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Abstract
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Gaussian stochastic processes which directly affect the mean returns of the assets. We
employ methods of risk sensitive control theory, thereby using an infinite horizon
objective that is natural and features the long run expected growth rate and the
asymptotic variance as two measures of performance, analogous to the mean return and
variance, respectively, in the single period Markowitz model. The optimal strategy is
a simple function of the factor levels, and, even with constraints on the portfolio
proportions, it can be computed by solving a quadratic program. Explicit formulas can
be obtained, as is illustrated by an example where the only factor is a Vasicek-type
interest rate and where there are two assets: cash and a stock index. The methods are
further illustrated by studies of two data sets: U.S. data with two assets and up to three
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1. Introduction

During recent years there has been a number of empirical studies providing
evidence that macroeconomic and financial variables such as unemployment
rates and market-to-book ratios can be useful for forecasting returns for asset
categories. For example, Pesaran and Timmermann (1995) examined the robust-
ness of the evidence on predictability of US stock returns with respect to seven
factors: dividend yield, earnings-price ratio, 1 month T-bill rate, 12 month T-bill
rate, inflation rate, change in industrial production, and monetary growth rate.
Backtesting a simple switching strategy, they provided evidence that stock
return predictability ‘could have been exploited by investors in the volatile
markets of the 1970s’. In a more recent paper, Pesaran and Timmermann (1998)
extended and generalized their first paper’s recursive modeling strategy. They
focused their analysis on simulating ‘investors’ search in the ‘real time’ for
a model that can forecast stock returns. Their new key idea was to divide the set
of potential regressors into three categories expressing different degrees of
forecasting importance. Once again their findings provided evidence of predicta-
bility of stock returns, this time in the UK’s stock market, that can be exploited
by investors. Patelis (1997) concluded US excess stock returns can be predicted
by looking at five monetary policy factors along with dividend yield, an interest
rate spread, and the one-month real interest rate. IlImanen (1997) showed that
the excess returns of long term T-bond are affected by term spread, real yield,
inverse wealth, and momentum factors. Furthermore, the bibliographies in these
papers cite numerous additional, similar studies.

Some of these studies proceeded from their statistical conclusions to investi-
gate whether return predictability can be exploited with dynamic investment
strategies in order to achieve significant profits. All such investigations involved
backtests of relatively simple, ad hoc trading rules. For instance, [lmanen (1997)
showed two dynamic strategies would have provided excess returns well in
excess of two benchmark static strategies. In one dynamic strategy the investor
is long the T-bond if and only if its predicted excess return is positive.
In the other, the position in the T-bond is proportional to the predicted excess
return. This and other studies reinforce the view that dynamic asset allocation
models which incorporate financial and economic factors can be useful for
investors.

Meanwhile, there has been considerable research involving stochastic process
models of assets combined with optimal consumption and/or investment deci-
sions by economic agents. In some cases the models also include stochastic
process models of factors. The famous study by Lucas (1978) has all the
right elements: discrete time stochastic assets which are affected by factor
levels, a Markovian factor process, and economic agents who choose portfolio
positions and consumption levels so as to maximize the expected discounted
utility of their consumption over an infinite planning horizon. Merton (1971),
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Karatzas (1996), and other researchers used stochastic control theory to develop
continuous time portfolio management models where the assets are modeled as
stochastic processes but financial and economic factors are ignored. Much more
relevant to the present paper is the one by Merton (1973), because he provided
a continuous time asset management model featuring stochastic factors. Using
the necessary conditions emerging from the dynamic programming functional
equation, he was able to establish some important financial economic principles.
Merton’s formulation was very general and abstract, and he did not provide any
explicit calculations, concrete examples, or computational results.

Given Merton’s groundwork and the empirical literature indicated above,
one would logically expect there to be a large literature on continuous time,
optimal portfolio management models which explicitly incorporate stochastic
factors and the mechanisms by which they affect asset returns, but the opposite
is the case. Apparently the theoretical and computational difficulties are too
great. With the objective of either maximizing expected utility of terminal wealth
or maximizing expected discounted utility of consumption over an infinite
planning horizon, Merton’s approach entails the solution of a partial differential
equation. However, explicit solutions are known only for a few special cases, and
the pde’s can be solved numerically only for very small problems. Meanwhile,
the implications of Merton’s (1973) work for economic equilibrium have been
investigated in a variety of papers, among which the studies by Breeden (1979)
and Cox et al. (1985) are noteworthy.

Kim and Omberg (1996), Canestrelli (1998), and Canestrelli and Pontini
(1998) studied some simple, special cases of Merton’s (1973) model where the
investor’s objective is to maximize expected (HARA or power) utility of wealth
at a fixed, finite date. They derived via a Riccati equation explicit solutions for
the value function and optimal trading strategy. Brennan and Schwartz (1996)
and Brennan et al. (1997) studied a similar model, but they used numerical
methods to solve the dynamic programming functional equation (i.e., the Hamil-
ton-Jacobi-Bellman partial differential equation) for the value function and
optimal trading strategy. But with only three factors, the pde has three state
variables and so they were already near the maximum that can be accommod-
ated with a numerical approach.

Brandt (1998) and Campbell and Viceira (1999) worked directly with discrete
time variations of Merton’s (1973) model. Campbell and Viceira dealt with
a model that is similar to Kim and Omberg’s except that the investor’s objective
is to maximize expected utility of consumption over an infinite planning hor-
izon. Brandt (1998), also in discrete time, worked with the objective of maximiz-
ing expected utility of consumption over a finite planning interval. The set of
feasible portfolio and consumption decisions was allowed to vary according to
an observable forecasting process which, unfortunately, was not explicitly speci-
fied. Brandt developed a computational procedure involving the conditional
method of moments and the Euler equations that represent the first order
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optimality conditions. However, no proof was provided that this procedure is
optimal or even approximately optimal.

In short, the literature demonstrates that for concrete applications of Mer-
ton’s (1973) approach it is difficult to obtain explicit characterizations of the
optimal strategies, even for simple models involving only a few factors. And
these computational difficulties are not rescued by the modern approach which
avoids dynamic programming by using risk neutral probability measures (see
Karatzas (1996), Korn (1997), or Pliska (1986,1997)), because the inclusion of
stochastic factors means the resulting securities market model is incomplete (in
the sense of Magill and Quinzii (1996)). However, as will be argued in this paper,
the computational difficulties can be ameliorated by adopting a new kind of
portfolio optimization objective or criterion.

The mathematical theory in this paper was introduced in Bielecki and Pliska
(1999). Our model resembles the one developed by Merton (1973) in that factors
are modeled as stochastic processes which explicitly affect the asset returns.
However, instead of maximizing the expected utility of terminal wealth or the
expected utility of consumption, the objective now is to maximize the portfolio’s
long run growth rate adjusted by a measure of the portfolio’s average volatility.
This ‘risk sensitive’ criterion corresponds to an infinite horizon objective, and so
the optimal strategies are simpler, depending on the factor levels but not on
time. Moreover, the optimal strategies can be computed by solving simple
quadratic programs, and so models with dozens or even hundreds of factors are
tractable. An interesting feature of the theoretical results presented in Bielecki
and Pliska (1999) is that investment strategies that are optimal for the infinite
horizon objective are universally optimal, i.e., they are optimal within any finite
planning horizon for the type of asset allocation problems considered here.

It should be mentioned that the optimal strategies which emerge from our risk
sensitive dynamic asset management model resemble, at least for the case of
a single risky asset, the proportional strategies studied by Ilmanen (1997) and
others. Hence the ideas in this paper provide a sound, theoretical footing for
dynamic investment strategies which previously have been selected only on an
ad hoc basis.

