the interval.

Now we can complete our intuition for the main result. Consider a modification of
the simplified financial economy of Example 1 such that, ceteris paribus, there are now n-
fold replicas of the financial asset, n!1. We consider trade between ‘‘two’’ assets, one
the safe asset and the other the ‘‘portfolio’’ asset, containing each of the independent
replica assets in equal proportion. The law of large numbers result, explained above,
implies that any agent contemplating going long on the portfolio asset will behave as if a
unit of the portfolio will payoff y s þ ½0� ð1
 �1Þ þ 2� �1� with probability 1 in economic
state s while an agent contemplating going short will behave as if a unit of the portfolio will
payoff y s þ ½0� �0 þ 2� ð1
 �0Þ� with probability 1 in economic state s. Hence, exactly
the same argument as before applies: for �0 and �1 sufficiently small, V Bð Þ < V Sð Þ and
there will not be any trade in the portfolio. The important insight here is that while agents
are fully aware that a ‘‘well diversified’’ portfolio ‘‘averages out’’ the idiosyncracies, they
only have an imprecise knowledge of what it averages out to.

Another important point demonstrated in Example 1, as modified above, is how
equilibrium risk sharing is affected by ambiguity aversion. If 1
 �0 
 �1 > 1

2, then the
equilibrium allocation is necessarily not Pareto optimal unless endowments are, no matter
how large the value of n. Consider an economy, E, which is the same as in the original
example except that there is only one financial asset available in this economy, the safe
asset b. Given ambiguity is greater than 1

2, there is no trade in the portfolio of uncertain
assets in the economy in (the modified) Example 1, hence an equilibrium allocation of this
economy is an equilibrium allocation of E. E has two states, 
 and �, but one asset, and
therefore, is an incomplete markets economy with sub-optimal risk sharing.

10. Laws of large numbers for ambiguous beliefs have been studied by, among others, Walley and Fine
(1982), Marinacci (1996) and Marinacci (1999). Appendix A contains a formal statement of the version we apply.
This version was, essentially, originally proved in Walley and Fine (1982). The statement given here is from
Marinacci (1996), Theorem 7.7. However, the result is a direct implication of the more general Theorem 15 in
Marinacci (1999).
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We now state our main result.

Main Theorem. Consider the n-financial assets economy with idiosyncracy. Let
y s�minsfy

sg and y�ss � maxsfy
sg and suppose that y�ss 
 y s > yð1Þ 
 yð0Þ. Then there exists an

�AA; 0 < �AA < 1 such that if 1
 �0 
 �1 > �AA, ~zzh;n ¼ 0 for all h 2 f1; . . . ;Hg and xs;t
n ¼ xs;t 0

n ,
s ¼ 1; 2, t 6¼ t 0 at every equilibrium ðqn; ðbn; znÞÞ, for all n 2 N, including, n!1.

Stated differently, this says that if the range of variation of the idiosyncratic com-
ponent of the financial asset is greater than the range of variation due to the economic
shocks, if the beliefs over the idiosyncratic states are ambiguous enough, and if agents are
ambiguity averse, then irrespective of the utility functions of the agents and the endow-
ment vector, the equilibrium of an n-financial assets economy with idiosyncracy is an
equilibrium of the economy with one safe asset, i.e. an economy with incomplete markets,
since the financial assets are not traded in equilibrium, whatever the value of n. Notice
further, if the conditions described in the theorem are met, then for a generic endowment,
an equilibrium allocation of the n-financial assets economy with idiosyncracy is necessarily
not Pareto optimal. This follows simply from the understanding that an equilibrium
allocation of the n-financial assets economy with idiosyncracy, given the conditions of the
theorem, is an equilibrium of the economy with one safe asset. The latter economy is an
incomplete market economy in which it would not be possible to transfer resources
between states 1 and 2.

The significant sufficient condition to ensure no-trade, irrespective of the utility
functions of the agents and the endowment vector, is that y�ss 
 y s > y 1ð Þ 
 y 0ð Þ. The bound
follows from the expression for �AA; �AA ¼ ð ys 
 y sÞ=ð y 1ð Þ 
 y 0ð ÞÞ, constructed in the proof of
the main theorem: Notice, �AA is the supremum among the values of ambiguity required for
no trade, across all the possible combinations of parameters of utilities or endowments,
and is independent of any parameter of utility or endowment. So, typically, the ambiguity
required for no trade be less than �AA; further, no trade will result even if
y 1ð Þ 
 y 0ð Þ < ys 
 ys: Also, the required ambiguity will be greater, greater the risk aver-
sion and/or riskiness of the endowment (see Example 3 in Mukerji and Tallon (1999)).

