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ECONOMETRICA

VorLUuME 5G Marcu, 1982 NUMBER 2

“EXPECTED UTILITY" ANALYSIS WITHOUT THE
INDEPENDENCE AXIOM!

By Mark J. MACHINA®

Experimentdl studies have shown that the key behavioral assumption of expected utility
theary. the so-called “independence axiom.™ tends o be siyrematically violated in practice.
Such findings would lead us to question the empirical relevance of the large bady of
literature o the hehavior of economic agenls under uncertainty which uses expected utility
analysis. The first purpose of this paper is 1o demonstrate that the basic concepts, torols,
and results of expected utility analysis do nat depend on the independence axiom. but may
he derived from the much weaker ussumption of smoothnesy of preferences over alterna-
tive probability distributions. The second purpuse of the paper is (o show that this
approach may be used @ consteuct & simple model of preferences which ties wgether &
wide hody of ghserved hehaviar toward risk. including the Friedman-Savage and Marka-
witz abservations, and hoth the Allais and S. Petershurg Paradoxes.

I INTRODUCTION

AS AN APPROACH to the theory of individual behavior toward risk, the expected
utility model is characterized by the simplicity and normative appeal of s
axioms, the familiarity of the notions it employs (utility functions and mathemat-
ical expectation), the elegance of its characterizations of various types of behav-
jor in terms of praperties of the utility function (risk aversion by concavity, the
degree of risk aversion by the Arrow-Pratt measure, etc.), and the large number
of results it has produced. Tt is thus not surprising that most current theoretical
research in the economics of uncertainty, as well as virtually all applied work (n
the field (e.g. optimal trade, investment, or search under uncertainty)’ is under-
taken in the expected utility framework.*

Nevertheless, the expected utility hypothesis is still a particular hypothesis
concerning individual preferences over alternative probability distributions over
wealth. In the years following its revival by von Neumann and Morgenstern in
the Theory of Games and Economic Behavior [99], it became generally recognized
that expected utility theory depended crucially on the empirical validity of the

' An earlier version of this paper was presented to the 1979 North American Summer Meetings of
the Econometric Society, Montreal, June, 1979,

1 would like o thank Vince Crawford, Peter Diamond, Mark Durst. Ted Groves, Frank Hahn.
Klauy Heiss. Walt Heller. David Kreps. Andreu Mas-Colell. Eric Maskin, Jim Mirrlees, David
Newbery, Mike Raothschild, anonymous referees, the Editor, and especially Franklin Fisher for
helpful comments on this material. They are, of course, not responsible far errors, [ am also grateful
to the National Science Foundation and the Social Science Research Councll for financal support.

1See, for example. Helpman and Razin [42] and Levhari and Srinivasan {51].

*The one significant exception to this statement is the “state preference” approach to behavior
taward risk (see, for example, Dehreu [18. Ch. 7| or Hirshleifer (44]). However, since this approach
works with distributions af payoffs over states rather than with distributions of probability mass over
payaffs. many of the issues discussed in the present paper da nal bear directly an this approach.

m



278 MARK I. MACHINA

so-called “independence axiom.™ One of several equivalent versions of this
axiom reads “a risky prospect 4 is weakly preferred (i.e. preferred or indifferent)
ta a rnisky prospect B if and only if a p: (1 — p) chance of A4 or C respectively is
weakly preferred to a p:(1 - p) chance of B or C, for arbitrary positive
probability p and risky prospects A, B, and C.” In particular, the role of the
other axioms of the theory, which essentially amount to the assumptions of
completeness and continuity of preferences, is essentially to establish the exis-
tence of a continuous preference function over probability distributions, in much
the same way as is done in standard consumer theory. It is the independence
axiom which gives the theory its empirical content by imposing a restriction on
the functional form of the preference function. It implies that the preference
function may be represented as the expectation with respect to the given
distribution of a fixed utility function defined over the set of possible autcomes
(.. ultimate wealth levels). In other words, the preference function is constrained
to be a linear functional over the set of distribution functions, or, as commonly
phrased, “linear in the probabilities.”

The high normative appeal of the independence axiom has been widely
(although not universally)’ acknowledged. However, the evidence concerning its
descriprive validity is not quite as favorable. The example of its systematic
violation in practice which is perhaps best known to economists is the famous
“Allais Paradox.” This example (described below) consists of asking individuals
to choose a most preferred prospect out of each of twa specific pairs of risky
prospects. Researchers have found that the particular choices made by the great
majority of subjects in this situation violate the independence axiom, and hence
are inconsistent with the hypothesis of expected utility maximization.

In addition, a large amount of research on the validity of the expected utility
model has appeared in the psychology literature, where experimenters have
similarly discovered that preferences are in general nof linear in the probabilities.
Edwards, in one of his reviews of this literature, asserted of expected utility
maximization that “in 1954 it was already clear that it too [i.e. as well as expected
value maximization] does not fit the facts” [26, p. 474].

Although these findings have led some researchers, both psychologists and
econamists, to propose alterpative theories of behavior toward risk,® expected
utility theory continues to be the dominant framework of analysis in the
economics literature. Since it is likely to remain so in the future, it would seem
crucial that we have some idea of the descriptive realism of the theory in light of
the apparent invalidity of its key behavioral assumption. In other words, “how

? Although this axiom did not appear explicitly in the original von Neumann-Morgenstern axiom
system, Malinvaud [59] has shown it to have been implicitly assumed in their pre-axiomatic
formulation. Two important early formulations of the axiom are thase of Marschak {61] and
Samuelson {80], each of whom refer to similar work by other authors.

“3ee, for example, Debreu [(8, Ch. 4].

"See the debate between Woald, Schackle, Savage, Manne, Charnes, and Samuelsan on the a priori
plausibility of the independence axiom in the October, 1952 issue of this Journal, as well as the
remarks in Allais [3, pp. 99-103].

ESee. for example, the set of madels discussed in Section 2.5 below.
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robust are the concepts, tools, and results of expected wtility theory to failures of the
independence axiom?”

The first purpose of this paper is to demonstrate that expected utility analysis
is in fact quite robust to failures of the independence axiom. Specifically, it is
shown that, far from depending on the independence axiom (i.e. linearity of the
preference functional), the basic concepts, tools, and results of expected utility
analysis may be derived by merely assuming smoothness of preferences (i.e. that
the preference functional is differentiable in the appropriate sense). This implies
that while the independence axiom, and hence the expected utility hypothesis,
may not be empirically valid, the implications and predictions of theoretical
studies which use expected utility analysis typically wilf be valid, provided
preferences are smooth. Several such results, including the Arrow-Pratt theorem,
are formally proven for the general case of smooth preferences.

The second purpose of this paper is to demonstrate that this general analytic
approach, termed “generalized expected utility analysis,” may be used to con-
struct a simple, yet evidently quite powerful model of individual behavior toward
risk. Specifically, it is shown that two simple hypotheses concerning the shape of
a fixed nonlinear preference functional over probability distributions serve to
generate predictions consistent with (i) the typical behavior exhibited in the
Allais Paradox, (i) other experimental evidence regarding systematic violations
of the independence axiom, (iii) the general observations on insurance and
Jotteries made by Friedman and Savage in their classic article on the expected
utility hypothesis, (iv) the subsequent observation by Markowitz and others that
preferences over alternative gambles are relatively independent of the level of
current wealth (and hence that utility functions apparently shift when wealth
changes), and (v} the typical behavior exhibited in the St. Petersburg Paradox
and its generalizations. Thus, a number of seemingly unrelated aspects of
behavior toward risk are seen to be jointly consistent with the hypothesis that the
individual is maximizing a fixed preference functional defined over distributions,
which in addition is particularly simple in shape.

Section 2 of this paper offers a historical overview of the expected utility model
as a descriptive model, treating each of the above five behavioral observations,
and discussing the various, and often ad hoc, modifications of the model which
have been made to account for some of them. The applications of the tools and
theorems of expected utility theory to the analysis of general nonlinear prefer-
ence functionals is developed in Section 3. In Section 4 this approach is used to
construct a simple madel of preferences which is consistent with (and in some
cases predicts) each of the above five aspects of behavior. Among other things, it
is argued that this model offers (1) a simple characterization of the exact nature
of observed violations of the independence axiom, (ii} a reconciliation of the
relative independence of gambling behavior to current wealth with the hypothesis
of a fixed preference ranking of probability distributions over ulumate wealth,
and (iii) a resolution of the debate in the expected utility literature concerning the
boundedness of the utility function. The paper concludes (Section 5} with some
brief remarks on the topics of testing the model and applications of the analysis
to the study of social welfare functionals.
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1. EXPECTED UTILITY MAXIMIZATION AS A DESCRIPTIVE MODEL

In this section we consider several classes of observations concerning individ-
ual preferences over risky prospects, and give an account of how the expected
utility model has been used, and in some cases adapted and modified, to account
for these various types of behavior.

2.1, Insurance, Lotteries, Skewness Preference, and rhe
Friedman-Savage Hypothesis

The primary motivation for the classic article by Friedman and Savage [33]
came from their observations that “the empirical evidence for the willingness of
persons of all income classes to buy insurance is extensive” [33, p. 285, or 91, p.
66], that “the empirical evidence for the willingness of individuals to purchase
lottery tickets, or engage in similar forms of gambling, is also extensive” [33, p.
286, or 91, p. 67], and their belief that a large number of individuals purchase
both.” They offer as a von Neumann-Mergenstern utility function which explains
these particular observations one which has the form shown in Figure 1. The key
aspect of such a utility function is that it is concave, and hence locally risk
averse, about low outcome levels (i.e. low levels of ultimate wealth), linear {(to a
second order approximation) and hence locally risk neutral at the inflection
point, and convex (locally risk loving) for high outcome values.'?

In addition to its well known implications concerning the purchase of insur-
ance and lottery tickets, another implication of the utility function of Figure 1,
noted by Markowitz [60, p. 156}, is that an individual with such a utility function
will tend to prefer positively skewed distributions (ones with large right tails) over
negatively skewed ones (ones with large left tails). The purchase of a lottery
ticket, for example, induces a positively skewed distribution if initial wealth was
certain, and insuring against a small probability-low cutcome event transforms a
negatively skewed distribution inte a symmetric {certain) one. Since a mean
preserving increase in risk (see [74]) which is “centered” in the upper tail of a
symmetric distribution induces positive skewness, and one which is centered in
the lower tail induces negative skewness, a preference for positive over negative
skewness suggests that the individual will tend to prefer increases in risk in the
upper (ail of a given initial distribution of wealth over equivalent risk increases in
the lower tail. Such a tendency 1s clearly an implication of the utility function of
Figure 1.

The notion of a relative preference far (equivalently, 2 lower aversion to) risk
increases in the upper rather than the lower tail of an initial distribution may be
formalized by adapting the following definition:

#See alsa the comments of Adam Smith and Alfred Marshall in this regard quoted in [33, p. 284 or
91, p. 65], as well as the reference to a distant relative of the authaor [33, p. 280 or 91, p. 38].

""Mention should be made of the various attempts (e.g. Flemming [32], Hakansson [39), Kim [47],
and Kwang [50]) to reconcile the simultaneous purchase of insurance and lottery tickets with the
assumption of geperal risk aversion via such assumptions as indivisibility of expenditure, imperfect
capital markets, etc.
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Uix)

FIGURE |

DerINttron: [f F(-) and F*(-) are two cumulative distribution functions over
a wealth interval [0, M], then F* 1s said to differ from F by a simple compensated
spread if the individual is indifferent between F and F*, and if [0, AM] may be
partitioned into disjoint intervals I, and [, (with [, to the left of I,) such that
FXx)2 Fix)forall x in {, and F*(x) = F(x) forall x in {,."!

A relative preference for risk increases in the upper rather than the lower tail
of an imitial distribution then implies that, if a given set of changes in the
prababilities of the elements of the set 4 C[0,M] can be represented as a
sequence of simple compensated spreads, then the same respective changes in the
probabilities of the set A + ¢ = (x4 c|x & A} are weakly preferred if the
constant ¢ is positive, and weakly not preferred if it is negative.'?

""This definition is motivated by the “single crossing property” of Diamond and Stiglitz [19), and
it is clear that when the individual is an expected utility maximizer, sequences of simple compensated
spreads are equivalent to mean utility preserving increases in risk [19, pp. 341-345].

"It is impaortant to distinguish between this behavioral principle and the Kahneman and Tversky
“reflection effect™ (46, pp. 268-269], which states that the preference ranking aver a pair of prospects
{defined in terms of gains and losses) reverses when all the outcome values are reversed in sign. Since
such an effect concerns the relative rankings within two distiner pairs of prospects. and since any
spread of prebability mass relating the initial pair of prospects is itself “reflected.” it is quite distinct
from the present principle, which concerns the ranking of a single pair of prospects, each of which is
obtained from a given initial distribution by a spread which, though horizantally translated, is not
reflected. Note that while Kahneman and Tversky's associated hypothesis of “risk aversion in the
positive domain [ie. among prospects involving gaing] . .. accampanied by risk seeking in the
negative damain™ [46, p. 268] is supported by their examples 7, 7/, 10, 11, 12, 13, and 13", preferences
in problems 1, 3, and 3’ may be explained by positive skewness preference, and in problems 2, 4. and
4" by the differences in the expected values of the prospects. Examples 8, &, 14, and 14, on the other
hand, actually contradict their hypothesis.
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There is evidence to suggest that positive skewness preference and a relative
preference for risk increases in the upper rather than the lower tails of distribu-
tions are also exhibited by an important class of individuals not characterized by
the utility function of Figure 1, namely global risk averters. Tsaing [94, pp.
359-360] and Hirshleifer [45, pp. 282-283] have argued that positive skewness
preference is evidently prevalent among risk averse investors, the former pointing
to a number of financial devices which allow investors to increase the positive
skewness of their returns. Indeed, such preferences were espoused as long ago as
the eighteenth century by Condorcet (see (82, pp. 44-45]). Evidence of a relative
preference for risk increases in the upper as opposed to the lower tail of an initial
distribution has also been uncovered by Mosteller and Nogee. At cne point in
their experiment [66, pp. 386-389], subjects were asked to leave written instruc-
uens to an “agent” who would be faced with a sequence of gambling opportuni-
ties in their absence. Although these instructions were predominantly risk averse,
they frequently suggested that the agent play more liberally when doing well. In
other words, there were some gambles the agent was instructed always to take,
and some, never to take. Such a policy would result in some particular distribu-
tion of winnings. The designation of additional gambles which should be taken
only if cumulative winnings have been high enough indicates that there are some
further increases in risk which would be preferred if they occurred in the upper
tail of this distribution, but not preferred if they occurred in the lower tail."

