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ABSTRACT

A representative agent fears that his model, a continuous time Markov
process with jump and diffusion components, is misspecified and therefore
uses robust control theory to make decisions. Under the decision maker’s
approximating model, that cautious behavior puts adjustments for model
misspecification into market prices for risk factors. We use a statistical
theory of detection to quantify how much model misspecification the de-
cision maker should fear, given his historical data record. A semigroup
is a collection of objects connected by something like the law of iterated
expectations. The law of iterated expectations defines the semigroup for a
Markov process, while similar laws define other semigroups. Related semi-
groups describe (1) an approximating model; (2) a model misspecification
adjustment to the continuation value in the decision maker’s Bellman equa-
tion; (3) asset prices; and (4) the behavior of the model detection statistics
that we use to calibrate how much robustness the decision maker prefers.
Semigroups 2, 3, and 4 establish a tight link between the market price of
uncertainty and a bound on the error in statistically discriminating between
an approximating and a worst case model.
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1. Introduction

1.1. Rational expectations and model misspecification

A rational expectations econometrician or calibrator typically attributes no concern about
specification error to agents even as he shuttles among alternative specifications.! Decision
makers inside a rational expectations model know the model.? Their confidence contrasts
with the attitudes of both econometricians and calibrators. Econometricians routinely use
likelihood-based specification tests (information criteria or IC) to organize comparisons
between models and empirical distributions. Less formally, calibrators sometimes justify
their estimation procedures by saying that they regard their models as incorrect and unre-
liable guides to parameter selection if taken literally as likelihood functions. But the agents
inside a calibrator’s model do not share the model-builder’s doubts about specification.

By equating agents’ subjective probability distributions to the objective one implied
by the model, the assumption of rational expectations precludes any concerns that agents
should have about the model’s specification. The empirical power of the rational expec-
tations hypothesis comes from having decision makers’ beliefs be outcomes, not inputs, of
the model-building enterprise. A standard argument that justifies equating objective and
subjective probability distributions is that agents would eventually detect any difference
between them, and would adjust their subjective distributions accordingly. This argument
implicitly gives agents an infinite history of observations, a point that is formalized by the
literature on convergence of myopic learning algorithms to rational expectations equilibria
of games and dynamic economies.?

Specification tests leave applied econometricians in doubt because they have too few
observations to discriminate among alternative models. Econometricians with finite data
sets thus face a model detection problem that builders of rational expectations models
let agents sidestep by endowing them with infinite histories of observations “before time
zero.”

This paper is about models with agents whose data bases are finite, like econometricians

and calibrators. Their limited data leave agents with model specification doubts that are

L For example, see the two papers about specification error in rational expectations models by Sims (1993)
and Hansen and Sargent (1993).

2 This assumption is so widely used that it rarely excites comment within macroeconomics. Kurz (1997)
is an exception. The rational expectations critique of earlier dynamic models with adaptive expectations was
that they implicitly contained two models, one for the econometrician and a worse one for the agents who
are forecasting inside the model. See Jorgenson (1967) and Lucas (1976). Rational expectations modelling
responded to this critique by attributing a common model to the econometrician and the agents within his
model. Econometricians and agents can have different information sets, but they agree about the model
(stochastic process).

3 See Evans and Honkapohja (2001) and Fudenberg and Levine (1998).



quantitatively similar to those of econometricians and that make them value decision rules
that perform well across a set of models. In particular, agents fear misspecifications of
the state transition law that are sufficiently small that they are difficult to detect because
they are obscured by random shocks that impinge on the dynamical system. Agents adjust
decision rules to protect themselves against modelling errors, a precaution that puts model
uncertainty premia into equilibrium security market prices. Because we work with Markov

models, we can avail ourselves of a powerful tool called a semigroup.

1.2. Iterated laws and semigroups

The law of iterated expectations imposes consistency requirements that cause a collection
of conditional expectations operators associated with a Markov process to form a math-
ematical object called a semigroup. The operators are indexed by the time that elapses
between when the forecast is made and when the random variable being forecast is realized.
This semigroup and its associated generator characterize the Markov process. Because we
consider forecasting random variables that are functions of a Markov state, the current
forecast depends only on the current value of the Markov state.?

The law of iterated values embodies analogous consistency requirements for a collection
of economic values assigned to claims to payoffs that are functions of future values of a
Markov state. The family of valuation operators indexed by the time that elapses between
when the claims are valued and when their payoffs are realized forms another semigroup.
Just as a Markov process is characterized by its semigroup, so prices of payoffs that are
functions of a Markov state can be characterized by a semigroup. Hansen and Scheinkman
(2002) exploited this insight. Here we extend their insight to other semigroups. In partic-
ular, we describe four semigroups: (1) one that describes a Markov process; (2) another
that adjusts continuation values in a way that rewards decision rules that are robust to
misspecification of the approximating model; (3) another that models the equilibrium pric-
ing of securities with payoff dates in the future; and (4) another that governs statistics
for discriminating between alternative Markov processes using a finite time series data

record.” We show the close connections that bind these four semigroups.

4 The semigroup formulation of Markov processes is common in the literature on applied probability. See
Ethier and Kurtz (1986) for a general treatment of semigroups and Hansen and Scheinkman (1995) for their
use in studying the identification of continuous-time Markov models.

5 Here the operator is indexed by the time horizon of the available data. In effect there is a ‘statistical
detection operator’ that measures the statistical value of information available to discriminate between two
Markov processes.



1.3. Model detection errors and market prices of risk

In earlier work (Hansen, Sargent, and Tallarini (1999), henceforth denoted HST, and
Hansen, Sargent, and Wang (2002), henceforth denoted HSW), we studied various dis-
crete time asset pricing models in which decision makers’ fear of model misspecification
put model uncertainty premia into market prices of risk, thereby potentially helping to
account for the equity premium. Transcending the detailed dynamics of our examples was
a tight relationship between the market price of risk and the probability of distinguishing
the representative decision maker’s approximating model from a worst-case model that
emerges as a byproduct of his cautious decision making procedure. Although we had of-
fered only a heuristic explanation for that relationship, we nevertheless exploited it to help
us calibrate the set of alternative models that the decision maker should plausibly seek
robustness against. In the context of continuous time Markov models, this paper analyt-
ically establishes a precise link between the uncertainty component of risk prices and a
bound on the probability of distinguishing the decision maker’s approximating and worst
case models. We also develop new ways of representing decision makers’ concerns about

model misspecification and their equilibrium consequences.

1.4. Related literature

In the context of a discrete-time, linear-quadratic permanent income model, HST consid-
ered model misspecifications measured by a single robustness parameter. HST showed how
robust decision-making promotes behavior like that induced by risk aversion. They inter-
preted a preference for robustness as a decision maker’s response to Knightian uncertainty
and calculated how much concern about robustness would be required to put market prices
of risk into empirically realistic regions. Our fourth semigroup, which describes model de-
tection errors, provides a statistical method for judging whether the required concern about

robustness is plausible.

HST and HSW allowed the robust decision maker to consider only a limited array of
specification errors, namely, shifts in the conditional mean of shocks that are i.i.d. and
normally distributed under an approximating model. In this paper, we consider more
general approximating models and motivate the form of potential specification errors by
using specification test statistics. We show that HST’s perturbations to the approximating
model emerge in linear-quadratic, Gaussian control problems as well as in a more general
class of control problems in which the stochastic evolution of the state is a Markov dif-
fusion process. However, we also show that misspecifications different from HST’s must

be entertained when the approximating model includes Markov jump components. As in



HST, our formulation of robustness allows us to reinterpret one of Epstein and Zin’s (1989)
recursions as reflecting a preference for robustness rather than aversion to risk.

As we explain in Hansen, Sargent, Turmuhambetova, and Williams (henceforth HSTW)
(2002), the robust control theory described in section 5 is closely connected to the min-max
expected utility or multiple priors model of Gilboa and Schmeidler (1989). A main theme of
the present paper is to advocate a workable strategy for actually specifying those multiple
priors in applied work. Our strategy is to use detection error probabilities to surround the
single model that is typically specified in applied work with a set of empirically plausible

but vaguely specified alternatives.

1.5. Robustness versus learning

A convenient feature of rational expectations models is that the model builder imputes
a unique and explicit model to the decision maker. Our analysis shares this analytical
convenience. While an agent distrusts his model, he still uses it to guide his decisions.%
But the agent uses his model in a way that recognizes that it is an approximation. To
quantify approximation, we measure discrepancy between the approximating model and
other models with relative entropy, an expected log likelihood ratio, where the expectation
is taken with respect to the distribution from the alternative model. Relative entropy is
used in the theory of large deviations, a powerful mathematical theory about the rate at
which uncertainty about unknown distributions is resolved as the number of observations
grows.” An advantage of using entropy to restrain model perturbations is that we can
appeal to the theory of statistical detection to provide information about how much concern
about robustness is quantitatively reasonable.

Our decision maker confronts alternative models that can be discriminated among only
with substantial amounts of data, so much data that, because he discounts the future, the
robust decision maker simply accepts model misspecification as a permanent situation. He
designs robust controls, and does not use data to improve his model specification over

time. He adopts this stance because relative to his discount factor, it would take too much

6 The assumption of rational expectations equates a decision maker’s approximating model to the objective
distribution. Empirical applications of models with robust decision makers like HST and HSW have equated
those distributions too. The statement that the agent regards his model as an approximation, and therefore
makes cautious decisions, leaves open the possibility that the agent’s concern about model misspecification is
“just in his head”, meaning that the data are actually generated by the approximating model. The “just in
his head” assumption justifies equating the agent’s approximating model with the econometrician’s model,
a step that allows us to bring to bear much of the powerful empirical apparatus of rational expectations
econometrics. In particular, it provides the same economical way of imputing an approximating model to
the agents as rational expectations does. The difference is that we allow the agent’s doubts about that model
to affect his decisions.

7 See Cho, Williams, and Sargent (2002) for a recent application of large deviation theory to a model of
learning dynamics in macroeconomics.



time for enough data to accrue for him to dispose of the alternative models that concern
him. In contrast, many formulations of learning have decision makers fully embrace an

8 Despite their different orientations,

approximating model when making their choices.
learners and robust decision makers both need a convenient way to measure the proximity
of two probability distributions. This fact builds technical bridges between robust decision
theory and learning theory. The same expressions from large deviation theory that govern
bounds on rates of learning also provide bounds on value functions across alternative
possible models in robust decision theory.” More importantly here, we shall show that
the tight relationship between detection error probabilities and the market price of risk
that was encountered by HST and HSW can be explained by formally studying the rate

at which detection errors decrease as sample size grows.

1.6. Reader’s guide

A reader interested only in our main results can read section 2, then jump to the empirical

applications in section 9.

2. Overview

This section briefly tells how our main results apply in the special case in which the
approximating model is a diffusion. Later sections provide technical details and show how
things change when we allow jump components.

A representative agent’s model asserts that the state of an economy x; in a state space
D follows a diffusion!®

dry = p(xy)dt + A (z¢) dBy (2.1)

where B; is a Brownian vector. The agent wants decision rules that work well not just
when (2.1) is true but also when the data conform to models that are statistically difficult
to distinguish from (2.1). A robust control problem to be studied in section 5 leads to such
a robust decision rule together with a value function V(z;) and a process 7(z;) for the
marginal utility of consumption of a representative agent. As a byproduct of the robust

control problem, the decision maker computes a worst-case diffusion that takes the form
doy = [p(ze) + A (@) g (x0)] dt + A () dBy, (2.2)

where ¢ = —%A’ %—‘; and # > 0 is a parameter measuring the size of potential model

misspecifications. Notice that (2.2) modifies the drift but not the volatility relative to

8 See Bray (1982) and Kreps (1998).
See Hansen and Sargent (2004) for discussions of these bounds.
10' piffusion (2.1) describes the ‘physical probability measure’.



(2.1). The formula for g tells us that large values of 6 are associated with ¢;’s that are
small in absolute value, making model (2.2) difficult to distinguish statistically from model
(2.1). The diffusion (2.6) below lets us quantify just how difficult this statistical detection
problem is.

Without a preference for robustness to model misspecification, the usual approach to
asset pricing is to compute the expected discounted value of payoffs with respect to the
‘risk-neutral’ probability measure that is associated with the following twisted version of

the physical measure (diffusion (2.1)):
day = [p (i) + A (2e) g (21)] dt + A (1) dBy. (2.3)

In using the risk-neutral measure to price assets, future expected returns are discounted
at the risk-free rate p(x;), obtained as follows. The marginal utility of the representative

household ~(z¢) conforms to dv; = piy(x)dt+0(x¢)dB;. Then the risk-free rate is p(z;) =

£ J(ggxtt)) , where J is the instantaneous rate at which the household discounts future utilities;

the risk-free rate thus equals the negative of the expected growth rate of the representative

household’s marginal utility. The price of a payoff ¢(xx) contingent on a Markov state in

N
E (exp [—/0 p(xy) du] o (zN) |xo = :U) (2.4)

where E is the expectation evaluated with respect to the distribution generated by (2.3).

period N is then

This formula gives rise to a pricing operator for every horizon N. Relative to the ap-
proximating model, the diffusion (2.3) for the risk-neutral measure distorts the drift in

the Brownian motion by adding the term A(z)g(x;), where g = A’ %ﬂfg(m)

. Here g is a
vector of ‘factor risk prices’ or ‘market prices of risk’. The equity premium puzzle is the
finding that with plausible quantitative specifications for the marginal utility v(x), factor
risk prices g are too small relative to their empirically estimated counterparts.