One might be tempted to conjecture that results of the paper may be replicated by
simply assuming heterogeneous beliefs among agents. Or to conjecture, since with
incomplete markets comonotonicity of equilibrium allocations is in general broken so that
different (CEU) agents would evaluate their prospects using different (effective) prob-
abilities, that adding CEU agents might ‘‘worsen’’ incompleteness even in the absence of
idiosyncratic risks. Both conjectures are, however, false. What is at work in obtaining no-
trade is not that different agents have different beliefs but that any given agent behaves as if
he evaluates the two different actions, going short and going long, with different (prob-
abilistic) beliefs. Neither does market incompleteness, in the absence of idiosyncratic risk,
make for this peculiarity and therefore does not, in and of itself, lead to no trade. We
illustrate this with the following example.

Example 2. Suppose there are S states, H agents, one safe asset and one risky asset
that pays off ys unit of the good in state s. Agent h’s budget constraints are (we normalize
the price of the safe asset in the first period as well as the price of the good in all states to
be equal to 1)

bh þ qzh ¼ 0;

xs
h ¼ e s

h þ ð y
s 
 qÞzh; s ¼ 1; . . . ;S:

(
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Claim. Assume that there are no pairs of states s and s0 such that y s 6¼ y s 0 and es ¼ es0 .
Then, there exists a unique price qh such that z�h qhð Þ ¼ 0.

Proof. Assume w.l.o.g. that e1h
<
¼ e2h

<
¼ � � �

<
¼ eS

h . Since by assumption e s
h ¼ e s0

h )

ys ¼ ys 0 , there exists " > 0 such that for all zh 2 ð
"; "Þ

e1h þ ð y
1 
 qÞzh

<
¼ e2h þ ð y

2 
 qÞzh
<
¼ � � �

<
¼ eS

h þ ð y
S 
 qÞzh:

Assume that �ðzhÞ are the set of probability measures in C �ð Þ that minimize
E�2C �ð Þuhðeh þ ð y

s 
 qÞzhÞ, that is �ðzhÞ ¼ fð�
1; . . . ; �SÞ 2 Cð�Þ jE�uhðeh þ ð y

s 
 qÞzhÞ ¼

E�uhðehþ ð y
s 
 qÞzhÞg. Observe that if �;�

0 2 �ðzhÞ are different, then they must disagree
on those states where consumption is identical, or, said differently (given the order we
adopted on h’s endowment)

e s
h þ ð y

s 
 qÞzh 6¼ e s0

h þ ð y
s 0 
 qÞzh 8s

0 6¼ s

) �s ¼ �0s ¼ �ðfs; . . . ;SgÞ 
 �ðfsþ 1; . . . ;SgÞ:

Hence, zh ¼ 0 is optimal at price qh if and only if there exists � 2 �ð0Þ such that

q ¼ qh �

X
s �

sy su 0hðe
s
hÞX

s �
su 0hðe

s
hÞ

:

Recall now that probability measures in �ð0Þ can differ only on those states in which
the endowment is constant. Since, by assumption, e s

h ¼ e s0

h ) ys ¼ y s 0 , one obtains,
E� y su 0hðe

s
hÞ

� �
¼ E�0 y su 0hðe

s
hÞ

� �
for all �;�0 2 �ð0Þ. Since E�u 0hðe

s
hÞ ¼ E�0u

0
hðe

s
hÞ for all

�;�0 2 �ð0Þ, qh as defined above is unique.
We just established that there is only one price qh, defined in the proof above, such

that at this price, agent h optimally wants a zero position in the risky asset. Now, unless
the endowment allocation is Pareto optimal, qh 6¼ qh0 . Hence, at an equilibrium, trade on
the market for the risky asset will be observed. This establishes that, ‘‘generically’’, in
order for zh ¼ 0 for all h to be an equilibrium of the model, there must be pairs of states
s; s0 such that e s

h ¼ e s0

h for all h and ys 6¼ ys 0 ; in other words, an idiosyncratic element is
necessary to obtain no trade. jj

