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Yoo T suppose there exists an extremely powerful, and, if I may so speak, malignans being, whose
whole endeavours are directed toward deceiving me”’ Rene Descartes, Meditations, If'

1. INTRODUCTION

This paper studies consumption and savings profiles and security market prices in a per-
manent income model when consumers are robust decision makers. Robust decision mak-
ers and expected utility maximizers share a common probabilistic specification of the
income shocks. But robust decision makers suspect specification errors and want decisions
to be insensitive to them. We show how a preference for robustness lies concealed within
the quantity implications of the permanent income model and how it can be revealed by
market-based measures of “risk-aversion”. We aim to show that large market-based meas-
ures of risk aversion can emerge from concern about small specification errors.

We reinterpret the decision rules for saving and consumption from a rational expec-
tations version of Hall’s (1978) permanent income model with habit persistence. We show
how a robust decision maker with a lower discount factor would use those same decision
rules for saving and consumption.” Increasing the preference for robustness stimulates a
precautionary motive for savings,® an effect that an apprapriate decrease of the discount
factor cancels.”

I. Descartes (1901, p. 227).

2. Qur setting relates to the max-min utility theory of Gilboa and Schmeidler {1989) and Epstein and
Wang (1994). A robust decision maker uses rules that work well for a specific stochastic environment, but that
ate also insensitive to small perturbations of the probabilistic specification (see Zames {19813, Franeis (1987),
and Zhou, Glover and Dayle (1994)). Similarly, by ascribing a family of possible probability laws to 2 decision
maker, the literature draws a sharp distinetion between Knightian uncertainty and risk. Knightian uncertalnty
correspands to the perturbations in the prababilistic specification envisioned by the robust control theorists.

3. Under a rational expectations interpretation, Hall’s model excludes precautionary savings, as emphas-
ized by Zeldes (1989).

4. In effect, we are selving a particular “rabust control" versian of an “inverse aptirnal decisian’ problem.
Versions of such problems have played an important role in the development of ratienal expectations theory.

See Muth (1960). See Hansen and Sargent (1983) and Christiano {1987) for developments building on Muth’s
work.
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Our empirical strategy comes from the preceding observational equivalence result.
To determine all but two parameters of the model, we estimate the rational expectations
version of a habit-persistent version of Hall's model from aggregate U.S. time series on
consumption and investment. By construction, our model with a preference for robustness
must fit these quantity data as well as Hall’s. But it has different implications about prices
of risky assets. In particular, at the consumption/savings plan associated with Hall’s
meodel, the shadow prices of a robust decision maker put the market price of risk much
closer to empirical estimates. After estimating Hall’s model from the quantity data, we
use some asset prices to calibrate the discount factor and a robustness parameter, while
preserving the imphcations for saving and consumption.

In contrast to models in the spirit of Bewley (1977), market incompleteness plays no
role 1n our decentralization of the permanent income model. Instead, following Hansen
(1987), we interpret the permanent income decision rule in terms of a planning problem
whaose consumption and investment processes are equilibrium allocations for a competitive
equilibrium. We then deduce asset prices as did Lucas (1978) and Epstein (1988) by finding
shadow prices that clear security markets. These asset prices encode information about the
slopes of intertemporal indifference curves passing through the equilibrium consumption
process, and therefore measure the risk aversion of the consumer. To accommodate
robusiness, our decentralization copies Epstein and Wang’s (1994).°

To model robust decision making requires formulating a class of misspecifications
that worry the decision maker. We obtain a workable class of misspecifications by using
the literature on risk-sensitive control started by Jacobson (1973, 1977) and extended by
Whittle (1982, 1983, 1989, 1990) and ourselves (1995). Originally this literature did not
seek to model robustness but rather sought to magnify responses to risk under rational
expectations. The idea was to induce bigger effects of risk on decision rules {i.e. greater
departures from certainty equivalence) by altering a single risk-sensitivity parameter that
mmfluences the intertemporal objective function. But risk-sensitive preferences can be rein-
terpreted as embedding a wish for robustness against a class of perturbations of the tran-
sition dynamics. For undiscounted hinear-quadratic control problems, Glover and Doyle
(1988) showed how a particular kind of concern for robustness connects to the risk-sensi-
tive formulation of preferences. They showed how the risk sensitivity parameter measures
the size of the class of misspecifications against which robustness is sought. We use a
discounted version of James’ (1995) notion of robustness. In this paper, we prefer to
interpret our results in ferms. of a decision maker’s concern for robustness. However,
because we use a formulation of robust decision theory induced by the risk-sensitivity
parameterization, an interpretation in terms of risk-sensitive preferences is also available.®

The remainder of this paper is organized as follows. Section 2 summarizes the neces-
sary decision theory. We link risk-sensitive and robust decision theories by displaying two
closely connected value functions associated with superficially different problems. The
problems lead to identical decision rules. The second problem embodies a preference for
robustness, provides links te Gilboa—Schmeidler’s version of Knightian uncertainty, and
explains the queote from Descartes. In Sections 3 and 4, we describe and estimate our

5. See Melino and Epstein (1995) for an alternative attack on this same question. They use a recursive
formulation of an e-contamination specification adapted from the theory of robust statistics.

