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SUMMARY
This article investigates the family {/*; A& R} of power divergence statistics for
testing the fit of observed frequencies {Xf;z'= 1,...,k} to expected frequencies

{E;i=1,. .., k}. From the definition

It = £ - ;AER
m+1) - E) U ;

it can easily be seen that Pearson’s X2 ()\ = 1), the log likelihaod ratio statistic (A = 0),
the Freeman-Tukey statistic O\=-——) the modified log likelihood ratio statistic
(A=—1) and the Neyman modified X2 (A =—2), are all special cases. Most of the
work presented is devoted to an analytic study of the asymptotic difference between
different I*, however finite sample results have been presented as a check and a
supplement to our conclusions. A new goodness-of-fit statistic, where ?\—%, emerges
a3 an excellent and compromising alternative ta the old warriors, I and 1t

Keywords: BEST ASYMPTOTICALLY NORMAL ESTIMATOR; BAHADUR EFFICIENCY ; GOODNESS-
OF-FIT; LIKELIHOOD RATIO; MAXIM UM LIKELIHOOD; MINIMUM DISCREPANCY
ESTIMATORS; PITMAN EFFICIENCY; POWER DIVERGENCES; SECOND ORDER
EFFICIENCY

1. INTRODUCTION

Many tests of goodness-of-fit can be reduced to testing a hypothesis about the parameters
M={n,... ) froma multinomial distribution:

Pr(X=x)= — o5 %, a.n
Ty .. ﬂ'k!
where TI forms a probability distribution and the x’s are non negative integers which sum to z.
Here the multinomial random variable X is often derivative in that X; is often the number out of
n of independent and identically distributed (i.id.) ¥y,..., ¥, from F(y;©) belonging to the
class C;, where {Cy;i=1,..., k) is a set of mutually exclusive classes which exhaust the
probability content of F.
To test in (f.1) the null hypothesis

Ho: T1=1l,, (12)

where [l = (ng;, . - ., Tax} is 2 prespecified prebability vector, possibly the most commonly used
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statistic is Pearson’s X2 (Pearson, 1900):

k
X*= Y (X —nmy) /ang;.
i=1
This has asymptotically a chi-squared distribution on k£ — 1 degrees of freedom (write xfc_l) under
H,, so that rejection occurs when the observed value of X? is greater than or equal to a pre-
specified percentage point found from the y; , tables. Another popular test procedure is to
replace X * with the log likelihood ratio statistic

Kk
G*=2 Y Xl (Xy/nng).
i=1
Which of these two is “best” has long provided interest, speculation and controversy in the
literature. For reasons of space, we can only briefly mention the issues we believe to be important.
Cochran (1952) gives a nice review of the early development of X? and concludes that there is
little to distinguish it from G2, Since then various authors have looked at the two tests accarding
to
i. finite sample comparisons under the null hypothesis {e.g- Chapman, 1976; Larntz, 1978),
ii. asymptotic and finite sample power comparisons for various alternative hypotheses, includ-
ing the effect of varying the class intervals {e.g. Hoeffding, 1965; West and Kempthorne,
1972; Goldstein, Wolf and Dillon, 1976),
iii. asymptotic distribution theory under bath null and certain contiguous alternatives, for &
increasing with » (e.g. Holst, 1972; Morris, 1975; Koehler and Larntz, 1980),
iv. modifying the statistics to allow for estimation of unknown parameters (¢.g. Moore and
Spruill, 1975).
As well as X? and G?, the Freeman-Tukey statistic,

k
*=4 3 (VX;~Vma)},
i=1

the Neyman modified X2 statistic

k
NM? = Y (X;-nno) /Xy,
i=1

and the modified log likelihood ratio statistic

GM2 =2
i

nmg; In (nmgy/ X},
1

L1 g

are all asymptotically distributed as x?c_l under Hy. Various properties and comparisons of these
sa-called chi-squared tests can be found in one or mare of Watson (1959), Lancaster (1969},
Maore {1976}, Horn (1977}, and Fienberg (1979).

There is no uniformiy preferable test of Hy, however we believe in this paper that we have
cleared away much of the undergrowth surrounding X? and G? by showing that there is a path
between them and beyond. The essential feature which enables us to do this, is the general family
of power divergence statistics defined in Section 2. Of course the null hypothesis Hy is not
always simple; in Section 2 we investigate inference pracedures for Hy: I1=II4(®), where
@=(,,...,08;),s<k—1,isa row vector of unknown nuisance parameters. Note that here and
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henceforth @, IT are row vectors and @', IT" are column vectors.

In Section 2 we define the tests based on the power divergence statistics 7 A x€ R,and investi-
gate their properties under Hy; the results of Bishap, Fienberg and Holland (1975) (write BFH)
are extended to cover this general family of tests. Efficiency and power comparisons are made in
Section 3. Section 4 collects together a number of further ways to compare the J* statistics,
while Section 5 shows that the same ideas have really existed in other goodness-of-fit problems for
some time. The final Section gives the practitioner working rules to decide which multinomial
goodness-of-fit test should be chosen.

2. TESTFS BASED ON POWER DIVERGENCES
2.1. The Power Divergence Statistics
Each of the goadness-of-fit statistics defined in Section I, namely X E,Gz, 72 NMM? and
GM?*, tries to indicate in different ways how observed multinomial variables { X; } differ from their
expected values {nng, }, where it is assumed mq; > 0, each i. In fact all of them are embedded in a

family of power divergence statistics indexed by a real parameter h. Let By =nmes i=1,.. ., &,
and define
TN ) = — g X {(_X_{')K—l} - AER @
M a7, T A ’ ’
where for A =0, — 1, 2n/? is defined by continuity; e.g.
k X
WX/ M) = lim 222X/m:1)=2 Y Xiln (_EL) 2.2)
A0 ;

i=1
Clearly X* = 2nf', G* = 2nI®, T = 2nf~Y% | GM?* = 2n] "', and NM* =217 "%, The study and
comparison of X2, G2, etc. and tests based on them by linking them through the index A, gives a
new perspective and understanding to an old problem. It is tempting to generalize even further
to a test based on the statistic T(Xy/n)A(X(/E;) — 8(1), summing over { from 1 to k, # convex,
however it adds little to the subsequent development. General results for all members of the family
{I*; L€ R } shall be proved and particularized to well known and special cases.

2.2, Limiting Chi-squared Distributions
In this subsection the number of cells &, is assumed to be fixed. Let us suppose for the moment

that under Hg:I1=Tlo, the multinomial probabilities {#y;} are completely specified. Then for
A#EQ,—1

k

n X;—nmy;
2alMX/n: M) = ———— Toj I+-‘—“1—1},
O )= oy 2, “’{( o

Writing V; = (X; —nmyg)fnmgy and expanding in a Taylor series, we see that the above equals

m s AL \
?TO\TI) i§1 Tog {(7\‘*1) V;+——?—--V; "'Op(Vf)}

K

=2}1{ z Moy Viiﬂ"'op(””)} )

i=1

under the model Hy. An identical result holds for A=0,—1, also by a Taylor series expansion.
Hence
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IMXfn: M) =20l (X/n: Mg) +0,(1); XAE R 2.3)

Thus each power divergence statistic has asymptotically the same distribution as Pearson’s X?
which is well known to be asymptotically distributed as a X%_, random variable, under the
model Hy.