Before we close this section, we attempt to clarify further how our main result adds to
the findings in the related literature. In Example 2, in spite of an incomplete markets
environment, inspite of CEU agents, no trade fails to materialize because each agent has a
unique price at which he takes a zero position in the asset, and in general, this price is
different for different agents. Dow and Werlang (1992) may be read as an exercise in
purely deriving the demand function for a risky asset, given an initial riskless position. By
putting together two Dow and Werlang agents one does obtain an economy where an
equilibrium may be defined, but given that such agents’ endowments are riskless, agents do
not have any risks to share in such an economy. Hence, simply ‘‘completing’’ the Dow and
Werlang exercise to obtain an equilibrium model does not allow one to investigate the
question addressed in the present paper, which is, whether ambiguity aversion affects risk
sharing possibilities in the economy. And, as explained in the previous section, even if we
were to make the simple further extension of allowing uncertain endowments, given
complete markets, we will find ambiguity has no effect. Finally, as Example 2 demon-
strates, an even further extension of allowing market incompleteness does not provide the
answer either. Evidently, one has to move further afield from the Dow and Werlang
analysis to address our question.
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Epstein and Wang (1994) significantly generalized the Dow and Werlang (1992) result
to find that price intervals supporting the zero position occurred (in equilibrium) if there
were some states across which asset payoffs differ while endowments remain identical. The
intuition for this is as follows. To obtain a range of supporting prices for the zero position,
there must occur a ‘‘switch’’ in the effective probability distribution precisely at the zero
position. That is, depending on whether he takes a position þ" or 
" away from 0, "
howsoever small, the agent evaluates his position using a different probability. For this to
happen, the agent’s ranking of states (according to his consumption) must switch
depending exclusively on whether he takes a positive or negative position on the asset.
Hence, there must be at least two states for which even the smallest movement away from
the zero position would cause a difference in the ranking of the states depending on which
side of zero one moves to. Clearly, this may only be true if the endowment were constant
across the two states while the asset payoff were not.

The clarification obtained in Epstein and Wang (1994) of the condition that enables
multiple price supports to emerge, was the point of inspiration for the research reported in
the present paper. Indeed, the condition of Epstein and Wang (1994) is one of the two
conditions we apply to define idiosyncratic risk. Where the present paper has gone further
and what, in essence, is its contribution, is in finding conditions for an economy wherein
the agents’ price intervals overlap in such a manner that every equilibrium of the economy
involves no-trade in an asset, and more importantly, conditions under which ambiguity
aversion demonstrably ‘‘worsens’’ risk sharing and incompleteness of markets. These are
issues that were neither addressed nor even raised in Epstein and Wang (1994), formally or
informally, and understandably so, since the principal model in that paper was the Lucas
(1978) pure exchange economy amended to include ambiguity averse beliefs. This is a
model with a single representative agent, or equivalently, a number of agents with identical
preferences and endowments. In an equilibrium of such an economy, trade and risk
sharing is trivial since agents will consume their endowments; endowments are, by
construction, Pareto optimal.11

Kelsey and Milne (1995) extends the equilibrium arbitrage price theory (APT) by
allowing for various kinds of non-expected utility preferences. One of the cases they
consider is the CEU model. The model in the present paper may be thought of as a special
case of the equilibrium APT framework: what are labelled as factor risks in APT are
precisely what we call economic states and idiosyncratic risk is present in both models
though in our model the idiosyncratic risk has a simpler structure in that there are only
two possible idiosyncratic states corresponding to each asset. Only a special case of CEU
preferences is investigated by Kelsey and Milne (1995): their Assumption 3.3 allows non-
additive beliefs only with respect to factor risks; idiosyncratic risk is described only by
additive probabilities (see Assumption 3.3, the remark following the assumption and
footnote 2). The formal result of their analysis appears in Corollary 3.1 and shows, given
the qualifications, the usual APT result continues to hold: diversification may proceed as
usual, idiosyncratic risk disappears in the limit as the number of assets tend to infinity and
the price of any asset is, consequently, a linear function of factor risks. This formal result is
readily understandable given our analysis. As is repeatedly stressed upon in the present
paper, what drives our result is the non-additivity of beliefs over the idiosyncratic states.
While it is not necessary that ambiguity aversion be restricted to idiosyncratic states for
our result to hold, it is necessary that there be some ambiguity about idiosyncracies. The

11. Section 3.4 of Epstein and Wang (1994), presents an example of an economy with heterogeneous
agents. But, in this model markets are assumed to be complete, and hence, risk sharing continues to be efficient
(Pareto optimal), as is explicitly observed by the authors.
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no-trade result fails if ambiguity is merely restricted to economic states, as we explained in
the latter part of Example 1 and in Example 2. With ambiguity only on economic states,
ambiguity aversion has no bite, irrespective of whether there is only a single asset or
infinitely many and hence diversification proceeds as with SEU. Hence, their result would
not obtain without the restriction imposed by (their) Assumption 3.3. Our analysis
therefore warns against informally extrapolating the Kelsey and Milne (1995) result to
think that diversification would proceed as usual even when the special circumstances of
Assumption 3.3 does not hold (i.e. the ambiguity is not restricted to economic states but
occurs more generally over the state space). Further, it would appear to be a compelling
description of the economic environment to assume, if an agent is at all ambiguity averse,
the agent will be ambiguity averse about an idiosyncratic risk. By definition, such a risk is
unrelated to his own income risk and the macroeconomic environment; the risk stems
from the internal workings of a particular firm, something about which the typical agent is
likely to have little knowledge of.