This paper is not the first to apply a risk sensitive optimality criterion to
a financial problem. Lefebvre and Montulet (1994) studied a model for a firm’s
optimal mix between liquid and non-liquid assets; the calculus of variations
approach was used to derive an explicit expression for the optimal division.
Fleming (1995) used risk sensitive methods to obtain two kinds of asymptotic
results. In the first he considered a conventional, finite horizon portfolio model
and studied certain limits as the coefficient of risk aversion tends to infinity. In
the second he studied the long-term growth rate for conventional models with
transaction costs and HARA utility functions. Finally, Carino (1987) used risk
sensitive linear/quadratic/Gaussian control theory (see Whittle, 1990) to solve
a particular discrete time, Lucas-type problem.
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In summary, the purpose of this paper is to demonstrate that the risk sensitive
dynamic asset management model of Bielecki and Pliska (1999) is a practical,
tractable approach for making optimal asset allocation decisions. A precise
formulation of this model as well as the main results will all be found in
Section 3. First, however, Section 2 will discuss and explain the risk sensitive
criterion that is a fundamental element of the model.

Section 4 is devoted to a special case of a simple asset allocation model
featuring a Vasicek type short interest rate and a stock index that is affected by
the level of interest rates. This example is completely solved; explicit formulas for
the optimal trading strategies and the optimal objective value are obtained. In
order to develop understanding and economic intuition, the effects of individual
parameters in these mathematical expressions are studied. Not only does this
example illustrate the main ideas of Sections 2 and 3, but it will also be of
independent interest to financial economists because it is one of the few models
in the literature to provide explicit results and formulas for a concrete version of
Merton’s (1973) model.

The Bielecki-Pliska methodology is further illustrated in the next two sec-
tions where it is applied to two sets of monthly economic/financial data. In
Section 5 the model is applied to US data, the same data that Brennan et al.
(1997) studied. Section 6 is devoted to Australian data. In both cases the
statistical ability of our factors for forecasting asset returns is very limited, and
yet the results are surprisingly good. This suggests that incorporation of better
factors, such as those in the empirical studies cited above, would yield attractive
strategies for dynamic asset allocation.

2. The risk sensitive criterion

In order to introduce and explain the risk sensitive criterion, let V(t) denote
the time-t value of a portfolio and consider the measure of performance

liminf (1/y)t " "InE(V (1)), y <1, y #0.
t— o0
This was used by Grossman and Zhou (1993) and Cvitanic and Karatzas (1994)
to study a classical portfolio problem under a drawdown constraint. Note that
letting y — 0 this becomes, in the limit, the same as the objective of maximizing
the portfolio’s long-run expected growth rate (the Kelly criterion), whereas for
y > 1 it is not clear how to meaningfully interpret this criterion, although it
resembles expected utility with an isoelastic or power utility function.
However, suppose this expression is rewritten as

Jo:=liminf( — 2/0)t ' 1n Be~ @2V O,

t— o0
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where 60> —2,0+#0, and where ‘:=’ means ‘defined as’. Substituting
C(t) = In V(t) enables one to establish a connection with the recently developed
literature on risk sensitive optimal control (e.g., see Whittle (1990)), where C(r)
plays the role of a cumulative cost. This means that if we adopt, as we shall, the
objective of maximizing J,y, then many of the techniques that have recently been
developed for risk sensitive control can potentially be applied to our portfolio
management problem.

Moreover, as is well understood in the risk sensitive control literature,
a power expansion [in powers of 0, for 0 close to 0] of the quantity

—0 .
—ZInBe 2" yields

9

2 0
-3 InEe 2"""® = ElnV(t) — Zvar(ln V(1) + O3, (2.1)

where O(0%) will typically depend on t. Hence J, can be interpreted as the
long-run expected growth rate minus a penalty term, with an error that is
proportional to 0?. Furthermore, the penalty term is proportional to the
asymptotic variance, a quantity that was studied by Konno et al. (1993) in the
case of a conventional, multivariate geometric Brownian motion model of
securities. The penalty term is also proportional to 6, so 6 should be interpreted
as a risk sensitivity parameter or risk aversion parameter, with 0 > 0 and 60 <0
corresponding to risk averse and risk seeking investors, respectively. Moreover,
in the risk averse case maximizing J, protects an investor interested in maximiz-
ing the expected growth rate of the capital against large deviations of the
realized rate from the expectations. The special case of § = 0 will be referred to
as the risk null case', and note this is the same as the classical Kelly criterion,
that is

Jo = liminft~* Eln V().
t— o0
Some insight into the risk sensitive criterion can be obtained by considering
the case where the process V(t) is a simple geometric Brownian motion with
constant parameters u and . A simple calculation gives
1 0
Jo=p—~0*——a%
o= H 3 4

so the approximation mentioned above is, in this case, exact (which means that
the term O(6?) is in fact equal to 0), with the asymptotic variance being precisely
the same as the square of the usual volatility.

! Whittle (1990) used the term risk neutral rather than risk null in this case. We chose the latter
terminology in order to avoid a possible confusion with the term risk neutral used in the asset pricing
context.
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Additional insight about the risk sensitive criterion can be obtained by
comparing it with the objective under the classical single period Markowitz
model. Ignoring the higher order terms and interpreting 0 as a Lagrange
multiplier, it is apparent that the problem of choosing a trading strategy so as to
maximize J, is the same as maximizing the growth rate subject to a constraint
that the asymptotic volatility is equal to a fixed value. Hence maximizing J, for
a range of 0 will derive the ‘risk sensitive frontier’, exactly analogous to the
efficient frontier in the Markowitz model. There are only two differences. First,
the risk sensitive frontier lives in an asymptotic space corresponding to infinite
horizon measures of mean return and variance rather than single period
measures. Second, the asymptotic frontier that is computed may not be exactly
equal to the true asymptotic frontier, due to the higher order terms in the Taylor
series expansion of Jy.

Naturally, if the investor has a very clear, specific planning horizon, then the
expected utility of terminal wealth should probably be maximized (assuming
that the results can be computed) and our risk adjusted performance measure
should not be used. However, for many important problems, especially the
management of mutual funds, our risk adjusted growth rate criterion is ideal, for
it captures both the portfolio’s growth rate and the portfolio’s average volatility
over an extended period of time.

3. Formulation of the model and the main results

We will develop a model consisting of m > 2 securities and n > 1 factors.
Let (2,{Z.},7,P) be the underlying probability space. Denoting by Sit) the
price of the ith security and by X () the level of the jth factor at time ¢, we
consider the following market model for the dynamics of the security prices and
factors:

dSl(t) = (a + AX(t))l dt + min Ok de(t), Sl(()) =5; > 0, i= 1, 2, e, m,
Si(t) k=1

(3.1)
dX(0) = (b + BX(1)dt + AdW(0), X(0) = x, (3.2)

where W(t) is a R™*" valued standard Brownian motion process with compo-
nents W(t), X(t) is the R" valued factor process with components X 1),
the market parameters a, A, 2:= [o;;], b, B, A:= [4;;] are matrices of appro-
priate dimensions, and (a + Ax); denotes the ith component of the vector
a+ Ax.

Let h(t) denote an R" valued investment process or strategy whose compo-
nents are hyt), i =1,2,...,m.
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Definition 3.1. An investment process h(t) is admissible if the following condi-

tions are satisfied:

(i) h(?) takes values in a given subset y of R, and Y /- ,h(r) = 1, and

(i) h(r) satisfies appropriate measurability and integrability conditions, as ex-
plained in Bielecki and Pliska (1999).

The class of admissible investment strategies will be denoted by .