In section 7, we show that when the planner and a representative consumer want
robustness, the diffusion associated with the risk-neutral measure appropriate for pricing
becomes

day = (p(xe) + A (2) [9 (20) + G (20)]) dt + A (2¢) dBy, (2.5)

where § is the same process that appears in (2.2). With robustness sought over a set of
alternative models that is indexed by @, factor risk prices become augmented to g+ g. The
representative agent’s concerns about model misspecification contribute the g component
of the factor risk prices. To evaluate the quantitative potential for attributing parts of the
market prices of risk to agents’ concerns about model misspecification, we need to calibrate

6 and therefore |g|.



To calibrate 6 and ¢, we turn to a closely related fourth diffusion that governs the prob-
ability distribution of errors from using likelihood ratio tests to detect which of two models
generated a continuous record of length N of observations on z;. Here the key idea is that
we can represent the average error in using a likelihood ratio test to detect the difference
between the two models (2.1) and (2.3) from a continuous record of data of length N as
5E (min{exp(¢"), 1}|zg = ) where E is evaluated with respect to model (2.1) and ¢V is
a likelihood ratio of the data record of model (2.2) with respect to model (2.1). For each
o € (0, 1), we can use the inequality E (min{exp(¢"), 1}z = z) < E ({exp(al™)}|zo = z)
to attain a bound on the detection error probability. For each «, we show that the bound
can be calculated by forming a new diffusion that uses (2.1) and (2.2) as ingredients, and
in which the drift distortion ¢ from (2.2) plays a key role. In particular, for o € (0,1),
define

dxy = [p(x¢) + ol (z¢) § (x¢)] dt + A (x¢) dBy, (2.6)

and define the local rate function p®(x) = % g()'g(x). Then the bound on the average
error in using a likelihood ratio test to discriminate between the approximating model (2.1)

and the worst case model (2.2) from a continuous data record of length N is

exp (— /ON P (xt)) dt’xo = x] ) (2.7)

where E“ is the mathematical expectation evaluated with respect to the diffusion (2.6).

av error < .5E¢

The error rate p®(z) is maximized by setting o = .5. Notice that the right side of (2.7) is
one half the price of pure discount bond that pays off one unit of consumption for sure N
periods in the future, treating p® as the risk-free rate and the measure induced by (2.6) as
the risk-neutral probability measure.

It is remarkable that the three diffusions (2.2), (2.5), and (2.6) that describe the worst
case model, asset pricing under a preference for robustness, and the local behavior of a
bound on model detection errors, respectively, are all obtained by perturbing the drift
in the approximating model (2.1) with functions of the same drift distortion g(x) that
emerges from the robust control problem. To the extent that the bound on detection
probabilities is informative about the detection probabilities themselves, our theoretical
results thus neatly explain the pattern that was observed in the empirical applications
of HST and HSW, namely, that there is a tight link between calculated detection error
probabilities and the market price of risk. That link transcends all details of the model
specification.!! In section 9, we shall encounter this tight link again when we calibrate the
contribution to market prices of risk that can plausibly be attributed to a preference for

robustness in the context of three continuous time asset pricing models.

1 gee figure 8 of HSW.



Subsequent sections of this paper substantiate these and other results in a more general
Markov setting that permits x to have jump components, so that jump distortions also
appear in the Markov processes for the worst case model, asset pricing, and model detection
error. We shall exploit and extend the asset-pricing structure of formulas like (2.4) and
(2.7) by recognizing that they reflect that collections of expectations, values, and bounds

on detection error rates can all be described with semigroups.

3. Mathematical Preliminaries

The remainder of this paper studies continuous-time Markov formulations of model
specification, robust decision-making, pricing, and statistical model detection. We use
Feller semigroups indexed by time for all four purposes. This section develops the semi-

group theory needed for our paper.

3.1. Semigroups and their generators

Let D be a Markov state space that is a locally compact and separable subset of R™. We
distinguish two cases. First, when D is compact, we let C' denote the space of continuous
functions mapping D into R. Second, when we want to study cases in which the state
space is unbounded so that D is not compact, we shall use a one-point compactification
that enlarges the state space by adding a point at co. In this case we let C' be the space of
continuous functions that vanish at co. We can think of such functions as having domain
D or domain DUoo. The compactification is used to limit the behavior of functions in the
tails when the state space is unbounded. We use the sup-norm to measure the magnitude
of functions on C and to define a notion of convergence.

We are interested in a strongly continuous semigroup of operators {S; : t > 0} with an
infinitesimal generator G. For {S; : t > 0} to be a semigroup we require that Sy = Z and
Si1r = &S, for all 7,t > 0. A semigroup is strongly continuous if

lim S,¢ =
ipsro =

where the convergence is uniform for each ¢ in C'. Continuity allows us to compute a time

derivative and to define a generator

G¢ = lim @ (3.1)

This is again a uniform limit and it is well defined on a dense subset of C'. A generator

describes the instantaneous evolution of a semigroup. A semigroup can be constructed



from a generator by solving a differential equation. Thus applying the semigroup property

gives
i S0 — St
im ———
710 T

a differential equation for a semigroup that is subject to the initial condition that Sy is the

= G819, (3.2)

identity operator. The solution to differential equation (3.2) is depicted heuristically as:
St = exp (tG)
and thus satisfies the semigroup requirements. The exponential formula can be justified
rigorously using a Yosida approximation, which formally constructs a semigroup from its
generator.
In what follows, we will use semigroups to model Markov processes, intertemporal
prices, and statistical discrimination. Using a formulation of Hansen and Scheinkman

(2002), we first examine semigroups that are designed to model Markov processes,

3.2. Representation of a generator

We describe a convenient representation result for a strongly continuous, positive, contrac-
tion semigroup. Positivity requires that S; maps nonnegative functions ¢ into nonnegative
functions ¢ for each t. When the semigroup is a contraction, it is referred to as a Feller
semigroup. The contraction property restricts the norm of &; to be less than or equal to
one for each ¢ and is satisfied for semigroups associated with Markov processes. Generators

of Feller semigroups have a convenient characterization:

0 1 ok
Go=p- (a_i) + itrace (Zaxai') +No¢— po (3.3)
where A has the product form
No@) = [16) - o @)]n(dyla) (3.0

where p is a nonnegative continuous function, p is an m-dimensional vector of continuous
functions, ¥ is a matrix of continuous functions that is positive semidefinite on the state
space, and 7(-|z) is a finite measure for each & and continuous in x for Borel subset of D.
We require that N’ map C%( into C where C’%( is the subspace of functions that are twice
continuously differentiable functions with compact support in D. Formula (3.4) is valid at
least on C’%(.m

12 See Theorem 1.13 in Chapter VII of Revuz and Yor (1994). Revuz and Yor give a more general
representation that is valid provided that the functions in C¥ are in the domain of the generator. Their
representation does not require that n(:|z) be a finite measure for each x but imposes a weaker restriction on
this measure. As we will see, when 7(-|x) is finite, we can define a jump intensity. Weaker restrictions permit
there to be an infinite number of expected jumps in finite intervals that are arbitrarily small in magnitude.
As a consequence, this extra generality involves more cumbersome notation and contributes nothing essential
to our analysis.
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To depict equilibrium prices we will sometimes go beyond Feller semigroups. Pricing
semigroups are not necessarily contraction semigroups unless the instantaneous yield on a
real discount bond is nonnegative. When we use this approach for pricing, we will allow
p to be negative. While this puts us out of the realm of Feller semigroups, as argued by
Hansen and Scheinkman (2002), known results for Feller semigroups can often be extended
to pricing semigroups.

We can think of the generator (3.3) as being composed of three parts. The first
two components are associated with well known continuous-time Markov process models,
namely, diffusion and jump processes. The third part discounts. The next three subsections

will interpret these components of equation (3.3).

3.2.1. Diffusion processes

The generator of a Markov diffusion process is a second-order differential operator:
0 1 2
Gad = p (ax) + 2trace (Zm)

where the coefficient vector p is the drift or local mean of the process and the coeffi-
cient matrix ¥ is the diffusion or local covariance matrix. The corresponding stochastic
differential equation is:

dIL’t = u (.It) dt + A ($t> dBt

where {B;} is a multivariate standard Brownian motion and AA’ = X. Sometimes the
resulting process will have attainable boundaries, in which case we either stop the process

at the boundary or impose other boundary protocols.

3.2.2. Jump processes

The generator for a Markov jump process is:
Gnd = N¢ = A[Q¢ — ¢] (3.5)

where the coefficient A = [n(dy|z) is a possibly state-dependent Poisson intensity pa-
rameter that sets the jump probabilities and Q is a conditional expectation operator that
encodes the transition probabilities conditioned on a jump taking place. Without loss of
generality, we can assume that the transition distribution associated with the operator Q
assigns probability zero to the event y = x provided that x # oo, where x is the current
Markov state and y the state after a jump takes place. That is, conditioned on a jump
taking place, the process cannot stay put with positive probability unless it reaches a

boundary.
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The jump and diffusion components can be combined in a model of a Markov process.
That is,

o\ 1

G+ Gnop = - (a_x) + itrace (E

9%¢
0xox'

)+N¢ (3.6)

is the generator of a family (semigroup) of conditional expectation operators of a Markov
process {z1}, say Si(6)(x) = Elé(x1)lao = .

3.2.3. Discounting

The third part of (3.3) accounts for discounting. Thus, consider a Markov process {z;}

with generator G4 + G,,. Construct the semigroup:

si6=8 (e |- [ ptecyar] 6w eo == )

on C'. We can think of this semigroup as discounting the future state at the stochastic rate
p(z). Discount rates will play essential roles in representing shadow prices from a robust
resource allocation problem and in measuring statistical discrimination between competing

models.!?

3.3. Extending the domain to bounded functions

While it is mathematically convenient to construct the semigroup on C, sometimes it is
necessary for us to extend the domain to a larger class of functions. For instance, indicator
functions 1p of nondegenerate subsets D are omitted from C. Moreover, 1p is not in
C when D is not compact; nor can this function be approximated uniformly. Thus to
extend the semigroup to bounded, Borel measurable functions, we need a weaker notion
of convergence. Let {¢; : j = 1,2, ...} be a sequence of uniformly bounded functions that
converges pointwise to a bounded function ¢,. We can then extend the &; semigroup to

¢, using the formula:

Srpo = lim S,
j—00

13 When p > 0, the semigroup is a contraction. In this case, we can use G as a generator of a Markov
process in which the process is curtailed at rate p. Formally, we can let co be a terminal state at which the

process stays put. Starting the process at state x # oo, E (exp [f fot p(iC-,—)dTi| |zg = :c) is the probability

that the process is not curtailed after ¢ units of time. See Revuz and Yor (1994, page 280) for a discussion.
As in Hansen and Scheinkman (2002), we will use the discounting interpretation of the semigroup and not
use p as a curtailment rate. Discounting will play an important role in our discussion of detection and
pricing. In pricing problems, p can be negative in some states as might occur in a real economy, an economy
with a consumption numeraire.
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where the limit notion is now pointwise. The choice of approximating sequence does not
matter and the extension is unique.

With this construction, we define the instantaneous discount or interest rate as the
pointwise derivative

1
—lim—logS:1p =p
7|0 T

when the derivative exists.

3.4. Extending the generator to unbounded functions

Value functions for control problems on noncompact state spaces are often not bounded.
Thus for our study of robust counterparts to optimization, we must extend the semigroup
and its generator to unbounded functions. We adopt an approach that is specific to a
Markov process and hence we study this extension only for a semigroup generated by
G =G4+ Gn.

We extend the generator using martingales. To understand this approach, we first

remark that for a given ¢ in the domain of the generator,

My = ¢ (a0) — b (20) — /0 Gé () dr

is a martingale. In effect, we produce a martingale by subtracting the integral of the local
means from the process {¢(z¢)}. This martingale construction suggests a way to build the

extended generator. Given ¢ we find a function v such that

M, = ¢ (1) — & (20) — /0 b () dr (37)

is a local martingale (a martingale under all members of a sequence of stopping times
that increases to co). We then define Gp = 1. This construction extends the operator
G to a larger class of functions than those for which the operator differentiation (3.1) is
well defined. For every ¢ in the domain of the generator, 1» = G¢ in (3.7) produces a
martingale. However, there are ¢’s not in the domain of the generator for which (3.7) also
produces a martingale.’® In the case of a Feller process defined on a state-space D that is
an open subset of R™, this extended domain contains at least functions in C?, functions
that are twice continuously differentiable on D. Such functions can be unbounded when

the original state space D is not compact.