2.2, The St. Petershurg Paradox, the Structure of Lotteries, and the
Boundedness of Utiliry

At a later point in their article (33, pp. 296-297, or 91, pp. 84-85], Friedman
and Savage point out that an individual with a utility function as in Figure | and
with initial wealth near the inflection point would always pay more for a lottery
ticket offering a probability p of $Z than for a ticket with two such chances {i.e.
probability 2p) of winning $Z /2. On this basis, they reject the shape in Figure 1
as inconsistent with theic final observation, namely that (lottery designers are
presumably profit maximizers, and) “lotteries typically have more than ane
prize” [33, p. 294, or 91, p. 80]. Writers from Cournot (see [90, n. 127]) through
Menger [63, p. 226] and Markowitz [60, pp. 153—-154] have made essentially this
same point. namely that the amount the individual would pay for a 1/n chance
of winning $xZ, though possibly increasing at first, is an eventually declining
function of »n. In light of this, Friedman and Savage modified their original
proposed shape so as to include a terminal concave section, as in Figure 2.'%'

Y Markowitz (60, pp. 155-156] has noted that such instructions also imply what has been seen ta
be & related behavior, namely positive skewness preference.

'4Strictly speaking, the terminal segment must be sufficiently concave (see [33, n. 34)).

““Markowitz [60] subsequently modified the theory further by adding a third inflection point to
the left of the first one, since “the individual generally will prefer ane chance in ten of owing
$10,000,000 rather than owing $1,000,000 for sure™ (60, p. 154]. Thus, the amount the individual
wauld pay to avoid a | /n chance of lasing $2Z may similarly eventually decline in n. An alternative
explanation is that the individual views the actual consequences of owing either amount as identical
(te. total bankruptey) 2nd simply acts o minimize the probability of this common outcome.
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Uix}

FlGURE 2

A second objection to the utility function of Figure 1 comes from the typical
response to the famous “St. Petersburg Paradox” and its generalizations.'® The
ariginal form of this paradox was the observation that an individual typically
would never forgo a significant amount of wealth to engage in the gamble which
offered a payoff of $2'~' with probability 27/ for i = 1,2, . .., even though the
expected winnings from this gamble are infinite. Since an tndividual with a
Figure 1 utility function clearly wowld forgo any finite sure level of wealth to take
this gamble, such a utility function must be abandoned as unrealistic. In his
classic article, Menger [63] generalized the paradox by showing that whenever the
utility function was unbounded, similar gambles could be constructed which also
had infinite certainty equivalents,"”’ so that the utility function of Figure 2 must
be further modified so as to be bounded for all outcome levels. Mare recently,
Arcow [6, pp. 63-69] (see also Samuelson [82, pp. 35-36 and footnote 14}) has
shown that an individual with unbounded utility must violate either the com-
pleteness or the continuity axiom of expected utility theory.'®

A common objection to the “evidence” posed by the St. Petersburg Paradox
and to the extent of the problems posed by unbounded utility has been that no
person, or for that matter, no society, could ever offer such a gamble to the
individual, and therefore it is meaningless to ask how much such a gamble would
be worth. However, as has been shown (see Aumann [9, p. 444] and Samuelsan
[82, pp. 32-34]), the incompatibility of unbounded utility with “reasonable™

1¥See Samuelson [82] for a historical and eritical overview of the literature surrounding the
paradox, and Shapely [86, 87) and Aumann [9] for maore recent comments.

Tlet x, = U/~ '(2') and consider the gamble which offers $x, with probability 27 far i = 1,2,
K R

"8See alsa Ryan [79], Arraw [7], Shapley [86. 87], Aumann [9], Fishburn [29], and Russell and Seo
(78] on this issue.
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behavior may be demonstrated even if only distributions with finite numbers of
outcomes are considered. The simplest such instance is the implication that, if
utility 1s unhounded, for any arbitrarily large amount $C and arbitrarily small
positive probability p. there will always be some amount $Z such that the
individual will prefer a p chance of winning $Z to a certain gain of $C.

The evidence thus suggests that the utility function of Figure 1 must be
replaced by one as in Figure 2, that U(-) must be bounded, and furthermore that
the second inflection point must occur at an empirically relevant outcome level '
Although such restrictions are necessary to make the expected utility model
consistent with the observations considered above, they reduce the elegance with
which the observations of Section 2.1 were modelled by the utility function of
Figure 1. Tn particular, the degree of risk aversion is no longer monotenic in the
outcome level, Thus, for example, 2 Masteller-Nogee subject with a Figure 2
utility function would instruct an agent to play more liberally when deing well,
provided winnings have not been tfoo high, and, if playing conservalively at this
high wealth level results in sufficient losses, mare liberal gambles ought once
again o be taken,

2.3. The Relative Invariance of Gambling Behavior 1o [nitial Wealth and
the Markowitz Hyporhesis

The next ohjection to {and modification of} the original Friedman-Savage
utility function concerned not so much the typical shape of the utility function,
but rather the more fundamental issue of the stability of preferences. Recall that
the independence axiom. in conjunction with the other axioms of expected utility
theary (see, fur example. Herstein and Milnor [43]} implies that the preference
ranking corresponds to the expectation of a fixed utility function defined over
final consequences, or in other words, ultimate levels of wealth. Indeed. Fried-
man and Savage, in their discussion of the standard method of esumating the
utility functon by fixing its values at two arhitrary wealth levels, pointed out that
the expected utdity hypothesis would be violated 1f the use of another pair of
wealth levels as reference points “yielded a utility function differing in more than
origin and unit of measure from the one initially obtained™ [33, p. 292, or 91. pp.
77-18). Thus, when faced with alternative gambles, that is, prospects expressed in
terms of deviations from current wealth, the individual will choose that gamble
whose implied distribution over ultimate wealth levels has the highest expected
utility ™ This procedure of “integrating™ (ie. convoluting) alternative gambles
with initial wealth before ranking is referred to by Kahneman and Tversky as
“asset integration™ (46, p. 264].

MStiglitz [92] has atgued that the requirement of houndedness does nat rule out the case of Lix)
being convex for all x less than a (rillion dollars. If such were the case, however, we would nat
abserve lotteries offering multiple prizes of values less than this amount. nor would the individual's
valuation of a 1 /n chance of $# start declining untl » were al least ane teillion,

MHence Edwards' statement that “the fundamental idea of a utility scale is such that the whale
steucture of 4 subject’s choices {over such gambles] should be altered as a result of [the change in
initial wealth due to] each previous choice (if the choices are real ones involving money gains ar
lossesy” {24, p. 395).
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However, as noted by Markowitz [60], the assumption that the utility function
of Figure 2 15 defined over ultimate wealth levels 15 nor consistent with the
observed tendency of individuals of all wealth levels to purchase insurance and
lottery tickets.”" Individuals with wealth levels less than ¢ (“poor”) or greater
thun 4 (“well to do™} would never accept any fair bets, for example, yet “even
poor people, apparently as much as others, buy sweepstakes tickets, play the
harses. and participate in other forms of gambling. Rich people play roulette and
the stock market™ [60. p. 153]. Similarly, an individual with wealth just below o
would be willing to take an expected loss for the privilege of underwriting
insurance against large losses. In addition, individuals with wealth near (¢ + 4
/2 would prefer all symmetric and other fair bets of up to at least (d — ¢)/2,
even though “generally people avoid symmetric bets™ [60, p. 154]. Noting that
individuals of all wealth levels tend to behave as if their initial wealth was near
the left inflection point e in Figure 2, Markowitz hypothesized that changes in
wealth caused the utility function to shift horizontally so as to keep this inflection
point at or near the current or “customary” level of wealth.?*

The experimental evidence similarly suggests that individual gambling behav-
ior at different initial wealth levels is more indicative of a shifting utility function
than of movements along a fixed utility function. In reestimating the “utility
curves™ of subjects after periods of a few days to several weeks (during which
their wealth must surely have changed by amounts greater than those involved in
the experiment). Davidson, Suppes, and Siegel found that seven of their eight
subjects “gave responses which were substantially consistent with the original
results”™ and that three of them “performed the rather astonishing feat of exactly
duplicating their first choices (they were given no hint as to what their earlwer
choices had beeny” [17, pp. 68-69. 81]. Since Mosteller and Nogee also failed to
account for wealth changes between sessions, their conclusion that “on the basis
of empirical curves [constructed from data obtained over several sessions] it is
possible to estimate future behavior in comparable but more complicated risk-
taking situations™ [66. p. 403] also supports this conclusion.™ In a somewhat
different context, Edwards [23] observed preferences over pairs of prospects
invalving fixed probabilities and a common (though variable) expected value and
noted that *if the utility curve is non-linear . . . then a markedly different set of
choices should be made at each different EV-level (since at each different
EV-level different amounts of money, falling at different places on the utility
curve, are involved 1n the betsy” [23. p. 87]. Finding that the observed choices
generally did not depend on the expected value level, he was led to reject the
existence of “one utility curve consistent with all these sets of choices™ (23, p. 8§7].

'This implication was also noted by Friedman and Savage [33, pp. 300-301 or 91, pp. 90-91] (see
alse: Hirshleifer [44. pp. 2539-261]).

“IMarkowitz suggested that the utility function muight also undergo a horizontal expansion as it
shifts to the right. so that the distance hetween the inflection paints might be an (ncreasing function
of initial wealth [60. p. [55].

**Note that neither Davidson. Suppes, and Siegel nar Mosteller and Nagee found that individuals
typically exhibited constant absolute risk aversion, which would also have served to explain their
observations.
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Presumably as a result of their survey data, Kahneman and Tversky have also
concluded that “the preference order of prospects [defined in terms of gains and
losses] is not greatly altered by small or even moderate variations in asset
position” [46, p. 277]. Most recently, Binswanger [12] has used expenimentally
obtained data on the risk preferences of rural Indian villagers to conduct an
explicit test of the asset integration hypothesis, which was formally rejected in
favor of the alternative of a shifting utility function.?*

The Markowitz hypothesis of a shifting utility function implies that changes in
initial wealth essentially cause the individual to go back and rerank the entire
“consumption set” of distibutions over ultimate wealth levels. Such a hypothesis,
asserting that preferences cannot be defined independently of the current con-
sumption point is, in the words of Eden, “disturbing to economists who use the
assumnption of ‘constant tastes’ quite heavily .. . it is hard to see how positive
economics can do without this assumption and it is almost impossible to think of
welfare economics without it” [20, p. 125]. While the phenomenon of a relative
invariance of gambling behavior to initial wealth, and in particular a simulta-
neaus propensity to insure, buy lottery tickets, and avoid symmetric bets at all
wealth levels may well contradict the joint hypothesis of constant tastes and
expected utility maximization, such behavior (including the insurance-lotteries-
symmetric bets observation) is not incompatible with the existence of any fixed
preference ranking over ultimate wealth distributions, as will be shown in
Sections 4.4 and 4.5 below. Thus, before dropping the assumption of constant
tastes In order to save the assumption that the individual is maximizing the
expectation of some utility function at each initial wealth level, it is crucial that

we examine the extent to which this latter assumption is in fact warranted by the
data.®®

M The evidence on the effect of changes in wealth wirkin sessions, however, is less conclusive. In an
analysis of some of the subjects of their pilot study, Mosteller and Nogee found at least same
evidence that the greater the amount of money “on hand.” the greater the propensity to gamble (66,
pp. 399-402), although that portion of the evidence which they present seems incanclusive, and
Edwards has in fact interpreted them as concluding that “the amount of money possessed by the
subjeets did not seriously influence their choices™ [24, pp. 395]. Mosteller and Nogee's analysis of the
original Preyton and Baratta data, an the ather hand, “did not reveal . . . any evidence of differential
bidding for gambles at the beginning and end of the game [i.e. session]” [66, p. 398}, Similarly, while
MeGlothlin found a tendency for bettars at pari-mutuel horse races to increase both the size of their
wagers and the propartion of long-shot bets during the course of the racing day (i.e. “session™), he
also found that, with the exception of the seventh (“feature™) race of the day and the final eighth race
(where “bettors apparently refrain from making bets which wauld not recoup their lasses if
successful™ [62, p. 614]), “the first six races all yield E~-vs.-odds patterns that do not differ from the
pattern for the total sample by more than the sampling errar™ (62, p. 610]. Since intra-session wealth
changes are due selely to gambling gains and losses, differences in the short and long run effects of
such changes might be related to Davidson, Suppes, and Siegel's observations that “winning or losing
several times in a row made subjects sanguine or pessimistic and tended to produce altered responses
to the same offers” and “if the same syllable [on 2 random die] came up three times in succession, for
example, the subjective prabability wauld temporarily decrease for most subjects” [17, pp. 33, 54).

2 Gee Section 4.4, hawever, far references ta some experimentally observed chaice behaviar {under
both certainty and uncertainty) of a different nature which apparently does contradict the assumption
of constant tastes.
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Fioure 3.—The Allais Patadox (5 1M = $1.000.000).

2.4, Systematic Violation of the Independence Axiom: The Allais Paradox

[n this section and the next we consider the evidence that, even at a fixed
initial asset position, individual rankings over alternative risky prospects tend to
systematically violate the independence axiom, and hence are inconsistent with
the hypothesis of expected utlity maximization.

The most widely discussed of such examples is the famous “Allais Paradox™
(see, for example, Allais [2,3,4], Allais and Hagen [S], Raiffa [70. pp. 80-86], or
Morrison [64]), where the individual is asked to rank a partieular pair of risky
prospects @, and a,, and then asked to rank the pair «, and a,, where the payoffs
and their corresponding probabilities are given in Figure 3. Since the shifts in
probability mass in moving from prospect @, to a, and from a, to a, both consist
of lowering the probability of winning $1M by .11 and raising the probabilities
of winning $5M and $0 by .10 and .01 respectively, an expected utility maximizer
would either prefer a, to a; and a, to «; (i.e. prefer the common shift) if the sign
of [LOTUw) —. 11U w4+ 1M +.10U(w + SM)] is positive, or else prefer @, to a,
and a, to a4 (i.e. not prefer the shift) if the sign is negative, where w is initial
wealth.