We will now develop this result for the more general case of unspecified parameters in the null
hypothesis, following BFH's {1975, Chapter 14) approach closely. More specifically, define a
parameter (row) vector @=(f,.. .,0,)€ RS, s<k—1,and a mapping

f: Rs_)Akz{P:(pl.!"'apk):p1201£211'--sk;Z pl':l}
i=1

such that to each parameter vector © there corresponds a probability (row) vector
i1=(m,.. ., mx). Hence the following two null hypotheses are equivalent

Hy: @€ Qg and Hy: T1EM,, (24)

where My = £(0q4). Later we will put regularity conditions on f and {4 to avoid degenerate cases
such as when the null model space M, is a one point set { [T, }. There, no estimation of IT under
Hy is necessary in order to calculate the divergence between Il and the unconstrained maximum
likelihood estimate of II, namely x/n. We can immediately base a test of Hy on the statistic
(2.1), where large values define the critical region. If however Hy is a composite hypothesis then it
is necessary to choase an estimate [ €M, to represent the class My in the calculation of (2.1).
Assaciated with IT will be the estimated parameter @ € Oq with (@) = L.

The fine details of the following development can be found in Read (1982, Section 2.1.1);
here we present the main features.

Definition 2.1.

The minimum /*-discrepancy estimator of @ € Q, is any 0, € J, (the closure of Qo) for
which

IMX/n:f@)) = inf  IMX/n; £(@)).
e Q,
Note that the term discrepancy rather than distance is used here, to indicate that /* is not gen-
erally a true distance function. Pessible non-uniqueness or unboundedness of the estimator occurs
with probability zero as # -» e, under the following regularity conditions (Birch, 1964). We assume
the null hypothesis {2.4) is correct so that there exists a 8. € Qg with I+ = f(©+) where I, is
the true value of [1. Assume
{. there isan g dlmensmnal neighbourhood of @, completely contained in Qq,
ii. f{(@.)y>0fori= K,
iii. f is totally differentiable at @., so that the partial derivatives of f; with respect to each §;
exist at ®,,
iv. the Jacobian 8f(®.)/ 3@ is of full ranics,
v. the inverse mapping f ! is continuous at f(8..),
vi. the mapping £ is continuous at every point © € 0, {see BFH, 1975, p. 510).

Definition 2.2 R
Any estimator @ € Qo satisfying the expansion
6=0,+ (X/n— ) D% A(A'A)7" +o,(n %) (2.5)

is called a best asymptotically normal (BAN}) estimator of @, where D« is the diagonal matrix
with @+, . . ., s along the diagonal, and 4 = (7. 12 3F(O- )/’86 )

By a stralghtforward generalization of the argument found in Blrch (1964) we can prove (see
Read, 1982, Appendix A):
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Theorem 2.1

Under the abave regularity conditions, any minimum /*-discrepancy estimator is BAN,

Birch (1964) showed that the maximum likelihood estimator (A =0) is BAN. Another special
case, the minimum chi-squared estimator (A =1), was proved to be BM by Helland (1967).

The following very useful theorem applies for any BAN estimator © (BFH, 1975, pp. 517,
518).

Theorem 2.2

If the above regularity conditions hold for f in 11 =£(@), and if (-3 is any BAN estimator of
©, then (under H, given by (2.4)) vu[(X/n, H) (M4, T} converges in distribution to a multi-
varfate normal with zero mean vector and variance matrix

{ Dy~ M, (D, - 1L)L }
T= :

L'Dy, - M) LD, -0LI0)L
where L = D12 A(A'4) 1 A" D2,
Now it is simple to show in a similar manner to the way (2.3) was derived, that

MK 1) = 2ad L (X /m: ) +0,(1), (2.6)

where 1= f(@)) and O is 2 BAN estimator of @. But it is a direct consequence of Theorem 2.2,
that 2rf! converges in distribution to a )(,Hr , random variable under H,, and hence so daes
every 2ni*. Consequently, the following important result can be stated.

Theorem 2.3

If the regularity conditions (i) to (vi) hold and if @ is any BAN estimator of @ = (8,, ..., 4,)
and = f(®), then under H, given by (2.4), 2nl* Kfn: 1'[) converges in distribution to a
%% _,_, random variable, as n > o=.

Coroliary 2.1

. Suppose the regularity conditions (i) to (vﬂ hold. Fer any minimum J*-discreparncy estimator
@, (let I, = f(eu)) cons1der the statistic 2n/™ (X/n: H#) Then under Hy, this statistic will con-
verge in distribution to a Xj_,_, random variable.

It would be sensible to use the same A-scale for both testing and estimation, as is done in, say,
the generalized likelihood ratio test procedure, or least squares estimation in the general linear
model. However, in practice the calculations are frequently complicated (see e.g. BFH,
pp. 348-349), whereas the m.l. procedures are well documented in the cases of interest and are
generally available; e.g. BMDP4F (BMDP Statistical Software, Los Angeles, CA 90025) for m.l.
estimation under the log-linear model.

2.3. Limiting Normal Distributions

The asymptotic results of the previous subsection were derived for the number of cells k fixed,
and n oo, If now k is allowed to grow (with »#) what limiting distribution for (2.1) results?
Intuitively it should be the normal because as df increases, xfif treated as a sum, is within the
ambit of the central limit theorem. However, a rigorous treatment must take into account k and
n simultaneously increasing in {2.1). This type of passage to the limit is sensible for certain types
of testing situations (see e.g. Fienberg, 1980, p. 174; Ivchenko and Medvedev, 1978) and for
comparisons to related goodness-of-fit statistics (see Section 5.3).

We shall rely heavily on the following general theorem (Holst, 1972).

Theorem 2.4.
Suppose n—+o0 and k > in such a way that n/k +a (0 <a <9}, and suppose kn; < d < oo,
i=1,... k, forall k. Define
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k

Sp= Y [f[ifXs) 2.7)

i=1
The functions fi( +) are assumed real valued functions such that
2

k 1 k
o=y VarU’s(Ys))*;-{ Y COV(Yisfi(Yi))}
i=1

i=1

satisfies
0 < lim inf ¢3/n < lim sup az/n < e,
H = o H—* e«
where ¥,,..., ¥, are independent Poisson random variables with means nm, ... #m
respectively. Moreover assume the f; satisfy | fi(x) | <ceb*,i=1,.. .k, whete ¢>0, b>>0.
Suppose
k
= L EGAY).
i=
Then
(Sk - lu?l)flrana
converges in distribution to the standard normal random variable.
Corollary 2.2

Suppose # and koo such that #fk—a (0<a <) and my; =1k for i=1,... k. Define

2n A+l _ _
={h_(h+1) E{(Y/a) 1} A>-1,%0

20 H¥fa)ln(Y/e)} A=0,

( X (?\Zi 1))1 klvar {(¥/a)*"1 } —a cov® {¥/a, (Y/a)**1}] A>-1,#0
o= {

(2a)* k [var {(Y/a) In (Y/2)} —a cov? {¥/a, (Y/a) In (Y/a)}] X=0,

where ¥ is a Poisson random variable with mean a. Let 1 represent a row vector of 1’s. Then
the power divergence statistic suitably normalized, namely

20Xz 1/k) — gy

Ty

converges in distribution to the standard normal random variable, when A >—1.