4. To avail ourselves of this interpretation requires that we model risk sensitivity with discounting in a
recursive manner, as in Epstein (1938), Weil {1989), Epstein and Zin {1989 and Hansen and Sargent {1995}
Epstein and Zin (1989) developed a version of recursive utility theory that raises the market price of risk without
altering the intertemporal substitution elasticity. Van Der Ploeg (1993) introduced risk sensitivity into a perma-
nent incame model, but not in 4 recursive manner.
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permanent income model. The observational equivalence proposition of Section 4 motiv-
ates a two part strategy for using the quantity and asset price data. Section 5 exploits the
links between robustness and nisk-sensitivity in developing asset pricing formulas in terms
of probability measures induced by “pessimistic™ views of laws of motion that emerge as
by-products of robust decision making. These formulas prepare the way for our interpret-
ations of the market price of risk in terms of robustness. Section 6 quantifies the amount of
preference for rabusiness required to push up the market price of risk. Section 7 measures
intertemporal mean-risk trade-offs associated with different amounts of concern with
robustness. Section 8§ cancludes.

2. RECURSIVE RISK SENSITIVE CONTROL

The theory rests on two closely related recursive linear quadratic optimization problems.
We describe a distortion of beliefs away from rational expectations that induces the same
behaviour as a particular medification of preferences toward risk. The equivalence of these
two problems lets us interpret a “‘risk sensitivity” parameter as measuring a preference for
raobustness.

The recursive risk sensitive control problem
The state transition equation is
x:+l:sz+Bfr+sz+la (1)

where i, is a control vector, x, is the state vector, and w, ., is an i.i.d. Gaussian random
vector with Ew,, =0, and Ew,, w,;,,=1I Let J, be the sigma algebra induced by
{xq,w;,0=52¢}. The one-period return function s

u(i, x) = —i"Qi - X' Rx,

where ( 1s positive definite and R is positive semidefinite. Following Epstein and Zin
(1989}, Weil (1993), and Hansen and Sargent (1995), we use the following recursion to
induce intertemporal preferences

Uz:“(in xr)+ﬁ-ﬁ4z(Ur+1)a (2)

where

%(UHL)Ezlog E[exp (%——‘) J,} (3)
g

When ¢ = 0 we take %, = E(U,. |J,), and we have the usual von Neumann-Morgenstern
form of state additivity. When o0, the operator 5%, makes an additional risk adjustment
over and above that induced by the shape of u(-, -). Values of o less than zero correspond
to more aversion to risk vis a vis the von Neumann—Morgenstern specification.” As
emphasized by Hansen and Sargent {1995), the (log, exp) specification links the general
recursive utility specification of Epstein and Zin (1989) to risk-sensitive control theory.
Weil’s (1993) permanent income model used the same (log, exp} specification but did not
exploit connections to the risk-sensitive control literature.

7. As in Kreps and Porteus {1978), this recursive utility formulation overturns the indifference to the
timing of the resolution of uncertainty mherent in state-separable preferences. The additional risk adjustment
for 0 =0 implies 2 preference for early resolution af uncertainty.
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The risk sensitive control problem 1s to maximize the time zero utility index U, by
chaosing a control process i, adapted to J,. Let H/(x) denote the optimum value function
for this problem, so that U = W{(x,) where the e superscript is used to distinguish the
efficient or optimal utility index. Hansen and Sargent (1993) extended the Jacobson-—
Whittle risk-sensitive control theory to provide formulas for € and p in the following
representation of the value function

Up = Wix,) = x:Lx, + p. {4)

Let i = —Fx denate the optimal decision rule. Let A* = 4 — BF be the closed loop transition
matrix {ie. with {, = —Fx, substituted into the original transition law). We display explicit
formulas for the distorted expectation gperator below.

We shall have cause to evaluate %, (U, ) for the quadratic value function (4) where
€ 1s a negative semidefinite matrix of real numbers and p is a nonpositive real number. It
follows from Jacobson (1973) that

P.(Uss ) = xi8x, + p, (5)
where
Q= A*[Q+0QC( - o C'QC) ' C'QlA*, (6a)
and
p=p—(/0}log[det (I - 5C'QCY, (6b)

so lang as the matrix {(/ — 6 C’QC) is positive definite, which we assume,

Robustness reinterpretation

We can reinterpret risk-sensitive preferences in terms of a decision maker with ordinary
preferences who fears specification errors. The robustness interpretation is based on a
recursive formulation of a zero-sum two-player Lagrange multiplier game whose value
function W(x) relates to W(x). Parameterizing the game in terms of a fixed Lagrange
multipher makes a sequential version of the game, under the Markov perfect equilibrium
concept, have the same outcome as a version where players can precommit at time zero.”

In this game, one player chooses decision rules for the control vector {i.}, with two
differences vis a vis the single agent risk-sensitive control problem. First, a maximzing
player makes no risk adjustment in the utility function. Second, another minimizing player
injects a distertion each time period into the conditional mean of the shock process. Thus,
the first player maximizes a utility index Uy = K, Z;nza Bu(i,, x,) by choice of state-feed-
back rules for {i,} and subject to the distorted law of motion

Xryi =AX;+B.’.",+C(W;+[+P,), (?)