Allais and athers (e.g. Raiffa [70, p. 80], Marrison [64]), however, have found
that the majority of subjects questioned prefer ¢ in the first pair and a, in the
second, a pair of choices which viclates the independence axiom. Morrison, for
example, reporied that when preseated to a class of first year MBA students who
had not been exposed to expected utility theory, 80 per cent made the abave
choices, and that even when presented to a similar class which had been exposed
to the theory, the percentage of such “inconsistent” choices was still 50 per cent.
Indeed, Savage himself made these choices when presented with the example,
although he later changed his preferences to conform with the independence
axiom [83, pp. 101-103].° The fact that the same pair of choices are made by so
high a percentage of subjects makes the Allais Paradox a key example of the
systematic violation of the independence axiom. Finally, it should be noted that

%Note that the version of the paradox presented in [83] differs from Figure 3 in that the labeling
of pruspects 3 and 4 is reversed and all payoffs are scaled down by §.
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this example 18 not an isolated case: individuals faced with similar choice
situations have tended o violate the axiom in what will be shown to be the same
systematic fashion (see, for example, the evidence reported in Kahneman and
Tversky [46, Problems 1 & 2 and Table 1], Hagen [38, pp. 285-296]. and
MacCrimmon and Larsson [57, pp. 350-369], most of which involves more
maoderate payoff levels than in the Allais Paradox).

One characterization of how such behavior systematically violates the indepen-
dence axiom involves comparing the class of utility functions which rank a, over
a; with the class of functions which rank a, over a,. Note that the prospects a,
and a, respectively stochastically dominate®” a, and a4, and recall that a atility
function L/(-) ranks a, aver a, (a, aver a,) if and only if [[01U(w) —. 118 (w +
TMYy+. 10U (w + SM)Y] 1s negative (positive), or equivalently, if and only if
receiving $1 M with certainty is preferred (not preferred) to a 10/11 chance of
$5M. Thus, in evaluating the change from a, to a,, the typical individual acts as
if using a utility function which 1s more risk averse than the one “used” to
evaluate the change from a, to a,. An analysis of the above cited evidence of
Kahneman and Tversky, Hagen, and MacCrimmon and Larsson similarly re-
veals a tendency for individuals 1o violate the independence axiom by ranking
the stochastically dominating pair of prospects “according to” a utility Function
which is more risk averse than the one “used™ to rank the stochastically
dominated pair.**

An alternative characterization of such behavior, in a form mere directly
comparable to the independence axiom, involves the nation of the “conditional
certainty equivalent” of a prospect. Returning to Figure 3, define the prospect a*
as a [/11:10/11 chance of winning $0 or $5M respectively, and let £ be an
event with probability .11. Then the prospects a,, a,, a;. and a, have the same
distributions as the compound prospects which respectively vield $1M, a*, a*,
and $1M if £ occurs, and $1M, $1 M, 30, and $0 if ~ E occurs. Tt is clear that
the independence axiom requires that the conditional certainty equivalent of a*
in £. that is, the amount which the individual would. ex ante, just be willing to
substitute for a* if £ occurs, be independent of what would ensue if ~E were o
oceur. However, the typical preference for ¢, over a, and a, over a, implies that
the conditional certainty equivalent of a* in £ is less than $1 M when ~ E vields
$1 M with certainty and greater than $1 M when ~E yields $0. A similar analysis
of Kahneman and Tversky [46, Problems | & 2] and MacCrimman and Larsson
[57, pp. 360-369] ({i.e. that portion of the above cited evidence which can be
formulated in this framework) also reveals the general property that, for a given
event £ and prospect a*, stochastically dominating shifts in the conditional
distribution of wealth in ~ £ will lower the conditional certainty equivalent of a*

Y Throughaut this paper. “stochastic dominance™ refers to first arder stochastic dominance (see
Hadar and Russell [37]}.

*¥Nate that in some of these examples the vectors of changes in the probabilities of the payeffs
between each puir are nat identical (as in the Allais Paradox) but rather scalar multiples of each
other. a fact which has no bearing on the applicability of the above type of caleulation.
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in £. Thus, contrary to the precepts of the independence axiom, the more that
individuals stand to lose if the event £ occurs (that is, the better off they would
be in ~ E). the more risk averse they become in evaluating a given risky prospect
a* in £. Equivalently, individuals are less risk averse toward a given prospect a*
in £1if E is the “preferred event” {i.e. when ~ E involves low outcome values)
than when E is not the preferred event (i.e. when ~ £ involves high outcome
values).*

A possible objection to the validity of this (and the following) evidence against
the independence axiom is that individuals, when shown how their choices
viclated the axiom, would, like Savage, change their preferences to conform with
it (see the discussions in Savage [83, pp. 102-103], Raiffa [70, pp. 80-86]. and
MacCrimmon [56. pp. 9-11]). While this phenomenon would clearly be a
testimony to the normarive appeal of the axiom, it is irrelevant to the positive
theory of behavior toward risk (would an insurance company base its estimate of
the pedestrian fatality rate on the widely held belief that the individual, if
reminded, would always choose to look both ways before crossing a street?).
Finally, there is evidence that the ability of experimenters to talk subjects out
of preferences which violate the independence axiom may not be due to its
“intuitive appeal” so much as the subject’s desire to conform with the explicit or
implicit beliefs of the experimenter. MacCrimmon [56, pp. 9-11] and Slovic and
Tversky [88] reported that, when presented with opposing written arguments,
subjects whose mitial choices conformed to the axiom were about as likely to
change their preferences as subjects who initially violated it.*®

2.5. Svstematic Violation of the Independence Axiom:
Oversensitivity to Changes in Small Probabilities and the
Subjective Expected Utility Hypothesis

The third important characterization of how the independence axiom is
systematically viclated, namely that, relative to expected utility maximization,
individuals are aversensitive to changes in the probabilities of small probability-
outlying events, may also be illustrated by the Allais Paradox. Note that the

1t is important ta distinguish this type af hehaviar fram that discussed in Section 2.1. Roughly
speaking, the current aspect is that the individual’s aversion to the riskiness of a* in E grows with a
general rise in the payoff levels in ~—E. whereas the earlier aspect was that it drops if there is a
uniform rise in the payoffs in £ (i.e. a uniform rise in the payoff levels af a* itself).

"Although in a similar study Maskowitz found that presenting subjects with oppasing written
arpuments and allowing them to discuss these among themselves led to a4 net decrease in the
proportion of violatians of the axiom, nevertheless 73 percent of the initial “Allais type” preference
rankings expressed by subjects remained unchanged after the discussians [65, pp. 232-237, Tahle 6].
{When the written arguments were presented but no discussion was allowed, he faund no net change
in the degree of conformity with the axiom and a “persistency rate™ of Allais type choices of 93
percent [85, p. 234, Tables 4 & 6].) Moskowitz also found that, of the three alternative forms of
representing the choice problem he presented, that form which was judged the “clearest representa-
tion™ by the majority of subjects (the “tree” diagram} led ta the lawest degree af conformity with the
axium, the highest propartion of Allais type violations, and the highest persistency rate af these
vialations [65, pp. 234. 237-238].
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common shift from g, to a, and from a, to ¢, may be thought of as maoving .10
units of probability mass from the outcome w + | A to the outcome w + 5Af and
moving .01 units of mass from w + 1AM to w. When the initial prospect is a, the
upward movement of the .10 mass 1s not enough to compensate for the down-
ward mavement of the .01 mass, and the shift is not preferred. However, when
the nitial prospect is a,, the outcome w is no longer such an “outlying event” of
the initial distribution, since (relative to a,) its probability has increased from 0 to
.89. As a result, the individual is no longer as sensitive to the .01 rise in the
probability of this event {at the expense of the preferred event w + L M) and this
downward movement of mass is now more than compensated by the upward
movement of the .10 mass, so the shift (to a,) is preferred.

Alternatively (and as will be seen below, equivalently), changing the initial
prospect from a, to a, may be viewed as making the outcome w + 5M “more
outlying” relative to w and w+ | M, since, although the probability of this
outcome hasn’t changed, in moving from a, to a, a probability mass of .89 has
moved farther away from the ouicome level w + 5M. Thus, with the outcome
w+ SM more of an outlying event in the distribution @, than in a, the
individual is now more sensitive to changes in its probability, and the upward
movement of mass from w+ IM to w+ SM is now more than enough to
compensate for the downward movement from w+ |M to w, so the shift
becomes preferred. A similar analysis of the evidence of Kahneman and Tversky,
Hagen, and MacCrimmon and Larsson cited in the previous section also reveals
this general tendency for individuals to be “oversensitive” to changes in the
probabilities of low probability-outlying events.

A second source of evidence that individuals violate the independence axiom
via a systematic oversensitivity to the probabilities of low-probability events are
the empirical fittings by both psychologists and ecanomists of the so-called
“subjective expected utility” models.’’ Such models assume that the individual
transforms the known set of objective probabilities { p;} of a risky prospect into
their cotresponding “subjective probabilities” {«( )} (called “decision weights”
by Kahneman and Tversky [46]) and then maximizes the value of X .x, - #(p;)
(“*subjective expected value” ar SEV) ar the value of 3, U(x,) - w( p;) (“subjective
expected utility” or SELI), where p, is the probability of the outcome value x,.
Since the independence axiom requires that #(p,) be linear, empirical estimates
of the #(p) function would yield information regarding the nature of any
systematic violation of the axiom.

Such studies have on the whole found that, relative to linearity, individuals
averemphasize small probabilities and underemphasize large probabilities. Appli-
cations of the SEV model to a wide range of both experimentally and nonex-
perimentally generated data have consistently yielded estimated #( p) functions
which are proportionately greater from small values of p than for large ones (see

U A systematic presentation and discussion of this class of madels is given in Edwards [25, 27] (see
also Wallsten [100] ard the references cited there, as well as the surveys of Edwards {24, 26] and Luce
and Suppes [34]). Modified versions of these models have recently been introduced inta the
economics literature by Handa [40] (see also Fishburo (30]) and Kahneman and Tversky [46].
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for example Preston and Baratta (69], Griffith [36], Sprowls [89], Nogee and
Lieberman [67], and Ali [1]). Although Ali [1] and others have argued thal an
estimated 7 ( p) function which overweights small probabilities is exactly what we
would expect if the SEV model {which constrains the outcome values x, to enter
in linearly) were (mis)applied to choice data generated by an expected utility
maximizer with terminally convex utility, Edwards has shown in another context
that observed nonlinear “probability preferences” cannot be completely accoun-
ted for by utility considerations alone (Edwards [21; 22, p. 66; 23, pp. 84-95; 25,
pp. 211-212]). Experiments by Edwards [25] and Tversky [95, 96] designed to
overcome this problem by obtaining joint estimates of #{p,) and U/(x,;) in the
SEU model continued to reveal a preponderant tendency towards overemphasiz-
ing small probabilities relative to larger ones.** Finally, in a somewhat different
type of experiment designed to distinguish hetween behavior due to the curvature
of the utility function and that due to exaggeration of small probabilities, Yaari
[101] found that “acceptance sets” for bets were generally convex, which ruled
out the possibility of convexities in the utility function, and implied that the risk
loving behavior exhibited by seven of his seventeen subjects can only be
explained (in the SEU framework, at least) by an exaggeration of the small
probabilities of the favorable outcomes in these gambles. Although Rosett [71,
72] has subsequently argued that the experimental design in [101] was not
sufficient to rule out the existence of convex portions of the utility function, he
noted that his ohjection did not apply to Yaari’s conclusion regarding the
exaggeration of small probabilities [T1, p. 535; 72, pp. 77-82], and indeed has
also obtained evidence of such exaggeration in a subsequent experiment of his
own (73, pp. 489, 452].

Since #(0) must necessarily equal zero, a tendency for individuals to deviate
from a linear #( p) function in the direction of a relative averemphasis of small
probabilities implies that, at least for values of p below a certain level, a( p) must
be a concave function of p. Since the sensitivity to a change in the probability of
an outcome value x, in the SEU model 1s given by U(x,) - #'( p,), this evidence
reaffirms the principle that the individual is more sensitive to changes in the
probabilities of events when their initial probabilities are low than when they are
high.%*

Although the SEU model allows for a relatively straightforward estimation of
the individual’s relative sensitivity to changes in low versus high probabilities, it

In other experimental applications of the SEU model, Wallsten obtained mixed evidence on
whether #{ p) differed from p by maore than a scale factor (100, p. 39] and, though they conducted no
formal estimation, Lichienstein [52, p. 168] and Kahneman and Tversky (46, p. 281] similarly
concluded that individuals overweight small probabilities.

*Some researchers (e.g. Preston and Barata (69, p. 188]) have found that the slope of #{ p) may
start nising again for values of p near unity. This would reflect the fact that, as the prabability of the
outcome value x; approaches one, the probabilities of all other gutcomes must go to zero, and as a
result, the individual becames inereasingly sensitive to shifts which increase the probability of x; at
the expense of these other outcame values. In other words, the effect of a given shift of probability
mass from x, to x; (which equals Ulx)n'(p) — U{x;ym'(p,)) is large in magnitude when either p, = |
and p, =0 ar when p,~=0 and p; = I. |
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exhibits many undesirable properties. Once 7(p) I1s nonlinear, for example,
hehavior is no longer characterized by the shape of U(-) alone, and the main
results of expected utility theory (such as the characterization of risk aversion by
the concavity of {/(-)) no longer apply. More important, however, is the fact
that, except in the case when it reduces to expected utility, the SEU model is
incapable of incorporating the property of manotonicity (i.e. a preference for
stochastically dominating distributions) in the sense that any individual maximiz-
ing S, U(x,) =(p;) with a nonlinear 7(p} function will necessarily prefer some
distributions to ones which stochastically dominate them.™ Similarly, unless 7( p}
is linear. no subjective expected utility maximizer can exhibit general risk
aversion (i.e. aversion to all mean preserving increases in risk), even over
restricted ranges of possible outcomes.”® In the author's view, this inerinsic
incompatibility of the SEU madel with the plausible behavioral praperties of risk
aversion. and especially general monotonicity, makes it unacceptable as a de-
seriptive model of behavior toward risk.

It is useful to keep in mind the distinction between an oversensitivity to
changes in the probabilities of small probability events and any tendency, under
conditions of uncertainty rather than risk, to overestimate the probabilities of rare
events. Since in this section and the preceding ane we have treated behavior in
situations where the individuals are told the relevant probabilities, this latter
tendency, while it may exist, is irrelevant to the behavior considered here.
Similarly, note that the principle of oversensitivity to changes in the probabilities
of small probability-outlying events is not contradicted by the fact that individu-
als often tend to neglect altogether (i.e. treat as impessible} events of very low
probability (see the references cited in Arrow [6, p. 14] and Samuelson [82, pp.
39-40]). The neglect (for all practical purposes) on an increase in the probability
of disaster from 0 to 0000001 would only violate this principle if the same
absolute increase in the probability of disaster was nor neglected when the initial
probability was .5000000.%

™ Ay a result of their proof of this, Kahneman and Tversky [46, pp. 283-284] madify their model
to require that the stochastically dominated distributions be eliminated from the chaice set before the
rest of the alternatives are ranked by their madified SEU function. However. they point out that this
pracess permits what they call “indirect violations of dominance™ ([46, p. 284]) and may result in
intransitive choices.