Proaf
The proof is an application of Theorem 2.4 with

2 # {(kx)“l }
— (= -1 as-1,%o0
AGAt1) & 7
fi(x):{

2x In (kx/n) A=0,

Corollary 2.2 is stated for the symmetric null hypothesis, 7g; = 1/k (i = 1, . . ., k). Notice that
far the extended asymptotics in this subsection, the limiting result is #ot identical for all A, For
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example Pearson’s X2 statistic 2n/*(X/n: 1/k) has u, " k and o ~ 2k, whereas the log likeli-
hood ratio statistic 26/*(X/n: 1/k) has

ol

unmzk{ Y IngG). —
2 G-1)

and a2 is likewise different. It is this sensitivity to different X which will be expleited in the next
section. There we will lock at the power of tests based on the /* statistics under a sequernce of
contiguous alternatives.

The assumpticn of symmetry is important for the development of these efficiencies, and it is
this scheme which has been studied most effectively in the literature (see e.g. Holst, 1972;
Ivchenko and Medvedev, 1978). The case of non-symmetric probabilities requires more compli-
cated conditions to derive the limiting distribution of the statistics. Furthermore under such non-
symmetric schemes, Ivchenko and Medvedev (1978) in considering Pearson’s X and the log-
likelihoad ratio statistics, give notice that each scheme will need individual treatment.

il

—m@},

3. EFFICIENCIES OF THE TESTS
3.1. Pirman and Bahadur Relative Efficiency when the Number of Cells is fixed
Any decision as te which of the power divergence statistics should be used to carry out a
goodness-of-fit test depends on their performances according to various criteria. We discuss here
the relative efficiencies of the tests in detecting certain alternative madels.
For a fixed test size &, the Pitman asymptotic relative efficiency (a.r.e} for two tests is cal-
culated below under the sequence of contiguous aiternatives

Hl’n:n=f(@*)+c‘/\/n,some@*€Qa (31)
Here the row vector ¢ =(c, ..., ¢y) satisfies Etf‘:l ¢; = 0. In order to evaluate the Pitman a.r.e.
between any two divergence statistics we require the asymptotic distribution of 2n/f Minder
(3.1). )

Assume the regularity conditions (i) to (vi) of Section 2.2 to hold. Let & be any BAN esti-
mator of @ € ;. Then under the contiguous alternative (3.1} it is easily shown that

Xfn = £(©.) + 0p(n 2} and [T = f(@.) + 0, (n "1/2).

But this is exactly the type of result that was needed to derive (2.6) from Theorem 2.2. Hence
the members of the family 2rfA(X/n:Il), where II = f(®), are asymptotically stochastically
equivalent; le.forA€ R

MK n: 1) = 200 X/ T +0p(1). (3.2)

Theorem 3.1 .

Assume that the regularity conditions of Section 2.2 hold. Let @ be any BAN estimator of ©
and let 1= f(é). Then under the contiguous alternatives (3.1), 2n™(X/n: ﬁ) converges in
distribution to a X}_,_,(5) random variable for each A€ R, where Xj_,_;(8) is a non-central
X raruliom variable on k—s—1 degrees of freedom and non-centrality parameter
5=ch; '

@) €
Proof

Mitra {1958) has proved the result for A =1 and the general result then follows immediately
from equation (3.2).

This result indicates that the power divergence family is not only equivaient under the null
model in Section 2.1, but also under the contiguous alternative (3.1). The Pitman a.r.e. between
any two family members I and ™ s given by the ratio of their nan-centrality parameters (see
e.g. Kendall and Stuart (1973, pp. 285, 286)) and is therefore equal to one for each X; and A,.

Another concept of efficiency, involving different asymptotics from that of Pitman’s, was
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introduced by Bahadur (1960). In this case we assume the null hypothesis (2.4) is simple. If
u=(,V1,.-.) is a sequence of independent chservations on ¥ taking values in the set
{a,,.. . ,aptand x=(xy, ..., Xz} then

Lo () = Pr [I2¥/n: Ty )2 IM(x/n: Ty )}

is the level obtained by 2af* where x; = #(;=a;), i=1,..., Kk Bahadur (1967) points
out that typically the attained level converges in distribution to a uniform random variable
on [0,1] as n—=>o under Hy:I1=1Il, and converges to { with probability one as n—>oo
when I1# If,. Furthermore in many cases (and this is one} the rate at which the level converges
to 0 is exponential. Define

k
A};={p=(p1,..-,pk)lp;>0,f=1,-..,k; Z pi:l}:
i=1

which we use in the following important definition.

Definition 3.1 )
Let (1) be defined over Ay —{Tly } with 0 <¢ <eo such that the random variable Ly(Lh
satisfies

n™tlog Ly >~} en(M)

with probability one as n-><, Then ¢, is called the exact Bahadur slope of the sequence
{2nIMX/n: To) Yn=1. Furthermore the ratio e (M)/ey, (IT) is defined to be the exact Bahadur
relative efficiency of the test 2e/™ to Wit

The existence of such a ¢ will be proved below. However, under the assumption that it exists,
a justification for using the ratio ¢, fex, asa measure of efficiency follows from Bahadur (1967).
That is, if #*), n®1) are the sample sizes required to make 2™ and 2nfs significant when
H # 11y, then n‘*i}/n(‘\l) = ey, (M)fex, (I) as the test size tends to 0.

The calculations involved in determining ¢a(IT) are simplified by the following theorem which
is a special case of the results of Bahadur (1971).

Lemma 3.1
If T, is a test statistic for the simple null hypothesis Hy: I1 = [y based on (¥4, . .., ¥p) with
(a) n ** T, = b(I) with probability one as # ~ ¢ for each [1 # 11y and — o0 < h <o,
(b) n™* log{Pr(T, > n''21 | I =1p)} =~ fir) as n ~> o for each ¢ in a specified open interval
in which fis continuous and which contains {p(): M1 # Il },
then the exact Bahadur siope (1} = 2A(B(1D)}-

Theorem 3.2
Define T, = {ZnI“&X/n: o)} for A fixed. Then
1. w" V2T, = {2F1: Ty) }*'* with probability one as n > oo,
2. n Viog{Pr (T, =n* ¢ |H=Hy)}~> —inf I%v:Ily) as n > for each ¢ in an open
VEA;\’r

interval, where Ay ; = {v: vE€ A} and {2/ (v: )] V/* > £},
3. The exact Bahadur slope of the test based on 2w (X/n: Ilg) is thus given by

a(ly= viIE'LfB 20°%(v: Tly) 3.3)
A

where By, ={v: v € Ay and J*(v: Tlg) = IM(I: )}

Proof
This is a straightforward generalization of Bahadur (1971, p. 31}, who proved the result for
A =0, 1. For more details see Read (1982, Section 2.2.3).
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Example
In the special case A =0 (the log likelihood ratio statistic} we obtain immediately from (3.3)
that ¢o(IT) = 27°(I1: Mg), T # T1,. Furthermore since 11 € By,

ex(y= inf  2%w: My) < 27%(T0: TLy) = eo(1T),
¥ = By

which. gives
ex(My/eo(Il) < 1 for all T+ M.

Thus the likelihood ratio test (A = 0) obtains maximal Bahadur efficiency amongst all tests based
on the power divergence family (2.1). However other family members can be equaﬂy efficient if
there does not exist a probability vector v satisfying both I%(v: Tg) < I°(M: Ty) and
v TLy) = ML T).