It is well-known that it is possible to define more than one notion of independence for
non-additive beliefs. Ghirardato (1997) presents a comprehensive analysis of the various
notions. As Ghirardato notes (pp. 263), the problem of defining an independent product
has been studied, previous to Ghirardato’s investigation, by Hendon, Jacobsen, Sloth and
Tranaes (1996), Gilboa and Schmeidler (1989) and Walley and Fine (1982). The definition
invoked in the present paper, suggested by Gilboa and Schmeidler (1989) and Walley and
Fine (1982), is arguably the more prominent in the literature. However, the formal analysis
in the present paper, given the primitives of our model, does not hinge on this particular
choice of the notion of independence. An important finding of Ghirardato’s analysis was
that the proposed specific notions of independent product give rise to a unique product for
cases in which marginals have some additional structural properties. The capacity we use
in our model is a product of an additive probability and n two-point capacities (� consists
of two points, �0 and �1). A two-point capacity is, of course, a convex capacity and
(trivially) a belief function. As is explicit in Theorems 2 and 3 in Ghirardato (1997), if
marginals satisfy the structural properties the marginals we use do, then uniqueness of
product capacity obtains. That is, irrespective of which of the two definitions of inde-
pendence is adopted, the one suggested by Hendon et al. or the one we use, the computed
product capacity is the same. The law of large numbers that we use formally invokes the
Gilboa–Schmeidler notion (see Theorem 15 and Section 7.2 in Marinacci (1999)). Since
both notions of independence are equivalent given the primitives of our model, it is of
irrelevance to our analysis whether the law of large numbers that we use also holds if the
alternative notion of independence were adopted. In other words, conclusions of our
formal analysis are robust to the adoption of the alternative notion of independence.

4. CONCLUDING REMARKS

Financial assets typically carry some risk idiosyncratic to them, hence, disposing incomes
risk using financial assets will involve buying into the inherent idiosyncratic risk. However,
standard theory argues that diversification would, in principle, reduce the inconvenience of
idiosyncratic risk to arbitrarily low levels thereby making the trade-off between the two
types of risk much less severe. This argument is less robust than what standard theory
leads us to believe. Ambiguity aversion can actually exacerbate the tension between the
two kinds of risks to the point that classes of agents may find it impossible to trade some
financial assets: they can no more rely on such assets as routes for ‘‘exporting’’ their
income risks. Thus, theoretically, the effect of ambiguity aversion on financial markets is
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to make the risk sharing opportunities offered by financial markets less complete than it
would be otherwise. This is the principal conclusion of the exercise in this paper. This
conclusion is robust, to the extent that many of the assumptions of the model presented in
the last section could be substantially relaxed without losing the substance of the analytical
results. First, it does not matter whether the beliefs about the economic states are
ambiguous, the no-trade result still obtains. Secondly, given that diversification with
replica assets does not work with ambiguous beliefs, one might wonder whether diversi-
fication can be achieved through assets which are not replicas (in terms of payoffs). It turns
out that it does not make any difference (to the main result) if we were to relax the
assumption about ‘‘strict’’ replicas (see Mukerji and Tallon (1999)).

It is instructive to note the distinction between the empirical content of a theory of no-
trade based on the ‘‘lemons’’ problem (e.g. Morris (1997)) and the theory based on
ambiguity aversion. The primitive of the former theory is asymmetric uncertainty between
the transacting parties, and significantly, no trade may result even if there were no idio-
syncratic component. Thus that theory, per se, does not link the presence and extent of
idiosyncratic component to no trade. To obtain such a link, one has to assume, a priori,
that there is sufficient asymmetric information only in the presence of idiosyncratic
information. On the other hand, the theory based on ambiguity aversion does not require
that one assumes that ambiguity is present only with idiosyncracies, or that agents have
ambiguous beliefs especially with respect to payoffs of assets with idiosyncratic compo-
nents. One may well begin with the primitive that ambiguity is present in a ‘‘general’’ way,
across all contingencies. However, since ambiguity aversion selectively attacks only those
assets whose payoffs have idiosyncratic components, the link between idiosyncracy and no
trade is endogenously generated in the theory based on ambiguity aversion. This positive
understanding is of significance. History of financial markets is replete with episodes of
increase in uncertainty leading to a thinning out of trade (or even seizing up completely)
peculiarly in assets such as high yield corporate bonds (‘‘junk’’ bonds) and bonds issued in
‘‘emerging markets’’ (viz., Latin America, Eastern Europe and East Asia) (see Mukerji and
Tallon (1999)). The understanding also explains certain institutional structures adopted in
some countries to protect markets from such episodes (see Mukerji and Tallon (1999)).