Let now h(t) be an admissible investment process and consider the solution
V(t) of the following stochastic differential equation:

dv(e) = h,-(t)V(t)[ui(X(t))dt + mi aidek(t)} VO)=0v>0, (3.3)

i

M=

1

where ;(x) is the ith coordinate of the vector a + Ax for x € R". The process V(t)
represents the investor’s capital at time ¢, and h;(t) represents the proportion of
capital that is invested in security i, so that h;(t)V(t)/Si(t) represents the number
of shares invested in security i, just as in, for example, Section 3 of Karatzas and
Kou (1996).

In this paper we shall investigate the following family of risk sensitized
optimal investment problems, labeled as (Py):

for 6¢€(0, o0 ), maximize the risk sensitized expected growth rate

Jo(v, x; h(+)) = liminf ( — 2/0)¢ ™ 1n E*[e~ @2 VO 1(0) = p, X(0) = x]

t— o0

(3.4)

over the class of all admissible investment processes h(-),
subject to Egs. (3.2) and (3.3),

where E is the expectation with respect to P. The notation E"”) emphasizes that
the expectation is evaluated for the process V(t) generated by Eq. (3.3) under the
investment strategy h(t).

Before we can present the main results pertaining to these investment prob-
lems, we need to introduce the following notation, for # > 0 and xe R™

Kox):= inf  [(1/2)0/2 + DW'ZZ'h — K(a + Ax)]. (3.5)

hey, 1’h=1

It is perhaps interesting to observe that Eq. (3.5) is a ‘local’ optimization
problem which amounts to maximization of the instantaneous return (i.e.,
h(a + Ax)) on the portfolio penalized by the portfolio’s instantaneous volatility
(i.e., the other term in Eq. (3.5)).
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We also need to make the following assumptions:

Assumption (A1). The investment constraint set y satisfies one of the following two
conditions:

(@) y =R", or

(b) y={heR™ hy; < h; < hy, i = 1,2,...,m}, where hy; < hy; are finite constants.

Assumption (A2). For 6 > 0,
lim Kyx)= — 0.
[lx]] =00

Assumption (A3). The matrix AA' is positive definite.
Assumption (A4). The matrix XA’ equals 0.

Remark 3.1. (i) Note that if XX’ is positive definite and if Ker(A4) =0, then
assumption (A2) is implied by assumption (Al)(a).

(i) These assumptions are sufficient for the results below to be true, but, as
will be seen for the example considered in the next section, Assumption (A2) is
not necessary, in general.

(iii) Assumption (A4) says that the residuals of the factors are uncorrelated
with the residuals of the assets. This assumption, which may be realistic for some
applications, but not for others, is discussed further in the concluding section.

Theorems 3.1-3.4, which were proved in Bielecki and Pliska (1999), contain key
results that will be used in this paper.

Theorem 3.1. Assume (A1)—(A4) and fix 6 > 0.
Let Hy(x) denote a minimizing selector in Eq. (3.5), which means that H(x)
satisfies the following equation

Ko(x) = (1/2)(0/2 + 1)Hy(x)ZX"Hy(x) — Ho(x)'(a + Ax).
Then the investment process hy is optimal for problem (P,), where for all t > 0
ho(t) := H(X(2)). (3.6)
Theorem 3.2. Assume (A1)—-(A4), fix 0 > 0, and consider problem P,. Let hy(t) be as
in Theorem 3.1. Then

(a) For all v> 0 and x e R" we have

To(v, x: ho(+)) = lim ( — 2/0)¢ ™ In E"O[e~ @210 17(0) = v, X(0) = x]

t— o0

=:p(0).
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(b) The constant p(0) in (a) is the unique non-negative constant which is a part of
the solution (p(0), v(x; 0)) to the following equation:

o = (b + Bx)'grad,v(x)

oY OIS $ S Y,

ij=1 ij=1 0xi0x; /=4

- Ke(x)n

v(x)eCXR", lim uv(x)= oo,

[lxl] =0

p = const., (3.7

where grad,v(x) denotes the gradient of v(x).

The key point of the first equality in (a) is, of course, that the optimal objective
value is given by an ordinary lim rather than the liminf as in Eq. (3.4). The key
point of the second equality in (a) is that the optimal objective value does
not depend on either the initial amount of the investor’s capital (v) or on
the initial values of the underlying economic factors (x), although it depends,
of course, on the investor’s attitude towards risk (encoded in the value of 0).
The key point of (b) is that the optimal objective value is characterized in terms
of the Eq. (3.7). The example in the next section illustrates how to solve the
system (3.7).

Notice that in the preceding two theorems we had 0 > 0. It remains to
consider the case corresponding to 6 = 0. This is the classical problem of
maximizing the portfolio’s expected growth rate, that is, the growth rate under
the log-utility function (see, e.g. Karatzas, 1996). This problem, which will be
labeled Py, is exactly the same as P, for 0 > 0 except that now?

Jo(v, x; h(+)):= liminf t 'E" [In V(1) V(0) = v, X(0) = x].
t— o
It turns out that to solve P, it is necessary to make three additional
assumptions:
Assumption (Bl). For each 0 > 0 the function Ky(x) (see Eq. (3.5)) is quadratic and
of the form:

Ko(x) = (1/2)x'K1(0)x + K5(0)x + K3(0),

2 This criterion comes about by setting 0 = 0 in Eq. (2.1).
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where K(0), K,(0), and K;(0) are functions of appropriate dimension depending
only on 0.

Assumption (B2). For each 0 >0 the matrix K(0) is symmetric and negative
definite.

Assumption (B3). The matrix B in Eq. (3.2) is stable.

Remark 3.2. (a) Assumption (B1) is satisfied if, e.g. the matrix X2’ is non-singular
and if y = R". As will be seen in the next section, non-singularity of XX’ is not
a necessary condition for (B1) to hold.

(b) It follows from Section 5.5 in Bank et al. (1983) that limg, o K(0) = K(0) for
i=123.

(c) Note the Assumption (B2) implies that Assumption (A2) is satisfied.

(d) Assumption (A1) was sufficient in the case 6 > 0 in order to provide for
appropriate smoothness of the function Ky(x). Here, we make a stronger
Assumption (B1) and therefore the Assumption (A1) is no longer needed.

Theorem 3.3. Assume (A3), (A4), and (B1)—~(B3). Then the optimal strategy for P is
as in Theorem 3.1 with 0 = 0 and the optimal objective value p(0) is as in Theorem
3.2(b) with 8 = 0. Moreover, the optimal objective values for problems (Pg), 0 > 0,
converge to the optimal objective value for the risk null problem P, when the
risk-aversion parameter converges to zero.

The next result characterizes the portfolio’s expected growth rate under the
optimal investment strategy for the risk aversion level 6 > 0; this will be used in
the next section where the motivation behind establishing this result will become
apparent. We denote this growth rate by p,y, which is to be distinguished from
the optimal objective value p(6), as in Theorem 3.2.

Theorem 3.4. Assume (A3), (A4), and (B1)—~(B3), fix 0 > 0, let Hyx) be as in
Theorem 3.1, and suppose that Hy(x) is an affine function and that

lim [(1/2)Hy(x)Z2 Hy(x) — Hy(x)(a + AX)] = — 0. (3.8)

[x[| = o0

Consider the equation

n 621)0’0(}6) n+m

= Bx)’ 1/2 Al
po = (b + Bx) grad, vy o(x) + (1/ )i’jz:‘,l Fxi0x; kg,l ik jk

— [(1/2)Ho(x)22"Ho(x) — Ho(x)(a + Ax)],

vg,0(X) € Cz(Rn)a lim  vy0(x) = 0,

[xl1— o0

g = const. (3.9
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Then there exists a solution (pg, Vg o) to the preceding equation, the constant py is
unique, and we have

Jo(v, X5 he(+)) = po (3.10)
for all (v,x)€(0, 00) x R", where hy(-) is defined as in Eq. (3.6).