8. Anderson, Hansen and Sargent (AHS) (1998) deseribe a different class of specification errors that leads
to the same risk adjustments (3). AHS permit specification errors in the form of perturbations to a controlled
Markov process. AHS use a constraint on the size relative entropy to parameterize the admissible class of
misspecifications. Their formulation applies to nonquadratic chjective functions and nonlinear laws of mation.
They alsoe formulate the connection hetween risk-sensitivity and robustness in continuous time.
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where v, distorts the mean of the innovation. The second player chooses a feedback rule
for v, to minimize €y subject to

EA‘{ z;ioﬁjvr+j ¥ +j§nr1 (83)
qr+l:ﬁ_l(n:_"’r' ve), (8b)

where 14 is given and 1], serves as a continuation pessimism bound at date . In (8a), E()
denotes the conditional expectation taken with respect to the law of motion (7), which
relative to (1) is distorted by the presence of v,.

The second player is introduced as a device to determine the conditional mean distor-
tions {v,} in a way that delivers a particular form of robustness. Letting v, feed back on
x., Including its endogenous components, allows for a wide class of misspecifications, We
want the feedback rule for {, to be insensitive to mistakes v, mn the conditional mean of
w, .. To pramote Insensitivity, we make the second player malevolent and instruct him
to minimize U, over state feedback rules for v,.

We impose restriction (8b) by formulating a multiplier game. In particular, we let
—1/020 be a Lagrange multiplier on the time ¢ constraint (8a) and require that the con-
tinuation pessimism level 1, be such that the multiplier is constant over time.? Condition
(8b) accomplishes this. This leads to a recursive formulation of the pame. The Markov
perfect equilibrium has a value function that satisfies

W(x) = inf sup {—E’Qi —x'Rx + ﬁ{— ! v+ EW(Ax + Bi + Clw + v))”
v i [¢)

= x"Qx + 9, 9

where the E operator integrates w with respect to a normal distribution with mean zero
and covariance matrix /. Hansen and Sargent {(1998) show that the value functions W and
I share the same matrix Q in their quadratic forms, but have different constants p and
g. Let i =—=Fx, v=Gx denote the policy rules that solve (9); the rules are linear, and the
rule for i also solves the risk-sensitive control problem.*®

The relationship between the two value functions and the decision rules for i estab-
lishes how the risk-sensitive preference specification induces the same behaviour that
would occur without the risk-sensitivity adjustment to preferences, but with the pessimistic
view of the conditional mean of innovations (the v,'s) reflected in (9). The risk-sensitivity
parameter & sets the constant Lagrange multiplier —6~! on restriction (8). Notice how 1],
indexes the degree of pessimism, i.e. the size of the domain of sequences from which the
malevolent opponent selects adverse v,’s. Hansen and Sargent (1998) describe in detail
why it is convenient computationally to parameterize pessimism in this way.

“Uncertainty aversion™ or vobustness

The Markov perfect equilibrium summarized by (9) is the value function for a single
decision maker whose decisions are governed by a “worst case’” analysis. By using a
feedback rule for I, that solves {9), the robust controller does better for some appropriately
constrained mistake sequences {v,} while sacrificing utility when these mistakes are absent.
Our treatment of this robustness and its connection to risk sensitivity follows James’

9. See Hansen and Sargent (1998) for more details.

10. Hansen and Sargent (1998) discuss how the particular parameterization of “uncertainty aversion”
embedded in (9)}—in which the “Lagrange multiplier” — ¢ is time invariant—requires choosing the continuation
pessimism. hounds 5, in a way to make the opponent’s decision prablem recursive.
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(1995} recent survey of robust control, except that we have incorporated discounting into
the risk sensitive formulation of the problem and into the corresponding constraints on
the model misspecification.

There is a closely related literature in economics originating with the work of Gilboa
and Schmeidler (1989) and Epstein and Wang (1994). The decision theory axiomatized by
Gilboa and Schmeidler generalizes expected utility theory by studying a setting where
decisions are based on a “maxmin’’ criterion because beliefs are described by a family of
probability measures rather than a single probability measure. In our setup, there is a

“nominal model” corresponding to setting v, =0 for all ¢. Alternative specification errar
sequences {v,} constrained by (8) deliver the resulting family of stochastic processes used
in the state evolution equation. Hence our decision maker can be viewed as having prefer-
ences represented by the maxmin utility theory of Gilboa and Schmeidler. Following
Epstein and Wang (1994), we can interpret the nonuniqueness of the stochastic constraints
as depicting a form of Knightian uncertainty: an ambiguity of beliefs not fully specified
in probabilistic terms but described by the set of specification errors {v,} defined by restric-
tion (8).

In intertemporal cantexts, Epstein and Wang {1994) use a Markov formulation of
the two-player game to avoid inducing a form of time inconsistency. We follow the litera-
ture on robust control by halding fixed the Lagrange multiplier — ™' aon the specification
error constraint aver time. Below, we shall compute the v,’s and use them to measure the
amount of uncertainty aversion associated with alternative values of o. We avail ourselves
of a formula for the matrix G in v = Gx.

Solution for v
The solution for v within the Markov perfect equilibrium satisfies
= a(i - aC'QCY ' C'QA*x,, (10)

where x,,, = A*x.+ Ow, ., under the optirrial control law for the risk-sensitive problem
{A* = 4 — BF). (Here we are assuming that the parameter ¢ is sufficiently small that the
matrix (I - 6 C'QC) is positive definite.)"!