APPENDIX

A. SOME FORMAL DETAILS RELATING TO THE CEU MODEL

Independent product for capacities

We consider here the formal modelling of the idea of stochastic independence of random variables when beliefs

are ambiguous. Let y be a function from a given space � to R, and �ð yÞ be the smallest � algebra that makes y a

random variable. �n denotes the n-fold Cartesian product of �, and � y1; . . . ; ynð Þ the product � algebra on �n

generated by the � algebras f� yið Þg
n
i¼1: The following definition was proposed by Gilboa and Schmeidler (1989),

and earlier, by Walley and Fine (1982)

Definition 1. Let �i be a convex non-additive probability defined on �ð yiÞ. The independent product, denotedNn
i¼1 �i, is defined as follows

On

i¼1
�i Að Þ ¼ minfð�1 � � � � � �nÞðAÞ : �i 2 Cð�iÞ for 1<¼ i<¼ ng:

for every A 2 � y1; . . . ; ynð Þ, where �1 � � � � � �n is the standard additive product measure. We denote by ��i any

non-additive probability on � y1; . . . ; yn; . . .ð Þ such that for any finite class f yt1 ; . . . ; ytn
g it holdsN

i>¼1
�i Að Þ ¼

Nn
i¼1 �i Að Þ for every A 2 � y1; . . . ; ynð Þ.
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The computation of the Choquet expectation operator using product capacities is particularly simple for

slice comonotonic functions (Ghirardato (1997)), defined now. Let X1; . . . ;Xn be n (finite) sets and let

� ¼ X1 � � � � � Xn: Correspondingly, let �i be convex non-additive probabilities defined on algebras of subsets of

Xi, i ¼ 1; . . . ; n:

Definition 2. Assume f : �! R. We can say that f has comonotonic xi-sections if for every

ðx1; . . . ;xi
1;xiþ1; . . . ;xnÞ, ðx01; . . . ; x0i
1; x0iþ1; . . . ; x0nÞ 2 X1 � � � � � Xi
1 � Xiþ1 � � � � � Xn, f ðx1; . . . ; xi
1; � ;
xiþ1; . . . ; xnÞ: Xi ! R, and f ðx01; . . . ; x0i
1; � ; x0iþ1; . . . ; x0nÞ: Xi ! R are comonotonic functions. f is called slice-

comonotonic if it has comonotonic xi-sections for every i 2 f1; . . . ; ng:

The following fact follows from Proposition 7 and Theorem 1 in Ghirardato (1997).

Fact 1. Suppose that f : �! R is slice comonotonic. Then

CE��i
f ðx1; . . . ; xnÞ ¼ CE�1 � � �CE�n

f ðx1; . . . ;xnÞ:

In what follows we verify that Fact 1 applies to the calculation of Choquet expected utility of an agent’s

contingent consumption vector. As in the main text let � ¼ S� f0; 1gn be the state space, with generic element
! ¼ s; t1; . . . ; tnð Þ ¼ s; tð Þ. For a given h let xð!Þ ¼ xs;t

h;n, h’s consumption at state ! ¼ s; tð Þ. Finally let u : R! R

denote the strictly increasing utility index. It will be shown that composite function, u � xð � Þ : �! R is slice

comonotonic, and therefore, the calculation of CEu xð!Þð Þ may obtain as in Fact 1. Recall,

xð!Þ ¼ xðs; tÞ ¼ e s
h þ bh þ ~zzh

Xn
i¼1

ys þ yðtiÞ

n

� �
;

where ~zzh is the holding of the diversified portfolio consisting of 1=n units of each financial asset. We first show that

x �ð Þ is slice-comonotonic. This is done by demonstrating, in turn, that x has comonotonic s-sections and

comonotonic tj-sections.