3.2. Pirman Asymptotic Relative Efficiency when the Number of Cells is Large
When the number of cells k increases with #, it is apparent from Section 2.3 that the power
divergence statistics are no longer asymptoticaily equivalent under the symmetric null hypothesis.
This result can be extended to the general contiguous aiternative
ik
Hypimg= 1{k+j e(x)ntimdx, (3.4)
G- 1)k
where ¢ is a known continuocus function on [0, 1} and _[’:]c(x) dx =0, and m is a constant to be
determined.

Theorem 3.3
Let 0, Mty 1 and 0,2,, a af,, 1 dencte the means and variances of the power divergence statistic

with fixed A, under the symmetric null and aiternative (3.4) respectively. If #, k< so that
nfk —+ a (0 < g <o)}, then

Pr {20 X/n: Tlo) > Ko 0,0 + b0 | Ho b =a +0(1)
Pr {2nIM(X/n: Tg) > Ky 0,0 +tin, 0 | Hy,n} =P {— Ky 0y, 0f0n, 1

* (:un, 1~ Hp, U)J'{GH, 1 } +o(1).
where K, =<IJ'1(1 —a}, 0<a<1, and $ denotes the standard normal distribution function.

Proof. The result can be derived in a way similar to that of Corollary 2.2, using the general
theorem of Holst (1972) giver by Theorem 2.4.
From this resuit it follows that the asympto tic power of the test is monotonic in

egma =y >0 .._M"_O , (3.5)
’ kk—oea Iy, 1

if it exists, for m defined in (3.4). Putting m = 2 results in the contiguous alternatives similar to
those in (3.1). However, in this case, from the results of Holst {1972) it can be shown that
ef) =0, and hence the alternatives (3.4} are too close to Hy for any power discrimination. Putting

M = 4 we can derive from the results of Ivchenko and Medvedev (1978) that

1
e —w— f e(xy dx

1]
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where py =sgn (\.corr { ¥ = b, ¥V, ¥2 = (22 + 1)Y} and by =a™! cov(Y**1Y) for ¥ a
Poisson random variable with mean g. Since — 1 < gy < 1, the power of the test will be maximal
when gy = 1. In particular it is easily shown that p, = 1 and hence the Pearson X2 test (for which
A =1} obtains maximum Pitman a.r.e. amongst tests based on the family of power divergence
statistics for alternatives (3.4) with m = 4,

In order to assess the magnitude of the loss in efficiency resulting from using other values of
X#F 1 (A >—1), the values of egifﬁ} c(x)*dx have been calculated for various A and ¢ in Table 1.

TABLE 1
Values of eg“;{f; [e(x)] 2 dx for various \,a

1)

IS G G.1 0.5 1.0 1.5 2.0 3.0 10 2qQ 5Q
=-2/3 4] .22 .47 .62 W72 .78 .89 2.07 .08 4,95
-1/2 1] 22 .47 .63 A .83 .98 2.)2 3.10 4.96
-1/3 Qo .22 .48 .65 .77 .87 1.Q5 2.15 3,11 4,497

a O 22 49 a7 B1 43 1.15 2,19 3.13 4.98

1/3 1] .22 .49 .69 L84 .87 1.20 2.22 3.15 4.499
1/2 Q .22 .50 LT .85 .94 l.21 2.23 3,)e 5.00
2/3 4] .22 .50 W70 .86 .99 .22 2,23 3.186 5.00

1 a .22 .5Q .71 .87 l.00 1.22 2.24 3.14 5.00

1V 4] .22 .EBO .70 .BE .89 1.23 2.23 3,16 5100
2 a 22 48 6H a3 96 1.19 2.21 3.14 4.98
2142 1] 22 .46 BT .80 .83 1.15 2.17 2.11 4,96

3 a 21 43 63 76 g4 1,10 2.13 3.07 4.94

4 a 18 37 53 a7 749 1.900 2.0} 2.97 4.86

5 Q 15 o 44 57 a7 a7 l.87 2.85 4.76

For fixed a, eg“i is maximal for A =1 as indicated above. Notice that eg“l starts to decrease

rapidly for ?\>'3, and the largest difference between eﬁ'l and eiﬂ accurs for a = lim nfk
“moderate”. For large a (i.e. n 3 k) we approach the classical theary for fixed number of classes
k (Section 3.1). In this case the table shows that py approaches 1 for all A and the values of
eg‘fi become indistinguishable. This finding is in accord with the efficiency results of Section 3.1
for contiguous alternatives. For a smali (j.e. n € k) the powers of all the tests tend to zero.

We conclude that the maximum discrimination between family members occurs for moderate
a. In this case A =1 (Pearson’s X'*) resuits in optimal efficiency and large values of X perform
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poorly in comparison. There is however clearly a wide band of A values for which ef‘i stays near

the optimal value eg‘g.

3.3. Finjte Sample Power Results

The most important criterion for comparing tests, namely the power function, is for finite
samples often mathematically intractible. However here it is accessible on the camputer for the
family of tests based on J/* (given specific choices of sample size, class size, null hypotheses, and
alternative hypothesis). In Table 2 the exact power is illustrated for tests of the symmetric null
hypathesis, at the (.05 level, against the alternative

1-8k—-DHk i=1,...,k—1
H,:frf={{ (k= 1)} 3.6)
(1 +8)/k i=k
where -1 < & €< k—1 is fixed.

TABLE 2
Exact power functions for the randomized size 0.05 test of the symmetric hypothesis.
Alternatives defined by model (3.6);n =20,k =4.

LS D=1.% 8=.5 6=-.9
-5.0 0.6316 a.1228 0.7434
—2.40 0.6500 0,1231 0.7434
-1.0 0.7960 0.1384 0.7342
0.5 0.8009 00,1412 0.7263
-0.3 0,8525 0.1538 Q.7108
0.0 0.8640 0,1567 Q.704%
0.3 0,8640 0.15%67 G.7045
c.5 0.8640 a,1567 0.704%
0.7 0.8640 Q.1567 G.7045
1.0 0.8745 $.1629 G.5150
1.5 0.684855 0.1682 00,3044
2.0 0,.8962 0.1725 0.3291
2.5 0.6982 0.1733 a.2780
5.0 Q,%025 00,1743 0.2422

This alternative results from the kth probability being perturbed by &/k, while the rest are
adjusted so that they still sum to one. For these calculations a randomized test has been used to
give the exact 0.05 level (since the attainable levels of the non-randomized test are discrete).

The results in Table 2 together with those of Read (1984a) indicate that for § >0 (ie. a
“pump’ alternative) the exact power increases with X. Conversely for § <0 (i.e. a “dip” alter-
native) the exact power decreases with A. In the special cases of Pearsan’s X? and the log-
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likelihoad ratio statistics (i.e. A=1,0) these results coincide with those of Koehler and Larntz
{1980) under Monte Carlo comparisons. Read (19844) cancludes further that when testing against
such perturbation alternatives, it is always possible ta improve upon the power of these well
known tests by choosing other members of the family /*. However, as | A | increases there is a
“plateau” effect evident in Table 2 from which it is clear that for | A | large there is little change
in the power curve as X\ varies.

4. COMPARISON OF FAMILY MEMBERS VIA MOMENTS
AND DISTRIBUTION FUNCTIONS

4.1 Moments under the Simple Null Hypothesis and Corvections for the Critical Region
Under the simple null hypothesis

Ho: 1= Mo, (4.1)

the results of Section 2.2 indicate that the power divergence statistics are asymptotically
equivalent and follow a x* distribution on k — 1 degrees of freedom. One method of assessing the
speed of convergence to this asymptotic result is to calculate the second order asymptotic
expansions of the exact moments for the family 2n/M(X/n: ly). The sizes of the correction terms
give us some information about the approximation error incurred in using the asymptatic ¥
distribution in place of the exact prabability distribution.