14 This extension was demonstrated by Dynkin (1956). Specifically, Dynkin defines a weak (in the sense
of functionals) counterpart to this semigroup and shows that there is a weak extension of this semigroup to
bounded, Borel measurable functions.

15 There are other closely related notions of an extended generator in the probability literature. Some-
times calendar time dependence is introduced into the function ¢, or martingales are used in place of local
martingales.
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4. A tour of four semigroups

In the remainder of the paper we will study four semigroups. Before describing each
in detail, it is useful to tabulate the four semigroups and their uses. We have already
introduced the first semigroup, which describes the evolution of a state vector process {x;}.
This semigroup portrays a decision maker’s approximating model. It has the generator

displayed in (3.3) with p = 0, which we repeat here for convenience:

o2
Gop=p- <8¢) + trace( 9¢ ) + No. (4.1)

oz 2 Oz 0z’

While up to now we used G to denote a generic semigroup, from this point forward we
will reserve it for the approximating model. We can think of the decision maker as using
the semigroup generated by G to forecast functions ¢(z;). This semigroup for the approx-
imating model can have both jump and Brownian components, but the discount rate p is
zero. In some settings, the semigroup associated with the approximating model includes
a description of endogenous state variables and therefore embeds robust decision rules of
one or more decision makers, as for example when the approximating model emerges from
a robust resource allocation problem of the kind to be described in section 5.

With our first semigroup as a point of reference, we will consider three additional semi-
groups. The second semigroup represents an endogenous worst-case model that a decision
maker uses to promote robustness to possible misspecification of his approximating model
(4.1). For reasons that we discuss in section 8, we shall focus the decision maker’s atten-
tion on worst-case models that are absolutely continuous with respect to his approximating
model. Following Kunita (1969), we shall assume that the decision maker believes that the
data are actually generated by a member of a class of models that are obtained as Markov
perturbations of the approximating model (4.1). We parameterize this class of models by a
pair of functions (g, h), where g is a continuous function of the Markov state x that has the
same number of coordinates as the underlying Brownian motion, and h is a nonnegative
function of (y, x) that distorts the jump intensities. For the worst-case model, we have the

particular settings g = g and h = h. Then we can represent the worst-case generator G as

s . (09 0%¢ .
God = [u <8w)+ trace( B0 )+N¢, (4.2)

where

A

+ Ag

I
M =

i
by

h(y,=)n (dylz).

7 (dylz)
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The distortion g to the diffusion and the distortion h to the jump component in the
worst case model will also play essential roles both in asset pricing and in the detection
probabilities formulas. Frorn (3.5), it follows that the jump intensity under this param-

eterlzatlon is given by )\ = h (y,z)n(dy|z) and the jump distribution conditioned on

T is == (dy|ac) A generator of the form (4.2) emerges from a robust decision problem,

the perturbatlon pair (g, }Az) being chosen by a malevolent player, as we discuss below. Our
third semigroup modifies one that Hansen and Scheinkman (2002) developed for comput-
ing the time zero price of a state contingent claim that pays off ¢(z;) at time ¢t. Hansen
and Scheinkman showed that the time zero price can be computed with a risk-free rate p

and a risk-neutral probability measure embedded in a semigroup with generator:

_ o 1 H? _
Gp=—pp+p- (ai) + 2trace( B aq; ) + No. (4.3a)
Here
f=p+ Aw
=X (4.3b)
7 (dylz) =1L (y, 2) n (dylz) .

In the absence of a concern about robustness, T = g is a vector of prices for the Brownian
motion factors and II = h encodes the jump risk prices. In Markov settings without a
concern for robustness, (4.3b) represents the connection between the physical probability
and the so-called risk-neutral probability that is widely used for asset pricing along with
the interest rate adjustment.

We alter generator (4.3) to incorporate a representative consumer’s concern about
robustness to model misspecification. Specifically a preference for robustness changes the
ordinary formulas for 7 and II that are based solely on pricing risks under the assumption
that the approximating model is true. A concern about robustness alters the relationship
between the semigroups for representing the underlying Markov processes and pricing.
With a concern for robustness, we represent factor risk prices by relating i1 to the worst-
case drift fi: i = 1 + Ag and risk-based jump prices by relating 77 to the worst-case jump
measure 7: 7(dy|z) = h(y,z)A(dy|r). Combining this decomposition with the relation
between the worst-case and the approximating models gives the new vectors of pricing

functions
T=g+g
I = hh
where the pair (§, h) is used to portray the (constrained) worst-case model in (4.2). Later

we will supply formulas for (p, g, h).
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semigroup generator rate drift jump
distortion dist. density
approximating model g 0 0 1
worst-case model g 0 g(z) h(y,z)
pricing g p(z) T(x) = g(z) + 9(z) M(x) = h(y, z)h(y, z)
detection g* p%(x) g% (z) h%(y, )

Table 4.1: Parameterizations of the generators of four semigroups. The rate modifies the gener-
ator associated with the approximating model by adding —p¢ to the generator for a test function
¢. The drift distortion adds a term Ag - % to the generator associated with the approximating
model. The jump distortion density is h(y,z)n(dy|x) instead of the jump distribution n(dy|x) in
the generator for the approximating model.

A fourth semigroup statistically quantifies the discrepancy between two competing
models as a function of the time interval of available data. We are particularly interested
in measuring the discrepancy between the approximating and worst case models. For each
a € (0,1), we develop a bound on a detection error probability in terms of a semigroup and
what looks like an associated ‘risk-free interest rate’. The counterpart to the risk-free rate
serves as an instantaneous discrimination rate. For each «, the generator for the bound

on the detection error probability can be represented as:

o « o 8¢ 1 « 82¢ o
where
pt = p+ Ag®
Yo =X

1 (dylz) = h® (y, z) n (dylz).
The semigroup generated by G* governs the behavior as sample size grows of a bound on
the fraction of errors made when distinguishing two Markov models using likelihood ratios
or posterior odds ratios. The « associated with the best bound is determined on a case
by case basis and is especially easy to find in the special case that the Markov process is
a pure diffusion.
Table 4.1 summarizes our parameterization of these four semigroups. Subsequent sec-

tions supply formulas for the entries in this table.
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5. Model misspecification and robust control

We now study the continuous-time robust resource allocation problem. In addition to an
approximating model, this analysis will produce a constrained worst case model that by
helping the decision maker to assess the fragility of any given decision rule can be used as

a device to choose a robust decision rule.

5.1. Lyapunov equation under Markov approximating model and a fixed

decision rule

Under a Markov approximating model with generator G and a fixed policy function i(x),

the decision maker’s value function is
o
Vi(z)= / exp (=0t) E[U [x¢, i (zy)] |xo = ] dt.
0
The value function V' satisfies the continuous-time Lyapunov equation:
OV (x) =U [x,i(x)] + GV (). (5.1)

Since V' may not be bounded, we interpret G as the weak extension of the generator (3.6)

defined using local martingales. The local martingale associated with this equation is:

My =V (x1) =V (z9) — /0 (0V (x5) — U [zs,1 (5)]) ds.

As in (3.6), this generator can include diffusion and jump contributions.

We will eventually be interested in optimizing over a control ¢, in which case the
generator G will depend explicitly on the control. For now we suppress that dependence.
We refer to G as the approximating model; G can be modelled using the triple (i, ¥, 1) as
in (3.6). The pair (p, 2) consists of the drift and diffusion coefficients while the conditional
measure 77 encodes both the jump intensity and the jump distribution.

We want to modify the Lyapunov equation (5.1) to incorporate a concern about model
misspecification. We shall accomplish this by replacing G with another generator that

expresses the decision maker’s precaution about the specification of G.
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5.2. Entropy penalties

We now introduce perturbations to the decision maker’s approximating model that are
designed to make finite horizon transition densities of the perturbed model be absolutely
continuous with respect to those of the approximating model. We use a notion of absolute
continuity that pertains only to finite intervals of time. In particular, imagine a Markov
process evolving for a finite length of time. Our notion of absolute continuity restricts
probabilities induced by the path {z, : 0 < 7 < t} for all finite t. See HSTW (2002),
who discuss this notion as well as an infinite history version of absolute continuity. Kunita
(1969) shows how to preserve both the Markov structure and absolute continuity.

Following Kunita (1969), we shall consider a Markov perturbation that can be parame-
terized by a pair (g, h), where g is a continuous function of the Markov state = and has the
same number of coordinates as the underlying Brownian motion, and A is a nonnegative
function of (y,z) used to model the jump intensities. In section 8, we will have more to
say about these perturbations including a discussion of why we do not perturb Y. For the
pair (g, h), the perturbed generator is portrayed using a drift u + Ag, a diffusion matrix
¥, and a jump measure h(y, z)n(dy|x). Thus the perturbed generator is

G (9.1)6(x) = 66 (1) + A @) g (@] 2+ [ 1h(y.0) ~ 10 0) — 0 @) (dyfo).

For this perturbed generator to be a Feller process would require that we impose additional
restrictions on h. For analytical tractability we will only limit the perturbations to have
finite entropy. We will be compelled to show, however, that the perturbation used to
implement robustness does indeed generate a Markov process. This perturbation will be
constructed formally as the solution to a constrained minimization problem. In what
follows, we continue to use the notation G to be the approximating model in place of the
more tedious G(0, 1).

5.3. Conditional relative entropy

At this point, it is useful to have a local measure of conditional relative entropy.! Con-
ditional relative entropy plays a prominent role in large deviation theory and in classical
statistical discrimination where it is sometimes used to study the decay in the so called
type 1II error probabilities, holding fixed type I errors (Stein’s Lemma). For the purposes
of this section, we will use relative entropy as a discrepancy measure. In section 8 we
will elaborate on its connection to the theory of statistical discrimination. As a measure
of discrepancy, it has been axiomatized by Csiszar (1991) although his defense shall not

concern us here.

16 This will turn out to be a limiting version of a local Chernoff measure p® to be defined in section 8.
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By ¢; we denote the log of the ratio of the likelihood of model one to the likelihood of
model zero, given a data record of length ¢. For now, let the data be either a continuous

or a discrete time sample. The relative entropy conditioned on xq is defined to be:

E(zt)mo, model 1) :E[Ktexp () )mo, model 0]
(5.2)

azl,

d
= %E [exp (aly) ):U(), model O]

where we have assumed that the model zero probability distribution is absolutely con-
tinuous with respect to the model one probability distribution. To evaluate entropy, the
second relation differentiates the moment-generating function for the log-likelihood ratio.
The same information inequality that justifies maximum likelihood estimation implies that
relative entropy is nonnegative.

When the model zero transition distribution is absolutely continuous with respect
to the model one transition distribution, entropy collapses to zero as the length of the
data record t — 0. Therefore, with a continuous data record, we shall use a concept of
conditional relative entropy as a rate, specifically the time derivative of (5.2). Thus, as a
local counterpart to (5.2), we have the following measure:

g(x) g(x)

€(g:h)(2) = =5+ / [1—h(y,z)+ h(y,x)logh (y,x)]n(dy|z) (5.3)

where model zero is parameterized by (0, 1) and model one is parameterized by (g, h). The

quadratic form ¢’g/2 comes from the diffusion contribution, and the term

/ [1—h(y,z) + h(y,x)logh (y,z)|n (dy|v)

measures the discrepancy in the jump intensities and distributions. It is positive by the
convexity of hlogh in h.
Let A denote the space of all such perturbation pairs (g,h). Conditional relative

entropy € is convex in (g, h). It will be finite only when

0< /h(y,m)n(dy|x) < 00.

When we introduce adjustments for model misspecification, we modify Lyapunov equa-

tion (5.1) in the following way to penalize entropy

oV (z) = (g%igAU [,i ()] + 0e (g, h) + G (9,h) V (2),

where 6 > 0 is a penalty parameter. We are led to the following entropy penalty problem.
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Problem A
J(V) = nf Oe (g, h) + g,h)V. 4

Theorem 5.1. Suppose that (i) V is in C? and (ii) [ exp[—V (y)/0]n(dy|z) < oo for all

2. The minimizer of Problem A is

. 1 oV (x
§(@) = A 2y LD
0 Ox (5.50)
h (y,z) = exp {w} )
The optimized value of the criterion is:
_Vv
J(V) = —GQ[L(VM. (5.5b)
exp (—7)
Finally, the implied measure of conditional relative entropy is:
o VGlexp (=V/0)] = GV exp (—V/0)] — 0 [exp (~V/0)] 550

Oexp (—V/0)

Proof. The proof is in Appendix A. |}

The formulas (5.5a) for the distortions will play a key role in our applications to asset

pricing and statistical detection.