Fix t ¼ ðt1; . . . ; tnÞ and t 0 ¼ ðt01; . . . ; t0nÞ. Assume that xðs; tÞ>¼ xðs0; tÞ. Then, as required in Definition 2 (slice

comonotonicity), we want to show that xðs; t 0Þ>¼xðs0; t 0Þ. Now,

xðs; tÞ>¼xðs0; tÞ

, e s
h þ bh þ ~zzh

X
n
i¼1

y s þ yðtiÞ

n

� �
>
¼ e s0

h þ bh þ ~zzh

X
n
i¼1

ys 0 þ yðtiÞ

n

� �

, e s
h þ bh þ ~zzhy s >

¼ e s0

h þ bh þ ~zzhy s0

, e s
h þ bh þ ~zzh

X
n
i¼1

y s þ yðt0iÞ

n

� �
>
¼ e s0

h þ bh þ ~zzh

X
n
i¼1

ys 0 þ yðt0iÞ

n

� �

, xðs; t 0Þ>¼ xðs0; t 0Þ:

Hence, x has comonotonic s-sections.

Next, fix ðs; t
jÞ where t
j ¼ ðt1; . . . ; tj
1; tjþ1; . . . ; tnÞ and ðs
0; t0
jÞ. Now,

xðs; t
j; tjÞ>¼xðs; t
j; t0jÞ

, e s
h þ bh þ ~zzh

X
i 6¼j

y s þ yðtiÞ

n
þ

ys þ yðtjÞ
� �

n

� �

>
¼ e s

h þ bh þ ~zzh

X
i6¼j

y s þ yðtiÞ

n
þ

y s þ yðt0jÞ
� �

n

0
@

1
A

, yðtjÞ>¼ yðt0jÞ

, xðs0; t0
j; tjÞ>¼xðs0; t0
j; t0jÞ:

Repeating this, one shows that x has comonotonic tj-sections, for all j ¼ 1; . . . ; n. Hence, x is slice comonotonic.

Now, it is possible to see that slice comonotonicity of u � xð � Þ : �! R follows readily from the assumption

that u is strictly increasing. To this end, notice

xðs; tÞ>¼ xðs0; tÞ , u xðs; tÞð Þ>¼ u xðs0; tÞð Þ;

900 REVIEW OF ECONOMIC STUDIES



and

xðs; t
j; tjÞ>¼xðs; t
j; t0jÞ , uðxðs; t
j; tjÞÞ>¼ uðxðs; t
j; t0jÞÞ: jj

Law of large numbers for capacities. (Marinacci (1996) Theorem 7.7, Walley and Fine (1982)).

Let y be a function from a given (countably) finite space � to the real line R, and �ð yÞ the smallest �-algebra
that makes y a random variable. �n denotes the n-fold Cartesian product of �, and �ð y1; . . . ; ynÞ the product

�
algebra on �n generated by the �-algebras f�ð yiÞg
n
i¼1: Set Sn ¼ 1=n

P n
i¼1 yi: Let each �i be a convex capacity on

�ð yiÞ, and let fyigi>¼ 1 be a sequence of random variables independent and identically distributed relative to
N

�i:
Set Sn ¼ 1=n

Pn
i¼1 yi: Suppose both CE�1 y1ð Þ and CE�1 
y1ð Þ exist. Then

1:
O

�i

! 2 �1 : CE�1 y1ð Þ<¼ lim infn Sn !ð Þ<¼ lim supn Sn !ð Þ

<
¼ 
 CE�1 
y1ð Þ

� �� �
¼ 1:

2:
O

�i

! 2 �1 : CE�1 y1ð Þ < lim infn Sn !ð Þ<¼ lim supn Sn !ð Þ

< 
CE�1 
X1ð Þ

� �� �
¼ 0:

3:
O

�iðf! 2 �1 : CE�1 ð y1Þ 6¼ lim infn Snð!ÞgÞ ¼ 0:

4:
O

�iðf! 2 �1 : 
CE�1 ð
y1Þ 6¼ lim supn Snð!ÞgÞ ¼ 0:

B. PROOFS OF RESULTS IN THE MAIN TEXT

Proof of the Lemma. Suppose w.l.o.g. qzi >
¼ q zi 0

for some i; i0 2 f1; . . . ; ng: First we show that

zi
h;n

<
¼ zi 0

h;n;8h 2 1; . . . ;Hf g: Indeed, assume zi
h;n > zi 0

h;n for some h and construct the portfolio �zzh;n as follows

�zz i
h;n ¼ z i

h;n 
 "; �zz i 0

h;n ¼ z i 0

h;n þ
q zi

q zi 0
" and �zz j

h;n ¼ z j
h;n 8j 6¼ i; i0:

where " is small enough so that �zz i
h;n > �zz i 0

h;n: Note, �zzh;n is budget feasible. Let

�xx s;t
h;n � e s

h þ bh;n þ
X

n
i¼1 zi

h;nð y
s þ yðtiÞÞ for s ¼ 1; 2:

Because x s;t
h;n and �xx s;t

h;n are comonotonic, and uh is strictly increasing, it follows from Definition 1 that there

exists an additive product measure �, where � � �n
i¼1�i, and �i : 2

f0;1g ! 0; 1½ � are additive measures, such that,

CE	��ðx
s;t
h;nÞ ¼ E	��ðx

s;t
h;nÞ; CE	��ð �xx

s;t
h;nÞ ¼ E	��ð �xx

s;t
h;nÞ;

and

CE	��ðuhðx
s;t
h;nÞÞ ¼ E	��ðuhðx

s;t
h;nÞÞ;

CE	��ðuhð �xx
s;t
h;nÞÞ ¼ E	��ðuhð �xx

s;t
h;nÞÞ; s ¼ 1; 2; 8t 2 �n:

Furthermore, E�ðx
s;t
h;n j sÞ ¼ E�ð �xx

s;t
h;n j sÞ þ E�i

"yðtiÞ 
 E�i 0
"yðti 0 Þ; s ¼ 1; 2: Next, notice E�i

"yðtiÞ 
 E�i 0
"yðti 0 Þ<¼ 0.

Indeed, either zi
h;n and zi 0

h;n have the same sign, in which case �i ¼ �i 0 and E�i
"yðtiÞ 
 E�i 0

"yðti 0 Þ ¼ 0. Or

zi
h;n > 0 > zi 0

h;n and then

E�i
"yðtiÞ 
 E�i 0

"yðti 0 ÞÞ ¼ "½1
 �0 
 �1�½y 0ð Þ 
 y 1ð Þ�<¼ 0:

Hence, �xx s stochastically dominates x s. Given u00 < 0, therefore, E	��uhð �xx
s;t
h;nÞ > E	��uhðx

s;t
h;nÞ. As a con-

sequence, CE	��uhð �xx
s;t
h;nÞ > CE	��uhðx

s;t
h;nÞ. But this is a contradiction to the hypothesis that ðqn; ðbn; zn; xnÞÞ is an

equilibrium. Therefore, zi
h;n

<
¼ zi 0

h;n; 8h 2 1; . . . ;Hf g:
Since, ðqn; ðbn; zn; xnÞÞ is an equilibrium,

P H
h¼1z

i
h;n ¼

P H
h¼1z

i 0

h;n ¼ 0. Therefore, using the fact that z i
h;n

<
¼ zi 0

h;n

for all h, we get that z i
h;n ¼ z i 0

h;n for all h. jj
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Proof of the Theorem. The maximization problem ~PPh;1 given asset prices ~qq1 may be written as follows:

max E	��uh e s
h þ bh;1 þ ~zzh;1 lim

n!1

X
n
i¼1

y s þ y tið Þ

n

 �� �

s:t: bh;1 þ ~qq1 ~zzh;1 ¼ 0:

And the maximization problem Ph, solved by the agent in an economy without idiosyncracy, given asset

prices q ¼~qq1

max
X

s2 1;2f g 	 sð Þuhðe
s
h þ bh;n þ zh �yy

sÞ

s:t: bh þ ~qq1zh ¼ 0:

If n!1, by the law of large numbers, with probability 1 an unit of the portfolio ~zzn yields a payoff of

ys þ Et2 0;1f gy tð Þ � �yys units. That is, limn!1
P n

i¼1 ys þ y tið Þð Þ=nð Þ
!
a:s �yys: Recall, the financial asset z yields �yy s units

of the good in the economic states s ¼ 1; 2.
Hence, ðb1; ~zz1Þ solves the maximization problem ~PPh1 at prices ð~qq1Þ, if and only if b1; ~zz1ð Þ also solves the

maximization problem Ph at prices ð~qq1Þ:
Finally note, if ð~qq1; b1; ~zz1; x1ð ÞÞ describes an equilibrium of the n-financial assets economy with idio-

syncracy it must be that ðb1; ~zz1Þ satisfies the conditions of (asset) market clearing at the price vector ~qq1. Hence,
ð~qq1Þ will also clear asset markets in the economy without idiosyncracy. Conversely, if ð~qq1; b1; ~zz1; x1ð ÞÞ

describes an equilibrium of the economy without idiosyncracy then ð~qq1Þ will also clear asset markets in the n-

financial assets economy with idiosyncracy. jj

Proof of the Main Theorem. Consider ~PPhn, the maximization problem in the n-financial asset economy

with idiosyncracy. Suppose that, at equilibrium there exists h0 such that ~zzh0;n 6¼ 0, say ~zzh0;n > 0: Then, there must
be h00 such that ~zzh00;n < 0: Next, since ~zzh0;n > 0, and y 0ð Þ < yð1Þ, Fact 1 together with the fact that uhðx