YTy see this, note that a mexn preserving spread of probability mass fram the autcome x, ta the
outcomes ¥, = x5 — £ and x; = x; + ¢ will not be preferred if and only if [U(x ) #'(p ) 2U(xy) -
7 pa} + UCxqy - @ pa)] is nonpositive, which will be true far all g, gy p3. and small ¢ if and only if
#'( py is constant and U(-) 15 concave, It is straightforward ta verify that this incompatibility with
general risk aversion (as well as with general monatonicity) extends to all “additive’” models with a
maximand of the form 3, f(x,. g,) where f(-. -} is smooth and not identically equal to U{(x,)- g for
satre L.

o Note finally that the violations of expected utility discussed in this section and the preceding
one cannot be explained by merely observing that individual rankings are often stochastic. Such
“random” preferences over risky prospects were nated by Mosteller and Nogee [66] and have been
explicitly incorporated into the expected utility maodel by Fishburn [28. 31] (see also Luce and Raiffa
153, pp. 371 -384] and the references mentioned there). While randomness clearly characterizes real
life choice. stochastic expecred utifity models cannot account for the systematic viglations of the
independence axiom which have been considerad, since such models would predict that, in the Allais
Pacadox for example, either a, and a, are chosen most of the time, or else ay and a5 are.
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1. THE ANALYSIS OF GENERAL NONLINEAR PREFERENCE FUNCTIONALS

In this section we demonstrate the robustness of expected utility analysis to
violations of the independence axiom by showing how the fundamental concepts,
tools. and results of expected utility theory may be applied to the general case of
an individual possessing 4 “smooth” preference ranking over alternative proba-
bility distributions over ultimate wealth.

3.1. Smooth Preferences and the “ Local Utility Function”

We take as our choice set the set P[0, M] of all probability distribution
functions F(-) over the interval [0, M ] and assume that the individual’s prefer-
ence ranking over this set is complete, transitive, and representable by a real-
valued preference functional ¥(-) on DI0, MY Throughout this paper, all
integrals will be taken over the interval [0, M] unless otherwise specified.

For the purpose of defining continuity of preferences, the most appropriate
topalogy to place an D [0, M] is the topology of weak convergence, which defines
a sequence { F,(-)} C D[0, M] as converging to F(-) if and only if £, (x)— Fix)
at each continuity point x of F(-)3.** This topology renders as convergent the
following sequences, each of which economic agents are likely to “think of” as
convergent: (i} pointwise convergence of the density functions of a sequence af
continuous distributions, (i) the “collapse” of a sequence of distributions to the
degenerate distribution G (), which from now on will be used to denote the
distribution which assigns unit mass to the point ¢, and (iti) the convergence of
the sequence [ G, (-)} to G, (), where ¢, = ¢. Finally, since it may be shown that
a sequence [ F( -r)'r converges to the distribution F(-} in this topology if and only
if [g(x)dF,(x)— [g(x}dF(x} for all continuous g(-) on [0, M], the weak conver-
gence topology is the weakest (Le. coarsest) topology on D [0, M] for which the
expected utility functional [U{x)dF(x) is continuous for all continuous U(-} on
[0.M]

The condition of differentiahility of F(-) requires in addition the existence of a
norm on the space AD[0.M]= {MF*— F)|F.F* € D[0, M}, A € R't. Lemma
[ in the Appendix shows that the weak convergence topology on DO M]isin
fact induced by the L' metric (F, F*y = [|F*(x) — F(x) dx, which induces the
norm ACF* — F)|| = |A| - d(F, F*)on AD[0, M]."

Adopting this norm, our differentiability or “smoothness” condition will be
that the preference functional V(- ) be Fréchet differentiable on the space D [0, M|
with respect to the norm || - ||. Fréchet differentiability is the natural notion of
differentiability on spaces such as D0, M] (i.e. subsets of Banach spaces},*® and
the function V() is said to be Fréchet differentiable at the point £ in D [0, M]if

M iWe assume throughout this section that the outcome space [0, M is bounded. [n particular, nate
that the metric we shall define on D [0, M| is only applicable if this is the case.

MQee, for example, Billingsley (10, L1].

MThis follows since AD[0, M] is a linear subspace of L'[Q, M| and |y-|| is just the L' norm
restricted to this subspace.

#5ee, for example, Rudin [77, p. 248] or Luenberger [55, pp. 172-177]
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there exists a continuous linear functional (- ; F) defined oan AD [0, M ] such that
a i |[V(F*)— V(F)—(F* = F, F} —0
e 7= F]

[n particular note that convergence here is required to be uniform in || F* — F|.*!
An equivalent method of representing this notion is to write

2) VIE*)y = V(Fy=¢(F* = FS Fy + ol F* = F),
where o{-) denotes a function which is zero at zero and of a higher order than its
argument. By footnote 39 and the Hahn-Banach theotem, there exists a continu-

ous linear extension of (-; F) to L'[0, M]. Thus, by the Riesz representation
theorem on £'0, M],* we have that for any F* € D[0, M],

Q) (F = FUF) = [(F(x) = F(x))h(xi F)

I

~ [(Fr(x) = F(x))au(x; F),
where A(-; F) € L*[0,M] and
(4) U(x:F}E—f"Ih(s;F)ds,

0

from which it follows that U(-; F) is absolutely continuous and hence differen-
tiable almost everywhere on [0, M] (see Klambauer [48, p. 122]).

Substituting (3) into (2) and integrating by parts (see Lemma 2 in the
Appendix) yields

(5) V(F*) - V(F) :fU(x;F)(dF*(x) — dF(x)) + o(|| F* — F|).

From (5) we see that a differential movement from the distribution F(-) to a
distribution F*(-) changes the value of the preference functional F{( ) by
{U(x; F)dF*(x) — dF{x)), that is, by the difference in the expected value of
U{x; Fy with respect to the distributions F*{-) and F(-). In other words, in
ranking differential shifts from an initial distribution F¢-), the individual acts
precisely as would an expected utility maximizer, with “local utility function”
U(x; F).* Intuitively, the fact that any Fréchet differentiable preference function

*INote that this (s a stronger requirement than just that the directional derivative exist for all
directigns F* — F and be linear in the direction. This latter condition, knawn as Gateaux differentia-
bility {see Luenberger [55, pp. 171-172]}, is not even sufficient to ensure continuity.

*18ee. for example, Klambauer (48, p. 172] ar Royden [76, p. 103).

4*Nate that the local utility function at a distribution. F(-3 displays the usual affine invariance
properties of a von Neumann-Margenstern utility functian, since fram (5) it is clear that neither an
additive nor a multiplicative transformation of U(-; F) will alter the ranking of differential shifts
fram F{ ). Note that by analogy with standard indifference curve analysis, however, the local utility
functions U{-: F) and U{-; F*) of the indifferent distributions F(-) and F*(-) can anly be used to
compare respective differential shifts from these distributions if the functions &(-; £y and U(-: F*)
are not subjected to different multiplicative transformations.
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may he thought of as “lacally expected utility maximizing” follows from the fact
that differentiable functions are “locally linear.,” and that for preference func-
tionals over probability distributions, linearity is equivalent to expected utility
maximization.**

The simplest example of such a nonlinear preference functional is the specifi-
cation

(6) V(F)

Il

fR(x)dF(x} + 5US(x;dF(x)T

= E[R(x)] + [ B S(0)]]

which may be termed ““quadratic in the probabilities,”* and with local utility
function
(7) Uex: Fy= R(x) + S(x}[fS(z)dF{z}] = R(x}+ S(x)E[ S(2)].

where FE,[-] denotes expectation with respect to the probability distribution
F(-).* Thus, an individual with such a preference function would prefer a
differential shift from the distribﬁution F{-) to a distribution F*(-3 if and only if
the sign of [E.[U(x; F)] — E,[Ulx; F)]] is positive.

3.2. The Mathematical Characterization of Behavior

While the function U/(-; F) may be used to rank differential shifts from an
initial distribution F¢-), in general there will be no neighborhood of F(-) in
D[0.M], however small, over which the ranking induced by the local utility
function corresponds exactly to the ranking induced by the preference functional
itself. Nevertheless, the present extension of expected urlity analysis may simi-
larly be applied to nondifferential (i.e. global) situations in much the same
manner in which standard multivariate calculus may be used to show that a
nonlinear but differentiable function will exhibit certain global properties {such
as monotonicity) throughout a region provided its linear approximations at every
point in the region exhibit the property in question, even though the linear
approximations at different points in the region will in general be different linear
functions. [n other words, in a large body of cases, if the appropriate qualitative
property (e.g. concavity) holds for every local utility function throughout a
region, then the preference functional will display the carresponding behavioral

“ an earlier special case of this resull, proven in Samuelson [81, pp. 34-37] and discovered by the
author in the course of writing this paper, is that an individual with “smooth™ preferences will rank
alternative differential deviationy of the payoff levels from an initially certain distribution according
to expected value maximization. This follows from the preseat resuit coupled with the Fact that
expected utility maximizers with differentiable utility functions will rank such differential changes in
the payoffs according to expected value,

**This functional form can be shown to he a special case of the mast general quadratic form
VI Ttx, 2} dF(x) dF(2) where without loss of generality we may assume T{x.z) = T(z, x), and with
local utility function [ T(x. z)dF(z).

$iWe agsume R(-)and 5(-) Lo he absolutely cantinuous with B+ 1, §°¢(-y £ L=[0, M].
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property (e.g. risk aversion) throughout the region, even though rthe local uriliry
functions are nort the same throughout the region (i.e. even though the individual is
not an expected utility maximizer).

The general method by which such results can be proven is the use of path
integrals in the space D[0, M]. Specifically, if the path {F(-;a)|a €[0,1]} is
smooth enough so that the term || F(-;a) — F(-;a*)| is differentiable in « at
& = a*, then from equation {3) we have

*

@ GEeay| = L (fuaFCan)arca))

ek 12

+ a%(ﬂ(llF(-:a) = Fesa)] |

_ 4 . )
since the derivative of the higher order term o(-) will be zeco at zero. Combining
(8) and the Fundamental Theorem of Integral Calculus yields that

(9) V(F(5 1)) — V(F(-;0)) =f [ J'U(x F(o;a*)ydF(x; a)” }a’a*,
which illustrates how the individual's reaction to the shift from F(-:0) to F(-: 1)
will depend on the characteristics of the local utility function at each point ¢i.e.
distribution) along the path [ F(-ia)|a €[0,1]}. As a first application of this
method. we have the following theorem.

THEOREM |2 Ler V(-) be a Fréchet differentiable preference function on D |0,
M. Then V(F*)Z V(F) whenever F*(-) stochastically dominates F(-) ) if and only
if U(x: F) is nondecreasing in x for all F(-) € D[0, M]. ( Proof in Appendix.)

To ensure strict monotonicity (i.e. strict preference for stochastic dominance)
we shall assume from now an that U(x: F) is strictly increasing in x for all F¢-)
in D [0, M]. This would be true in the quadratic example of equations (6) and (7).
for example, if R(x) was strictly increasing and S(x) either nonnegative and
nondecreasing or else nonpositive and nonincreasing. Consider now Theorem 2.

THEOREM 2: Let V{(-) be a Fréchet differentiable preference function on D[0,
M). Then V(F*} = V(F) whenever F*(-) differs from F(-) by a mean preserving
increqse in risk if and only If U(x;F) is a concave function of x for all
F(-ye D[0,M). (Proof in Appendix.)

Thus, a sufficient condition for the quadratic preference functional (-} of
equation {(8) to exhibit global risk aversion is that R(x) be concave and S(x}
either everywhere concave and nonnegative or else everywhere convex and
nanpoesitive.
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Theorem 2 has two important implications for the generality of expected utility
theory. which follow from the “if” and “only if” parts of the theorem, respec-
tively. The first is that researchers, who in order to study the behavior of risk
averters 10 various situations have modelled them as expected utility maximizers
with concave utility functions, are likely to have proven results which are also
valid in the more general case of smooth preferences. The second is that
concavity of a cardinal function of wealth is a complete characterization of risk
aversion, in the sense that amy risk averter must possess concave local utility
functions, whether ar not he or she is an expected utility maximizer. Thus., the
rescarcher who would like to drop the expected utility hypothesis and study the
nature of general nisk aversion can apparently work completely within the
framework of expected utility analysis.

3.3. Behavioral Equivalencies

Besides its elegant characterizations of types of behavior in terms of mathemat-
ical properties of the utility function, another of the useful aspects of expected
utility theory 1s the behavioral equivalencies it implies. Indeed, it is onfy those
thearems which relate various types of behavior which are ultimately meaningful,
and the only reason one studies the behavior implied by, say, a concave utility
function in some situation is because of the behavior it implies or to which it is
equivalent in other situations.

[t iy in this respect, however, that the independence axiom would seem to be
instrumental in deriving results in expected utility theory. For the independence
axiom is essentially a global restriction on preferences, as it implies that the local
utility functions at all distributions F(-) in D{0, M] are identical. Thus, for
example, knowing that an individual is averse to small mean preserving spreads
about all certain (1.e. degenerate) distributions implies that the commeon local
utility function is concave, which by Thearem 2 implies that the individual is
averse to increases in risk about all initial distributions. Clearly, however, such a
result no longer holds when the independence axiom is replaced by the focal
assumption of smoothness of preferences.