Below we shall compute ¥, and study how it alters measures of I‘ISk aversion extracted
from asset prices. :

Maodified certainty equivalence

Whittle (1981) pointed out how the solution for v supports 4 modified version of certainty
equivalence. This version asserts the equivalence of two ways of evaluating time-invariant
decision rules i, = —Fx,, one under rational expectations and risk-sensitive preferences; the
other under distorted expectations and ordinary (¢ = 0) quadratic preferences. Recall that
A* = A - BF, and let R* = R+ F'QF. The two valuation algarithms are;

(1) Ul =-xR*x,+ B.9,U;. |, where 52, is defined in (3), and where the conditional
expectation operator in (3) is computed with respect ta the (true) law of mation

11, Although the matrix £ depends implicitly on @, it can be shown that the requisite positive definiteness
will be satisfied for small values of ¢. The risk-sensitive control theory literature draws attention ta the hreak-
down paint under which this positive definiteness property ceases to hold (e.g. see Glover and Doyle (1988)). At
such points, the risk-adjusted recursive utility is — o0 regardless of the controller’s action. The general equilibrium
aspects of our analysis lead us to look at much smaller risk corrections than are tolerated by the hreakdown
analysis.
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Xee1 = A*x, + Cw,, . The criterion can be represented as the translated quadratic
form UF = xiQx, + p, where the matrix Q and the scalar p are fixed points of
operators defined by Hansen and Sargent (1995).

(2) W(x,)=U =-xiR*x,+ BEU,.,—(B/0)9¥,, where E, is an expectation operator
computed with respect to the distorted law of motion

x:+1:/‘ix;+cwr+ls (11)
where
A=[I+cCI-cCQCY'C'QlA*, (12)

and ¥, is given by (10). The formula for A is derived by adding C¥, to A*, where
¥, satisfies (10). The criterion T, has the representation I, = x|Qx, + g, where Q
is the same matrix occurring in the first representation.

Evidently, these two evaluations yield the same ordering over time-invariant decision rules
i =—Fx,. This is the modified certainty equivalence principle. Notice the appearance of
Q, computed from the first formulation, in the construction of the distorted law of motion
(12). We shall use A from {12) again in computing asset prices.

3. ROBUST PERMANENT INCOME THEORY

Hall {1978), Campbell (1987), Heaton (1993), and Hansen, Roberds, and Sargent (1991)
studied how closely a permanent income model approximates aggregate data on consump-
tion and investment. We farmulate a risk-sensitive version of the permanent income model
with habit persistence, estimate it from data on consumption and investment, then use it
to compare the implications of risk-sensitivity for consumption, investment, and asset
prices. We demonstrate an observational equivalence proposition asserting that the con-
sumption and investment data alone are insufficient simultaneously to identify the risk-
sensitivity parameter o and the subjective discount factor . This observational equival-
ence substantiates our claim to be reinterpreting decision rules from a habit-persistence
version of Hall’s model in terms of robust decision making. Adding knowledge of the
risk-free rate, which is constant in this model, does not achieve identification. But |ater
we will show that the risk-sensitivity parameter has strong effects on other asset prices,
including the market price of risk.

The lack of identification from consumption and investment data emerges as follows.
For a given specification of shocks, introducing risk sensitivity provides an additional
precautionary metive for saving. In terms of implications for savings, this motive can be
offset by diminishing the subjective discount factor to make saving less attractive. In terms
of effects on the valuation of risky assets, these changes are not offsetting.

The mode!

We farmulate the medel in terms of a planner with preferences over consumption streams
{¢,}¢ta, intermediated through the service stream {s,}. Preferences are ordered by the
utility index Uy, defined through the recursion

U =—(s,—b)+B.2.(Ups 1), (13)
where 52,(U,. 1) 1s defined by (3).
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In (13), s, is a scalar household service produced by the scalar consumption ¢, via the
household technology

5= (I + l)C; —Ah 4 5 (14&)
he=8uh, 1+ (3 — Sa)es, (14b)

where 1 >0 and 8,e(0, 1). In {13), {5.} is an exopenous preference shock process. System
(14) accommaodates habit persistence or rational addiction as in Ryder and Heal (1973),
Becker and Murphy (1988), Sundaresan (1989), Constantinides (1990) and Heaton (1993).
By construction, #, is a geometric weighted average of current and past consumption.
Setting A > 0 induces intertemporal complementarities. Consumption services depend posi-
tively on current consumption, but negatively on a weighted average of past consump-
tions, an embodiment of “habit persistence”.

There is a linear production technology

Cr+fz = ]"kz—l +d£s
where the capital stock &, at the end of period ¢ evolves according to
kr = 5kkz— I + I‘;,

i, 1s time ¢ gross investment, and {d,} is an exogenously specified endowment procass. The
parameter ¥ is the (constant) marginal product of capital, and dy, is the depreciation factor
for capital. Solving the capital evalution equation for investment and substituting into the
lingar production technology gives

Ct k= (8, + )k +d,. (13)
We define
RES;(—F— ']/,

which is the physical (gross) return on capital taking account of the fact that capital
depreciates over time. When the economy is decentralized, R will also coincide with the
gross return on a risk free asset. We impose that the components of the solution for
{c, ki, k) belong to L3, the space of stochastic processes {y,} defined as

Ly={y:y.isin J for £=0,1,...and EY" [ R*(p,Y[Jo<+c0}.