Defining W; = (X; — nmo;)/v/1, (2.1) can be expanded as a Taylor series ta give

oW oo-n Lowpoo-ne-n Eowp
WmIMX/n: y) = El . + T El = + — fglﬂ_g'f +0,(n ). (4.2)
Subsequently we can obtain the first three moment expansions as
E i X/n: )} =k—1
+%{%(2~3k+5)+9—“1—1(£2(1~2k+8)}

+ 0(.".'. -3/2 )
E{2nPNX/n: 1) }2 =k* -1

+l[2—2k—k2+s+2(l3_1){1o—13k—5k2+(k+8)s}
H
. 2 . -
L) (4~6k—3k2+55)+(—_)\ 1;0‘ 2){3—5;‘:—2#
+(k+3) S}
+0(n %)

E{2nMX/n:Tp)}® =k% +3k* —k—3

1
+~ [26-24k =21k -3k3 + (19 +3k) S
H

+(A-1){70-81k—64k* —9k> + (65 +18k +k*) S}
+A- 12 {2026k —21k% -3k3 + (25 + 5k) S}

30— 1D(A -2
31X ){15_32k-15k2-2k3+(15+8k+k2)s}]

00 72),
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where §= E;‘=1 {(I{mas). The expressions for the first two moments agree with those given by
Johnson and Kotz (1969, p. 286) for Pearson’s X (substituting A = 1) and Smith, Rae, Manders-
cheid and Silbergeld (1981) for the log likelihood ratio statistic (substituting A=0). The first
order terms can be seen to be the first three moments of a x* random variable on k — 1 degrees
of freedom. For given k and S, we have solved for the values of A for which the second order
correction factors are zero, and these are presented in Table 3 (note that always §2 %?). These
values of A\ (when they exist) are small and positive for all cases considered and furthermore
converge to the same limits A =1, 2/3 for k large. The value A=1 is not surprising from the
Taylor expansion (4.2), however the value A = 2/3 is not so intuitive and gives us a new competitor
to the well known statistics. Note that for the first moment, the correction factor is always zero
if A=1 (ie. the Pearson X? statistic). The case S =% is interesting since it arises when (4.1} is
symmetric (i.e. mo; = 1fk,i=1,..., k). In this case the solutions for X are within £0.1 of the
limiting solutions X = 2/3, 1 far £ > 20.

Where the first two moments are not close to X — 1 and k* — 1 respectively, a corrected distri-
bution function can be defined as follows. Suppose ), and by are given by

E{2miMXfn: )} =k—1 +ay/n +o(n™")

var {20 (X/n: M)} = 2(k — 1) + by fn + o(n™t).

Then setting ¥y =(k—1){(1 —+/8x)+aa/n and 8 =1+5y/(n2(k—1)), it follows that the
corrected statistic

{2nIMX/n: Ho) = ya }V5a

TABLE 3
Entries give the two roots \y, Ay where the second order cortrection factors of the
first three moments My = E[20IMX/n: [p)]%,i= 1,2, 3, are zero.

Iy 1.00 1.00 1.00 1.00 ©.81 0.74 0.71 0.70 0.6% 0.68 0.67 2/3

1
Hl
32 2,00 1.33 1.11 1,00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1
Ll 0.48 0.50 ©0.52 0.54 .59 0.62 0.64 0.64 (.65 0.66 0.66 2/3
HZ
LZ 2.52 1.60 1,35 1.24 1.0 1,02 1.01 1.01 1.0 1.00 1.00 1
ll 0.32 0.35 ©.38 0.40 0.48 0.5 0.58 0©.60 0.61 0.64 0.65 2/3
M
E)
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TABLE 3 (continued) 5 = k°

k 2 3 4 5 10 20 3aq 40 80 1ao 200 A

Iy .71 0.6 0,67 0,687 Q.67 0.7 0.67 0.67 0,67 Q.67 Q.87 2/3

1
M
1
.\2 lL.ag 1.00 1.00 1.40 1,00 1.00 1.00 X1.00 1.00 1,00 1.Q0 1
ll 0.42 0,50 - - - - 0.69 0.68 0.68 0.7 0.67 273
M
2
k2 0.63 0.58 - - - - Q.82 0.86 0,89 0.%4 0.937 1
'.\1 a.31 - - - - - - - - 0.68 4.67 2/13
M
3
h 0. 45 - - - - - - - - Q.88 0.94 1

{Nate: A dash indicates that no roots exist.)

will have a mean and variance which coincide with k£ — 1 and 2(k — 1) to o(r™'). Therefore setting

F ()= Fy(le V81, (4.3)

where F, (-) is the distribution function of a x* random variable on k — 1 degrees of freedom,
it follows that F, should be a claser approximatian to the distribution function of the power
divergence family. A numerical assessment of this approximation is discussed in Section 4.4.

4.2. Moments under the Simple Contiguous Alternative Hypothesis
Under the sequence of contiguous alternatives

Hy u: =Tl + e/\/n, (4.4)

where Ek , ¢ = 0, the results of Section 3.1 mdlcate that the power divergence statistics are
asymptotlcally equlvalent but fallow a nof- -central x* distribution on X — 1 degrees of freedom
with non-centrality parameter § = cD‘1 ¢'. Therefore by paralleling Section 4.1 we can assess
the speed of convergence to this asymptotu: limit through the second order correction factors
to the moments of the family. In this case we obtain

E{2iMX/m: )} =k—1+8

L E o a-17k o k )} L
A PR G PR S

i=
k

i 2

EQnMX/n: )Y = k2~ 1 +2(k +1)8 +82 +-—[2(k+3+8) § —% +4 E =

\/ i=1 Mot i=1 TTOI

k
Ci 2 Ci -1
+A-D{2(k+3+8) ¥ — +=(k+5+8) Z — J1+0¢ ™).
i=1 Mot 3 i=1 i
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The sheer enormity of algebra has prevented us from caleulating the third moment. In the case
of the symmetric null hypathesis whete ITg = 1/k, the Q2 ™"/%) carrection factors in the first
and second moments are zero for A =1 and

Kk
A=1-6f (k Yy e +k+5)
i=1
respectively. Furthermore since k£ 2 | the second solution tends to one as & increases. This result
hints at Pearson’s X* statistic (A = 1) having closest distribution to the approximate non-central
x? under the contiguous alternatives (4.4).