Nevertheless, it is possible o prove various behavioral equivalencies in the
general case of smooth preferences and, as with Thearems 1 and 2, although
these results do nat require the independence axiom. they do follow the basic
structures of the corresponding expected utility results. As a first example,
consider again the expected utility result that aversion to all mean preserving
increases in risk 1s implied by the local condition of aversion to all mean
preserving spreads about certain {(degenerate) distributions and the global restric-
tian imposed by the independence axiom, which requires that if F*(-) is weakly
preferred to F(-), then the distoibution (1 — p)F**(-)} + pF*(-) will be weakly
preferred to (1 — p)F**(-) + pF(-). for arbitrary p, F, F* and F**. Together
these conditions imply (but are not implied by) the condition that for arbitrary p,
F, and F**  the distribution (1 — p)F**(-)+ pG, () s weakly preferred to
(1 — p)F**(-) + pF(-) (wWhere . is the mean of F), l.e. in any compound lottery,
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the individual would always prefer to substitule fex ante) the mean of any of the
passible risky prizes for the nisky prize itself. Note that this last candition requires
merely that the conditional certainty equivalent (see Section 2.4} of the distribu-
tion F always be no greater than its mean, and not that it necessarily be some
constant value independent of p and F**, as does the independence axiom. The
following theorem shows that in the case of behavioral equivalencies as well, the
expected utility result provides the complete structure of the corresponding more
general result, but that the sort of global equality condition imposed by the
independence axiom may be replaced by the weaker requirement that the
apprapriate qualitative condition (i.e condition (i) of the theorem) hold through-
out.

Turorrm 3: The following properties of a Frécher differentiable preference
Junction Vi) on DG, M ] are equivalenr: (1) for arbitrary distributions F(-), F**(-)
€ D0, M) and arbitrary probabiticv p, V(1 — p)F** + 2G, ) 2 V(L — pyF** +
pE). where 1. is the mean of F; (if) U(x; F) is concave in x for afl F € D[0, M];
and (i) if F*(-) differs from F() by a mean preserving increase in risk, then
VIF*) 2 V(F). (Proof in Appendix.)

As 4 final example, we consider the Arrow-Pratt theorem of expected ulility
theary, which, as extended by Diamond and Stiglitz [19, Theorem 3], relates the
mathematical condition of different levels of the Arrow-Pratt measure of abso-
lute risk aversion to the hehavioral conditions of differing certainty equivalents
of risky prospects, effects of compensated increases in risk, and demands for a
risky asset. Once again, the independence axiom (Le. the requirement of constant
conditional certainty equivalents) may be replaced by the requirement that the
conditional certainty equivalents of one individual are always no greater than the
carresponding conditional certainty equivalents of the other individual, regard-
less of whether the conditonal certainty equivalents of either individual are
canstant {1.e. independent of p and F**}.

Praceeding similarly, we define the “conditional demand for a risky asset” as
the value of a which yields the most preferred distribution in the set {(1 — p)
F* + pF . rear] @ € R where  is 2 positive constant and 7 a nonnegative
random variable with mean greater than r, i.e. as the optimal proportion of a
portfolio to place in the risky asset when there is some praobability {1 — p) that
for exogenous reasons {(such as bankruptcy) the distribution of wealth will be
F**( -y repardless of the composition of the portfolic. While the independence
axiom requires that such conditional demands be a constant independent of p or
F** we require merely that the conditional demands for one individual always
he no greater than the corresponding ones of the other individual, regardless of
whether these conditional demands vary with p or F**.

TWhere £, . .r() stands for the distribution function of {1 — a)r + a2, etc.
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I[n order to confine our study of asset demand to the case of “regular™ opuma,
we adopt the following condition—a generalization of the condition that indiffer-
ence curves in the (g, 1) plane be upward sloping and bowed downward—which
serves to rule out both risk lovers and “*plungers™ as in the classic study of Tobin
(93, pp. 77-78].

DerFINITION: A risk averse individual is said to be a diversifier if, for all
distributions F**(-), pasitive probabilities p, positive constan(s r, and nondegen-
erate nonnegative random variables Z, the indwvidual’s preferences over the set
of digtributions {(1 — p)F** + pF, @ € R') are strictly quasiconcave
ine.

l—ajr+af

THEOREM 4: The following conditions on a pair of Fréchet differentiable prefer-
ence functionals V(-) and V*(-) on D0, M] with respective local wility functions
U(x: Fy and U*(x; F) are equivalent:

(1) For arbitrary distributions F(-), F**(-) € D[0, M| and positive probability p,
if ¢ and c* respectively solve V((1 — pyF** + pFy= V{1 — p)F** + pG,) and
F¥((1 — p)F** + pF}y = VX1 ~ pYF** + pG..), then ¢ = c*, (i.e. the conditional
certainty equivalents for V(-) are never greater than the corresponding ones for
V).

(i) For all F(-)E D[O,M], U(x; F) is ar least as concave a function of x as
U*(x: F) (i.e. for all F, U(x; F} is a concave transform of U*(x:F)), so that
if these functions are rwice differentiable in x, then — U (x;F}/U(xiF)=
— Ur(x: FY/ Ut(x; F) for all x, where subscripts denote partial derivatives with
respect {0 X.

(iil) If the distribution F*(-) differs from F(-) by a simple compensated spread
from the point of view of V*(-) (see Section 2.1) so that V*(F*)= V*(F), then
V(E*) = V(F).

If both individuals are diversifiers and have differentiable local utility functions,
then the above conditions are equivalenr 1a:

(iv) For any distribution £**(-) € D0, M), positive probability p, pasitive con-
stant ¢, and nonnegative random variable I with E(Z] > r, if « and oF vield the
most preferred distributions of the form (L — pYyF** + pF_ ., .- for V() and
V*(-} respectively, then a = a* (i.e. the conditional demands for risky assers are
never greater for V(- ) than for V*(-}).%

{ Progf in Appendix.)

Thus the Arrow-Pratt measure of risk aversion, when applied to the local
utility functions, vields a necessary and sufficient condition for one individual to

*8This condition ensures that preferences are either (i) strictly monotonic in a or (i) admit of a
unique optimum value of « and are monotanically increasing in « betow this optimum value and
manotonically decreasing in & above it

“Note that special cases of conditions (i) and (iv) are that the unconditional certainty equivalents
are higher for M(-) and that the unconditional demands for the risky asset are higher for ().
respectively.
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be more risk averse than another, so that in particular, expected utility results
involving the Arrow-Pratt measure as a measure of comparative risk aversion will
typically apply to any pair of individuals with smooth preferences. Similarly, the
Arrow-Pratt measure is evidently a sufficient tool for the analysis of comparative
risk aversion in the general case. The results of this section suggest that much of
the rest of expected utility analysis may be similarly generalized.™®

4. THESHAPE OF THE INDIVIDUAL PREFERENCE FUNCTIONAL

In this section we present a pair of hypotheses concerning the shape of the
individual preference functional and show that these hypotheses are consistent
with. and in many cases actually imply, each of the aspects of behavior discussed
in Section 2.

4.1. The Hyporheses

The following hypotheses describe (I} the typical shape of a local utility
function about a given initial distribution and (1) how the local utility function
changes when evaluated at different initial distributions, that is, how Uix, F)
varies with x and F, respectively. Although they have other equivalent formula-
tions, each is most conveniently expressed in terms of the “Arrow-Pratt™ term
— U (x; Fy/ U x: F) used in Theaorem 4.

Hyeotuests [ For any distribution F(-) € DI0.M], — U (x; F)/ U\ (x: F)is a
rontncreasing function of x over [0, M.

Hyrotuests [1: For any x € [0, M) and distributions F(-), F*(-y € D [ M if
F*(-) stochastically dominates F(-), then — U (x;: F*)/U{x:F*)Z — U, (x: F)
J U F) (Thar is, with respect o the partial order on D[0, M| induced by the
relation of stochastic dominance, — U x: FY U (x, FY s “nondecreasing in F.")

Thus, the assumptions that R(-) and S$(-) are positive, increasing, exhibit
declining absolute risk aversion in the Arrow-Pratt sense, and that S¢-) is at least
as concave as R{(-), are sufficient (though not necessary) for the guadratic
preference functional V(- of equation (6) to satisfy both hypotheses.

It is important to note that Hypothesis [ does not imply “decreasing absolute
risk aversion in wealth™ as it would if the individual were an expected utility
maximizer. The willingness of an individual to insure against small risks about a
certain wealth level ¢, for example, is given by — U, (c: G.)/ U(¢: G.), so that
the effect of a wealth increase on this willingness to insure also depends on how
this term is affected by changes in its second argument G, (-) (see Machina [58]).

*1n particular, note that the general approach and many af the specific results af this section may
be extended to Frechet differentiable preference functionals over multivariate (e.g. multi-cammadity
ar interlemporal) disteibutions.
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4.2 Insurance, Lotteries, and Skewness Preference

The types of behavior discussed in Section 2.1 all pertain to the individual’s
ranking of alternative shifts from an initial probability distribution cver ultimate
wezlth. [n this section we show that, when the alternative shifts are small enough,
each of these types of behavior is consistent with or implied by Hypothesis 1.
Although Hypothesis | only suggests and is not strong enough to imply that such
hehavior extends to “large™ shifts, the less the preference functional deviates
from linearity (i.e. the less the shape of £/(-; F} depends an F) the more this will
tend to be the case as well.

As seen in Figure 4, Hypothesis [ is consistent both with general risk aversion
in the neighberhood of the initial distribution (Figure 4a) or with aversion to
increases in risk involving low outcome values coupled with a preference for
increases in risk involving high outcome values (Figure 4b)."' Thus, since the
purchase of an insurance policy against a low outcome-small probability event
and the purchase of a lottery ticket vielding a small chance of a large outcome
bath induce small changes in the initial distribution of wealth, an individual with
a local utility function as in Figure 4b would tend to purchase both, while
another individual (or the same individual at another initial distribution) with
local utility function as in Figure 4a would be among the class of peeple whae
purchase insurance but not lottery tickets.>

To determine the implications of Hypothesis [ with regard to skewness
preference, note that, just as in expected utility theory, Hypothesis I implies that
U, (x: FYis positive. Tf U{x: F}is an apalytic function of x over [0, M], we may

(a} (b

Uix ; F} Uix ; F}

Freure 4

“"There is of course a third case which satisfies Hypothesis I, namely a local utility function which
is everywhere convex and has a nonincreasing Arrow-Pratt term. Sinee such a case implies that the
individual prefers all small increases in risk, we shall not consider it further. The discussion in Section
4.4 helow, however, will apply to this case as well.

**Nate that this would be true even if the initial distribution of wealth were nondegenerate,
provided that the outcome of the lattery and the event to be insured against were independent of the
initial distribution of wealth.
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wrile

(10)  EL[UxiF)] = Ulpe: FYy+ S (% )c,,F“ Ui res F)

n=2
=g( S AN AR )a

where ¢ is the nth central moment of the distribution F(-} and Up(x; F)
= d"U(x: F)/dx". When F*(-) is close to F(-), the first order Taylor expansion
of g about the moments of F(-) gives

(1) V(F*y = V(Fy= En[ U(x; F)] = E U(x; F)]

- U|(MF§F)+":2(E)C~F' Uins 15 F)

=]
X (e = pap) + 22( ,:T)Utn}( e F)(e = ef).
= !
Thus, that cemponent of the change from F(-) to F*(-) which is commonly
taken to represent the increase in skewness, namely ¢/ — ¢f, is multiplied by the
positive coefficient U 5 (e F)/3Y= U\ (e F)/313

Finally, Hypothesis T implies that the individual will have a relative preference
for (equivalently, a lower aversion to) small increases in risk in the upper rather
than the lower tail of an initial wealth distribution, in the sense described in
Section 2.1. To see this, let F*{-) differ from F(-) by a differential simple
compensated spread. Starting from F(-) again and applying this same differential
increase in risk to outcome values which are all uniformly greater by the (positive
or negative) constant ¢ yields the distribution £**(-) defined by F**(x} — F(x)
= F¥(x — ¢}~ F(x — ). Since EL{U(x; F)]— E[U(x; F)] = 0 by assumption
and Ep.[Ulx: F)] — E[Ulx: F)] equals Eq[U(x + ¢; F)] = Ef[U(x + ¢; F)] by
construction of F**(-}, we have that if ¢ is positive (negative), then F**(-) will be
weakly preferred (weakly not preferred) to F(-), since by Hypothesis [ U(x + ¢:
£} will be no less concave (at least as concave} a function of x as U(x; F).

4.3. Violations of the Independence Axiom

In this section we offer farmal characterizations of the various types of
systematic violations of the independence axiom discussed in Sections 2.4 and 2.5
and demonstrate their equivalence to Hypothesis I1,

The first type of behavior, mentioned in Section 2.4, was that if the two pairs
of distributions ( F,. F,) and (F,, F,) differ by the same “shift” (i.e. changes in the
probabiiities) or by scalar multiples of the same shift, so that Fi(x) — Fy(x) =X

FMeniion should be made of Hanson and Menezes' [41] abjections to the use of the third
derivative of utility as a measure of skewness preference, which will apply to the present case as well.
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(Fy(x) — F\(x)) for some A >, and if {F,, F,) respectively stochastically domi-
nate (F,,F,), then the individual will rank F; and F, as if using a von
Neumann-Morgenstzrn utility function which is no less risk averse than the one
“nsed” to rank F, and F,. Thus, if £, differs from F| by a simple compensated
spread, then F, will be weakly preferred to F,. On the other hand, if £, differs
from F, by a simple compensated spread, then F, will be weakly preferred to F,.

The second type of behavior discussed in Section 2.4 concerns the “non-
independence™ of the conditional certainty equivalent of a risky prospect £(-1in
an event £ with respect to the conditional distribution of wealth in ~£. In
particular, it was observed that stochastically dominating shifts in this latter
distribution tended to lower the conditional certainty equivalent of F in E.

The third characterization of how individuals systematically violate the inde-
pendence axiom, discussed in Section 2.5, was that, relative to expected utility
maximization, individuals are oversensitive to changes in the probabilities of low
probability-outlying events. Recall frem Section 2.5 that if x| < x, < x, are three
outcome levels in [0, M], then any rightward shift of the probability mass of the
initial distribution within the interval [x,,x;] may be said to change the ininal
distribution so as to make the event x, “less outlying relative to the events x, and
x,.” Similarly, any shift of mass from the interval [x,, x,] to the interval [x,, M]
may also be said to make the outcome x; less outlying to x, and x,, since, for
example, if the bulk of the initial distribution of wealth were near the level
$10.000, moving probability mass from near this level to the outcome level
$5,000,001 would make both this event as well as the evenr of winning five million
exactly less outlying relative to events closer to the bulk of the distribution.
Finally, a further rightward shift of mass within the interval [x,, M| may also be
said to make x, less outlying relative to x, and x,, since it changes the initial
distribution in a way which makes x, less of a “large outcome” relative to the
new initial distribution (or alternatively, it results in x, becoming closer to the
“center’” of the new distribution, and farther from the “right edge”). We thus
adopt the following definition.