We suppose that the endowment and preference shocks (d,, A,} are governed by b, =
Uyz,, d, = Uyz, where

21 = Anze+ Coweo .

Here w, . | is independent of J, = {w,, w, 1, ..., w, 2¢}, the eigenvalues of A4, are bounded
in modulus by unity, and w,, is normally distributed with mean zero and covariance
matrix f.

Given kg, the planner chooses a process {¢,, &, } with components in L3to maximjize
Uy subject to (14), (15)."

12, We can convert this problem into a special case of the contrel problem posed in Section 2 as follows.
Form a compasite state vector x, by stacking k& _, k,_, and z,, and let the control i, be given by 5, — &,. Solve
(L4a) for ¢, as a funetion of 5,—&,, b, and k-, and substitute into equations (14b) and (15). Stack the resulting
two equations along with the state evolution equation far z, to form the evolution equation for x,. .
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Solution of model and identification of o

To establish observational equivalence for the quantity observations, we proceed constric-
tively. First, we compute a solution for 6=0 and SR =1, i.e. a permanent income econ-
omy, without risk sensitivity. Then we use the allocation for this o=0 economy to
comnstruct an equivalence class of alternative (g, 8)’s that generate the same allocation, for
fixed values of all the other parameters. This demonstrates that the pair {¢&, f§) is not
identified from quantity observations alone.

The 6=10, AR =1 benchmark case

To produce a permanent income model in the ¢ =0 special case, we follow Hall (1978)
and impose that AR = 1. When ¢ =0, (13) and (3) reduce to

Us=Eg3,_ o B {~(5:-b)"}. (16)

Formulate the planning problem as a Lagrangian by putting random Lagrange multiplier
processes of 23w, on (14a), 23w, on (14b), and 284, on (15). First-order necessary
conditions are

Hee=bi— sy, (172)
thee = {1+ At + (1= 8 ) kie (17b)
Hin = BEBnbp 1 = Al sr ], (17¢)
floo= BRE Yor v, (17d)

and also (14), (15). When iR = 1, equation (17d) implies that g, is a martingale; then
(17b) and (17¢) solved forward imply that g, 4, are also martingales. This implies that
i, has the representation

,‘-L,w:,u:.‘r‘—l'{““r'wr: (18)

for some vector v.
Use (17a) to write s, = b, — 1, substitute this into the household technology (14), and
rearrange to get the system

| A
£, = m(br_#sr)+mkt—l: (19a)
k]’: Shhr—l"-(l _Sb)(br_#sr):\ (lgb)
where 8, = (8,+ A) /{1 + A). Equation {19b} can be used to compute
s} ; - 1 _S: L) F
ESZ Bh, =0 -BEy e+ B0 pse i ) o)
! (1-64)

For the purpose of solving the first-order conditions {17), (14} and (15) subject to the
side condition that {e,, k,}e I, treat the technology (15) as a difference equation in {k,},
solve forward, and take conditional expectations on both sides to get

ket = X0 o RUVE Cor; —duny). 1)

Use (19a) to eliminate {¢,,,;} frem (21}, then use (18) and {20). Solve the resulting system
for u,, to get

,"-"q‘r = (l _R_i)zjiﬂ R_jErbrﬂ' + I,UO zj-{;@ R-_jE:‘dI+J' + lI"(lhr—l + Wzk:—u (22)
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where y,, W, y, are constants. Equations (22}, (19}, and (15) represent the solution of
the planning problem.

Notice that (22) makes p,. depend on a geometric average of current and future values
of b,. Therefore, both the optimal consumption service process and optimal consumption
depend on the difference between b, and a geometric average of current and expected
future values of 4. So there is no “level effect” of the preference shock on the optimal
decision rules for consumption and investment. However, the level of b, will affect equilib-
rium asset prices.

Observational equivalence ( for quantities) of =0 and 20

At this point, we state the following

Observational Equivalence Proposition. Fix all parameters except i and 6. Suppose
BR=1. There exists a 0 < such that the optimal consumption-investment plan with a=10
is also the optimal consumption-investment plan for any ¢ satisfying g < g <0 and a smaller
discount factor P(G) that varies divectly with .

This proposition means that, so far as the quantities {¢,, &k, } are concerned, the risk-
sensitive (¢ <0) version of the permanent income model is observationally equivalent to
the benchmark (o = 0) version. This insight will guide our estimation strategy, because it
sharply partitions the impact of risk-sensitivity into real and pricing parts.

The proof of the proposition is by construction.

Proof. This is the plan of the proof. Begin with a solution {5, &, k., A} for a
benchmark o =10 economy. Form a comparison economy with a ae[g, (], where ¢ is the
boundary of an admissible set of ¢’s to be described below. Fix all parameters except
(0, ) the same as in the benchmark economy. Conjecture that {5,,&, &, A} is also the
optimal allocation for the ¢ <{ economy. Finally, construct a §=f that verifies this
conjecture.

Here are the details of the construction. The optimality of the allocation implies that
Ette 1 = ., and that (18} and (22) are satisfied for the (=} benchmark allocation, where
E. is the expectation operator under the correct probability measure. The key idea is to
form the distorted expectation operator £,, then choose =i to make the distorted ver-
sion of the Euler equation for y,, hold at the benchmark (g = Q) allocation.