!
h;nÞ is slice-

comonotonic (see Appendix A), implies that CE	��uh0 ðx
s;t
h0;nÞ is a standard expectation with respect to the additive

measure 	� �ðtÞ, where �ðtÞ ¼ ð1
 �1Þn0 � ð�1Þn
n0 , n0 being the number of financial assets whose idiosyncratic

payoff is y 0ð Þ at state s; tð Þ. This is because x
s; ti;t
ið Þ

h0;n is necessarily smaller at a state s; 0; t
ið Þð Þ than at the state

s; 1; t
ið Þð Þ, s ¼ 1; 2: The first order conditions of the problem ~PPh0n (for agent h0) then give

~qqn ¼

E	��

X
n
i¼1

ys þ y tið Þ

n

� �
u 0h0 x s;t

h0;n

� �� � �

E	�� u 0h0 x s;ti

h0;n

� �h i :

Notice, for s ¼ 1; 2, xs;t
h0;n and

P n
i¼1 ys þ y tið Þ=nð Þ are positively dependent given s (see Magill and Quinzii (1996))

since ~zzh0;n > 0: Hence, because u00 �ð Þ < 0,

Covariance
X

n
i¼1

ys þ y tið Þ

n

� �
; u 0h0 x s;t

h0;n

� �� �
< 0; given s:

Now

E�

X
n
i¼1

y s þ y tið Þ

n

� �
u 0h0 x s;t

h0;n

� �� � �

¼ Covariance
X

n
i¼1

ys þ y tið Þ

n

� �
; u 0h0 x s;t

h0;n

� �� �
þ E�

X
n
i¼1

ys þ y tið Þ

n

� � �
E�u 0h0 x s;t

h0;n

� �
:

Thus,

E�

X
n
i¼1

ys þ y tið Þ

n

� �
u0h0 x s;t

h0;n

� �� � �
< E�

X
n
i¼1

y s þ y tið Þ

n

� � �
E�u0h0 xs;t

h0;n

� �
:

Hence,

~qqn <

X2
s¼1	 sð ÞE�

X
n
i¼1

y s þ y tið Þ

n

� � �
E�u0h0 x s;t

h0;n

� �
X2

s¼1	 sð ÞE� u0h0 x s;t
h0;n

� �h i

) ~qqn < max
s

E�

Xn
i¼1

ys þ y tið Þ

n

� � �� �

) ~qqn < ys þ 1
 �1
� �

y 0ð Þ þ �1y 1ð Þ: ð1Þ
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Consider next, h00 such that ~zzh00;n < 0: By a reasoning similar to that followed for the agent h0 (noticing x s;t
h00;n andP n

i¼1 y s þ y tið Þð Þ=nð Þ are negatively dependent given s) one gets

~qqn > y s þ 1
 �0
� �

y 1ð Þ þ �0y 0ð Þ: ð2Þ

Therefore, a necessary condition for having an equilibrium with ~zzh;n 6¼ 0 for at least some h is that ys


y s > 1
 �0 
 �1
� �

y 1ð Þ 
 y 0ð Þð Þ: Set �AA ¼ ðys 
 ysÞ=ð y 1ð Þ 
 y 0ð ÞÞ 2 0; 1ð Þ. If 1
 �0 
 �1 > �AA, then ~zzh;n ¼ 0 for all h,

at any equilibrium.

Finally, note if n!1, CE	��uh0 ðx
s;t
h0;nÞ is just a standard expectation operator with respect to the additive

measure 	� � tð Þ, where � tð Þ is such that

� t : lim
n!1

X
n
i¼1

ys þ y tið Þð Þ

n

� �
¼ y s þ 1
 �1

� �
y 0ð Þ þ �1y 1ð Þ

� �� �
¼ 1:

The proof then proceeds as in the case of finite n except that the inequality (1) reads

lim
n!1

~qqn
<
¼ ys þ ð1
 �1Þy 0ð Þ þ �1y 1ð Þ;

and the inequality (2) reads limn!1 ~qqn
>
¼ y s þ ð1
 �0Þy 1ð Þ þ �0y 0ð Þ: jj
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