DerINITION: [f x| < x, < x4 are three outcome levels in [0, M], then any
rightward (leftward) shift of the probability mass of the initial distribution within
the interval [x,, M| is said to change the initial distribution so as to make x, less
(more) outlying relative to the outcome levels x, and x,. Similarly, any leftward
(rightward) shift of mass within the interval [0, x,] is said to make the event x,
less (more) outlping relative to x, and x,.

Our definition of the individual's sensitivity to changes in the probabilities of
events is also motivated by the discussion of Section 2.5. If x| < x, < x;, define
the “marginal rate of substitution between a shift of probability mass from x, to
x, and a shift of probability mass from x, to x," (abbreviated MRS(x, = x, x,
— x,)) as the amount of mass which must be shifted from x, to x| per unit
amount shifted frem x, to x, in order to keep the individual indifferent, when the
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amounts shifted are infinitesimally small. From equation (5), this marginal rate
of substitution 1s seen to equal (U(xy; F) — Uy, FN/(U(xy; FY — Ulx; F))
where F'is the initial distribution.® Marginal rates of substitution between other
pairs of shifts of mass between the three outcome levels may be defined similarly.

[t is clear that for an expected utility maximizer these marginal rates of
substitution will not depend on the initial distribution F(-). We thus say that a
given change in the initial distribution makes the individual “more (less) sensitive
to changes in the probability of x, relative to changes in the probabilities of x,
and x," if the change raises (lowers) both MRS(x, = x,x,—> x;) and MRS(x,
X, X, 2 xy), that is, 1if a shift of mass from either x| or x, up to x; now
requires a larger (smaller} shift from x, to x, to leave the individual indifferent.
Note that since these last two marginal rates of substitution will always differ by
unity, we may define this effect in terms of its effect on MRS(x;— x|, %, x3)
alone. Similarly, a change in the initial distribution makes the individual more
{less) sensitive to changes in the probability of x, relative to changes in the
probabilities of x; and x4 if it raises (lowers) MRS(x, — x;,x,— x,) (and hence
MRS(x,— xy,x,- x)), so that a shift of mass from either x, or x, down to x,
now requires a greater (lesser) compensating shift from x, up to x,. Since
MRS(x.— x4, %, 2 x) = | /MRS(x;— x,x, > x;), we may combine these no-
tions and adopt the following definition.

DermvtTIoN: If x| < x, < x;, a given change in the initial distribution is said
to both make the individual weakly more (weakly less) sensitive to changes in the
probability of x relative to changes in the probabilities of x| and x, and make the
ndividual weakly less (weakly more) sensitive to changes in the probability of x,
relative io changes in the probabilities of x, and x, if it preserves or raises
(preserves or lawers) the value of MRS(x, = x|, x, = x,).%

A final characterization of how the independence axiom is systematically
violated in the special case of preferences over two-outcome distributions has
been termed the “certainty effect” by Kahneman and Tversky [46] and the
“common ratio” effect by MacCrimmon and Larsson [57] (see also Allais [3, pp.
90-92], Tversky [98], and Hagen [38]). This states that if an individual with
nitial wealth w is indifferent between a p chance of winning an (additional)
amount x and a pq chance of winning y, then a pgr chance of winning p will be
(weakly) preferred to a pr chance of winning x, for p,¢, and r €0, 1].*7 The

*Nate that MRS(x, = x,. x, = x3) is mathematically well defined even thaugh x; may not lie in
the support of £(-). In this case its hehavioral interpretation may be seen to be the ratio of the
amounts of probability mass which must be respectively shifted to x| and to x, from some autcome
value which is in the support in order to leave the individual as well off as if the same total amount of
mass had heen shifted to x,.

% Nate that from the previous footnote this definitien does not require that x, lie in the support of
the initial distribution.

*Note that the “Bergen Paradox” in Hagen {38, pp. 278-279, 290-292} is a special case of this
effect as well,

*"Note that this condition differs from the version in Kahneman and Tversky (46} in that all strict
inequalities have been made weak.
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following theorem demonstrates that this effect is implied by each of the three
types of behavior discussed in this section, which are in turn all equivalent to
Hypothesis II.

THEOREM 5: The following properties of a Fréchet differentiable preference
function V(-) on D[O,M] with twice differentiable local wtility functions are
equivalent:

{1} Hypothesis 11.

(i) Ler F\(-), Fy(- ) Fy(-}, and F(-) € D[0O, M] be such thar F, and F, respec-
tively stochastically dominate F| and F, and F(x) — Fy{x)=X (F{x)— F(x))
for some X > 0. Then, if F, differs from F| by a simple compensated spread,
V(F) & V(F,). Similarly, if F, differs from Fy by a simple compensated spread.,
then V(Fy) 2 V(F)).

(1} Given an event E with probability p > QG and F(-), F*(-), F**(-) € D[0, M|
such that F** stochastically dominates F*, if ¢* and c** are the conditional
certainty equivalents of F in E when the distribution of wealth in ~E is F* and F**
respectively (Le. if V(L — p)yF* + pG..} = V(L — p)F* + pF) and V(1 — p)
F** + pG...) = V((1 — pyF** + pF)), then c* Z c**.

(v) If x, y, and z are three outcome levels in [0, M], then any change in the
initial distribution of wealth which makes x more outlying relative to y and z makes
the individual weakly more sensitive to changes in the probability of x relative to
changes in the probabilities of y and z.

In addition, each of these properties imply:

(v} (The “Certainty Effect™ or *Common Rario” Effect) If, for some w, x. and
y&0and p,g, and r €[0,1] V(1 — PG, + pG,., )= VL — pg)G,, + pgG, ., )
then V((1 — pr)G, + prG, ., ) S V({1 — pgrG, + pgrG, ., ). '

(Proof in Appendix.) '

Note that, unlike the examples in Section 4.2, Theorem 5 1s “global” in that it
applies to hoth small and large shifts in the distribution of wealth.

When choice is restricted to alternative distributions of the form Fp.-p‘

P3 {a} Py {b}
1 1

FIGURE §
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=p G+ —p —p)G  + pyG, over the fixed outcomes x; < x; < x5, Hy-
pothcsm IT possesses a stralghtforward graphical mterpretatlon in terms of
indifference curves in the (p,. p;} plane, as in Figures 5a and 5b. It is clear that
the slopes of these indifference curves, which indicate the individual’s relative
sensitivity to changes in p, versus changes in p,, are given by MRS(x, > x,,x,
= x) = {(Ulxy; F, ) — Ulxy; Prm))/(U{x,, F,»)— Ulxyi £, o)) Thus if the
lI'ldIVIdUdl is an expected utility maximizer the slope will be a constant, as in
Figure 5a, with a steeper slope indicating a higher level of nisk aversion.
However, if the individual satisfies Hypothesis I, stochastically dominating shifts
in F, . represented by upward or leftward movements in the (p, p,} plane, will
make lhe local utility function more risk averse and thus raise the slope of the
indifference curves, so that the indifference curves will appear “fanned out,”
in Figure 5h. The relatively steeper slopes in the region near the vertical axis than
in the region near the horizontal axis illustrates the individual’s greater sensitivity
to changes in p, relative to p, when p, 1s small relative to p,, and vice versa.*®

If x, = $0. x, = $1 million, and x, = $5 million, then the points corresponding
to the four prospects of the Allais Paradox (Figure 3) form a parallelogram, as in
Figures 5a and 5b. This illustrates why an expected utility maximizer must prefer
either @, and a; if the common slope of the indifference curve s relatively flat (as
in Figure 5a) or else a; and a, if it is relatively steep. Figure 5b illustrates how an
individual satisfying Hypothesis I1 might violate the independence axiom by
making the typical choices of ¢, and a;.

4.4. The Relative Invariance of Gambling Preferences 1o Initial Wealth

In this section we demonstrate that a fixed preference functional ¥(-) satisfy-
ing Hypotheses I and 11 will tend to rank alternative gambles (expressed in terms
of deviations from present wealth) relatively independently of the level of current
wealth so that, unlike in the case of the expected utility model, there is no need to
drop the assumption of stable preferences over D [0, M ] in order to accommodalte
the types of behavior discussed in Section 2.3,

To see this, recall that any cardinal (von Neumann-Morgenstern or local)
utility function is completely characterized by its Arrow-Pratt function
—U,,/U,. Figure 6 illustrates the two alternative shapes of the local utility
function of an individual with nonstochastic initial wealth level ¢ (Le. inttial
distribution G (-)) together with their respective Arrow-Pratt functions, which by
Hypothesis [ are downward sloping. By Hypothesis I1, if initial wealth increases
to c* (i.e. G (-) shifts to G..(+)), the Arrow-Pratt functions will shift upward, or
alternatively, since they are downward sloping, shift rightward. This implies that
the local utility functions will similarly shift rightward, as illustrated by the
relative locations of the functons U(-; G.} and U(-; G,.) in Figure 6.

*This Jiagrasm clearly also applies 10 choices over distributions of the farm (1 - p)F + G, +
tp—pr — PG, + pyG, for fixed x, < xy < x5, p, and F(-), that is, aver alternative ways of
distributing a probablllry mass of p aver X, %, and x,.
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FIGURE 6

[t is clear the Hypotheses I and IT are not strong encugh to ensure that the
rightward shift in the local uulity function induced by the change in initial
wealth will be parallel and by the exact distance of ¢* — ¢. To the extent that this
happens, however, the individual’s ranking of alternative gambles about initial
wealth will be exactly preserved. En any event, the two hypotheses interact to
ensure that preferences over gambles are less dependent upon the level of initial
wealth than in the case of either of the fixed Friedman-Savage utility functions of
Figures 1 and 2. In particular, it is quite possible for an individual with a fixed
preference functional satisfying Hypotheses I and II to purchase insurance,
purchase lottery tickets, and avoiwd small fair bets about all nonstochastic wealth
levels. This would be the case whenever the local utility function in Figure 4b
shifted so as Lo always keep the inflection point somewhat ta the right of initial
wealth (an example of such a preference functional is given in Section 4.5 below).
Thus, for the purposes of explaining the behavior discussed in Section 2.3, the
Markowitz assumption that shifts in intial wealth cause the entire linear prefer-
ence functional o change may be replaced by the assumption that such shifts
cause the linear approximation of a fixed nonlinear preference functional to
change in the same qualitative manner. Finally, note that the two hypotheses
imply that arbitrary stochastically dominating shifts in arbitrary nondegenerate
initial wealth distributions will similarly cause the local utility function to shift
rightward.

Besides the behavicral phenomenon of a relanve invariance of gambling
behavior to initial wealth, another potentially important set of behavioral obser-
vations which cannor be explained by Hypotheses | and I are the findings by
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some experimenters that individuals® expressed preferences over certain pairs of
gambles can apparently be systematically reversed by increasing initial wealth by
some amount and lowering each of the possible payoffs of the gambles (including
zero} by the same amount, even though the two situations represent a choice over
the same pair of distributions over ultimate wealth levels (see Kahneman and
Tversky {46, p. 273]). Note that while this phenomenon is cenceptually disunct
from the *relative invariance . . . " phenomenon (which concerns the case when
initial wealth. but not the gambles, is changed), the two are not mutually
inconsistent, since an individual with an instantaneously shifung Markowitz
utility function exhibits both.™ It is, however, clearly incompatible with the
existence of any fixed preference ranking over D [0, M]. and to the extent that it
and similar observations of preference reversals and intransitivities in choice
under certainty and uncertainty®® are found to be systematic and pervasive, the
behavioral model presented here must be either generalized or replaced. The
point of the present section, however,is that the more extensively documented
“relative invariance ... phenomenon does nor contradict the assumption of
stable preferences over D[0. M), and in fact is implied by a preference ranking
satisfying Hypotheses I and TI.

4.5. The St. Petershurg Paradox, Lottery Prize Structures, and the
Boundedness of Urility

In Section 2.2 it was seen that an individual with 2 Friedman-Savage utility
function as in Figure 1 must necessarily violate each of the following “rea-
sonable,” and more to the point, commonly observed, types of behavior: (1) the
amount that an individual with even minimal wealth would pay for a 1/# chance
of winning $»#Z eventually declines in n (so that lotteries will tend to have more
than one prize), (i) the individual would not forgo anp finite sure gain to take the
St. Petersburg gamble, and more generally, will assign a finite certainty equiva-
lent to any probability distribution over nonnegative wealth levels, and (jii) there
will exist a low enough positive probability p and a high enough payoff $C such
that the individual will prefer a sure gain of $C to a p chance of winning any
arbitrarily large prize $Z.

Recall that in order to make the Friedman-Savage model compatible with
these ohservations it was necessary to replace the terrminal convex segment of the
utility function with a bounded terminal concave segment.®' In this section we

It is interesting to note that although Markowitz observed that his model implied that such a
change in initial wealth and the payoffs could yield an immediate preference reversal, he felt that it
was “plausible to expect the chooser to act in the same manner in both situations™ and sought to
“resalve this dilemma” by introducing a lag hetween wealth changes and the shifting of the utility
function [60, p. 155].

08ee, for example, Kahneman and Tversky [46, pp. 271-273], Tversky [97. 98], Grether {34],
Grether and Plott [35], and the references cited in these arucles.

'Naute that this adjustment i5 necessary regardless of whether it is assumed that the utility
function shifts when initial wealth changes.
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demaonstrate that, not only are these types of behavior completely consistent with
Hypotheses I and I, but they are also consistent with the individual’s local utility
functions all possessing the terminally convex, unbounded “Friedman-Savage”
shape of Figure 4h.

We demonstrate this by means of a specific example. Since each of the above
types of behavior assumes that the potential outcome space is unbounded, we
define the following preference functional over the space D [0, 0} of all probabil-
ity distributions over the nonnegative reals:

(12) P(Fy= EJfx/(1+ x)] —.1-exp(— E[exp(x}]),

where exp(-) is the exponential function. It 1s clear that for any A, the restricuon
of Vi-)to D0, M] is Fréchet differentiable with local utility function

(13) U{x; Fy=x/(1 + x)+.1-exp(— E.[exp(z)]) - exp(x),

and with Arrow-Pratt term
(14} —Un(x:F)/U(x: F)
= -1 +(3+x)/[(1 +x)(1+.1-(1 + x)*

X exp(x — EF[cx'p(z]]))].