4.3, Second Order Approximate Distribution Functions

Under the simple null hypothesis, Section 4.1 gives us an indjcation as to how the choice of
X will affect the convergence of the exact moments to the asymptotic x* moments. Read (1984b)
proves a theorem which extracts the X dependent second order companent from the o(1) term
in the nul} distribution

Pr (2ni*(X/n: M) <) =Pr (x3_, <c) +o(1).
He uses this to motivate the following approximation. Under the simple null hypothesis (4.1),

Pr (2nIMX/n: Tg) <o) = J} +73,
where

Jb =Pr(xi (<c)

+2—i—ﬂ [Pr (X-y <) {21 - 9)}
+Pr (Xiiy <AO{3Bs—k? —2k) + (\— 1) 6(S—Kk*)
+A—12(58-312 —6k+4)—A-DA-1) 35 -2k + 1)}
+Pr(XG ., <) {—6(25—k* -2k +1)-(A— 1) 448 —3k> -3k +2)
—A-1P2 2058 -3k* -6k +4)+(A— DA -2 3 -2k + 1)}

+Pr (XG5 <o) {A? (553K -6k +4)}],
where § = 2;321 (1/mg;). Define the Jattice

L={w=(w,..,wg_1): wy=(m; —nmgg)\/n, where m; 3> 0 are integers,i= 1, ..., k— |
k-1
with ) m;<n}
i=1
and the set
Bra(@) ={w=(wy, .., wg.1): w;= (= nme)Nn for x/n = (e, /n, . . ., xx/n) € Ay

satisfying 20/ (x/n: ) < ¢ }.
Then
K
I3 ={ M)~ n* D12 V(o) e [ mm)* D) [T mgg 172,

i=1
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where
Myle) ={#w€EL such that w € By (¢)}
= the number of lattice points in By (c),

Valc) = the volume of By(c}
“L———_ﬁc)(k_lm( i ) L4 (- 1)P(5S— 3K — 6k +4
L ™) R T )

—30= 1)A=2)(S =2k +1)}] +0(2¥?).

The J} term would be the Edgeworth expansion term if 2n/* had a continucus distribution
funetion. However since it has a lattice distribution the Cramér condition C, which ensures the
validity of the Edgeworth approximation, is not satisfied. Yarnold (1972} evaluated these extra
terms for the second order approximation in the case of Pearson’s X* statistic, and his results can
be obtained as a special case of the above by setting A = 1.

The usefulness of this closer approximation to the exact distribution of members of the
power divergence family is examined briefly in Section 4.4 and in more detail by Read (1984a).
There it is shown to be very close in small samples and provides a substantial improvement over
the (first order) x* approximation,

4.4, Finite Sample Comparison of the Exact Test Size with Four Approximations

In order to use the power divergence statistics (2.1) to test the null hypothesis (4.1), it is
necessary to calculate the appropriate critical region for a size « test. Sections 2.2, 2.3, 4.1 and
4.3 give us four different approximations for this calculation. The closeness of these for finite
sample size has been discussed by Read (1984a). Due to the fact that most small sample studies
have assumed the symmetric hypothesis, and also that the normal appreximation in Section 2.3
has only been proved in this case, Read (1984a) has specifically enumerated the exact distri-
bution of the statistics 2u/M(X/n: 1/k) and compared the results with those obtained from the
four approximatjons. Fig. 1 gives us an example of the etrors incurred by the various approxi-

04r

035}

0.25

Test level

0.1

005 .t I | 1 “ I 1 1 I
-2 -1 0 1 2
Lambda parameter value

Fig. 1(a). True and approximate significance levels— symmietric hypothesis at nominal
chisquargievel 0.100; 1 = [0, k = 4.
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047 KEY
—true
----- apr 2|
0.35; [— —apr 3 +
( -- apr 4| Y 7
1 S
0.3} y g
A *
0.25¢

Test level

0.2}

015}
01
00— —t—m— AL Ll
- -1 0 1 2

Lambda parameter value

Fig. 1¢b). True and approximate signjficance levels ~symmetric hypothesis at nominal
chi square level 0.100; 7 = 20, k = 4.

mations for # =10, 20, k=4 when the nominal level using the x® approximation on k—1
degrees of freedom, is set at 0.1 for all A, (The qualitative pictures at the nominal 0.05 and (.01
levels look very much the same.) Here the x* approximation is the straight line through y =0.1,
apr 2 is the moment corrected x* (see Section 4.1), apr 3 is the second order expanded x® (see
Section 4.3), apr 4 is the normal approximation {see Section 2.3) and “true” is the exact
(enumerated) significance level. Read (1984a) concludes that the usual x> approximation is
reasonable at levels between 0.1 and 0.01, for ?\E(%, l%) provide k <6, 12> 10. However, as
| Af increases, it becomes increasingly conservative, and this conservatism is magnified as &
increases for fixed #. For ather values of A€ [—5, 5] both the corrected x* approximation of
Section 4.1 and the second order approximation of Section 4.3 perform well —however the second
order approximation is much more complicated to calculate. The normal approximation of
Section 2.3 does not perform well for # = 10, 20 when compared to the corrected x* approxi-
mation. However when # and k become large simultaneously it should be used in preference to any
of the x* approximations for A > —1: see Read (1984a).

5. RELATED AREAS OF INTEREST
5.1. Generalized Directed Divergences

If we think of x/n and I, in (2.1} as two discrete probability distributions in Ag then the
following definition is a natural one.

Definition 5.1
Forp,q € Ag. A€ R, define

2 p:q)= 1 /{ {(p: h_l -
TN ) 1} ey

to be the directed divergence of order A, where the values at A =@, —1 are defined by continuity.
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Notice that If{p:q)= Ek = Piln (pi/qy), is a constant multiple of Kullback’s directed

divergence (Kullback, 1959).
Rényi (1961) defined the directed divergence

k
(a=1)7" log, ( )3 p?‘qfl"“) ,aFl
“ i=1

e @)= (5.2)
S b log , (:/as), @ =1

which has come to be known as Rényi’s directed divergence {or information) of order a. It is
additive in the sense that Im(p X rqxs)=I&p:q) +12(x:s), where p,q € Ay, 1,8€ Ay and
PX L=, P17, - - D1ty - - o Picy) € Ay (see Mathai and Rathie, 1975, p. 48).

There are a number of properties one might a priori demand of a peneral directed dlvergence
(ar information measure) G. Surprisingly just a few are needed to uniquely characterize ]k given
by (5.1). For example, suppose (Rathie and Kannappan, 1972}

Ge:q)=GCy_ (o, +P2,P3,. - Pridr Y 42,43, .., 4%)

_ P B2 g1 42
+ (1 + o gy F ) Ga( ) : ; ) ;
Prtpy PP g1 tq2 4114,

suppose

G3(P1.01.05: 41,42+ 43) = GaPaqrys Pa(2y: Po(3): da(1) da(2) a(3));
and suppose
by

R T [ . -

Gy(1,0:5 ,3) o) 0,— L.

Then Gp(p: q) must equal IXp: q). The first postulate expresses (in a very specific way) a
grouping property which says that information can only decrease if any classes are grouped; the
second is a rather mild symmetry condition that says information is unchanged if classes are taken
in different order; finally a normalizing equation fixes the multiplying constant. This is not as
trivial a condltlon as it seems, since if chosen badly one might characterize a dlvergence which
can be nepative (see Read, 1982, Section 4.3.2). Other characterizations (of I} and of Ik) are
possible; see Sharma and Taneja (1975), Mathai and Rathie (1975, p. 48), Rathie (1973). Also,
entropy versiohs of {5.1) have been discussed by Rényi (1961) and Mathai and Rathie (1975,
p. 12).

Once charactcrlzcd we can show the directed dwcrgence I} will also satisfy properties of non-
negativity (I (p: q) 2 0 with equality iff p; = ¢y, 1 . k), symmetry (for an arbitrary number
of classes), continuity (in each of its variables (g,, .. .,pk), (q1.---qx)), 2ero indifference (the
addition of a cell with zero probability does not change the value of the directed divergence), and
log additivity

(In{(1 +AA+ 1))"’?J Extqxs))=In{(l +AA+1)[p: )} +In{(l + XA+ 1) Mz s) )
Although I‘% satisfies non-negativity, it only satisfies the triangle inequality when —1 <A <0,
and then only becomes a true metric an A, when X =—1 (Hellinger distance or Matusita distance).