5.4. Risk-sensitivity as an alternative interpretation

In light of Theorem 5.1, our modified version of Lyapunov equation (5.1) is

oV (z) = (g{r;)igAU [, i ()] + Oe(g,h) + G (9,h) V (2)
S G lexp (—7)] (@ (5.6)
=Ulz,i(x)] -0 eXp[ Ve(x)] :

If we ignore the minimization prompted by fear of model misspecification and instead

simply start with that modified Lyapunov equation as a description of preferences, then

: : . _ pGlexp(= )]
replacing GV in the Lyapunov equation (5.1) by —0 po—a—'g
xp(—g

ing the continuation value for risk. For undiscounted problems, the connection between

can be interpreted as adjust-

risk-sensitivity and robustness is developed in a literature on risk-sensitive control (e.g. see
James (1992) and Runolfsson (1994)). Hansen and Sargent’s (1995) recursive formulation

of risk sensitivity accommodates discounting.
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The connection between the robustness and the risk-sensitivity interpretations is most
evident when G = G, so that z is a diffusion. Then

_0% [exp (—%)] Gy (V) - 1 (GV)'E (GV) |

exp (—%) 20 \ ox Ox

In this case, (5.6) is a partial differential equation. Notice that —55 scales (%—‘; ) 2 ( %—Z )s

the local variance of the value function process {V(x¢)}. The interpretation of (5.6) un-
der risk sensitive preferences would be that the decision maker is concerned not about
robustness but about both the local mean and the local variance of the continuation value
process. The parameter 6 is inversely related to the size of the risk adjustment. Larger
values of # assign a smaller concern about risk. The term % is the so-called risk sensitivity
parameter.

Runolfsson (1994) deduced the § = 0 (ergodic control) counterpart to (5.6) to obtain
a robust interpretation of risk sensitivity. Partial differential equation (5.6) is also a spe-
cial case of the equation system that Duffie and Epstein (1992), Duffie and Lions (1992),
and Schroder and Skiadas (1999) have analyzed for stochastic differential utility. They
showed that for diffusion models, the recursive utility generalization introduces a variance
multiplier that can be state dependent. The counterpart to this multiplier in our setup
is state independent and equal to the risk sensitivity parameter %. For a robust decision
maker, this variance multiplier restrains entropy between the approximating and alterna-
tive models. The mathematical connections between robustness, on the one hand, and risk
sensitivity and recursive utility, on the other, let us draw on a set of analytical results from

those literatures.'”

5.5. The 0-constrained worst case model

A~

Given a value function, Theorem 5.1 reports the formulas for the distortions (g, h) for
a worst-case model used to enforce robustness. This worst case model is Markov and
depicted in terms of the value function. This theorem thus gives us a generator G and
shows us how to fill out the second row in Table 4.1. In fact, a separate argument is
needed to show formally that G does in fact generate a Feller process or more generally
a Markov process. There is a host of alternative sufficient conditions in the probability
theory literature. Kunita (1969) gives one of the more general treatments of this problem
and goes outside the realm of Feller semigroups. Also, Ethier and Kurtz (1985, Chapter
8) give some sufficient conditions for operators to generate Feller semigroups, including

restrictions on the jump component Gy, of the operator.

17 Qee section 9.2 for alternative interpretations of a particular empirical application in terms of risk-
sensitivity and robustness. For that example, we show how the robustness interpretation helps us to restrict

6.
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Using the Theorem 5.1 characterization of Q, we can apply Theorem 8.1 to obtain the
generator of a detection semigroup that measures the statistical discrepancy between the

approximating model and the worst-case model.

5.6. An alternative entropy constraint

We briefly consider an alternative but closely related way to compute worst-case models

and to enforce robustness. In particular, we consider:

Problem B
J(V) = inf ,h) V. 5.7
A R A (5)
This problem has the same solution as that given by Problem A except that € must
now be chosen so that the relative entropy constraint is satisfied. That is, 6 should be
chosen so that €(g, h) satisfies the constraint. The resulting 6 will typically depend on z.

The optimized objective must now be adjusted to remove the penalty:

. VGlexp(~V/0)] G [V exp (~V/0)

J(V)=J (V) — e —a— ,

which follows from (5.5¢).

These formulas simplify greatly when the approximating model is a diffusion. Then 6

This formulation embeds a version of the continuous-time preference order that Chen

satisfies

and Epstein (2001) proposed to capture uncertainty aversion. We had also suggested the
diffusion version of this robust adjustment in our earlier paper (Anderson, Hansen and
Sargent (1998)).

5.7. Enlarging the class of perturbations

In this paper we focus on misspecifications or perturbations to an approximating Markov
model that themselves are Markov models. But in HSTW, we took a more general ap-
proach and began with a family of absolutely continuous perturbations to an approximating
model that is a Markov diffusion. Absolute continuity over finite intervals puts a precise
structure on the perturbations, even when the Markov specification is not imposed on these
perturbations. As a consequence, HSTW follow James (1992) by considering path depen-
dent specifications of the drift of the Brownian motion fot gsds, where g5 is constructed

as a general function of past z’s. Given the Markov structure of this control problem,



22

its solution can be represented as a time-invariant function of the state vector x; that we

denote gy = g(x¢).

5.8. Adding controls to the original state equation

We now allow the generator to depend on a control vector. Consider an approximating
Markov control law of the form i(z) and let the generator associated with an approximating
model be G(i). For this generator, we introduce perturbation (g, h) as before. We write the
corresponding generator as G(g, h,). To attain a robust decision rule, we use the Bellman

equation for a two-player zero-sum Markov multiplier game:

0V =max min U (z,i)+0e(g,h)+ G (g,h,i) V. (5.8)
i (g,h)EA

The Bellman equation for a corresponding constraint game is:

oV = max (g,h)eAr(%g(g,h)gs U(z,i)+G(g,h,i)V.

Sometimes infinite-horizon counterparts to terminal conditions must be imposed on the
solutions to these Bellman equations. Moreover, application of a Verification Theorem will
be needed to guarantee that the implied control laws actually solve the game. Finally, these
Bellman equations presume that the value function is twice continuously differentiable. It is
well known that this differentiability is not always present in problems in which the diffusion
matrix can be singular. In these circumstances there is typically a wviscosity generalization
to each of these Bellman equations with very similar structures. (See Fleming and Soner

(1991) for a development of the viscosity approach to controlled Markov processes.)

6. Portfolio allocation

To put some of the results of section 5 to work, we now consider a robust portfolio problem.
In section 7 we will use this problem to exhibit how asset prices can be deduced from the
shadow prices of a robust resource allocation problem. We depart somewhat from our
previous notation and let {z; : ¢ > 0} denote a state vector that is exogenous to the
individual investor. The investor influences the evolution of his wealth, which we denote
by w;. Thus the investor’s composite state at date ¢ is (wy, ). We first consider the case
in which the exogenous component of the state vector evolves as a diffusion process. Later
we let it be a jump process. Combining the diffusion and jump pieces is straightforward.
We focus on the formulation with the entropy penalty used in Problem (5.4), but the

constraint counterpart is similar.
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6.1. Diffusion

An investor confronts asset markets that are driven by a Brownian motion. Under an
approximating model, the Brownian increment factors have date t prices given by 7(x)

and x; evolves according to a diffusion:
dl’t = u (.It> dt + A (.It> dBt (61)

Equivalently, the x process has a generator G; that is a second-order differential operator
with drift g and diffusion matrix ¥ = AA’. A control vector b; entitles the investor
to an instantaneous payoff b; - dB; with a price m(z) - by in terms of the consumption
numeraire. This cost can be positive or negative. Adjusting for cost, the investment
has payoff —m(x¢) - bidt + by - dBy. There is also a market in a riskless security with an

instantaneous risk free rate p(x). The wealth dynamics are therefore
dwy = [wip (x1) — 7 (24) - by — ] dt + by - dBy, (6.2)

where ¢; is date ¢ consumption. The control vector is i’ = (V/, ¢). Only consumption enters
the instantaneous utility function. By combining (6.1) and (6.2), we form the evolution
for a composite Markov process.

But the investor has doubts about this approximating model and wants a robust de-
cision rule. Therefore he solves a version of game (5.8) with (6.1), (6.2) governing the
dynamics of his composite state vector w,x. With only the diffusion component, the
investor’s Bellman equation is

oV (w,x) = I(nzlag(minU (c)+0e(g)+G(g,b,c)V
c, g

where G(g, b, ¢) is constructed using drift vector

{ p(z) +A(x)g
wp(x)—m(x)-b—c+b-g

{ﬂ (A b

The choice of the worst case shock g satisfies the first-order condition:

and diffusion matrix

0g + Vb + ANV, =0 (6.3)

where V,, = g—g and similarly for V,. Solving (6.3) for g gives a special case of the formula
in (5.5a). The resulting worst-case shock would depend on the control vector b. In what

follows we seek a solution that does not depend on b.
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The first-order condition for consumption is
Vi (w, ) = U (c),
and the first-order condition for the risk allocation vector b is
~ Vot + Vipwb + AV + Vipg = 0. (6.4)

In the limiting case in which the robustness penalty parameter is set to co, we obtain the

familiar result that
7V — N Viw

)
Vw w

in which the portfolio allocation rule has a contribution from risk aversion measured by

b —

—Viw/wVy and a hedging demand contributed by the dynamics of the exogenous forcing
process x.

Take the Markov perfect equilibrium of the relevant version of game (5.8). Provided
that Vi, is negative, the same equilibrium decision rules prevail no matter whether one
player or the other chooses first, or whether they choose simultaneously. The first-order
conditions (6.3) and (6.4) are linear in b and g. Solving these two linear equations gives

the control laws for b and g as a function of the composite state (w, x):

OV — ON Vo + Vo AV,

b= .
OV — (Vi)
. 9 , (6.5)
- VA Voo — (Vi) 2 70 — Vi NV

Notice how the robustness penalty adds terms to the numerator and denominator of the
portfolio allocation rule. Of course, the value function V' also changes when we introduce

6. Notice also that (6.5) gives decision rules of the form
(6.6)
and in particular how the worst case shock g feeds back on the consumer’s endogenous

state variable w. Permitting g to depend on w expands the kinds of misspecifications that

the consumer considers.
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6.1.1. Related formulations

So far we have studied portfolio choice in the case of a constant robustness parameter 6.
Maenhout (2001) considers portfolio problems in which the robustness penalty depends
on the continuation value. In his case, the preference for robustness is designed so that
asset demands are not sensitive to wealth levels as is typical in constant  formulations.
Lei (2000) uses the instantaneous constraint formulation of robustness described in section
5.6 to investigate portfolio choice. His formulation also makes 6 state dependent, since 6
now formally plays the role of a Lagrange multiplier that restricts conditional entropy at
every instant. Lei specifically considers the case of incomplete asset markets in which the

counterpart to b has a lower dimension than the Brownian motion.

6.1.2. Ex post Bayesian interpretation

While the dependence of g on the endogenous state w seems reasonable as a way to
enforce robustness, it can be unattractive if we wish to interpret the implied worst case
model as one with misspecified exogenous dynamics. It is sometimes asked whether a
prescribed decision rule can be rationalized as being optimal for some set of beliefs, and
then to find what those beliefs must be. The dependence of the shock distributions on an
endogenous state variable such as wealth w might be regarded as a peculiar set of beliefs
because it is egotistical to let an adverse nature feedback on personal state variables.

But there is a way to make this feature more acceptable. It requires using a dynamic
counterpart to an argument of Blackwell and Girshick (1954). We can produce a different
representation of the solution to the decision problem by forming an exogenous state
vector W that conforms to the Markov perfect equilibrium of the game. We can confront
a decision maker with this law of motion for the exogenous state vector, have him not
be concerned with robustness against misspecification of this law by setting 6 = oo, and
pose an ordinary decision problem in which the decision maker has a unique model. We
initialize the exogenous state at Wy = wg. The optimal decision processes for { (b, c:)}
(but not the control laws) will be identical for this decision problem and for game (5.8)
(see HSWT). It can be said that this alternative problem gives a Bayesian rationale for

the robust decision procedure.
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6.2. Jumps

Suppose now that the exogenous state vector {z;} evolves according to a Markov jump
process with jump measure 7. To accommodate portfolio allocation, introduce the choice
of a function a that specifies how wealth changes when a jump takes place. Consider an
investor who faces asset markets with date-state Arrow security prices given by II(y, x¢)
where {z;} is an exogenous state vector with jump dynamics. In particular, a choice a
with instantaneous payoff a(y) if the state jumps to y has a price [II(y, z¢)a(y)n(dy|z) in
terms of the consumption numeraire. This cost can be positive or negative. When a jump

does not take place, wealth evolves according to

du = oo yune — [ a@n(asle) - | a

where p(x) is the riskfree rate given state x and for any variable z, z— = lim;y 2. If
the state = jumps to y at date ¢, the new wealth is a(y). The Bellman equation for this

problem is

OV (w,z) = maxminU (c) + V,, (w, x) [p () wy — /H (y,z)a(y)n(dylx) — c}

c,a heA

w / 1~ h(y,2) + h (y, 2) log h (3, 2)] 1 (dylz)

+ / h(y,2) (V]a(y),y] - V (w,2))n (dy|z)

The first-order condition for c¢ is the same as for the diffusion case and equates V,, to

the marginal utility of consumption. The first-order condition for a requires

~

h (ywr) Vw [& (y> 7y] = Vw ('U), IL’) H (ywr) )
and the first-order condition for h requires
—flogh (y,x) = V]a(y),y| = V (w,z).