4. Example: Asset allocation with Vasicek interest rates

In this section we present a simple example which not only illustrates the ideas
developed in the preceding sections, but also is of independent interest in its own
right. We study a model of an economy where the mean returns of the stock
market are affected by the level of interest rates. Consider a single risky asset, say
a stock index, that is governed by the stochastic differential equation

dSSl(g) = (i1 + or(®)dt + o dW (1), 54(0) =5 >0,

where the spot interest rate () is governed by the classical ‘Vasicek” process
dr(t) = (by + byor(t))dt + AdW,(t), r(0)=r>0.

Here py, ws, by, by, 0, and 1 are fixed, scalar parameters, to be estimated,
while W, and W, are two independent Brownian motions. We assume b; > 0
and b, <0 in all that follows. We make no assumptions about the signs
of uy and pu,; readers looking for the risk premium to be constant should
expect u, = 1, whereas we obtained u, < 0 in our empirical studies reported
below.

The investor can take a long or short position in the stock index as well as
borrow or lend money, with continuous compounding, at the prevailing interest
rate. It is therefore convenient to follow the common approach and introduce
the ‘bank account’ process S,, where

dsy(0
So(t)

Thus S,(t) represents the time-t value of a savings account when S,(0) = 1 dollar
is deposited at time-0. This enables us to formulate the investor’s problem
as in the preceding sections, for there are m = 2 securities S; and S,, there
is n =1 factor X =r, and we can set b = b, B=b,, a = (u,0), A = (u», 1),
A =(0,0,4), and

r(t)dt
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With only two assets it is convenient to describe the investor’s trading
strategy in terms of the scalar valued function H(r), which is interpreted as the
proportion of capital invested in the stock index, leaving the proportion
1 — Hy(r) invested in the bank account. We suppose for simplicity that there are
no special restrictions (e.g., short sales constraints, borrowing restrictions, etc.)
on the investor’s trading strategy, so the investment constraint set y is taken to
be the whole real line.

In view of Theorem 3.1 the optimal trading strategy is easy to work out. With
(see Eq. (3.5))

Ky(r) =1inf [(1/2)(6/2 + 1) (h,1 — B)X2'(h,1 — h) — (h,1 — h)(a + Ar)],
heR
it follows that the optimal trading strategy is hy(t) = [Eg(t),l — Eg(t)]’, where
ho(t) = Ho(r(1)) and

M1+ plol — T

Ho(r) = 02 + 1)o? °

(4.1)

in which case

(U1 + por —r)?

Ky = =r = 90

It is interesting to note the obvious similarity between this optimal strategy
and the well known results (see Merton (1971) or Karatzas (1996)) for the case of
conventional, complete models of securities markets and power utility functions.
In particular, when u, =0, so the mean returns of the stock market are
independent of the interest rates, the expressions for the trading strategies are
identical. Another special case of interest is when u, = 1, so that the ‘market risk
premium’ (i; + u,r — r)/o is constant. Here the results are somewhat boring, in
that Hy is constant with respect to r and Ky(r) is linear in r.

More interesting is the study of p(6), our measure of performance under the
optimal trading strategy (see Theorem 3.2). In view of Eq. (3.7) this is obtained as
part of the solution (p, v) of the equation

p = 3720(0) + (by + b2V 0) — O — Kl (42)

where v is a unique (up to a constant) function satisfying lim,| , v(r) = o0 . To
solve this, we conjecture that a solution is obtained with v having the quadratic
form

o(r) =ar® + fr+7y

for suitable constants o, 5, and y. Substituting this and the expression for
Ky(r) into Eq. (4.2) and then collecting terms, we see that the quadratic terms
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cancel out if and only if

(o — 1) _

12007 — 2byor — 2 =
A“0a 50 0 + 207

This quadratic equation in o has two roots, one of which is positive, while the
other is negative. However, the requirement that lim;,|- ., v(r) = oo is satisfied
only for the positive root, so recalling our assumption that b, < 0 it follows that
for the value of o we should take (for future purposes it is convenient to denote
the dependence on 0 and 1)

_ byt JbE+ 0221, — 1P/[(0 + 2)o ]
220

(0, ) 4.3)

The linear terms on the right-hand side of Eq. (4.2) cancel if and only if the
value of f is

1+ 2p4(pa — D/LO + 2)0°] + 2b50(0, 2)
B3+ 022G, — DYEO +2)07]
Thus Eq. (4.2) does indeed have a solution with v as indicated; this solution is
unique up to the constant y, the value of which does not matter. The value of
p(0, 2) will then equal the remaining terms on the right-hand side of Eq. (4.2), i.e.

A20Lp(0, 2)]° N It
4 0 + 2)a?

PO, 1) =

(4.4)

p(0,2) = 1200, 7) + by (0, 1) — 4.5)

Remark 4.1. Note that the above results are valid also in the case when pu, = 1.
The assumption (A2) is not satisfied in this case since lim,_, — , Ky(r) =

It is interesting to consider the risk null case, because here p(0) will turn out to
be the long-run expected growth rate under the strategy that is optimal when
0 = 0. Using L’Hospital’s rule we compute the limits

. (12 — 1)2
0,4 =lim (0, 4) = — ——-—,

010 4b20'2

Y N by(ps — 1)2 1 pilpy — 1)

e e e (46

. , by [y — (by/by)(uz — 1)]2 /12(,“2 - 1)2

) =1 = —— — .

p(0,4) olfg p(0,4) . + = T

Note that each of the three terms is non-negative. The Vasicek interest rate
has a limiting distribution with a mean equal to the so-called ‘mean reversion’



T.R. Bielecki et al. | Journal of Economic Dynamics & Control 24 (2000) 1145-1177 1159

level — by{/b,, which is the first term. The second term equals the contribu-
tion to the long-run expected growth rate due to trading in the stock index,
assuming the interest rate is the constant mean reversion level. The third
term equals the contribution to the long-run expected growth rate due to the
volatility of the interest rate.

Another quantity of interest is the long-run expected growth rate which
results from using the strategy hy(t) that is optimal for a particular value of 6,
a quantity that will be denoted by py(1). Of course, po(4) = p(0, A), which is given
by Eq. (4.6), whereas for 0 > 0 we use Theorem 3.4 and obtain the quantity py(4)
by solving for the constant p and the function v such that lim,, ,,v(r) = co and

p= %izv”(r) + (b1 + bar)v'(r) — [(1/2)(Ho(r), 1 — Ho(r) 22 (Ho(r),

1 — Hy(r)) — (Ho(r), 1 — Ho(r)la + Ar)]. (4.7
We solve Eq. (4.7) in exactly the same way as Eq. (4.2), obtaining

b,  20+1)

pel2) = —b—2+m

12 2
L A e
2
Note that the second and third terms, respectively, of Egs. (4.6) and (4.8) differ by
the factor 4(0 + 1)/(0 + 2)>. This factor is strictly less than one for all > 0, so
0(0, 1) > py(2) for all @ > 0. Thus the optimal expected growth rate when 0 = 0 is
greater than when 0 is positive, as anticipated.

Remark 4.2. At this point we want to emphasize one more time that the main
advantage of the risk-sensitive approach to dynamic asset allocation over the
classical log-utility approach is that the risk-sensitive approach provides an
optimal compromise between maximization of the capital expected growth rate
and controlling the investment risk, given the investor’s attitude towards risk
encoded in the value of 6. Even though the long-run expected growth rate of the
capital under hg(-) is greater than under hy(-), if 0 > 0, the asymptotic risk of
investment decreases with increasing values of 0 (see the discussion below, as
well as our numerical results that conclude this section).