5.2. Minimum Distance Estimators

Minimum ‘““distance” estimation provides a simple alternative method to that of maximum
likelihood for estimating the unknown parameters in a model. In the case of a multinomial
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probability model {r{ (@), . . ., 7(8)) where the unknown vector of parameters
@=(0,..,8)CQC R

is to be estimated, the family of minimum 7 J\-discrepancy estimators {(:31\} is defined in
Definition 2.1. The maximum likelihood estimator occurs when A =0, the minimum chi-squared
estimator (Neyman, 1949) when A =1, the minimum modified chi-squared estimator (Neymarn,
1949) when A=-2, etc. Thearem 2.1 gives the result that ey minimum f*-discrepancy
estimator is BAN, which says that all such estimators are first order efficient.

To compare first order efficient estimators for 8 € R , Rao (1963) introduced the concept of
second order efficiency. In the case of the multinomial distribution, this becomes equivalent to
comparing the variance of the estimators, after first correcting for bias to O(n_'1 ). Read (1984c¢)
has obtained the bias term by (8)/n = E(fx — @) and thence var (8), where 8y = Ba— by (6x)/n.
This led him to the caleulation of Rao’s second order efficiency, £y =T, + A2T,, where T, and
T, are positive valued functions only of 8. Clearly then, the m.le. (A = 0) is optimal amongst
all (bias corrected) minimum 7 *-discrepancy estimators.

5.3, Alternative Types of Goodness-of-fit Statistics
In order to test goodness-of-fit using the power divergence statistics (2.1), the data must be
discrete or if continuous, grouped in some way. More specifically, tests of Hy: F = Fo (., ©) based
on (2.1) are formed by defining boundaries —oo < by <hy <...<hyy Soo, such that
Fo(by,0,)=0and Fo(br+1:©s) = 1 where O, is the true value of . Put

Xi=#Y's €y b sii=1,.. ,k,
and 7o (@)= Fo(bis1:0)— Fo(b;;9);i = 1, . . ., k. Then the statistic

k : A
N X/n: N4 (O)) = 2 Y X; { (L) -1 } : (5:3)
Ml+l)£= 1 nﬂoi(@))

(where @ is some estimate of @)is well defined. This subsection will discuss.alternative approaches
for a continuous sample ¥, ..., ¥, from distribution function F, in relation to the statistics
I*. We have identified three approaches.

First, consider tests of Hy based on sample quantiles {Y,,} where n;= [(n + 1) 7] ;
i=]l,..,ktland 0=y <...<1vgs; = 1. Consider the test statistic

{Fo(Y(n;H};é)“Fo(Y(n;);§)—?To;'}ﬁfﬂo;: (5.4}
1

L g

R
Xq "

i

where ;= ¥;+; — ¥, and O is an estimate of ©. This is essentially Pearson’s X2 (defined in
Section 1), with X; = #Y's € (b, bs.; ) where by solves y; = Fo(b; ©4). Furthermore, under certain
standard regularit%r conditions on @ and F, (5.4) is asymptotically indistinguishable in distribution
from Pearson’s X* (i.e. (5.3) with X = 1) under both the null and alternatives “close™ to the null;
see Bofinger (1973), Miyamoto (1976) and Durbin (1978). Thus there is no real advantage in
taking this approach based on sample quantiles.

Secondly, consider tests of Hy based on sample spacings. Assume that © is completely-specified
within Fg, although this restriction does not affect the general thrust of the development below.
By applying the probability integral transformation U; =Fo(¥;),i=1,..., 1, to the data H, is
equivalent to testing whether 0= Upy < Uiy < Uy .. SUGy € Uge1y=1 are the order
statistics from a uniform distribution. Lhen V; = Upy —Uyorys i=1, .. ,n + 1 defines the set
of (first order) spacings. Notice that E(V)=1/(n +1);i=1,...,n +1,and consider the statistics
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n+1

7 L -
o) f);l V(e + 1) V)" ~ 1}, (5.3)

2n

miMV . E(V))=

which (modulo constants) have been considered in various forms by Greenwood (1946) for
A = 1. Darling (1953) for X = —1, Kale and Godambe (1967) for A = 0, A —+— 1, and Kirmani and
Alam (1974) for A>>— 1. There is a close analogy between the asymptotic theory of spacings
statistics of the form (5.5) and the theory of large multinomials as discussed in Section 2.3.
Raoughly speaking, tests based on sample guantiles (already seen to be essentially equivalent to
tests based on counts) depend on a subset of spacings. The statistics (5.5) have a “k”" (=n +1)
which grows with #, and symmetric “mo;” = 1/(n + 1),i = 1,. .., n+ 1. From the results in Section
2, where the form of the asymptotic distribution of the goodness-of-fit statistic /* changed from
chi-squared to normal as k went from being fixed to increasing with #, it should come as no
surprise that aithough (5.4) is asymptotically chi-squared, (5.5) is asymptotically normal (Darling,
1953). For further discussions on spacings and higher order spacings see Pyke (1965) and Cressie
(1979), respectively.

Thirdly, consider a continuous analogue to the discrete statistic (5.3). Suppose now that the
density fo(v) = dFy(y)/dy exists, and define the empirical density function

fn(y)z{FnU’)_FnO"'h)}M;_m<}’ e,

which is a simple kernel estimator. Define

2nh - Fal) A
WH (fy: fo) = " {( ) —1}4, 5.6
HH™ (fy: fa) ) S_m fn(¥) 70) fy (5.6)

This can be thought of as a continuous version of 7 which for & small, looks very similar to (5.3)
with # and k large together (see Read, 1982, Section 4.2.4). In view of this it again should come as
no surprise that Bickel and Rosenblatt (1973) have shown in the case A=1 that (5.6} is
asymptotically normally distributed, pravided certain conditions hold. Beran (1977} considered
the A =—1 version of (5.6) for some suitable empirical density function f,, and used the name
Heilinger distance. Results for other vailues of A in (5.6) have yet to be considered, but we con-
jecture an asymptotic normal limit. Note that (5.6) compares increments in distribution functions,
in contrast with other well known statistics such as the Kolmogorov-8mirnov and the Cramer-von-
Mises, which compare the distribution functions directly.

6. WHICH TEST STATISTIC?
6.1. An Example .

To illustrate how the value of the power divergence statistic 2n/*(X/n: IT) varies with X, we
consider an example dye to Haberman (1978, Section 1.1) on the relationship between time
passage and memory recall. As part of a larger study into the relationship between life stresses
and illnesses, respondents were asked to note if any stressful events out of a list of 41 had occurred
within the last 18 months. If so, then the number of months prior to interview was recorded.
The totals for each month are shown in Table 4. 1t is clear that the respondents’ recall decreases as
the number of months increases from 1 to 18, and Haberman proposes a log-linear time trend
madel to explain this phenomenon, i.e.

Hpilogm=atgii=1,...,18,
where o and 8 are to be estimated. The maximum likelihood estimate IT of II is calculated
iteratively and is also given in Table 4. The values of various power divergence statistics are
presented in Table 5 for the model Hr. Using the approximate § per cent level obtained from the

X}, tables, both the Pearson X? (A= 1) and the log likelihoad ratio (A = Q) statistics indicate satis-
factory agreement between this model and the data. In fact if 0 €A <3 we would accept H. at
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TABLE 4

[No. 3,

stressful events reported by subjects together with values of g(x;, F;) defined in (6.1).
Subjects were limited to those reporting one stressful event between 1 and 18 months

prior to interview. Expected values are based ou the log-linear time trend model Hy

(Haberman, 1978, pp. 2-15).