Solving this second condition for h gives the jump counterpart to the solution asserted in
Theorem 5.1. Thus the robust a satisfies:
Vwla(y),yl _ I (y, x)
Vi (w, ) exp (—V[&(y)éyHV(w))

In the limiting no-concern-about-robustness case § = oo, h is set to one. Since Vi, is
equated to the marginal utility for consumption, the first-order condition for a equates
the marginal rate of substitution of consumption before and after the jump to the price

II(y, ). Introducing robustness scales the price by the jump distribution distortion.
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In this portrayal, the worst case h depends on the endogenous state w, but it is again
possible to obtain an alternative representation of the probability distortion that would

give an ex post Bayesian justification for the decision process of a.

7. Pricing risky claims

By building on findings of Hansen and Scheinkman (2002), we now consider a third semi-
group that is to be used to price risky claims. We denote this semigroup by {P; : ¢t > 0}
where P;¢ assigns a price at date zero to a date t payoff ¢(x;). That pricing can be de-
scribed by a semigroup follows from the Law of Iterated Values: a date 0 state-date claim
¢(x¢) can be replicated by first buying a claim P,¢(x;—,) and then at time ¢t — 7 buying a
claim ¢(z;). Like our other semigroups, this one has a generator, say G, that we write as
n (3.3):

o2
Gop=—pod+Ji- (%) +%trace (ia a(’b >+./\_f¢

where

No = / 2)]7 (dy|z) .

The coefficient on the level term p is the instantaneous riskless yield to be given in

formula (7.3). It is used to price locally riskless claims. Taken together, the remaining

_ (09 ’p v
i (8x)+ trace( 883:)+N¢

comprise the generator of the so called risk neutral probabilities. The risk neutral evolution

terms

is Markov.

As discussed by Hansen and Scheinkman (2002), we should expect there to be a con-
nection between the semigroup underlying the Markov process and the semigroup that
underlies pricing. Like the semigroup for Markov processes, a pricing semigroup is pos-
itive: it assigns nonnegative prices to nonnegative functions of the Markov state. We
can thus relate the semigroups by importing the measure-theoretic notion of equivalence.
Prices of contingent claims that pay off only in probability measure zero events should be
zero. Conversely, when the price of a contingent claim is zero, the event associated with
that claim should occur only with measure zero, which states the principle of no-arbitrage.
We can capture these properties by specifying that the generator G of the pricing semigroup
satisfies:

() = p(2) + A(2) 7 (z)
Y (z) =% () (7.1)
(z) =T (y, z) 7 (dy|z)



28

where II is strictly positive. Thus we construct equilibrium prices by producing a triple
(p, 7, IT). We now show how to construct this triple both with and without a preference

for robustness.

7.1. Marginal rate of substitution pricing

To compute prices, we follow Lucas (1978) and focus on the consumption side of the
market. While Lucas used an endowment economy, Brock (1982) showed that the essential
thing in Lucas’s analysis was not the pure endowment feature. Instead it was the idea
of pricing assets from marginal utilities that are evaluated at a candidate equilibrium
consumption process that can be computed prior to computing prices. In contrast to
Brock, we use a robust planning problem to generate a candidate equilibrium allocation.
As in Breeden (1979), we use a continuous-time formulation that provides simplicity along

some dimensions.1®

7.2. Pricing without a concern for robustness

First consider the case in which the consumer has no concern about model misspec-
ification. Proceeding in the spirit of Lucas (1978) and Brock (1982), we can construct
market prices of risk from the shadow prices of a planning problem. Following Lucas and
Prescott (1971) and Prescott and Mehra (1980), we solve a representative agent planning
problem to get a state process {x;}, an associated control process {i;}, and a marginal
utility of consumption process {7}, respectively. We let G* denote the generator for the
state vector process that emerges when the optimal controls from the resource allocation
problem with no concern for robustness are imposed. In effect, G* is the generator for the
f = oo robust control problem.

We construct a stochastic discount factor process by evaluating the marginal rate of

substitution at the proposed equilibrium consumption process:

v (2t)
(zo)

where v(z) denotes the marginal utility process for consumption as a function of the state

mrs; = exp (—dt)

2

x. Without a preference for robustness, the pricing semigroup satisfies
Piop () = E* [mrsi¢ (x1) |xo = 2] (7.2)

where the expectation operator E* is the one implied by G*.

18 This analysis differs from that of Breeden (1979) by its inclusion of jumps.
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Individuals solve a version of the portfolio problem described in section 6 without a
concern for robustness. This supports the following representation of the generator for the

equilibrium pricing semigroup P;:

p=-97 15
Y
G+ A = 4 ArA2108Y (7.3)
ox
_ = ] 1@ -
dylx) =11 (y,x dym:{—] dy|x) .
i (dylz) = 1L (y,z) 0" (dyl|x) 7<$)77(|)

These are the usual rational expectations risk prices. The risk-free rate is the subjective
rate of discount reduced by the local mean of the equilibrium marginal utility process
scaled by the marginal utility. The vector m of Brownian motion risk prices are weights
on the Brownian increment in the evolution of the marginal utility of consumption, again
scaled by the marginal utility. Finally the jump risk prices II are given by the equilibrium

marginal rate of substitution between consumption before and after a jump.

7.3. Pricing with a concern for robustness under the worst case model

As in our previous analysis, let G denote the approximating model. This is the model
that emerges after imposing the robust control law 7 while assuming that there is no model
misspecification (¢ = 0 and h = 1). It differs from G*, which also assumes no model
misspecification but instead imposes a rule derived without any preference for robustness.
But simply attributing the beliefs G to private agents in (7.3) will not give us the correct
equilibrium prices when there is a preference for robustness. Let G denote the worst case
model that emerges as part of the Markov perfect equilibrium of the two-player, zero-
sum game. However, formula (7.3) will yield the correct equilibrium prices if we in effect
impute to the individual agents the worst-case generator G instead of G* as their model
of state evolution when making their decisions without any concerns about its possible
misspecification.

To substantiate this claim, we consider individual decision-makers who, when choosing
their portfolios, use the worst-case model G as if it were correct (i.e., they have no concern
about the misspecification of that model, so that rather than entertaining a family of
models, the individuals commit to the worst-case G as a model of the state vector {z; :

t > 0}). The pricing semigroup then becomes

A

Pio (x) = E [mrsi¢ (zy) |xo = 7] (7.4)

where F denotes the mathematical expectation with respect to the distorted measure

described by the generator G. The generator for this pricing semigroup is parameterized
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by
Y
ﬁ=ﬂ+Ag:A+AA’81§§7 (7.5)
7 (dyle) = h (3, ) 7 (dylz) = [%} i (dyla)

As in subsection 7.2, y(x) is the log of the marginal utility of consumption except it is
evaluated at the solution of the robust planning problem. Individuals solve the portfolio
problem described in section 6 using the worst-case model of the state {z;} with pricing
functions 7 = g and II = h specified relative to the worst-case model. We refer to g
and h as risk prices because they are equilibrium prices that emerge from an economy in
which individual agents use the worst-case model as if it were the correct model to assess
risk. The vector g contains the so-called factor risk prices associated with the vector of
Brownian motion increments. Similarly, A prices jump risk.

Comparison of (7.3) and (7.5) shows that the formulas for factor risk prices and the
risk free rate are identical except that we have used the distorted generator G in place of
G*. This comparison shows that we can use standard characterizations of asset pricing for-
mulas if we simply replace the generator for the approximating model G with the distorted

generator G.%

7.4. Pricing under the approximating model

There is another portrayal of prices that uses the approximating model G as a reference
point and that provides a vehicle for defining model uncertainty prices and for distinguish-
ing between the contributions of risk and model uncertainty. The g and h from subsection
7.3 give the risk components. We now use the discrepancy between G and G to produce
the model uncertainty prices.

To formulate model uncertainty prices, we consider how prices can be represented
under the approximating model when the consumer has a preference for robustness. We

want to represent the pricing semigroup as

Pip (x) = E[(mrs) (mput) ¢ (1) [0 = ] (7.6)

where mpu is a multiplicative adjustment to the marginal rate of substitution that allows

us to evaluate the conditional expectation with respect to the approximating model rather

19 In the applications in HST, HSW, and section 9, we often take the actual data generating model to be
the approximating model to study implications. In that sense, the approximating model supplies the same
kinds of empirical restrictions that a rational expectations econometric model does.
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than the distorted model. Instead of (7.3), to attain (7.6), we portray the drift and jump

distortion in the generator for the pricing semigroup as
A=i+Ag=p+A(G+3)
7 (dylz) = h(y, x) 7 (dy|z) = h (y,2) b (y, ) n (dylz).

Changing expectation operators in depicting the pricing semigroup will not change the

instantaneous risk-free yield. Thus from Theorem 5.1 we have:

Theorem 7.1. Let VP be the value function for the robust resource allocation problem.
Suppose that (i) V? is in C? and (ii) [ exp[—VP(y)/0]n(dy|z) < oo for all x. Moreover, ~y
is assumed to be in the domain of the extended generator G. Then the equilibrium prices

can be represented by:

p= 9
8
7o) = A @2 @+ A | 20 =@+ g

log Il (y,z) = —% (VP (y) — VP (2)] + log 7 (y) — log~ (z) =log h (y,z) + logh (y, ).

This theorem follows directly from the relation between G and G given in Theorem 5.1 and

from the risk prices of subsection 7.3. It supplies the third row of Table 4.1.

7.5. Model uncertainty prices: diffusion and jump components

We have already interpreted g and h as risk prices. Thus we view § = —%A’ V¥ as the con-
tribution to the Brownian exposure prices that comes from model uncertainty. Similarly,
we think of h(y, z) = — 1 exp[VP(y) — VP(x)] as the model uncertainty contribution to the
jump exposure prices. HST obtained the additive decomposition for the Brownian motion
exposure asserted in Theorem 7.1 as an approximation for linear-quadratic, Gaussian re-
source allocation problems. By studying continuous time diffusion models we have been
able to sharpen their results and relax the linear-quadratic specification of constraints and

preferences.
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7.6. Subtleties about decentralization

In Hansen and Sargent (2003), we confirm that the solution of a robust planning problem
can be decentralized with households who also solve robust decision problems while facing
the state-date prices that we derived above. We confront the household with a recursive
representation of state-date prices, give the household the same robustness parameter 6
as the planner, and allow the household to choose a new worst-case model. The recursive
representation of the state-date prices is portrayed in terms of the state vector X for the
planning problem. As in the portfolio problems of section 6, among the households’ state
variables is their endogenously determined financial wealth, w. In equilibrium, the house-
hold’s wealth can be expressed as a function of the state vector X of the planner. However,
in posing the household’s problem, it is necessary to include both wealth w and the state
vector X that propels the state-date prices as distinct state components of the household’s
state. More generally, it is necessary to include both economy-wide and individual ver-
sions of household capital stocks and physical capital stocks in the household’s state vector,
where the economy-wide components are used to provide a recursive representation of the

date-state prices.

Thus the controls and the worst case shocks chosen by both the planner, on the one
hand, and the households in the decentralized economy, on the other hand, will depend on
different state vectors. However, in a competitive equilibrium, the decisions that emerge
from these distinct rules will be perfectly aligned. That is, if we take the decision rules of the
household in the decentralized economy and impose the equilibrium conditions requiring
that ‘the representative agent be representative’, then the decisions and the motion of
the state will match. The worst-case models will also match. In addition, although the
worst-case models depend on different state variables, they coincide along an equilibrium
path.

7.7. Ex post Bayesian equilibrium interpretation of robustness

In a decentralized economy, Hansen and Sargent (2003) also confirm that it is possible to
compute robust decision rules for both the planner and the household by a) endowing each
such decision maker with his own worst-case model, and b) having each solve his decision
problem without a preference for robustness, while treating those worst-case models as
if they were true. FEz post it is possible to interpret the decisions made by a robust
decision maker who has a concern about the misspecification of his model as also being
made by an equivalent decision maker who has no concern about the misspecification of
a different model that can be constructed from the worst case model that is computed

by the robust decision maker. Hansen and Sargent’s (2003) results thus extend results of
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HSTW, discussed in section 6.1.2, to a setting where both a planner and a representative
household choose worst case models, and where their worst case models turn out to be

aligned.

8. Statistical discrimination

A weakness in what we have achieved up to now is that we have provided the practi-
tioner with no guidance on how to calibrate our model uncertainty premia of Theorem 7.1,
or what formulas (5.5a) tell us is virtually the same thing, the decision maker’s robustness
parameter 6. It is at this critical point that our fourth semigroup enters the picture.?’