Still another quantity of interest is (4/0)[ pg — p(0)] which, by Eq. (2.1) can be
interpreted as an estimate of the asymptotic variance of In V() under the
strategy that is optimal for the particular value of 0. In general, this is a messy
formula when expressed in terms of the original data; no simplifications seem
possible. However, there is interest in computing p'(0, 1) := %ﬁ’%:o, because
when 6 = 0 the asymptotic variance under the optimal trading strategy will be

limy o (4/0)Lpe — p(0)] = — 4p'(0,4). After lengthy, tedious calculations using
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L’Hospital’s rule and so forth, we obtained

[y — (by/b2) (2 — 1)]2

452

A, — 1)
32b3c*

PO = ~

[22(1y — 1)* + 4b30?]

2
— Lo sl = ) = (b — 1T

Note that each of the three terms is non-positive, as desired.

Our various calculations can be reconciled with classical continuous time
optimal portfolio models (e.g., Merton, 1971; Karatzas, 1996) by considering
various limits as the data parameter A — 0. This is because in the long-run when
A = 0 the interest rate is essentially equal to the constant mean reverting value
— by/b,, in which case the drift coefficient in the SDE for the stock index is the
constant p; — u,b/b,. Hence, for instance, we have

lim o(0,7) = — m

lim (0,7) = ~ bi _ 2k — ;z(; iblz/)l:z)(uz 1P
tim p(0.) = — Zi Ll - ((bé/fﬁ?gi 1

tim (1) = — Z—: LA+ 1)[“Z0_+(1;;£l;22)(ﬂ2 .

Note that when A =0 then our optimal strategy is the same as that which
emerges from the classical models when the objective is to maximize expected
utility of terminal wealth under a power utility function.

We now provide some numerical calculations that are intended to generate
some economic intuition about our asset allocation problem. Throughout we
envision time units in years and set b; = 0.05 and b, = — 1, so the mean
reverting interest rate is 5% per annum. We also set iy = 0.1 + (b{/b,)u, so that
the stock index’s drift coefficient is always 0.1 whenever the interest rate is at the
mean reverting level. Finally, the volatility parameter for the stock index is
always taken to be ¢ = 0.2. Thus if the interest rate is fixed at the mean reverting
level, then the stock index evolves like ordinary geometric Brownian motion and
has a long run expected growth rate equal of 8% per annum and an asymptotic
variance equal to 0.04.
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Fig. 1. Rho(theta) for selected mean return sensitivities.

This leaves two unspecified parameters: A and u,. For Figs. 1-3 we fix
4 =0.02 and consider the effect of the interest rate sensitivity parameter .

Fig. 1 shows three graphs of the function p(0) corresponding to, from top to
bottom, respectively, u, = — 1, u, =0, and g, = 1. The numerical values are
expressed as percentages; the value of 0 varies between 0 and 6.0. Although the
function p(6) involves the factor (1, — 1) raised to the first power, it turns out for
our chosen parameters that the value of p() when p, =1+ J is not much
different when p, = 1 — §, for all 6 > 0 and 0 > 0. Hence, roughly speaking, the
greater the sensitivity of the stock index risk premium (y¢; + p,r — r)/o to the
interest rate, the greater the optimal objective value p(0).

Fig. 2 shows three graphs of the function p, corresponding to, from top to
bottom, respectively, u, = — 1, u, = 0, and u, = 1. It is interesting to compare
these values with 8%, the long run expected growth rate of the stock index itself
when the interest rate is fixed at the mean reverting level. Note that p, enters the
equation for p, only as part of the factor (u, — 1)%

Fig. 3 shows three graphs of the estimated asymptotic variance corresponding
to, from top to bottom, respectively, u, = — 1, u, =0, and u, = 1. Plotted is
the quantity (4/0)[py — p(0)], with p, and p(0)] expressed as percentages. It is
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Fig. 3. Asymptotic variance versus theta for selected mean return sensitivities.
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interesting to compare these values with 4.0, the asymptotic variance for the
stock index itself when the interest rate is fixed at the mean reverting level. As
with p,, the estimated asymptotic variances are more sensitive to the value of
|1, — 1] than to the value of |u,| itself.

We also fixed p, =0 and studied the effect of the interest rate volatility
parameter 4. We generated graphs of p(0), py, and the estimated asymptotic
variances, respectively, for three different values of A: 0, 0.02, and 0.04. The
resulting three graphs turned out to be qualitatively almost identical to
Figs. 1-3, respectively, except that the curves labeled u, = — 1,0, and 1 should
be relabeled A = 0.04, 0.02, and 0, respectively. In other words, with all three
figures, the bigger the value of A, the bigger the value of the corresponding
function. Hence it seems that the greater the volatility of the interest rate,
the greater the investment opportunities, although these opportunities will be
accompanied by greater volatilities.

5. Experiments with US data

In this section we backtest a two-asset model using data from the asset
allocation study by Brennan et al. (1997). They had monthly data from January
1974 to December 1994 for the T-bill short rate, a long term T-bond rate,
the monthly returns for an index of US equities, and the dividend yields for the
same equity index. We augmented these data with similar numbers from
January 1995 through November 1997. Our main objective for this and the
following section is to illustrate how to implement our risk sensitive asset
allocation model.

A secondary objective for our empirical work is to see if risk sensitive trading
strategies do better than more conventional ones, in spite of the fact that our
choice of three factors is very poor for the purpose of predicting stock returns.
When we regressed next month’s returns against the three factors, the R* and
adjusted R?* turned out to be only 0.038 and 0.026, respectively. Moreover,
although the coefficients for the short rate and the dividend yield were statist-
ically significant at the 95% level, the intercept and the coefficient for the
long rate were not significant. On the other hand, Kandel and Stambaugh
(1996) used a one-period optimization model for a Bayesian investor to conclude
that weak regression results (such as ours) should nevertheless ‘exert a
substantial influence on the investor’s portfolio decision’. If this is true in
general, then we should expect our risk sensitive strategies to outperform
conventional ones.

We compare four kinds of trading strategies, each of which starts with $1000
in January 1983. The data prior to 1983 were used for some of the strategies to
make initial estimates of parameters. First are the constant proportion strat-
egies, where each month the division of wealth between the stock index and cash
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Table 1
Constant proportion strategies for US data

Stock Mean Volatility Sharpe Final Annual
proportion return (%) (%) ratio wealth ($) turnover (%)
0.0 6.77 0.57 0.00 2,657 0.0
0.1 7.85 1.49 0.72 3,081 33
0.2 8.93 2.83 0.76 3,563 5.9
0.3 10.03 422 0.77 4,106 7.7
0.4 11.13 5.61 0.78 4,719 8.8
0.5 12.25 7.01 0.78 5,406 9.2
0.6 13.38 8.41 0.79 6,174 8.8
0.7 14.51 9.81 0.79 7,030 7.7
0.8 15.66 11.21 0.79 7979 59
0.9 16.82 12.61 0.80 9,027 3.3
1.0 17.98 14.01 0.80 10,181 0.0
1.1 19.16 15.42 0.80 11,446 4.0
12 20.35 16.82 0.81 12,826 8.8
1.3 21.55 18.22 0.81 14,324 14.3
1.4 22.76 19.63 0.81 15,944 20.6
1.5 23.98 21.03 0.82 17,686 27.6
1.6 25.22 2243 0.82 19,551 354
1.7 26.46 23.83 0.83 21,535 439
1.8 27.72 25.24 0.83 23,634 53.2
1.9 28.99 26.64 0.83 25,841 63.3
2.0 30.26 28.04 0.84 28,145 74.2

is rebalanced to a specified proportion. Different proportions were evaluated,
ranging between 0 and 2.0. Table 1 shows for each proportion the corresponding
portfolio’s mean annual return, volatility, Sharpe ratio, final (November 1997)
dollar value, and average annual turnover. The last measure is the percentage of
the portfolio’s value that is shifted between assets due to the rebalancing process;
it is included in order to give some indication of the possible transaction costs.
Fig. 4 shows a graph of the mean annual return versus the volatility for values of
the stock proportion ranging from about 0.13 to about 1.50.