To compute the distorted expectation operator, we follow the recipe given in formulas
(9) and (12). Fust, we have to evaluate the utility index U; by using (9). We want to
evaluate (13) with s, — b, =—p,, and g, given by the law of motion (18), which we take as
exogenous because the allocation is frozen. We take pt,, as the state. Since there 1s no
control, (9) collapses to

Qx* = —x* + fmin (_ - v+ Qx + 8v)" |, (23)
v g

and we write t, = f, - + 8{v+w), where ¢ =Vv'vand v is the specification error chosen
by the “opponent” m the fictitious game. The scalar Q that solves (23) is

B—1+08"+V(B—1+06% +456"
-208° ‘

Q(B) = (24)
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It foliows from (12) that the distorted law of mation for g, is

Bettors i = Eptars (25)
wheq_e
s an 8’a ()
€~§(ﬁ}—l+7luaﬁzﬂ(ﬁ)‘ (26)

Since ., is proportional to p,,, it follows that

E;ﬂ.—:Hl = é’.ueu (27)

with the same £ given by (26). In terms of the distorted expectation operator, the Euler
equation for capital is

BREIJU'CI +1 = p-ct ]

or

AR{BY=1. (28)

Let g be the lowest value for which the solution of (24) is real. Then given ae (g, 0], there
exists a f§ satisfying (28) such that for (o, 8) the benchmark allocation solves the risk-
adjusted problem. Therefore equations (24), (26), and (2%) define a locus of (o, 8)’s, each
point of which is observationally equivalent to (0, ) for (¢, k,) observations, because
each supports the benchmark allocation.

Furthermore, according to the asset pricing theory to be developed shortly and (28),
the price of a sure claim on consumption one period ahead is R for all £ and all (o, )
in the locus. Therefore, these different parameter pairs are also observationally equivalent

with respect to the risk-free rate.’® ||

In Figure 1, we report the (o, i) pairs that are observationally equivalent for our
maximum likelihood estimates for the remaining parameters, which we are about to
deseribe.,

The observational equivalence depicted in Figure 1 shows that by lowering the dis-
count factor, we can make investment less attractive and thereby offset the precautionary
savings motive. As an indication of the important precautionary role for savings in this
model, suppose that future endowments and preference shifters could be forecast perfectly.
Then consumers would choose to draw down their capital stock. Investment would be
sufficiently unattractive that the optimal linear rule would eventually have both consump-
tion and capital cross zero."*'* Thus our robust control interpretation of the permanent
income decision rule delivers a form of precautionary savings absent under the usual
interpretation.

13, In this model, the technology {15) ties down the risk-free rate. For a version of the model with quad-
ratic costs of adjusting capital, the tisk-free rate comes to depend on o, even though the observations on
quantities are nearly independent of @. See Hansen and Sargent (1996).

4. Intraducing nonnegativity constraints in capital and/or consumption would induce nonlineatities into
the consumption and savings rules, especially near zero capital. But investment would remain unattractive in
the presence of those constraints for experiments like the ones we are describing here. See Deaton (1991 for a
survey and quantitative assessment of consumption models with binding borrowing constraints.

15. As emphasized by Carroll (1992), even when the discount factor is small relative to the interest rate,
precautionary savings can emerge when there is a severe utility cost for zero consumption. Such a utility cost is
absent in our formulatian.
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FiGuURE 1

Observationally equivalent (¢, 8) pairs for maximum likelihood values of identified parameters; o is the ordinate,
7 the coordinate

For any given pair (g, ) depicted in Figure 1, the permanent income decision rule
reflects either risk sensitivity or a concern for robustness. The familiar version of the
precautionary savings motive focuses on the role of variation in the shocks. This version
is delivered in our setup by the risk sensitive decision theoretic formulation. In contrast,
the precautionary notion delivered by robust control theory emerges because consumers
guard against mistakes in conditional means of shocks. Thus concern for robustness shifts
emphasis from second to first moment properties of shocks.

4. ESTIMATION

Different abservationally equivalent (g, 8) pairs identified by our proposition bear differ-
ent implications about (i) the pricing of risky assets; (ii) the amounts required to compen-
sate the planner for confronting different amounts of risk; (iii) the amount of model
misspecification used to justify the planner’s decisions if risk sensitivity is reinterpreted as
aversion to Kaightian uncertainty. To evaluate these implications, we first choose param-
eters, including noise variances, by estimating a ¢ = ( version of our permanent income
model, cenditioning the likehiheod function only on U.S. post-war quarterly consumption
and investment data. We estimated the permanent-income model with habit persistence
using U.S. quarterly data on consumption and investment for the period 1970I-1996111.'¢

Consumption is measured by nondurables plus services, while investment is measured
by the sum of durable consumption and gross private investment.'” We applied the model

16. QOur choice of starting the sample in 1970 corresponds to the second subsample analyzed by Burnside,
Eichenbaum and Rebella (1990). Thus we have omitted the earlier period of “higher productivity”. We injtially
estimated a version of the model with a stochastic preference shack aver the entire post-war time period, but
we found that the “productivity slowdown’ was captured in our likelihood estimation by an initial slow decline
in the preference shock process followed by a slow increase. Qur illustrative permanent income maodel is appar-
ently not well suited to capture productivity slowdowns. Given the empirical results reported in Burnside, Eichen-
baum and Rebello (1990}, the same could be said of the commaonly used stochastic specification of Salow’s
arowth maodel.