It is nat difficult to show that for any F(+), — al](x; Fy/ L_fl(x; F) is positive for
low values of x, strictly decreasing in x, and eventually negative as x gets large.
Thus V{-) satisfies Hypothesis [ over any D[0, M] and (fixing F and letting M
grow large enough) has local utility functions all of the shape of Figure 4b.
Similarly, stochastically deminating shifts in F will raise — U,,(x: F)/ U,{x; F),
so that Hypothesis IT is also satisfied. Since the following theorem demonstrates
that V(-) will prefer a certain wealth w to any other distribution in D [0, 2w] with
the same mean, we have that an individual with this preference functional will
purchase insurance, engage in lotteries, and avoid all symmetric and other small
fair bets about all nonstochastic initial wealth levels. The following theorem also
demonstrates that such an individual will exhibit each of the types of behavior
listed at the beginning of this section.

THEOREM 6: The preference funcrional V(F) = Eplx/tl + x)) — .1 -exp(—
E, [exp(x)]) defined over D{0. o) exhibits each of the following properties;

(iy If m(n,w, Z) is the amount that an individual with initial wealth $w would pay
for a 1/ n chance of winning an additional $nZ, then for any w > $.04, w(n.w, Z)
is an evenrually declining function of n. _

(il) For each F(-ye D[0,00), there will exist a finite value w such that V(F)
< V(G,).
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(1) For any certain initial wealth level w and probability p < |, there exists a
finite C such rthat [ Gorel = Vil — PG, + pG ., ) for all nonnegative Z8?

(iv) If F*(-) is any nondegenerate distribution in D[0,2w] with mean w, then
V(F*) < V(G,), so that in particular, V(-) will prefer G (+) to all other symmetric
distributions in D0, 00) with mean w.

(Proaf in Appendix.)

Thus, generalized expected utility analysis allows us to model a willingness to
purchase lottery tickets at all wealth levels (as well as other aspects of behavior)
yet avoid the adverse behavioral implications of unbounded von Neumann-
Morgenstern utility functions discussed in Section 2.2, The essence of this
resolution of the “boundedness of utility” debate is that the assumption of
terminally convex local utility functions merely implies that the linear approxima-
tions to the preference functional are unbounded linear functionals, whereas the
assighment of infinite certainty equivalents by an expected utility maximizer with
unbounded utility, Le. the property that [U{x)dF{(x)= oo = lim,__U(w) for
some F(-)'s in D[0, so), follows from the fact that for such an individual the
preference functional itself is an unbounded linear functional. Once we drop the
assumption of linearity of the preference functional (i.e. the independence
axiom), however, these two conditions are seen to be quite distinct, for although
V(-) has unbounded lacal utility functions, ¥(F) < 1 = lim V(G.) for all
F(-)y in D0, c0).

ol

5. CONCLUSION

5.1 Testing Hypotheses on Preferences

It is clear that conditions (i1}, (in), and (iv) of Theotem 5 offer three {equiva-
lent) ways of generating further refutable implications of Hypothesis II. It is
straightforward to venfy, for example, that the hypothesis implies that any
individual preferring a, to a, or a, to a, in the Allais Paradox (Figure 3) must
prefer the prospect (a.) of a .89:.11 chance of winning $5 million or $1 million
respectively to the prospect () of a .99:.0] chance of winning $5 million or $0.°
Moare generally, Hypothesis II would be viclated by any triple of preferred
prospects out of the pairs (a,,a,), (4,,4,), and (a;5,a,) other than (a,,a,as),
{a),45.a5), (ay,a4,45), O (ay,a5,4).

A more general approach to testing hypotheses on preferences s 10
parametrize F(-) and esumate it directly. Thus, for example, for the quadratic

*2Nate that this particular cendition is slightly stronger than the correspanding condition (iii)
listed at the beginning of this section.

5This is true since the shift from a5 o 4, is the same as from 2, to 2, and fram a, ta ¢,, and since
a; stochastically dominates & and a,.
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preference functional I}(‘) of equation {6), we have from equation (7) that

[}1[(-’{3!:) R'(x) R"(x)
(5 - = -
U(x5F) | R(x)+ ES(2)]- S'(x) R'(x)
N EJS(z)] 5(x) _S(x)
R(x)+ E.[S(z)]- S'(x) S'xy |

Equations (7) and (15) show how the properties of the preference functional
depend on the properties of R(-) and S(-). Thus, if R(:) and S(-) are both
positive, increasing, and concave, U(-; F) will be as well, and if, in addition, §¢-)
is more concave than R(-), then a sEochastically dominating shift in F will, by
raising E;{S(2)], raise — U, \(x; F}/ U (x; F). A particularly flexible four param-
eter functional form for F(-} can be obtained by adopting the parametrizations

(16) R(x) Efxexp(—az—@zl)dz and
0

§(x} ELxexp(—cz—%d-zl)dz,

which give — ﬁ”(x)/ﬁ’(x) =a+ bx anii — §"(x)/§‘(x) = ¢+ 4 x. Thus, de-
pending on the values of a, b, ¢, and 4, R(-) and S{-) could he concave, convex,
or have inflection points, and possess increasing, decreasing, or constant Arrow-
Pratt terms, thus allowing for a wide range of behavior. Estimation of these
parameters, say by a least squares fitting of predicted versus actual reported or
observed certainty equivalents of alternative distributions, would allow for a
direct test of Hypotheses I and II, as well as other hypotheses concerning the
shape of F(-). (In this particular parametrization, Hypothesis I is valid when &
and 4 are nonpositive, Hypothesis IE is valid when a + bx Zc + 4 x for all
x [0, M], and the independence axiom is equivalent to the condition thata = ¢
and b = d.)

Finally, while the joint consistency of Hypotheses I and IT with the existence
of a preference functional was demonstrated directly by the example (12), it
would be useful to know whether other additional or alternative hypotheses on
how U(x; F} varies with x and F are similarly consistent with the existence of
some V(-). Expressing the local utility function in “normalized form” so that
U(Q; F) = 0 for all £,** and defining

A7) Q(a, B)= V(1L —a— B)F + aG,. + BG,.)
— V(1 — a — B)F + aGy + BG,)
— V(1 - a — B)F + aG.. + Gy
+ V(1 — a — B)F + aGy + BG),

S From the discussion in footnote 41, it is clear that we may replace U(x; F) by U{x; F) — U0,
F3 ta obtain this normalized form.
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we obtain
d * . E
(18) T (U (1 = 0)F + aG.) — U(x*; (1 — ) F + aGO))L=O

2
djd,@ (Q(a, B)) ~

f=0q

= B (UG (1= BYF + 6G.) - V(% (1 - BYF + o))

8=0

In other words, (for U(x; F) in normalized form), starting from any initial
distribution F£(-), an infinitesimal shift of probability mass from 2z* to 0 will have
the same effect on U{x*; F) as an equal shift of mass from x* to 0 has on
U(z*; F). While the question of sufficiency is beyond the scope of this paper, we
thus have that a necessary condition for a hypothesis on how U(x; F) varies with
x and F to be consistent with the existence of some ¥(-) function is that it satisfy
the symmetry or “integrability” condition (18).

5.2. *Locally Utilitarian™ Social Welfare Functionals

Much of the analysis of Sections 3 and 4 admits of a straightforward interpre-
tation in tertns of the properties of an anonymous social welfare functional
(SWF) V() defined over cumulative wealth distribution functions F(-) over a
fixed population or measure space of agents. Because of the direct nature of the
extensions, we offer neither proofs nor formal statements of theorems, but rather
merely outline the types of results which may be obtained.

An important special case of such a SWF is the “utilitarian” (i.e. additvely
separable) functonal [U(x)dF(x), where /(x) is the social utility of an individ-
ual possessing wealth level x. It follows from Section 3.1, therefore, that if an
arbitrary nonutilitarian SWF is “smooth enough,” there will exist at each wealth
distribution F(-) a cardinal “local social utility of wealth function” U¢-; F) such
that a small change from F(-) to a new wealth distribution F*(-) will improve
social welfare (i.e. raise V(-)) if and only if it raises aggregate local social utility,
that s, if [U{x; F)dF*(x)2 [U(x; F}dF(x). Tt is clear from Theorem 1 that
V(- ) will satisfy the Pareto criterion (i.e. prefer an increase in any individual’s
wealth) if and only if all its local social utility functions are increasing in x. By
Theorem 2 and the work of Atkinson [8), V(-) satisfies the Pigou-Dalton
condition {L.e. is increased by costless transfers of wealth from the rich to the
poor)S* if and only if U(x;F) is always concave in x. Similarly, Theorem 4
inplies that the following conditions on a pair of SWFs F(-) and V*(-} are
equivalent: (1) costly (i.e. aggregate wealth lowering) transfers from richer to
poorer individuals which preserve the value of F*(-) will preserve or raise F(-);

$°Qther equivalent versions of this condition for utilitarian and nanutilitarian SWF's are discussed
in Dasgupta, Sen, and Starrett [16] and Rathschild and Stiglitz [75).
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(ii) the maximum acceptable cost of effecting a complete redistribution of wealth
among any subgroup of society is no lower for ¥(-) than for F*(-);* and (iii) the
local social utility of wealth functions of V() are at least as concave as the
corresponding ones of F*(-). These equivalencies provide a natural extension of
the relation “more inequality averse” to arbitrary (i.e. not necessarily utilitarian)
SWE’s.

Hypotheses T and II similarly admit of straightforward normative interpreta-
uons. It follows from equation (5) that the maximum acceptable proportionate
deadweight loss in transferring a small amount of wealth from an individual with
wealth x, to one with wealth x, < x, (where this loss is taken from the
transferred wealth) is given by

(19) L= (U\(xy; FY/ Up(x,5 F))

=1- exp(_f'-‘fb(_ Ui(x; FYy/ U \(x; F))a’x),
Hypothesis I thus implies that this maximum acceptable loss will be preserved or
increased if x, and x, are lowered by a common amount, so that (in this sense, at
least) society is at least as willing to expend resources in redistributing wealth
among the poor than among the rich. Hypothesis IT implies that, for fixed x, and
X;, society’s willingness to redisteibute wealth between these two individuals will
be preserved or increased by an improvement in the absolute wealth levels of
{any or all) other members of society, in contrast to the utilitarian case where this
willingness is independent of the wealth levels of others.?” Together, as in Section
4.4, the two hypotheses imply that, compared with the utilitarian case of a fixed
U(-) function, society’s notions of inequality or poverty are “relative” in the
sense that the local social utility function will shift rightward in response to a
general increase in wealth levels.

5.3. Relared Work

Besides the work of Kahneman and Tversky [46], recent years have seen a
revival of interest in non-expected utility maximizing behavior. Although none of
the following take the approach developed here, the reader is referred to Allais
[4], Chew and MacCrimmon [14, 15], Hagen [38], Kreps and Porteus [49],
MacCrimmon and Larsson [57], and Selden [84).

University of California, San Diego

Manuscript received April, 1980; final revision received fuly, 1981,

“n both this and the previous condition, the cost of the transfer is assumed ta be taken out of the
transferred wealth, and not barn by any other member of saciety.

#7See Rothschild and Stiglitz [75], Sen [85, pp. 39-41], and the references cited there far a general
discussion of the implicatians of additive separability in this context,
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APPENDIX

LemMa |2 The ropaiogy of weak convergence an D0, M] is induced by che LY metrie d(F*. F)
= (| F*(x)— Fix)[dx on D0, M]

Proor: Assume F,(x)— Fix) at all continuity points x of F(-). Since F{-} i5 a cumulative
distribution function this implies [F(x) — F(x)| >0 almost everywhere on [0, M]. Since | F,(x) -
Frx)| is bounded by unity. by the Bounded Canvergence Theorem (see Klambauer [48, pp. 59-60])
we have d{F,. F}y= [IF (x] — Fix)|dx—0

Conversely, let g{-) be an arbitrary continugus function on [0, M] and € an arbitrary positive
number. By the Weierstrass Approximation Theorem, there exists a polynomial g( )y on [0 M] such
that |§(x} gix) < /4 for all x £[0, M]. Also. since g( ) is a polynomial its derivative g( I E
bounded an [0. M} by some finite L. Thus, fur any a, |{glx)dF,(x) — dF (x| < (/2] + | [F(x)
{df, () — dF(x))|. which by Lemma 2 equals {e/2) + |[(F,(x} — F(x);g(x)dx[ Ze/N) + L-d(F,.
Fywhich, if i F,. F)—0. becomes less than € as 1 = w. Q.E.D.

LiMMa 20 0f Ftobis a cumudative disivibution function an [0. M] and g(-) is absolutely cantinuous
aver [0, M|, then [gix)1dFix)=giM) — | F(xYydg(x)

Proot: Let [x 1”2 be a grid on [0, M] (ie. 0= x, < -+ - < x,,. = M) with norm defined as
mux, (v, — ) Then g(M)=g(M) FIM) =73 I(F(x,”)g(r,H) Fix)glx )+ FQg(O)
= [F((J)g((]) + SUUFx . — Flehgled] O[SV Fix,, ) — FleWgin, ) — glx))] +
(X0 Fla gl ) — glxal. As the norm of the grid goes to zeru. the first and third bracketed
terms o to gy a‘F(\\‘) and | Fix)dg(x) respectively. By unifarm continuity of gi- ). there will exist
far each positive € a positive § such that if the norm of the grid is less than & then {g{x,, ) — gy
< € for all 7, sa that the absolute value of the second bracketed term is less than € - 59 ((Fix, . 1 —
FLu 2 e so that as the norm of the grid goes to zere, we obtain the desired result. Q.ED.

Proor OF THEOREM |: Assume F*(-} stochastically dominates F£(-}, and define F{x:a)=
aFf*x)+ (1 — o) F{x) for all {x, )y &[0, M] % [0.1]. From (9} we have

VOFYy — (R = VEF{- 1)) — VEFC-:0))

=J;][ %(IU(k;F(-:a*)}dF(;;a))

=L'Uuu; F(-ia*)WdF* (x) — dF(.rn]da

]da“

®*

However if Uiy £ Ca*) is nondecreasing in x for all £(-: a*), then it follows from expecied utility
tireory that the last bracketed expression_will be nonnegative for all ¢*, so that V(F*y = I(F).
C‘mmverse_ly\ assume that for some F{ )€ D[0. Mland 0= x* = x** = M we have Ux* F}
s Ue** Fy Defining F*(xia) = aG dx)+ (1 —alf(x)and Fr(x o) = aG (00 + (1 — a}Fly).
s that F*- Q)= F**(- .00 we have from equation (8} that
d *. * R
VOl = VP um|

a=1

1

4 UU(.« Fi(adG x)+ (1 — a)dF(x))
o

HIU(_r; P:](«dG\"(-‘J + - a}d!—:(.r))][ =

= " Fy— tx* Fy =0

sa that for some small posnwe a* we have F(F*-:a*)) > VIF*( :a*)), even though F**(-. a
stochastically dominates £ a*). Q.E.D.