The second kind of trading strategies are O-factor, risk sensitive strategies.
These are the strategies resulting from our model when you take the matrix
A = 01n Eq. (3.1). In particular, for the purposes of this section, this is the same
as taking u, = 0 in the Vasicek model of the preceding section. Consequently,
the optimal proportion (4.1) reduces to the well known formula resulting from
the portfolio management problem where the investor’s objective is to maximize
expected iso-elastic utility of wealth at a specified (finite) planning horizon (see
Merton (1971), Karatzas (1996), and Eq. (41) of Kandel and Stambaugh (1996);
the value of 0 depends in a simple way on the risk aversion parameter in the
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Fig. 4. Mean return versus volatility for US data.

utility function). For this reason, our O-factor risk sensitive strategies can also be
thought of as classical, Merton-type stochastic control strategies.

In our backtesting experiment we are interested in whether the Merton-type
strategies fare better than the benchmark constant proportion strategies. If so,
this would be evidence for the merits of the risk sensitive control approach
(and stochastic control theory approaches, in general), irrespective of any
opportunity to use factors for predicting asset returns. This is because the factor
levels are ignored for the purpose of estimating the value of the parameters
1y and o. In particular, only the stock index returns prior to 1983 were
used for initial estimates of these two parameters. Moreover, each month
on a rolling basis the most recently observed return was added to the data set
for the purpose of updating the parameter estimates, and then the new portfolio
proportions were computed from Eq. (4.1) and implemented. However, in
order to facilitate a comparison with the benchmark constant proportion
strategies described earlier, we imposed lower and upper bounds on the
stock index proportion of 0 and 2.0, respectively. This means that if the
proportion coming from expression (4.1) was lower (respectively, higher) than
0 (resp. 2.0), then the proportion actually implemented during the month
was 0 (resp. 2.0).

We backtested the O-factor risk sensitive strategies for different values of 0, as
shown in Table 2. Fig. 4 shows a graph of the mean return versus the volatility as
0 ranges from about 1 to 23.
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Table 2
0-Factor risk sensitive strategies for US data

Mean Volatility Sharpe Final Annual

Theta return (%) (%) ratio wealth ($) turnover (%)

0 29.47 27.62 0.82 26,071 89.3

1 28.53 26.81 0.81 24,162 122.5

2 26.45 25.25 0.78 20,082 138.7

3 24.76 23.90 0.75 17,217 138.3

4 22.89 22.57 0.71 14,365 139.3

6 20.29 18.71 0.72 12,027 119.3

8 18.23 15.96 0.72 10,050 104.2
10 16.19 13.33 0.71 8,216 84.6
12 14.80 11.42 0.70 7,113 69.0
15 13.34 9.40 0.70 6,068 54.1
20 11.82 7.26 0.70 5,091 39.6
25 10.87 591 0.69 4,541 31.2
30 10.22 4.99 0.69 4,191 25.8
40 9.39 3.81 0.69 3,773 19.1
50 8.88 3.08 0.69 3,533 15.1
75 8.19 2.11 0.68 3,226 10.0

The third kind of strategy is our risk sensitive control strategy where the short
rate is the only factor, as in the preceding section. To backtest this kind of
strategy we estimated ¢ as for the O-factor strategies, but now instead of
estimating i, from just the sample of historical returns we estimated both y; and
U, by regressing in a rolling, month-to-month fashion the stock index returns of
prior months against the T-bill short rate at the beginning of the corresponding
months. The parameters ¢, and u, were taken to be the regression intercept and
slope, respectively. This risk sensitive control strategy was backtested for differ-
ent values of 0, as shown in Table 3. Fig. 4 shows a graph of portfolio mean
return versus volatility as 6 ranges from about 2.5 to about 50.

Finally, the fourth kind of strategy we backtested is our risk sensitive control
strategy where there are three factors: both interest rates and the stock index
dividend yield. We included this kind of strategy in spite of the fact that our
Assumption (A4) was violated in this case. In particular, although the residuals
of the two interest rate factors are virtually uncorrelated with the residuals of the
stock index, the residuals of the dividend yield factor are highly correlated with
the stock index residuals, just as one would anticipate. Nevertheless, we thought
there might be some interesting things to learn by proceeding with the backtest
as if Assumption (A4) were realistic.

The backtest was conducted just like the backtest of the one factor, risk
sensitive strategies, only now the estimates of u; and u, (the latter now being
a 3-component vector) were updated each month by conducting a regression
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Table 3
1-Factor risk sensitive strategies for US data

Mean Volatility Sharpe Final Annual

Theta return (%) (%) ratio wealth ($) turnover (%)

0 28.86 2743 0.81 24,492 123.1

1 28.30 26.76 0.80 23,563 151.3

2 28.02 2597 0.82 23,528 177.0

3 27.14 25.12 0.81 21,912 196.9

4 25.85 24.15 0.79 19,469 199.9

6 23.13 22.05 0.74 15,215 205.3

8 20.49 19.05 0.72 12,232 197.2
10 17.80 16.25 0.68 9,432 175.9
12 15.99 14.16 0.65 7,855 154.2
15 14.27 11.70 0.64 6,600 123.6
20 12.53 9.04 0.64 5,470 92.2
25 11.44 7.37 0.63 4,832 73.5
30 10.70 6.22 0.63 4,426 61.2
40 9.75 4.74 0.63 3,941 45.7
50 9.17 3.84 0.63 3,663 36.5
75 8.39 2.61 0.62 3,309 24.4
Table 4

3-Factor risk sensitive strategies for US data

Mean Volatility Sharpe Final Annual

Theta return (%) (%) ratio wealth ($) turnover (%)

0 28.60 20.60 1.06 31,550 484.7

1 27.18 19.64 1.04 27,461 499.7

2 25.55 18.48 1.02 23,375 506.1

3 23.86 17.45 0.98 19,585 490.4

4 22.01 16.34 0.93 16,059 473.2

6 19.55 14.30 0.89 12,403 429.0

8 16.81 12.16 0.83 9,125 379.7
10 15.03 10.28 0.80 7,472 3325
12 13.88 8.84 0.80 6,564 291.1
15 12.59 7.28 0.80 5,645 240.3
20 11.25 5.63 0.79 4,790 186.2
25 10.41 4.60 0.79 4,311 152.0
30 9.83 3.88 0.79 4,005 128.4
40 9.10 297 0.78 3,640 98.0
50 8.64 242 0.77 3,430 79.2
75 8.03 1.68 0.75 3,160 53.6

with all three factors as independent variables. This kind of strategy was backtes-
ted for different values of 0, as shown in Table 4. Fig. 4 shows a graph of each
portfolio’s mean return versus its volatility as 0 ranges from about 0 to about 50.
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In conclusion, it should be clear that it is easy to implement risk sensitive
strategies in a practical way. The continuous time theory is readily transformed
to a discrete time context by proceeding on a rolling basis to use statistical
methods for updating parameters, to use these updated parameters and new
factor values to compute new asset proportions, and to rebalance accordingly.
On the other hand, it remains unclear from these preliminary experiments
whether risk sensitive strategies with underlying factors do better than more
conventional strategies, especially when transaction costs are considered. As can
be seen from Fig. 4, which ignores transaction costs, the 3-factor strategies did
consistently better than the others, by margins which are noteworthy at the
higher volatilities. On the other hand, the O-factor and 1-factor risk sensitive
strategies did worse than the benchmark constant proportion strategies at all
levels of volatility. The performance of risk sensitive strategies will be discussed
further in the following two sections.