17. We used “old data™, not chain-weighted indexes.
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Ficure 2
Detrended consumption and investment (dotted line) data

to data that have been scaled through multiplication by 1-00337. The scaled time series
are plotted in Figure 2. We estimated the model from data on (¢, i), setting =90, then
deduced pairs (G, ) that are observationally equivalent. We estimated parameters by
¢climbing a Gaussian likelihood function. We formed the likelihood function recursively,
and estimated the unobserved part of the initial state vector using procedures described
by Hansen and Sargent (1996).

Under our robustness interpretation, this approach to estimation may be justified in
one of two ways. First, economic agents may allow for model misspecification when mak-
ing their decisions, even though in fact the model is specified correctly during the sample
period. Alternatively, economic agents use the (misspecified}) maximum likelihood cri-
terion for selecting a baseline model around which they entertain small specification
errcrs. Under this second interpretation, the formal statistical inference formulas for maxi-
mum likelihood estimation require modification (see White (1982)).

We specified a constant preference shifter &, = i, and a bivariate stochastic endow-
ment process: d, = i+ d*+4d,.'* Because we are modelling two observed time series as
functions of two shock processes, the model would lose its content were we to permit
arbitrary cross correlation between the two endowment processes. Therefore, we assumed
that these processes are orthogonal. We found that one of the shock processes, 4 was
particularly persistent, with an autoregressive root of 0-998. While we doubt that this
value is distinguishable from unity, we retained the unconstrained estimate of 0-998 in
our subsequent calculations. The two shocks are parameterized as second order auto-
regressions. We write them. as

d!
(I =¢ L)1 = ¢ L)dF = cp
(1 — o, LY — @ L)d, = eqw?.
18. A previous draft specified two stochastic shock processes: an endowment shock, 4, and a preference
shock, b, We have chasen to report results for the bivariate endowment process with a constant preference

shifter & in response to a comment from one of the anonymous referees. The results from the preference shock
version of our model are available in an earlier version of this paper available at http://riffle.stanford.edu.
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TABLE 1
Likelthood values
Transitaty endowment 2% Log Likelihood
specification
ARI1 776-78
AR2 77905
AR3 77905

For the transitory process 4 we experimented with autoregressive processes of order 1, 2,
and 3, which revealed the log likelihood values depicted in Table 1. In the table, “AR1”
denotes the first-order autoregression, and so on. The likelihood values show a substantial
gain In increasing the order from [ to 2, but negligible gain in going from 2 to 3. These
results led us to specify a second order autoregression for the transitory endowment
Process.

Thus the forcing processes are governed by seven free parameters: (o0g, 02, ¢a,
&1, &2, ca, a). We use the parameter f1, to set the bliss point. While 1, alters the marginal
utilities, as we noted previously, it does not influence the decision rules for consumption
and investment. Consequently, we fixed y, at an arbitrary number, namely 32, in our
estimation.

The four parameters governing the endogenous dynamics are: {¥, 8,, B, L). We set
8, =0-975. We initially did not impose the permanent income restriction, SR = 1, but the
restriction was satisfied by our estimates, so we proceeded to impose it. That is, our
estimates confirmed the random walk prediction for both the marginal utility process
for consumption goods and the marginal utility process for consumption services. The
restrictions that SR =1, 8, = 0-975 pin down 7 -once f is estimated. We chose to impose
f3=0-9971, which after adjustment for the effects of the geometric growth. factor of 1-0033
implies an annual real interest rate of 2-5%."

Maintaining the SR = 1 restriction, we estimated the model for different values of ¥
{(and therefore of ). The likelihood inecreases moderately as v rises (and 8 decreases) over
a large range of ¥'s. However, over this range other parameters of the model do not
change much. Allowing f to decrease below the value 0-9971 would have the primary
effect on our results of increasing the risk-free rate above the already excessive value of
2-5% per year. Therefore, we chose to fix g at 0-9971.

In Table 2 we report our estimates for the parameters governing the endogenous and
exogenous dynamics. In Figure 3 we report impulse response functions for consumption
and investment to innovations in both components of the endowment process. For sake
of comparison, we also teport estimates from a no habit persistence (A = 0) model in Table
2, and the resulting impulse response functions in Figure 4.

Notice that the persistent endowment shock process contributes much more to con-
sumption and investment fluctuations than does the transitory endowment shock process.

To assess the statistical evidence for habit persistence, in Figure 5(a) we graph twice
the concentrated log likelihood as a function of the habit persistence parameter. Notice.
the asymmetry of this function, which has a much steeper descent towards zero. A likeli-
hood-based confidence interval can be deduced by comparing the likelihood deteriordtion

[9. When o= 0 (the expected utility, rational expectations case) we can scale the state variables to account
for geometric growth without affecting the subsequent analysis. However, when o <0, the same transformation,
has the effect of imposing a time-varying risk adjustment. This problem daes not arise when the single period
utility function has a different form, say logarithmic. In order to preserve the tractability of the quadratic
specification, we have decided to praceed despite this problem.
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TABLE 2

Parameter Estimates
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Habit persistence

No habit persistence

Risk free rate 0025 0025
B 997 0997
3, 0682 i}
A 2443 4]
oy 0-813 0-900
(42} J-189 0-241
il 0-99% 0995
. 0.704 0.450
Ha 13.710 13.594
i 0155 0-173
Cav 0108 0-098
2 x Log Likelihood 77905 76255
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to critical values obtained from the chi-square one distribution. Thus, while values of 4
near zero are implausible, values considerably larger than the maximum likelihood values
are harder to dismiss.” Figure 5(b) shows the values of the depreciation parameter 8, as
a function of the A obtained after concentrating the likelihcod function. Estimates of the
depreciation parameter decrease as A approaches zero, but remain around 0-65, within
the more plausible range of A’s.