Our fourth semigroup governs bounds on detection statistics that we can use to guide
our thinking about how to calibrate a concern about robustness. We shall synthesize this
semigroup from the objects in two other semigroups that represent alternative models that
we want to choose between given a finite data record. We apply the bounds associated
with distinguishing between the decision maker’s approximating and worst-case models.
In designing a robust decision rule, we assume that our decision maker worries about
alternative models that available time series data cannot readily dispose of. Therefore, we
study a stylized model selection problem. Suppose that a decision-maker chooses between
two models that we will refer to as zero and one. Both are continuous-time Markov process
models. We construct a measure of how much time series data are needed to distinguish
these models and then use it to calibrate our robustness parameter §. Our statistical
discrepancy measure is the same one that in section 5 we used to adjust continuation
values in a dynamic programming problem that is designed to acknowledge concern about

model misspecification.

8.1. Measurement and prior probabilities

We assume that there are direct measurements of the state vector {z; : 0 < ¢ < N} and
aim to discriminate between two Markov models: model zero and model one. We assign
prior probabilities of one-half to each model. If we choose the model with the maximum
posterior probability, two types of errors are possible, choosing model zero when model
one is correct and choosing model one when model zero is correct. We weight these errors
by the prior probabilities and, following Chernoff (1952), study the error probabilities as

the sample interval becomes large.

20 A5 we shall see in section 9, our approach to disciplining the choice of # depends critically on our
adopting a robustness and not a risk-sensitivity interpretation.
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8.2. A semigroup formulation of bounds on error probabilities

We evade the difficult problem of precisely calculating error probabilities for nonlinear
Markov processes and instead seek bounds on those error probabilities. To compute
those bounds, we adapt Chernoff’s (1952) large deviation bounds to discriminate between
Markov processes. Large deviation tools apply here because the two types of error both
get small as the sample size increases. Let G0 denote the generator for Markov model zero

and G! the generator for Markov model one. Both can be represented as in (3.6).

8.2.1. Discrimination in discrete time

Before developing results in continuous time, we discuss discrimination between two Markov
models in discrete time. Associated with each Markov process is a family of transition
probabilities. For any interval 7, these transition probabilities are mutually absolutely
continuous when restricted to some event that has positive probability under both prob-
ability measures. If no such event existed, then the probability distributions would be
orthogonal, making statistical discrimination easy. Let p,(y|z) denote the ratio of the
transition density over a time interval 7 of model one relative to that for model zero. We
include the possibility that p;(y|z) integrates to a magnitude less than one using the model
zero transition probability distribution. This would occur if the model one transition dis-
tribution assigned positive probability to an event that has measure zero under model zero.
We also allow the density p; to be zero with positive model zero transition probability.

If discrete time data were available, say xg,x;, x2r,...,xp, where N = T, then we
could form the log likelihood ratio:

T

gi\f = ZlogPT (iju m(j—l)r) .
j=1

Model one is selected when
N >0, (8.1)

and model zero is selected otherwise. The probability of making a classification error at

date zero conditioned on model zero is
Pr{/Y > 0|zg =z, model 0} =F (1{£17v>0}|£€0 =z, model O) :

It is convenient that the probability of making a classification error conditioned on model
one can also be computed as an expectation of a transformed random variable conditioned

on model zero. Thus,
Pr{¢Y < 0|zg =z, model 1} =FE [1{w<0}|w0 =z, model 1]

=F [exp <€]TV) 1{€4V<0}|$0 =z, model O} .



35

The second equality follows because multiplication of the indicator function by the likeli-
hood ratio exp (ﬁiv ) converts the conditioning model from one to zero. Combining these

two expressions, the average error is:
1 ) N
av error = iE (mln{exp (KT ) ,1}‘m0 =z, model 0) . (8.2)

Because we compute expectations only under the model zero probability measure, from

now on we leave implicit the conditioning on model zero.
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Figure 8.1: Graph of min {exp(r), 1} and the dominating function exp(r«)
for a = .5.

Instead of using formula (8.2) to compute the probability of making an error, we
will use a convenient upper bound originally suggested by Chernoff (1952) and refined by
Hellman and Raviv (1970). To motivate the bound, note that for any 0 < o < 1 the
piecewise linear function min{s, 1} is dominated by the concave function s* and that the
two functions agree at the kink point s = 1. The smooth dominating function gives rise
to more tractable computations as we alter the amount of available data. Thus, setting
logs = r = £V and using (8.2) gives the bound:

1
av error < §E [exp <a€]TV> ’:co = :U} (8.3)

where the right side is the moment-generating function for the log-likelihood ratio £V (see
Fig. 8.1). (Later we shall discuss how to choose a € (0,1) in order to maximize error

detection rates.) Define an operator:

K26 (x) = B |exp (af7) 6 (2,)

:Ij'()::lj'}.
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Then inequality (8.3) can be portrayed as:
1 T
av error < 5 ()" 1p (x) (8.4)

where 1p is again the indictor function of the state space D for the Markov process, and

where superscript T" on the right side denotes sequential application of an operator 1" times.

This bound applies for any integer choice of T' and any choice of o between zero and one.?!

When restricted to a function space C, we have the inequalities
K26 (@) < B ([exp (61" ¢l 20 = )
- 1
< E |exp (€7) 9]
< [loll

where the second inequality is an application of Jensen’s inequality. Thus K% is a contrac-

«
.SEOI.CU]

tion on C.

8.3. Rates for measuring discrepancies between models locally

Classification errors become less frequent as more data become available. One common
way to study the large sample behavior of classification error probabilities is to investigate
the limiting behavior of the operator (ICS)T as T gets large. This amounts to studying how
fast (IC?)T contracts for large 7" and results in a large deviation characterization. Chernoff
(1952) proposed such a characterization for i.i.d. data that later researchers extended to
Markov processes. Formally, a large-deviation analysis can give rise to an asymptotic rate
for discriminating between models.

Given the state dependence in the Markov formulation, there are two different possible
notions of discrimination rates that are based on Chernoff entropy. One notion that we
shall dub ‘long run’ is state independent; to construct it requires additional assumptions.
This long run rate is computed by studying the semigroup {K; : t > 0} as ¢ gets large.

This semigroup can have a positive eigenfunction, that is, a function ¢ that solves
K = exp (—St) ¢ (8.5)

for some positive 6. When it exists, this eigenfunction dominates the remaining ones
as the time horizon t gets large. As a consequence, for large ¢t this semigroup decays
approximately at an exponential rate 6. Therefore, § is a long run measure of the rate at
which information for discriminating between two models accrues. By construction and as

part of its ‘long run’ nature, the rate § is independent of the state.

21 This bound covers the case in which the model one density omits probability, and so equivalence between
the two measures is not needed for this bound to be informative.
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In this paper, we use another approximation that results in a state-dependent or ‘short-
run’ discrimination rate. It is this state-dependent rate that is closely linked to our robust
decision rule, in the sense that it is governed by the same objects that emerge from the
worst-case analysis for our robust control problem. The semigroup {K; : ¢ > 0} has the
same properties as a pricing semigroup, and furthermore it contracts. We can define a
discrimination rate in the same way that we define an instantaneous interest rate from
a pricing semigroup. This leads us to use Chernoff entropy as p®(z). It differs from
the decay rate & defined by (8.5). For a given state x, it measures the statistical ability
to discriminate between models when a small interval of data becomes available. When
the rate p®(x) is large, the time series data contain more information for discriminating
between models.

Before characterizing a local discrimination rate p® that is applicable to continuous-

time processes, we consider the following example.

8.3.1. Constant drift

Consider sampling a continuous multivariate Brownian motion with a constant drift. Let
10,39 and pt, 2! be the drift vectors and constant diffusion matrices for models zero and

one, respectively. Thus under model zero, ;- — x is normally distributed with mean

i—1)7
71% and covariance matrix 729, Under an alternat]ive)model one, Tjr —I(j_1); is normally
distributed with mean 7! and covariance matrix 731

Suppose that X0 # ! and that the probability distributions implied by the two models
are equivalent (i.e., mutually absolutely continuous). Equivalence will always be satisfied
when ¥0 and 3! are nonsingular but will also be satisfied when the degeneracy implied by

the covariance matrices coincides. It can be shown that
lim /C?f 1p <1
710

suggesting that a continuous-time limit will not result in a semigroup. Recall that a
semigroup of operators must collapse to the identity when the elapsed interval becomes ar-
bitrarily small. When the covariance matrices X9 and %! differ, the detection-error bound
remains positive even when the data interval becomes small. This reflects the fact that
while absolute continuity is preserved for each positive 7, it is known from Cameron and
Martin (1947) that the probability distributions implied by the two limiting continuous-
time Brownian motions will not be mutually absolutely continuous when the covariance
matrices differ. Since diffusion matrices can be inferred from high frequency data, differ-

ences in these matrices are easy to detect.??

22 The continuous time diffusion specification carries with it the implication that diffusion matrices can be
inferred from high frequency data without knowledge of the drift. That data are discrete in practice tempers
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Suppose that 29 = 21 = 2. If 40 — u! is not in the range of ¥, then the discrete-time
transition probabilities for the two models over an interval 7 are not equivalent, making
the two models easy to distinguish using data. If, however, u? — p! is in the range of
Y, then the probability distributions are equivalent for any transition interval 7. Using a

complete-the-square argument, it can be shown that
€20 (2) = exp (~pa) [ 6 (5) P (v = ) dy

where P7 is a normal distribution with mean 7(1 — a)u® + Tau' and covariance matrix

T,
a(l—a) e
pr=—— (W =) ST (= ) (8.6)
and Y71 is a generalized inverse when ¥ is singular. It is now the case that

lim K1y = 1.
710

The parameter p“ acts as a discount rate, since
K31p = exp (—7p%).

The best probability bound (the largest p®) is obtained by setting o = 1/2, and the
resulting discount rate is referred to as Chernoff entropy. The continuous-time limit of this
example is known to produce probability distributions that are absolutely continuous over
any finite horizon (see Cameron and Martin, 1947).

For this example, the long-run discrimination rate 6 and the short-run rate p% coin-
cide because p® is state independent. This equivalence emerges because the underlying
processes have independent increments. For more general Markov processes, this will not
be true and the counterpart to the short-run rate will depend on the Markov state. The

existence of a well defined long-run rate requires special assumptions.

the notion that the diffusion matrix can be inferred exactly. Nevertheless, estimating conditional means is
much more difficult than estimating conditional covariances. Our continuous time formulation simplifies our
analysis by focusing on the more challenging drift inference problem.
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8.3.2. Continuous time

There is a semigroup probability bound analogous to (8.3) that helps to understand how
data are informative in discriminating between Markov process models. Suppose that we
model two Markov processes as Feller semigroups. The generator of semigroup zero is

0, _ 0. a¢ 2¢ 0
G'¢p=p (a>+2trace( DD >+N¢

and the generator of semigroup one is

o2
Glo=pul- (gi) + 2trace( B (;b > + N1g

In specifying these two semigroups, we assume identical ¥’s. As in the example, this

assumption is needed to preserve absolute continuity. Moreover, we require that u' can be
represented as:
ph=Ag+ud.

for some continuous function g of the Markov state, where we assume that the rank of X
is constant on the state space and can be factored as ¥ = AA’ where A has full rank. This
is equivalent to requiring that © — u! is in the range of .23

In contrast to the example, however, both of the u’s and ¥ can depend on the Markov
state. Jump components are allowed for both processes. These two operators are restricted
to imply jump probabilities that are mutually absolutely continuous for at least some
nondegenerate event. We let h(-,z) denote the density function of the jump distribution
of Nt with respect to the distribution of A’’. We assume that h(y,z)dn"(y|z) is finite for

all z. Under absolute continuity we write:

N () = / h(y,2) [ (y) — 6 (@) n° (dylz)

Associated with these two Markov processes is a positive, contraction semigroup {Cf* :

t > 0} for each a € (0, 1) that can be used to bound the probability of classification errors:

av error < — (ICN) 1p (z).

This semigroup has a generator G% with the Feller form:

o « o 8¢ 1 2¢ a
G = —p“p+ '(a—x)—kitrace( e >+N o. (8.7)

The drift p® is formed by taking convex combinations of the drifts for the two models

pt = (1—a)p’ +ap' = 4’ + alg;

23 This can be seen by writing Ag = SA’(A’A)~?
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the diffusion matrix ¥ is the common diffusion matrix for the two models, and the jump

operator N'® is given by:

N (z) = / (. 2)]* [6 (9) — 6 ()] n° (dy|)

Finally, the rate p® is nonnegative and state dependent and is the sum of contributions

from the diffusion and jump components:

o (@) = 05 (2) + 95 (). (59
The diffusion contribution
o ()= L%y g (@) (89)

is a positive semi-definite quadratic form and the jump contribution

@) = [ (1= ) +ah(ya) = b (o)) o Ayl (8.10

is positive because the tangent line to the concave function (h)* at h = 1 must lie above

the function.