6. Experiments with Australian data

In this section we back test some 3-asset, 3-factor risk sensitive strategies with
monthly Australian data from January 1981 to July 1997. The three assets are
the All Industrials index, the All Resources index (these are indexes of disjoint
sets of stocks), and cash. The three factors are the 90 day Australian bank bill
rate (which determines the short interest rate for the cash asset), the 10 year
Australian Treasury bond rate, and the dividend yield for the All Ordinaries
stock index.

We regressed each month’s returns of the All Industrials against the month-
beginning values of the three factors, giving R* = 0.022 and only the intercept
significant at the 95% level. In a similar regression of the All Resources,
R? = 0.047 and the intercept and two interest rate coeflicients were significant at
the 95% level. Thus our ability to forecast returns of Australian stocks is
comparable to what it was for the US market.

We also conducted an (approximate) asymptotic test for the presence of
sample correlations between the residuals of the asset returns and the factor
changes. We thereby could not reject the null hypothesis of no correlation
between the short interest rate changes and each of the two index residuals, so
our Assumption (A4) is satisfied if the short rate is the only factor. However, the
correlations between the dividend yield changes and each of the two index
residuals are significantly negative, while the correlations between the 10 year
bond yield changes and the index residuals are negative at a much lower level of
significance. Hence our tests of strategies involving these last two factors must
be viewed with caution.

In a fashion similar to what we did with our US data (see the preceding
section), we compared three kinds of strategies by doing backtests assuming the
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Table 5
Constant proportion efficient frontier for Australia (proportions > 0)

Proportion (%)

Mean Volatility Sharpe Final Annual

All All Cash return (%) ratio wealth turnover
industrials resources (%) $) (%)
100 0 0 18.9 16.19 045 7,431 0.0
98.8 0 1.2 18.81 16 0.45 7,393 0.5
92.6 0 7.4 18.34 15 0.45 7,185 2.7
86.4 0 13.6 17.88 14 0.45 6,972 4.7
80.2 0 19.8 17.41 13 0.45 6,754 6.3
73.9 0 26.1 16.94 12 0.45 6,533 7.6
67.7 0 323 16.48 11 0.45 6,310 8.7
61.5 0 38.5 16.02 10 0.45 6,085 94
55.2 0 44.8 15.56 9 0.45 5,858 9.8
489 0 511 15.09 8 0.44 5,632 9.9
42.6 0 574 14.63 7 0.44 5,406 9.6
36.3 0 63.7 14.17 6 0.44 5,181 9.1
29.9 0 70.1 13.71 5 0.43 4956 8.2
234 0 76.6 13.23 4 0.42 4,731 7.0
16.7 0 83.3 12.75 3 0.40 4,502 5.5
9.3 0 90.7 12.22 2 0.33 4254 33
0 0 100 11.55 1.33 0.00 3,952 0.0

portfolios all start with $1000 in January 1985, using the data prior to 1985 for
initial estimates of the parameters, as necessary. We also considered two sets of
constraints on the portfolio proportions: (1) all three proportions are non-
negative (i.e., no short sales or borrowing) and (2) all three proportions are
greater than or equal to one (so, e.g. starting with a dollar you can borrow
a dollar, go short one dollar in one index, and go long three dollars in the other).

For a benchmark we computed the efficient frontier with respect to all feasible
constant proportion strategies with monthly rebalancing. Of course this is a very
tough benchmark, because a priori the investor will not know what proportions
will give rise to an outcome on the efficient frontier. Nevertheless, we computed
for selected volatilities the feasible portfolio proportions that maximize the
mean annual return. The results for proportions > 0 are given in Tables 5-7
and for > 1 in Tables 8-10. Tables 5 and 8 show the results for the two sets of
constraints. Note that for the case of nonnegative proportions, the efficient
frontier involves putting nothing in the All Resources, with all the funds divided
between cash and the All Industrials.

The second kind of strategies are the O-factor risk sensitive strategies. These
correspond to setting the matrix 4 =0 in Eq. (3.1), thereby giving rise
to a geometric Brownian motion model for the pair of stock indexes. Just like
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Table 6
0-Factor risk sensitive strategies for Australia (proportions > 0)
Mean Volatility Sharpe Final Annual
Theta return (%) (%) ratio wealth ($) turnover (%)
0 18.12 15.68 0.42 6,905 56.9
1 18.76 15.23 0.48 7,453 54.9
2 18.74 14.89 0.49 7,488 56.0
3 18.59 14.55 0.49 7,412 56.9
4 18.40 14.27 0.48 7,302 57.1
6 18.31 13.89 0.49 7,273 54.8
8 18.08 13.63 0.48 7,134 52.9
10 17.82 13.39 0.47 6,966 49.4
12 17.63 13.22 0.46 6,844 44.4
15 17.61 12.30 0.50 6,961 41.3
20 17.10 10.79 0.52 6,764 437
25 16.14 9.48 0.49 6,203 41.0
30 15.36 8.13 0.48 5,788 34.4
40 14.44 6.28 0.47 5,325 25.5
50 13.88 5.15 0.46 5,047 20.2
75 13.12 3.65 0.45 4,677 134
Table 7

3-Factor risk sensitive strategies for Australia (proportions > 0)

Mean Volatility Sharpe Final Annual

Theta return (%) (%) ratio wealth ($) turnover (%)

0 17.82 16.35 0.39 6,588 198.1

1 17.54 16.12 0.38 6,426 205.4

2 17.65 15.52 0.40 6,593 211.7

3 18.28 14.39 0.47 7,244 207.3

4 18.73 13.62 0.53 7,714 204.2

6 19.15 12.58 0.61 8,217 205.1

8 19.24 11.95 0.65 8,381 205.7
10 19.27 11.45 0.68 8,473 203.7
12 19.17 11.07 0.69 8,425 196.8
15 19.10 10.48 0.73 8,423 180.4
20 18.70 9.76 0.74 8,153 162.4
25 17.98 9.16 0.71 7,605 149.9
30 17.22 8.46 0.68 7,061 139.5
40 15.85 7.39 0.59 6,153 119.5
50 14.90 6.31 0.54 5,598 101.6
75 13.81 4.38 0.53 5,033 68.7

the O-factor strategies that were described in the preceding section, the para-
meters X and a here are estimated from the monthly returns by computing
simple sample means, variances, and covariances, and they are updated monthly
on a rolling basis. Then each month the updated parameters are substituted into
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Table 8
Constant proportion efficient frontier for Australia (proportions > — 1)

Proportion (%)

Mean Volatility ~ Sharpe Final Annual

All All Cash return (%) ratio wealth turnover
industrials resources (%) %) (%)
300 — 100 — 100 30.1 36.76 0.50 10,813 182.6
289.2 —89.2 — 100 29.73 36 0.51 10,742 168.2
269.8 —78.4 —914 28.66 34 0.50 10,702 141.0
254 — 734 — 80.6 27.59 32 0.50 10,652 119.2
238.1 —69.2 —68.9 26.53 30 0.50 10,513 99.4
2222 —64.6 —57.6 2547 28 0.50 10,292 81.7
206.4 —60.1 —46.3 2443 26 0.50 10,001 66.0
190.4 — 554 —35 23.39 24 0.49 9,649 52.0
174.6 —50.9 —23.7 22.36 22 0.49 9,247 40.0
158.7 —46.2 —12.5 21.33 20 0.49 8,805 30.0
142.8 —41.6 —1.2 20.32 18 0.49 8,331 223
126.8 —37 10.2 19.31 16 0.49 7,836 20.6
1109 — 324 21.5 18.31 14 0.48 7,327 19.8
95 — 278 32.8 17.31 12 0.48 6,812 19.2
79 — 232 44.2 16.32 10 0.48 6,297 18.4
63 —18.5 55.5 15.34 8 0.47 5,787 16.9
46.8 — 138 67 14.35 6 0.47 5,287 144
30.3 -9 78.7 13.35 4 0.45 4,794 10.6
12.3 —3.8 91.5 12.27 2 0.36 4,279 49
Table 9