Proors oF TueoreMs 2 anD 3: Theorems 2 and 3 follow directly from the equivalence of
conditions {i}. ¢ii), and (iii} of Theorem 4 when VP*(F} is defined to identically equal [x - 4F(x) (50
that L4*x; Fy = x). Q.E.D.
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ProorF oF THEOREM 4. (i) —(i1): Assume that for some F**(-1€ D[O. M]. L/(-; F**) was not at
least as concave as U*( - F**}, so that for some g and 0 = x; < xy < x; 2 M,

0 <(U(xyi Fr*) = Ulx s FP) /(U F**) = Ulx: ) < g
LU (g P¥*) — U O F* N/ 0U ey PRy — U (s Ao < L
Let F{-)=¢G () + (1l — g)G, (). Applying equation (8) and simplifying yields

d e X2 " x
a,—P(V((l—p}F +pFy—= V(L - pIF +pG..})

p=t
=fU(.r: F**)dF(x} — dG_(x))

= gUix,  F¥* )+ (L — g)(x) F**) — WHxy: F**) = 0,

and similarly that

;%(V*((I — PV pFy - VR - py P+ 6L )Y <0

pe=th

This implies that, for some small positive p, V(1 — p)F** + pF)y > V(| — pIF** + £G, yand Pl -
PR+ pEy < ML — p)F** + pG ) which respectively imply ¢ = ¥, and ¢* < x5, contradict-
ng (i)

(i) = qui): Let F*(-) differ from F(-} by a simple compensated Spread from the paint of view of
L), with £, and {4 the intervals referred to in the definition of simple compensated spread (Section
2.1). Define ¢ (x)=max[F*{x)— F(x) 0] o (x)=min[F*c)— Fix1 0], and Firia, 81
= Fixi+ o (x)+ B (x) for all x in [0,M]. For o €[0.1]. define B(a) as the solution t
V*HFC e, Bla)) = FXF)= F* F*). Smoothness and strict monatonicity of I#*(-) ensure that )
is urique, increasing, differentiable, and that (0 = 0 and £(1) = 1. so that for any a* in [0, 1],

(Al o=di(V*(F(-:a. Bl
» .

e

_ a%(fu'“‘" F(iam Bla* ) dF(xie. fla))

e

=fU‘(r.F(‘:a“ Bla*ilde™ (x) + f(a*) do~ (x)].

)
Praceeding similarly with the preference functional V() yields

(A2 VIFY = V(Fy= V(F(- 1, 1)) — V(F(-:0,01)

POFC L BUN — VUFC 0, 100

=f'[i(V(F(-;a, Blal))) :|do‘*.
o | da o
where, a5 in (A1), the last bracketed term is seen to equal

(A.3) fU(x: F(a* Blarlde ™ (x) + Bte*) do~ (x)].

From (A1) and the definitions of ¢* and ¢~ it is seen that the shift ¥ ¢y + B(a*)- & (-]
EAD[0, M] is a mean utility preserving increase in risk with respect te the utility function
L  Flia*, Aita*))) (see Diamond and Stiglitz [19, pp. 341-345)). Thus, by Condition (i) of the
present theorem and Theorem 3 of Diamond and Stiglitz [19]. the term (A3) is nanpositive for all o*
in [0, I]. which from (A.2} implies that F{F*} = V(F).

(ii)~(i): Since {1 — p)F** + pF differs from (1 — p)F** + pG . by a simple compensated spread



e MARK I. MACHINA

with cespect to PR gwhere £, = |0.e%1), we have bl - piF** + PG E VI = pIF** + pFy
= LUl - mFTE 4 pdy so that by monatanicity, oF 2 ¢

Gy - iy TF for same F**- po v, and 7 we have ao* - a there would exist some & € ra®, o) such
that

% (VA= pF 4 pf )] <0 % (V= I+ pF e ) ,-l
Let Fof 3 be the distetbution of 7 and
FOI=Cl= Iy + pF aeuslo )
From qu) and Prate [68], we have thut x, < x, implies U\(xy; FI/Ux  FI S UNxy FY/ U F)
far all £in 50, M} Thus

{
O (VU = pIF S 4 PP e ))[_

T

= i(ft!(.‘-; FM)CI = prdF*(x) + pdF,, _M,_4_d_,-(.r1})‘

N

=ﬂi(fu((l - (r]r+fx::f=]dF5(:])‘

]

=plhtr F ]Mf(_- - r)(U|((I — &+ B FY U F ;]dF;(:}
+f.u(: - r](Ul((I — @+ @ F) s F J)dF:-(;)]
= plite F‘)Uﬂ’(: - »-;(U:((l - &+ w F) UM ?})dF__-(;}

+ [Me = n(Ui - @i 4 @ F) Ut ?))dF_,—(:]],

sinee monotonicity of F*(-) and the fact that the mean of 2 is greater than » imply that «* and
therefore & i1s positive. which in turn implies that (1 — &) + &z will be greater than (less than) » if and
anly if - s grester than {less thany r. However. the positivity of the last bracketed term implies that

i * * * -
E(V (1 -p)F "';r"p{l--rz|1—4—<\_":':'[rI =0,
which is a contradiction. - .
(iv)=+qiip: If for some £ & D0, M) L F) is not at least as concave as L*(-; £}, from Pratt [68]
there will exist x, < x, and # € (0, 1) such that
Uxs: FIJU S FY = 85 Utxa: £)/ UM, F).

s that for some small positive 8.

U(x,+ 8 E)— Ulxy; £ ) g Ut(xy F) = UH(xy — 8, F)
Ulx i F)Y— Ulx, — B85 F) UM(x, + B8, FY— U x FY

This implies that far some positive probability p. F{F,) < VIFYand VF*(F} > F*(F,). where

FC1=0-pFo+ 2a ace Lo e

FC = =pfci+e Lo )+ L6 00 and

Fer=a-pier+ L, pov a0
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Letting
w, =l =S+ M-y =l e, = L8+ B (0 — x b

=+ AU+ B) and I the random variable with distribution F=(-) = _'-G“(-}-F— YO
tedivns algebra yields that

Fo= 0= p)F +pF,

ITNTE ST
Ep= U1 = DY+ pF oiemns s

and
o=l = pYF+pF o en s

which, since hoth individuals are diversifiers, implies that the optimal value of « for (-] is greater
than o, and that the optimal value of « for F*(-) is less than a, . contradicting {iv). Q.0

Peoor ar TueoreM 50 () —{iv): Assume v < 1 < = Then. by definition. any shift in the initial
distributicn which serves to make v more outlying relative to ¢ and 2 must be a stochastically
dominating shift, which by Hypathesis 11 preserves ar raises the value of — U, (& F)/ U\(&: F) for all
£ Fram Prau (68|, this will preserve ar lower the value of (U{z0 FY— Uiyt FIAU P — L Fhy
=MRS( i —x, 1 — 2] which by definition makes the individual weakly more sensitive to changes in
the prabability of v relative to changes in the probubilities of 4+ and =, A similar argument applies
when & ois greater than v oand 2.

fivi— (i} Assume FE(-) stachastically dominates Fi- 1, and let x; < xy < xy be arhitrary elements
af [0, M]. Then the shift from £ 1o F* may be decomposed (nto a leftward shift of mass within the
interval [0, x4] and a subsequent rightward shift within [v5, M] (where any mass that is ultimately
shiefted across vy is first shified to it, then rightward from it). Since the first component of the shift
mukes ¥, more outlying relative to xy and x,. it makes the individual weakly more sensitive o
changes in the probability of x| relative to changes in the probabilities of ¢; and v,. and hence
preserves of lowers MRS( vy — ¢, ;= ) Similarly, the second component of the shift makes v,y
less outlying relative to v, and ¥, and hence also preserves or lowers MRS(x, — . o — w0 Thus
for the entire shift we have

(Lt F*Y — Dl PR3 U Py — U e RN
Z (Ui FY = Ulra FNJU 6 FY = UG s FL

From Praiwt [68]. we know that if this inequality halds for arbitrary v, < xs < vy, then for all x
— Ul Py Ui Py 2 U (e P/ Uses P

(i) = (i) Assume Fy differs fraom F| by 1 simple compensated spread. ldentifving Fy with F*. F|
with F. and ¥ with ¥*, define 4,, Jq. () & "¢} Fl-ieo 83, and fe-) as in the proof of the
implication (i) — (i} in Theorem 4. Then. as in equation {(A.[] we have

0= %(V{F(-:m mannl = [Ute Pt Atatlde® (0 + fet) de” ()],

s that the shift ¢4 -1+ B'(a®) ¢ (-] is seen to be a mean utility preserving (ncredse in risk with
respect o the utility Fanction U-3 Fola™ e
Similarly, since F b= F-i+h (@ {1+ (b= Fy-l+dh o {0+ M- 8011 () we

hawve

vra vy = [ L0 ex o+ ata 28 )

: ] da*
0

nt

h [ fUts P e 4 famie )

X(d¢* (x)+ fla*)de (.vJ}]da*.
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Thus. by Hypothesis [[ and the argument in the proof of the implication (i) — (iii} in Theorem 4. to
prave that the ahave hracketed term is nonpositive for all a* it suffices to demonstrate that the
distribution Fy + a*Ad ™ + fila* ¢~ stochastically dominates F(-:e*. f{a*}) for all a*

Naw, since Fx) — Fyfx) = Fylx] — Flx)+ (A — Né ™ (x) + (A — [} 7 (x} is nonpositive for all x
in [0 M asis Fulx) — Fy(x) and since e* and S(a*} both lie in the unit interval. we have that for all
xin f,,

Filelh+ a*aat (x)+ Bla*the " (x) — Fl{x)— o™ (x) — Bla®)p ™ (x)
= Fylx) = Filx)+a*(h = g * (x)

(since ¢ (x}=0 on [,). which will be nonpositive regardless of the sign of (A — 1) A similar
argument for the case of v in {5 establishes the required stochastic domindnee result,
A similar argument applies in the case when £, differs from Fy by a simple compensated spread.
ity = (i) Condition (iily follows from menotonicity and Condition {i) hy defining

Fi=(1 - pIF* + pG.., Fy={1 = p}F* + pF. Fy=1{l—plF** + pG., and
Fe=1(1 - p1F** + pF.

ity -2 ri): The proof of this implication corresponds almost directly to the proof of the implication
(i) — (i} in Theorem 4 and is omitied.

tiip = (v): Conditign (v) is seen ta be a special case of Condition (ii) when Fy. F,. F. and F. are
defined 1o equal the four respective arguments of () in Condition {v}. with A = | /¢ (the case when
r =015 teivial) Q.ED.

Proor o THEOREM 6:(1): Define

|
F(-;n.w.Z}E(l )Gu(-)+;6,,.+,,z(-).

_ L
n
Then from (§).

4

E(V{F(-;n,u:Z]})= Z-Uw+nZ Fl-inw ZN/n

AT+ nZiFlinw 2N — Ui Flonw, 20/
Substituting from {13) and rearranging gives

d = 1
(A4 S (VFCine. 21y = =Z{F w e+ nZ V(L + W) )
+ [,l - (Z — ’—11 )exp(wd» nZ — E;_.t_:"\h_m[exp{:}])/n}

+ { A exp(“‘ ~ Epy. __“_“_j'[r:xp(_w}”/nl }‘

Sinee
£ [cxp( ')] ={l- 1 expiw) + 1 exp(w + nZ )
fremn A - " " -

we have that the first of the three terms an the right hand side of (A.4) goes to zerg at rate | /n, and
the second and third terms go Lo zero at a faster rate, so that for fixed w and Z. a5 » grows large
enough, £( F(FL  n w, Z )1/ dn eventually becomes negative. 1t s also clear that for given w and Z
there will exist a finite ntw. Z ) such that # > atw, Z) implies that 2 P{F(- . n w. Z)))/dn < O for all
we (0w

By definitian, w(s. w. Z1 is the solution to PLFL o w — minow, 21 Z0) = PG o if FUFC A,
0.Z) & PiG,). thent m(n, w, Z) = w, Since F(FC 0, Z1)—20as n— o, and FIG ) > 0, provided
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wZ 504 mwin w Z) < wfor large enough v, Thus for given w* 2 $.04 and Z. we have that for large
enough n*,

p . ) [(d/dn}( FiF(-nw*—o(n* ws 2.2 };)[,,.]
— (w{n w ,Z]}[ = — .
dn fae [(d/dw)(V(F(-;n" w— 'n(n*‘w".Z}.Z)}}{,l..}

Since the denominator in the above expression is always positive, and for #* 2 a{w* Z), the
numeratagr 1§ always negative, we have that for fixed w Z 304 and Z. diwin, w. Z0)/dn is eventually
negative for large enough .

itk 1015 clear that for any Fr-) € O[O, eo), P(FY < 1, and since lim, V(G )= 1. for any
Fi-1E D0, eo), there will exist some finite w such that F(F) < PG

(iii): By definition.

Fill=pbG,. +pG. h=(w+wi+{p+w)Z /(L +wil+w+Z))

= exp( — (|l — plexpiw} — p-exp{uw + Z)).
which is always strictly less than unity and approaches (p+wif{l +wj<]as Z— oo Thus, since
lim,, .. (G, 1= [, there will exist some finite C such that F(G, , ) > Pl - p)G,. + pG, ., ) for all

finitc Z
(iv): Defining Fixia) = aF*x)+ (1 — a)G, {x), we have from equation (9) that

FF*) - 17(0“_)=j}‘[ U“U(x;F(‘:an(dF*(x}—d(;“(_r)}}da.

Since the mean of F* is w. and since from (13} or {14} it is clear that a mean preserving spread in F
will increase the cancavity of U(-: F), to show that the inner integral in the abave equation is always

negative it suffices to show that & x: Gy < 0 for all x €0, 2w], or, since U, (xiGL) (5 easily
shown ty be positive, that T, (2w G0 = —2/{1 + 2w + |- exp(2w — expiw]) < O for all nEHINEgE-
Ve W

The last inequality is equivalent to g(w) = exp{w)— D — I - In{l + Iw) + In(20) = 0 for all w = 0.
Since g+ ) is strictly convex and g(0) < 0 and g'(1.3) » 0. g ) will attain its minimum at w* € (0, 1.3)
where g'tw*) = exp(®) — 2 — 6/(1 + In*} = (0. At this point, g{w*} = g(w*) — gu*)= —2In* -3 -
el + 2w*y+6/00 + 2u*) + Ing201 + 2 = 0. Q.ED
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