Theorem 8.1. (Newman, 1973 and Newman and Stuck, 1979). The generator of the
positive contraction semigroup {KC : t > 0} on C' is given by (8.7).

Thus we can interpret the generator G that bounds the detection error probabilities
as follows. Take model zero to be the approximating model, and model one to be some
other competing model. We use 0 < o < 1 to build a mixed diffusion-jump process from
the pair (g%, h*) where ¢g“ = ag and h* = (h)“.

Use the notation F® to depict the associated expectation operator. Then

N
av error < %Ea [exp (—/0 p* (x¢) dt) ):U() = x] . (8.11)

Of particular interest to us is formula (8.8) for p®, which can be interpreted as a local
statistical discrimination rate between models. In the case of two diffusion processes, this
measure is a state-dependent counterpart to formula (8.6) in the example presented in
section 8.3.1. The diffusion component of the rate is maximized by setting o = 1/2. But
when jump components are also present, & = 1/2 will not necessarily give the maximal

rate. Theorem 8.1 completes the fourth row of Table 4.1.
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8.4. Detection statistics and robustness

Formulas (8.9) and (8.10) show how the local Chernoff entropy rate is closely related to
the conditional relative entropy measure that we used to formulate robust control problems.
In particular, the conditional relative entropy rate € in continuous time satisfies

dp®

€ = .
da la=1

In the case of diffusion process, the Chernoff rate equals the conditional relative entropy

rate without the proportionality factor a(1 — a).?*

8.5. Further discussion

In some ways, the statistical decision problem posed above is too simple. It entails a
pairwise comparison of ex ante equally likely models and gives rise to a statistical measure
of distance. That the contenders are both Markov models greatly simplifies the bounds
on the probabilities of making a mistake when choosing between models. The implicit
loss function that justifies model choice based on the maximal posterior probabilities is
symmetric (e.g. see Chow, 1957). Finally, the detection problem compels the decision-
maker to select a specific model after a fixed amount of data have been gathered.

Bounds like Chernoft’s can be obtained when there are more than two models and
also when the decision problem is extended to allow waiting for more data before making
a decision (e.g. see Hellman and Raviv, 1970 and Moscarini and Smith, 2002).25 Like
our problem, these generalizations can be posed as Bayesian problems with explicit loss
functions and prior probabilities.

While the statistical decision problem posed here is by design too simple, we never-
theless find it useful in bounding a reasonable taste for robustness. The hypothesis of
rational expectations instructs agents and the model builder to eliminate as misspecified
those models that are detectable from infinite histories of data. Chernoff entropy gives us
one way to extend rational expectations by asking agents to exclude specifications rejected
by finite histories of data but to contemplate alternative models that are difficult to detect
from finite histories of data. When Chernoff entropy is small, it is challenging to choose

between competing models on purely statistical grounds.

24 The distributions associated with these rates differ, however. Bound (8.11) also uses a Markov evolution
indexed by «a, whereas we used the o = 1 model in evaluating the robust control objective.

25 1 particular, Moscarini and Smith (2002) consider Bayesian decision problems with a more general
but finite set of models and actions. Although they restrict their analysis to i.i.d. data, they obtain a more
refined characterization of the large sample consequences of accumulating information. Chernoff entropy is
a key ingredient in their analysis too.
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8.6. Detection and plausibility

In section 6.1.2, we reinterpreted the equilibrium allocation under a preference for robust-
ness as one that instead would be chosen by a Bayesian social planner who holds fast to a
particular model that differs from the approximating model. If the approximating model
is actually true, then this artificial Bayesian planner has a false model of forcing processes,
one that enough data should disabuse him of. However, our detection probability tools let
us keep the Bayesian planner’s model sufficiently close to the approximating model that
more data than are available would be needed to detect that the approximating model
is really better. That means that a rational expectations econometrician would have a
difficult time distinguishing the forcing process under the approximating model from the
Bayesian planner’s model. Nevertheless, that the Bayesian planner uses such a nearby
model can have important quantitative implications for decisions and/or asset prices. We

demonstrate such effects on asset prices in section 9.2

9. Entropy and the market price of uncertainty

In comparing different discrete time representative agent economies with robust de-
cision rules, HSW computationally uncovered a connection between the market price of
uncertainty and the detection error probabilities for distinguishing between a planner’s
approximating and worst case models. The connection was so tight that the market price
of uncertainty could be expressed as nearly the same linear function of the detection er-
ror probability, regardless of the details of the model specification.?” HSW used this fact
to calibrate 0’s, which differed across different models because the relationship between

detection error probabilities and 6 did depend on the detailed model dynamics.

As emphasized in section 2, the tight link that we have formally established between the
semigroup for pricing under robustness and the semigroup for detection error probability
bounds provides the key to understanding HSW'’s empirical finding, provided that the
detection error probability bounds do a good enough job of describing the actual detection
error probabilities. Subject to that proviso, our formal results thus provide a way of
moving directly from a specification of a sample size and a detection error probability to

a prediction of the market price of uncertainty that transcends details of the model.

26 For heterogeneous agent economies, worst case models can differ across agents because their preferences
differ. But an argument like the one in the text could still be used to keep each agent’s worst case model
close to the approximating model as measured by detection probabilities.

27 See Figure 8 in HSW.
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Partly to explore the quality of the information in our detection error probability
bounds, this section takes three distinct example economies and shows within each of them
that the probability bound is quite informative and that consequently the links between
the detection error probability and the market price of uncertainty are very close across
the three different models. All three of our examples use diffusion models, so that the
formulas summarized in section 2 apply. Recall from formula (8.9) that for the case of a
diffusion the local Chernoff rate for discriminating between the approximating model and
the worst-case model is 1o

a(l—a) %, (9.1)
which is maximized by setting a = .5. Small values of the rate suggest that the competing
models would be difficult to detect using time series statistical methods.

For a diffusion, we have seen how the price vector for the Brownian increments can
be decomposed as g + g. In the standard model without robustness, the conditional slope
of a mean-standard deviation frontier is the absolute value of the factor risk price vector,
|g|, but with robustness it is |g + g|, where ¢ is the part attributable to aversion to model
uncertainty. One possible statement of the equity-premium puzzle is that standard models
imply a much smaller slope than is found in the data because plausible risk aversion
coefficients imply a small value for g. This conclusion extends beyond the comparison of
stocks and bonds and is also apparent in equity return heterogeneity. See Hansen and
Jagannathan (1991), Cochrane and Hansen (1992), and Cochrane (1997) for discussions.

In this section we explore the potential contribution from model uncertainty. In par-
ticular, for three models we compute |g|, the associated bounds on detection error prob-
abilities, and the detection error probabilities themselves. The three models are: (1) a
generic one where the worst-case drift distortion ¢ is independent of x; (2) our robust
interpretation of a model of Bansal and Yaron (2000) in which ¢ is again independent of
x but where its magnitude depends on whether a low frequency component of growth is
present; and (3) a continuous time version of HST’s equilibrium permanent income model,
in which ¢ depends on x. Very similar relations between detection error probabilities and
market prices of risk emerge across these three models, though they are associated with

different values of 6.
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mpu Chernoff rate probability probability
(=14g]) (= .5) bound
.02 .0001 .495 444
.04 .0002 480 .389
.06 .0004 457 .336
.08 .0008 426 .286
.10 .0013 .389 .240
12 .0018 .349 .198
14 .0015 .306 161
.16 .0032 .264 129
18 .0040 222 .102
.20 .0050 184 .079
.30 .0113 .053 .017
.40 .0200 .009 .002

Table 9.1: Prices of Model Uncertainty and Detection-Error Probabilities
when ¢ is independent of x, N = 200; mpu denotes the market price of
model uncertainty, measured by |g|. The Chernoff rate is given by (9.1).

9.1. Links among sample size, detection probabilities, and mpu when g is

independent of =

In this section we assume that the approximating model is a diffusion and that the
worst case model is such that g is independent of the Markov state . Without knowing
anything more about the model, we can quantitatively explore the links among the market
price of model uncertainty (mpu = |g|) and the detection error probabilities.

For N = 200, Table 9.1 reports values of mpu = |g| together with Chernoff entropy
for a = .5, the associated probability-error bound (8.11), and the actual probability of
detection on the left side of (8.11) (which we can calculate analytically in this case).
The probability bounds and the probabilities are computed under the simplifying assump-
tion that the drift and diffusion coefficients are constant, as in the example in section
8.3.1. With constant drift and diffusion coefficients, the log-likelihood ratio is normally

distributed, which allows us easily to compute the actual detection-error probabilities.?®

28 Thinking of a quarter as the unit of time, we took the sample interval to be 200. Alternatively, we might
have used a sample interval of 600 to link to monthly postwar data. The market prices of risk and model
uncertainty are associated with specific time unit normalizations. Since, at least locally, drift coefficients and
diffusion matrices scale linearly with the time unit, the market prices of risk and model uncertainty scale
with the square root of the time unit.
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The numbers in Table 9.1 indicate that market prices of uncertainty somewhat less than
.2 are associated with misspecified models that are difficult to detect. However, market
prices of uncertainty of .40 are associated with easily detectable alternative models. The
table also reveals that although the probability bounds are weak, they display patterns
similar to those of the actual probabilities.

Empirical estimates of the slope of the mean-standard deviation frontier are about
.25 for quarterly data. Given the absence of volatility in aggregate consumption, risk
considerations only explain a small component of the measured risk-return tradeoff using
aggregate data (Hansen-Jagannathan, 1991). In contrast, our calculations suggest that
concerns about statistically small amounts of model misspecification could account for a
substantial component of the empirical estimates. The following subsections confirm that
this quantitative conclusion transcends details of the specification of the approximating

model.

9.2. Low frequency growth

Using a recursive utility specification, Bansal and Yaron (2000) study how low fre-
quency components in consumption and/or dividends become encoded in risk premia.
Here we take up Bansal and Yaron’s theme that the frequency decomposition of risks
matters but reinterpret their risk premia as reflecting model uncertainty.

Consider a pure endowment economy where the state xq; driving the consumption

endowment exp(x¢) is governed by the following process:

dz1y = (.0020 + .0177xz9;) dt + .0048d B

(9.2)
drgr = —.0263w9dt + .0312dB;.

The logarithm of the consumption endowment has a constant component of the growth
rate of .002 and a time varying component of the growth rate of x9;; x9; has mean zero and
is stationary but is highly temporally dependent. Relative to the i.i.d. specification that
would be obtained by attaching a coefficient of zero on x9; in the first equation of (9.2),
the inclusion of the x9; component alters the long run properties of consumption growth.

We calibrated the state evolution equation (9.2) by taking a discrete-time consumption
process that was fit by Bansal and Yaron and embedding it in a continuous state-space
model.?? We accomplished this by sequentally applying the conversions tf, d2c, and ss
in the MATLAB control toolbox.

29 We base our calculations on an ARMA model for consumption growth, namely, logc; — loge; 1 =
.002+[(1—.860L)/(1—.974L)](.0048)1; reported by Bansal and Yaron (2000) where {14 : t > 0} is a serially
uncorrelated shock with mean zero and unit variance.



46

0.03

0.025-

0.021

0.015

Impulse Response

0.01F

0.005

L L L L L
0 20 40 60 80 100 120 140 160 180
Time(months)

0 I I I

Figure 9.1: Impulse response function for the logarithm of the consump-
tion endowment x1; to a Brownian increment.
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Figure 9.2: Spectral density function for the consumption growth rate
dmlt.

The impulse response of log consumption to a Brownian motion shock, which is por-
trayed in Fig. 9.1, and the spectral density function, which is shown in Fig. 9.2, both show
the persistence in consumption growth. The low frequency component is a key feature in
the analysis of Bansal and Yaron (2000). The impulse response function converges to its

supremum from below. It takes about ten years before the impulse response function is
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close to its supremum. Corresponding to this behavior of the impulse response function,
there is a narrow peak in the spectral density of consumption growth at frequency zero,
with the spectral density being much greater than its infimum only for frequencies with
periods of more than ten years.

In what follows, we will also compute model uncertainty premia for an alternative
economy in which the coefficient on z9; in the first equation of (9.2) is set to zero. We
calibrate this economy so that the resulting spectral density for consumption growth is flat
at the same level as the infimum depicted in Fig. 9.2 and so that the corresponding impulse
response function is also flat at the same initial response reported in Fig. 9.1. Because we
have reduced the long run variation by eliminating z9; from the first equation, we should
expect to see smaller risk-premia in this economy.

Suppose that the instantaneous utility function is logarithmic. Then the value function
implied by Theorem 5.1 is linear in x, so we can write V as V(x) = vg + viz1 + vaza. The

distortion in the Brownian motion is given by the following special case of equation (6.3)

1
g= ) (.0048?}1 + .0312?}2)

and is independent of the state x. The coefficients on the v;’s are the volatility coefficients
attached to dB in equation (9.2).3

Since ¢ is constant, the worst-case model implies the same impulse response functions
but different mean growth rates in consumption. Larger values of 1/6 lead to more negative
values of the drift g. We have to compute this mapping numerically because the value
function itself depends on 6. Fig. 9.3 reports ¢ as a function of 1/6 (the g’s are negative).
Larger values of || imply larger values of the rate of Chernoff entropy. As in the previous
example this rate is constant, and the probability bounds in Table 9.1 continue to apply
to this economy.3!