Honths before

Ghaerved number

Expected number

interview of suhjects xi of subjects Ei al xi,E.l)
b 1s 15.171 -1.01

2 11 13,4952 ~1.,27

3 14 12,831 l1.09

4 1% 11.800 1.44

5 5 10.852 -2.17

3 11 g.9796 1.10

7 10 9.1777 l.09

8 4 8.4402 -2.11

g -] 7.7620 1.03

10 10 7.13832 1.40
11 7 6.5647 1.07
12 El 6,03271 1.449
13 1l 5.5520 1.94
L& 3 5.,10549 ~1.70
15 & 4.64950 1.28

1s 1 4.3183 —4.,32

17 1 3.8713 -3.97
a4 4 3.6522 1.10

Total 147.00 147 .00

the nominal x* 5 per cent level. For A outside this range we would reject Hy, however from the
discussion in Section 4.4 and also Read (1984a), for | A | increasing, using the nominal x* rejection
region leads to increasingly liberal test levels (for the symmetric null hypaothesis). Combining this
result with the calculations of moment corrections in Section 4.1 for the general simple
hypothesis, it appears reasonable to assume that this will also be the case in this example.
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TABLE 5
Values of the power divergence statistics
2nIMX/n: ) calculated from Table 4
for A€ [-10,10]. Pr {x}, > 26.30} = 0.05.

iy 2nI)' (xfn: ﬁ)
-i0.0 12.2 x 103
-5.0 28.9 x 10
-3.0 65.6
2.0 4.6
-1.5 4.0
~1.0 29.5
.—0.5 -26.5

0.0 24 .6

Q.5 23.4

a.67 23.1

1.0 22.7

1.5 2.6

2.4 22.9

3.0 24.8

5.0 35.5
10.0 21.4 x10

6.2. Sensitivity to Large Ratios of x,/E; or Exfx;

It is clear from the form of the power divergence statistic in (2.1) that a large ratio x;/E; will
result in an increasingly inflated value of the statistic as A increases, X > 0. Similarly a Jarge ratio
Eyfxy will result in an increasingly inflated value of the statistic as | A | inereases, A<C0. This
point is discussed in more depith by Read (1984a) with reference to contributions io the
statistic for a single cell deviation x;/E;, fixed (se¢ also Larntz, 1978). Therefore if we wish to
guard against the effects on the statistic of single large ratios, we should choose { A { small.

In Table 4 the values of the function

J;;/Ef ifx;?E,

8(x;, Ey) ‘-‘{ (6.1)
_E;-/Xf ifx; < Ef

~ are tabulated for the example in Section 6.1. From this table we can see that cells 16 and 17

abtain the largest ratios Ejfx; and will dominate the statistic for | A | large, A < 0. On. the other
hand, cells 12 and 13 obtain the largest ratios x;/£; and will dominate the statistic for A large.
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Furthermore since Eig/x1s and Eyq/x1, are substantially larger than xy,/F}, and x,a/E it
follows that the rate of increase of the statistic 2nI™(x/m: Ily) with [ X| will be faster for
M <{ 0 than for A>> 0. This can be seen ta occur in Table 3.

Any decision as to which member of the family we should use to finally test Hy must depend
on the type of departure we wish to detect. In this example there appears to be no reason to
expect a deviation from Hy to be the result of a large ratio of x,/E; as against a large ratio
of Eyfx;. Therefore we would do best to chaose a statistic with | A | small which is less sensitive
to the djrection of such deviations.

6.3. Recomumendations

Under regularity conditions which are generally regarded as standard (Section 2.2) it was
shown that the family of power divergence statistics are asymptotically equivalent under both the
null hypothesis and under certain sequences of contiguous alternatives given by (3.1). Further-
more the common asymptotic distribution was shown to be a central and non-central y?
distribution on k—s— I degrees of freedom respectively, where k is the number of classes and s
is the number of independent parameters that need to be BAN estimated under H; (see Theorems
23and 3.1).

The rate of canvergence to this asymptotic result was assessed through second order approxi-
mations and small sample studies. Second order approximations for the first three moments under
the simple null hypothesis indicate that the moments of 2u/*(X/n: [1y) converge most rapidly
to the asymptotic x* moments for A€ [0.3, 2.7] (see Table 3). Finite sample studies carried
out under the symmetric null hypothesis indicate that (for ¥ < 6, n 2 10) the yx* approximation
is only appropriate for choosing the level of the test based on 2nI*(X/n: 1/k), when
A€ [1/3, 13]. For X outside this range the x* approximation tends to underestimate the true test
size and two alternative approximations are proposed. One is based on correcting the mean and
variance of the asymptotic distribution function to second order (Section 4.1) while the second
is obtained by approximating the second order term in the asymptotic distribution function
directly (Section 4.3). Both approximations perform well for A€ [~5,5] however the former
approximation is recommended since it is much easier to calculate in practice.

Under different asymptotics to those discussed above (namely the number of cells & increases
at a rate proportional to the sample size r), the family of power divergence statistics was shown
to follow an asymptotic normal distribution under the symmietric null hypothesis and a sequence
of contigucus alternatives given by (3.4). In these cases the asymptotic mean and variance of
I (X/n: 1/k) is X dependent and so the statistics are no longer asymptotically equivalent. Thus
the behaviour of k as n >0 is an instrument which allows us to assess the local power of the
tests based on f*, A€ R . The focus is sharp when k& grows with #, giving A =1 to be the hest
test, but for fixed k the tests are indistinguishable. In an attempt to sharpen this fuzziness we
used Bahadur efficiency for fixed k, which gives A =0 to be the best test. Other criteria such as
matching moments gives A=2/3 and A =1, matching actual to nominal significance levels gives
NE[1/3, 15], and power in finite samples gives A € [1/3, 2/3] as a compromise for alternatives
which might be peaked or dipped (Read, 1984a).

Clearly there are many A recommendations, some of which conflict. Based on their respective
sensitivities we can however put together a final recommendation. Multinomial goodness-of-fit
testing using statistic 7 (see (2.1)) is best performed:

(i) forany A€ [0, 1%] , when no knowledge of the type of alternative is available;
(ii) for A=0 (i.e. G*) if the alternative is thought to be dipped; but the approximate per-
centage point should be determined by matching moments (see Section 4.1);
(i) for A=1 (Le. X?), if the alternative is thought to be peaked, where the approximate
percentage point can be found from the chi-squared tables.
Notice that the test based on G* (A =0) is on the very edge of the recommended interval, and
that T2 (A=-4) is not considered at all, whereas X> (A =1) is safely surrounded by other
possible X wvalues. In practice one will be in situation (i) most of iHe time. We recommend that



1984} Goodness-of-fit Tests 463
provided min{£; } > 1 (Larntz, 1978) and n 3> 10, then the test based on A = 2/3:

2?3 2 Z X (/BN — 1},
5 =1
will be an excellent compromise for testing whether the observed multinomial variables { X;} are
sufficiently close to their null expected values {£;}, where the approximate percentage point
can be found from the chi-squared tables. Applying /** to the data of Table 4 yields
mr* (x/n: fiy=23.08. Now Pr{xi 2630} =0.03, resulting in acceptance of the null
hypothesis.
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