0-Factor risk sensitive strategies for Australia (proportions > — 1)

Mean Volatility Sharpe Final Annual

Theta return (%) (%) ratio wealth ($) turnover (%)

0 27.18 33.78 0.46 9,229 3120

1 26.87 32.38 0.47 9,469 291.1

2 26.39 31.61 0.47 9,294 273.3

3 25.54 30.92 0.45 8,747 270.5

4 25.53 30.20 0.46 8,918 248.0

6 24.11 29.16 0.43 7,954 2124

8 23.62 26.53 0.46 8,852 182.9
10 23.09 24.62 0.47 9,153 166.5
12 22.53 22.65 0.49 9,256 149.2
15 21.12 19.53 0.49 8,761 118.8
20 18.95 15.46 0.48 7,648 88.6
25 17.56 12.70 0.48 6,932 70.3
30 16.60 10.76 0.47 6,433 571
40 15.38 8.27 0.47 5,803 419
50 14.64 6.75 0.47 5,424 333

75 13.63 4.70 0.46 4,922 22.1
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Table 10
3-Factor risk sensitive strategies for Australia (proportions > — 1)

Mean Volatility Sharpe Final Annual

Theta return (%) (%) ratio wealth ($) turnover (%)

0 30.19 36.55 0.51 11,267 937.5

1 32.75 32.95 0.65 17,941 910.7

2 3247 3043 0.69 19,384 868.2

3 32.47 28.62 0.73 20,759 822.3

4 32.24 2713 0.76 21,416 784.1

6 31.64 2495 0.81 21,693 689.7

8 30.53 23.10 0.82 20,584 601.3
10 29.59 21.66 0.84 19,541 542.3
12 28.07 20.43 0.81 17,365 493.0
15 25.50 18.60 0.75 14,029 4447
20 21.93 15.99 0.65 10,284 368.6
25 19.83 13.39 0.62 8,683 305.5
30 18.51 11.32 0.62 7,811 256.1
40 16.82 8.68 0.61 6,745 192.7
50 15.79 7.05 0.61 6,132 154.5
75 14.40 4.87 0.60 5,353 103.2

the right-hand side of Eq. (3.5) in order to compute the portfolio proportions for
the coming month. The portfolio is rebalanced accordingly. These O-factor risk
sensitive strategies were backtested for selected values of 0 and the two sets of
constraints. The results are presented in Tables 6 and 9.

The third and final kind of strategies we backtested are 3-factor risk sensitive
strategies. The variances and covariances were estimated in the same way as was
done for the O-factor strategies, but the a vector and the A matrix in Eq. (3.1)
were updated monthly by doing regressions. Again, the 3-factor proportions
were implemented monthly after computing the minimizing selector in Eq. (3.5).
Thus our backtests of 3-factor strategies with Australian data were conducted in
the same general way that was done in the experiments with US data, as
described in the preceding section. The results for selected values of the risk
aversion parameter 6 and for the two sets of constraints are displayed in
Tables 7 and 10.

In order to compare the three kinds of strategies, we constructed graphs
showing, for each kind of strategy, how the portfolio’s mean annual return
varied with respect to its volatility. Thus Fig. 5 shows three graphs, all for
the case where the portfolio proportions are required to be nonnegative.
Fig. 6 shows a similar picture for the case where each proportion is only required
to be greater than or equal to minus one (i.e., — 100%). In both cases the
3-factor risk sensitive strategies generally perform better than the O-factor
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Fig. 6. Mean return versus volatility for Australian data (proportions > — 1).
strategies, and these, in turn, generally perform just as well as the benchmark

strategies on the constant proportion efficient frontier. Of course, these compari-
sons ignore any transaction costs.
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7. Discussion, final remarks, and future research

In this paper we have shown how a risk sensitive criteria can be applied to
optimal asset allocation decision making. Expected returns are assumed to be
driven by specific factors, in this case interest rates and dividend yields. The
approach developed takes advantage of any predictability in expected returns
arising from these factors. Expected returns on the asset classes are time varying.
The optimal strategy is then determined using rolling regressions to estimate
the dynamics for asset returns. The risk sensitive criterion is based on infinite
horizon measures of mean return and variance. In contrast to approaches to
asset allocation using factor models currently in the literature, the risk sensitive
approach readily allows the use of any number of factors and asset classes in the
asset allocation optimisation.

The results from applying the approach to both USA and Australian data in
backtests are very encouraging. Using the mean-variance efficient frontier as
a basis for comparison of various strategies shows that dynamic strategies
outperform constant proportion strategies and using factor models can
provide further enhancement in performance. Dynamic strategies lead to higher
turnover and potentially higher transaction costs. This requires further invest-
igation but use of futures rather than spot markets for physical assets, especially
at the asset class level, will mean that transaction costs will be lower than
otherwise.

Throughout this paper we have been maintaining the assumption that resid-
uals of the price processes and the residuals of the factor processes are not
correlated. In terms of our model of Section 3, this assumption amounts to
requiring that XA’ = 0. This assumption may or may not be reasonable, depend-
ing upon the circumstances. For instance, based on the data that we collected for
our empirical studies, with equities for assets this assumption is very reasonable
if the short interest rate is the only factor, it is marginally reasonable if
a long-term interest rate is added as a factor, but it is clearly unreasonable if
dividend yield is added as a factor.

However, it is important to keep in mind that our assumption is not the same
as the assertion that changes in factor levels are uncorrelated with asset returns.
This can be clearly seen by considering our Vasicek example. Suppose, for
instance, that the short rate is below the mean reversion level, a situation that is
bullish for the stock. Then over a coming time interval the stock’s return is likely
to be above average and the interest rate is likely to increase, and so our model
will demonstrate a positive correlation between stock returns and interest rate
movements. This positive correlation exists in spite of our XA’ = 0 assumption
being satisfied.

Nevertheless, it must be admitted it is very desirable to extend our present
model to cases where our XA’ = 0 assumption is not satisfied. Presently our
trading strategies do not account for interactions (correlations) between the
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randomness underlying the price processes and the randomness underlying the
factor process, such as interactions one would find between the short rate factor
and bonds with medium or long maturities. In general, if such interactions are
not negligible, then they will need to be accounted for in the optimal trading
strategy via the so-called hedging term.

We shall briefly illustrate this point by slightly extending the simple asset
allocation model of Section 4. Specifically, consider the following extension of
this model:

ds,(?)
S1(2)

dr(t) = (by + bor() dt + 4y AW (1) + o dW (1), 70) =7 > 0.

= (1 + par(0)dt + 01 dW (1) + 0, dW (1), §1(0) =5 >0,

We conjecture (this will be studied in a future paper) that for this model the
optimal trading strategy is hy(t) = [fg(t),1 — hy(t)], where hy(t) = Hy(r(t)) and

@' (rNAioy + 420,)
02 + He*

r—r
=00+ 1o? +(0/2)

and where the function ¢(r) is derived from an equation similar to (but more
complicated than) Eq. (4.2). The second term in the above expression for Hy(r)
hedges against the interactions between randomness underlying the price forma-
tion block of the model, and the randomness underlying the factor dynamics.
Note that in the model of Section 4 we postulated ¢, =0, 6, =0, 1; =0, and
A, = A; this implies 1,0, + 4,0, = 0, thereby eliminating the hedging term from
the formula for the optimal strategy. A challenging problem for future research
is to develop a model along these lines where interest rates of different maturities
are the factors and where there are fixed income asset categories corresponding
to these same maturities.
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