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NOTE ON VON NEUMANN-MORGENSTERN'S STRONG
INDEPENDENCE AXIOM

By E. MaLinvaUD

ProressoRr saMUELsON noticed that no explicit axiom in von Neumann-
Morgenstern’s treatment of hehaviour under uncertainty seemed to cor-
respond to his “strong independence axiom.” He then made the con-
jecture that the authors had implicitly introduced in their mathematical
setup some assumption that was carrying the true content of this axiom.
The present note is intended as supporting such a view.

The axioms in von Neumann-Morgenstern are written in terms of
equivalence classes u, », w, --- ¢ U. An equivalence class « ¢ [/ is de-
fined as a set of events. Two events z, and z» helong to the same equiva-
lence class if and only if the individual in question is indifferent between
them; i. e., if z:/x, .

Before they write any axiom, the authors define an operation on
equivalence classes by:

o 4 (1 — o)y = w

where « is any positive real number smaller than 1,

From the heuristic comments it follows that w must be understood
as being the equivalence class of all events which may be obtained as a
probability combination of any event in u, with frequence «, and any
event in o, with frequence 1 — a.

Now, why should such an operation make sense? Why should w he an
equivalence class? Assuming this, as von Neumann-Morgenstern im-
plicitly did, amounts to postulating the Samuelson “strong independence
axiom.'’ Indeed, if the operation iz valid, then for any z:, z: ¢ © and
i € v, we must have:

ar; + (1 —~ a)yew,
ars + (1 — a)yew.

This must be true for any u and v; hence, if z,/z, , then for any y:
[azs + (1 —~ ay] I [am: + (1 — a)yl,
which is Samuelson’s “strong independence axiom.”
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[Ep. Nore: The above is one of several related contributions published in this
issue. Reference should he made to the editorial note which appears on page 661.]
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