The instantaneous risk free rate for this economy is:

(01)’
2

where o1 = .0048 is the coefficient on the Brownian motion in the evolution equation for

r =6+ .0020 + 11549 + 01 —

x1;. Our calculations hold the risk free rate fixed as we change 6. This requires that we
adjust the subjective discount rate. The predictability of consumption growth emanating

from the state variable xo; makes the risk free rate vary over time.

30 The state independence implies that we can also interpret these calculations as coming from a decision
problem in which |§| is constrained to be less than or equal to the same constant for each date and state.
This specification satisfies the dynamic consistency postulate advocated by Epstein and Schneider (2001).

31 However, the exact probability calculations reported in Table 9.1 will not apply to the present economy.
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Figure 9.3: Drift distortion g for the Brownian motion. This distortion is
plotted as a function of 1/6. For comparison, the drift distortions are also
given for the economy in which the first-difference in the logarithm of con-
sumption is i.i.d. In generating this figure, we set the discount parameter
d so that the mean risk-free rate remained at 3.5% when we changed 6. In
the model with temporally dependent growth the volatility of the risk-free
rate is .38%. The risk-free rate is constant in the model with i.i.d. growth
rates.

9.3. Risk-sensitivity and calibration of 6

This economy has a risk-sensitive interpretation along the lines asserted by Tallarini (2000)
in his analysis of business cycle models, one that makes 1/6 a risk-sensitivity parameter
that imputes risk aversion to the continuation utility and makes g become the incremental
contribution to risk aversion contributed by this risk adjustment. Under Tallarini’s risk-
sensitivity interpretation, 1/6 is a risk aversion parameter, and as such is presumably fixed
across environments.

Fig. 9.3 shows that holding 6 fixed but changing the consumption endowment process
changes the detection error rates. For a given 6, the implied worst case model could be
more easily detected when there is positive persistence in the endowment growth rate. On
the robustness interpretation, such detection error calculations suggest that 6 should not be
taken to be invariant across environments. However, on the risk sensitivity interpretation,
0 should presumably be held fixed across environments. Thus while concerns about risk

and robustness have similar predictions within a given environment, calibrations of # can
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depend on whether it is interpreted as a risk-sensitivity parameter that is fixed across
environments, or a robustness parameter to be adjusted across environments depending

on how detection error probabilities differ across environments.

9.4. Permanent income economy
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Figure 9.4: This figure gives the impulse response functions for the two
income processes to two independent Brownian motion shocks.

Our previous two examples make Chernoff entropy be independent of the Markov state.
In our third example, we computed detection-error bounds and detection-error probabilities
for the version of HST’s robust permanent income model that includes habits.?? The
Chernoff entropies are state dependent for this model, but the probability bounds can still
be computed numerically. We used the parameter values from HST’s discrete-time model
to form an approximate continuous-time robust permanent income model, again using
conversions in the MATLAB control toolbox. HST allowed for two independent income
components when estimating their model. The impulse responses for the continuous-time
version of the model are depicted in Fig. 9.4. The responses are to independent Brownian
motion shocks. One of the processes is much more persistent than the other one. That

persistent process is the one that challenges a permanent-income-style saver.

32 HST estimated versions of this model with and without habits.
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When we change the robustness parameter 6, we alter the subjective discount rate in a
way that completely offsets the precautionary motive for saving in HST’s economy and its
continuous-time counterpart, so that consumption and investment profiles and real interest
rates remain fixed.?? It happens that the worst case § vector is proportional to the marginal
utility of consumption and therefore is highly persistent. This outcome reflects that the
decision rule for the permanent income model is well designed to protect the consumer
against transient fluctuations, but that it is vulnerable to model misspecifications that are
highly persistent under the approximating model. Under the approximating model, the
marginal utility process is a martingale, but the (constrained) worst case model makes
this process become an explosive scalar autoregression. The choice of 6 determines the
magnitude of the explosive autoregressive coefficient for the marginal utility process. The
distortion is concentrated primarily in the persistent income component. Fig. 9.5 compares
the impulse response of the distorted income process to that of the income process under
the approximating model. Under the distorted model there is considerably more long-run

variation. Decreasing 6 increases this variation.
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Figure 9.5: This figure gives impulse response functions for the persistent
income process under the approximating model and the model for which
mpu = .16. The more enduring response is from the distorted model. The
implied risk-free rate is constant and identical across the two models.

33 See HST and HSW for a proof in a discrete time setting of an observational equivalence proposition
that identifies a locus of (4, ) pairs that are observationally equivalent for equilibrium quantities.
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mpu % probability simulated
(=14g]) bound probabilities
.02 1.76 .495 .446
.04 3.51 479 .388
.06 5.27 453 .334
.08 7.02 416 .282
.10 8.78 372 231
12 10.53 .323 185
14 12.29 271 .143
.16 14.04 220 .099
18 15.80 171 072
.20 17.56 128 .054
.30 26.33 .015 .004
.40 35.11 .0004 .000

Table 9.2: Prices of Model Uncertainty and Detection-Error Probabilities
for the Permanent Income Model, N = 200. The probability bounds were
computed numerically and optimized over the choice of a. The simulated
probabilities were computed by simulating discrete-approximations with a
time interval of length .01 of a quarter and with 1000 replications.

Table 9.2 gives the detection-error probabilities corresponding to those reported in
Table 9.1. In this case, the Chernoff entropy is state dependent, leading us to compute the
right side of (8.11) numerically in Table 9.2.3% The values of 6 are set so that the market

prices of uncertainty match those in Table 9.1.

Despite the different structures of the two models, for mpus up to about .12, the results
in Table 9.2 are close to those of Table 9.1, though the detection-error probabilities are a
little bit lower in Table 9.2. However, the probabilities do decay faster in the tails for the
permanent income model. As noted, the model in Table 9.1 has no dependence of § on
the state . As shown by HST, the fluctuations in |g| are quite small relative to its level,
which contributes to the similarity of the results for low mpus. It remains the case that
statistical detection is difficult for market prices of uncertainty up to about half that of

the empirically estimated magnitude.

34 See Hansen and Sargent (2004) for computational details. In computing the probability bounds, we
chose the following initial conditions: we set the initial marginal utility of consumption to 15.75 and the
mean zero components of the income processes to their unconditional means of zero.



52

We conclude that a preference for robustness that is calibrated to plausible values of the
detection error probabilities can account for a substantial fraction, but not all, of estimated
equity premia, and that this fraction is impervious to details of the model specification.
Introducing other features into a model can help to account more fully for the steep slope
of the frontier, but they would have to work through g and not the robustness component

§. For example, market frictions or alterations to preferences affect the § component.3?

10. Concluding remarks

In this paper we have applied tools from the mathematical theory of continuous-time
Markov processes to explore the connections between model misspecification, risk, robust-
ness, and model detection. We used these tools in conjunction with a decision theory
that captures the idea that the decision maker views his model as an approximation. An
outcome of the decision making process is a constrained worst-case model that the de-
cision maker uses to create a robust decision rule. In an equilibrium of a representative
agent economy with such robust decision makers, the worst case model of a fictitious ro-
bust planner coincides with the worst case model of a representative private agent. These
worst case models are endogenous outcomes of decision problems and give rise to model
uncertainty premia in security markets. By adjusting constraints or penalties, the worst
case model can be designed to be close to the approximating model in the sense that it is
difficult statistically to discriminate it from the original approximating model. These same
penalties or constraints limit model uncertainty premia. Since mean returns are hard to
estimate, nontrivial departures from an approximating model are difficult to detect. As a
consequence, within limits imposed by statistical detection, there can still be sizable model
uncertainty premia in security prices.

There is another maybe less radical interpretation of our calculations. A rational ex-
pectations econometrician is compelled to specify forcing processes, often without much
guidance except from statistics, for example, taking the form of a least squares estimate of
an historical vector autoregression. The exploration of worst case models can be thought of
as suggesting an alternative way of specifying forcing process dynamics that is inherently
more pessimistic, but that leads to statistically similar processes. Not surprisingly, chang-

ing forcing processes can change equilibrium outcomes. More interesting is the fact that

35 We find it fruitful to explore concern about model uncertainty because these other model modifica-
tions are themselves only partially successful. To account fully for the market price of risk, Campbell and
Cochrane (1999) adopt specifications with substantial risk aversion during recessions. Constantinides and
Duffie (1996) accommodate fully the high market prices of risk by attributing empirically implausible con-
sumption volatility to individual consumers (see Cochrane, 1997). Finally, Heaton and Lucas (1996) show
that reasonable amounts of proportional transaction costs can explain only about half of the equity premium
puzzle.
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sometimes subtle changes in perceived forcing processes can have quantitatively important
consequences on equilibrium prices.

Our altered decision problem introduces a robustness parameter that we restrict by
using detection probabilities. In assessing reasonable amounts of risk aversion in stochastic,
general equilibrium models, it is common to explore preferences for hypothetical gambles in
the manner of Pratt (1964). In assessing reasonable preferences for robustness, we propose
using large sample detection probabilities for a hypothetical model selection problem. We
envision a decision-maker as choosing to be robust to departures that are difficult to
detect statistically. Of course, using detection probabilities in this way is only one way to
discipline robustness. Exploration of other consequences of being robust, such as utility
losses, would also be interesting.

We see three important extensions to our current investigation. Like builders of ratio-
nal expectations models, we have side-stepped the issue of how decision-makers select an
approximating model. Following the literature on robust control, we envision this approx-
imating model to be analytically tractable, yet to be regarded by the decision maker as
not providing a correct model of the evolution of the state vector. The misspecifications
we have in mind are small in a statistical sense but can otherwise be quite diverse. Just
as we have not formally modelled how agents learned the approximating model, neither
have we formally justified why they do not bother to learn about potentially complicated
misspecifications of that model. Incorporating forms of learning would be an important
extension of our work.

The equilibrium calculations in our model currently exploit the representative agent
paradigm in an essential way. Reinterpreting our calculations as applying to a multiple
agent setting is straightforward in some circumstances (see Tallarini, 2000), but in general,
even with complete security market structures, multiple agent versions of our model look
fundamentally different from their single-agent counterparts (see Anderson, 1998). Thus,
the introduction of heterogeneous decision makers could lead to new insights about the
impact of concerns about robustness for market outcomes.

Finally, while the examples of section 9 all were based on diffusions, the effects of
concern about robustness are likely to be particularly important in environments with large
shocks that occur infrequently, so that we anticipate that our modelling of robustness in

the presence of jump components will be useful.
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A. Entropy Solution

This appendix contains the proof of Theorem 5.1.

Proof. To verify the conjectured solution, first note that the objective is additively separable in g and h.
Moreover the objective for the quadratic portion in g is:

/
9% +g’A’a—V

. (A1)

Minimizing this component of the objective by choice of g verifies the conjectured solution. The diffusion
contribution to the optimized objective including (A.1) is:

where we are using the additive decomposition: G = G4 + G,,. Very similar reasoning justifies the diffusion

contribution to entropy formula (5.5¢).
Consider next the component of the objective that depends on h:

0 [ 1= hy.2) 4 hya)logh (o)) n (dyla) + [ h.2) [V ) = V @) (dylo) (4.2)

To verify®® that this objective is minimized by h, first use the fact that 1 — h 4 hlogh is convex and hence
dominates the tangent line at h. Thus

1—h+hlogh21—ﬁ+ﬁlogﬁ+logﬁ<h—ﬁ).

This inequality continues to hold when we multiply by 6 and integrate with respect to n(dy|x). Thus
Oc (h) (x) — 9/h(y,fc)10gﬁ(y7x)n (dyl) = be () (x) H/fl(yw) log h (y, ) n (dy|x) .

Substituting for log[ﬁ(y, x)] shows that h minimizes (A.2), and the resulting objective is:

9/ [1 - fz(y,x)} n (dylz) = _9%(—‘/;/9/)@7

which establishes the jump contribution to (5.5b). Very similar reasoning justifies the jump contribution to
(5.5¢)

36 In the special case in which the number of states is finite and the probability of jumping to any of these
states is strictly positive, a direct proof that h is the minimizer is available. Abusing notation somewhat, let
7 (yi|x) > 0 denote the probability that the state jumps to its ith possible value, y; given that the current
state is . We can write the component of the objective that depends upon h (which is equivalent to equation
(A.2) in this special case) as

Differentiating this expression with respect to h (y;, z) yields i (y;|z) [0 logh (y;, ) + V (y;) — V(z)]. Setting

this derivative to zero and solving for h (y;,x) yields h (y;, z) = exp[%], which is the formula for h

given in the text.