We put our estimates of the habit persistence parameters, A and &, into perspective
by comparing them with ones emerging from other empirical studies of aggregate U.S,
data. Heaton (1993) finds a comparable value of 4, but a higher depreciation factor &,
using a permanent income model without preference shocks fit to consumption. Heaton
also notes that his 8y, is estimated very imprecisely.”" As an extension to this work, Heaton
(1995) estimates a power utility, habit persistence model using consumption and asset
market data. In this alternative formulation, he provides evidence for larger values of A
and a larger depreciation factor §,. Again the estimate of 8, has a large standard error.
From Heaton’s work, we see that more pronounced habit persistence is estimated only
when it is offset in the short run by local durability, a source of dynamics that we ignore.
Recently, Beldrin, Christiano and Fisher (1995) find smaller values of A and §,, than ours,
although they model production in a different and maybe more interesting way than we
do. In contrast to Heaton (1995) and Boldrin, Christiano and Fisher (1993), our estimates
of habit persistence embody no asset market implications beyond one for the risk free
interest rate.

5. ASSET PRICING

For the purposes of decentralization, we regard the robust (or risk-sensitive) solution to
the permanent income model as the solution te an optimal resource allocation problem.
This viewpoint permits us to compute the equilibrium stochastic process of quantities

20. The parameter &, is not identified when A=0.

21. Like Christiano, Eichenbaum and Marshall (1991), Heaton (1993) also studies the implications of time
aggregation, which we abstract from, and at the same time he allows far local durability in a continuous-time
farmulation of the model,
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before deducing the prices that clear a competitive security market. We follow Lucas
{1978) in assuming a large number of identical agents who trade in security markets. We
can price assets by treating the consumption process that solves the robust permanent
income model as though it were an endowment process. Because agents are identical,
equilibrium prices become shadow prices that ieave consumers content with that “endow-
ment process”. The pricing implications under rebustness are slightly different than those
under risk-sensitivity. We will proceed in this section by assuming risk-sensitivity and
pointing out where the analysis wouid differ under robustness.

The state for the model is x, = (4,-, k,-, 2|". The equilibrium consumption and ser-
vice processes can be represented as = S.x,, 5;= S.x,. Represent the endowment and
preference shock processes as d,= Sux,, b,= Syx,. The equilibrium law of motion for the
state has representation

Xeo1 = A%, + Cw, . 1. (29)

The value function at the optimal aliocation can be represented as U; = x;Qux, + p where
Q= (S, - S,Y(S, = Sp)/2 + B, (30a)

p=Bp, {30b)

and € satisfies (6a), with 4* evaluated at 4°.

Key subgradient inequality

We begin our analysis of asset pricing hy computing the current time ¢ price of a state-
contingent claim to utility ¥/,,, tomorrow. This component of pricing is trivial when
preferences are represented as the usual recursive version of the von Neumann-Margen-
stern specification, but is noentrivial in the case of risk sensitivity. The pricing of state-
contingent utility will be a key ingredient for pricing state-contingent consumption services
tomerrow and ultimately for the pricing of multi-period securities that are direct claims
on consumption goods. Let s, be any service process measurable with respect to J,, and
U, be the associated utility index. For purposes of valuation, Appendix A establishes the
following subgradient inequality

._@I(Uﬁ.l)_.ﬁ;(Uf»r[)g-..'iUr»rl_--yf_Uf+ls (31)
where
'.%_U.r;L.EE(Vr+LUr+L|Jr)/E(V:+I|J:)1 (32)
and
V,,,IECXp(O'UfJ,IfE)‘ (33)

As elaborated further below, the operator .% acts much like a conditienal
expectation.”” Combining (31) with the familiar gradient inequality for quadratic func-
tions, it follows that

U= Uig(s,—s). #0+ BIUL — Ui, (34)

22, Depicting prices of derivative claims using distorted expectations is 4 comman technique in asset
pricing {e.g. see Harrison and Kreps {1979)}. In our investigation and in Epstein and Wang (1994}, the distartion
15 also needed to price state-contingent utility.



890 REVIEW OF ECONOMIC STUDIES

where
re=20h,—5). (35)

If we regard the marginal utility of services . 4} as the price for time ¢ services, then (34)
gtates that any pair (s,, U, ) that is preferred to (s7, U/}, ), costs more at time ¢ This
justifies treating .4 as the equilibrium time ¢ price of services, and using . to value
time ¢+ | state-contingent utility.

The .# operator can be computed as the conditional expectation of the state in the
transformed transition equation

xr+L:/ix:+ CWH[; (36)
where C satisfies
CC = cu-ocC0Q0Y M, (37

and A is given by (12). Given the matrices A and C, asset prices can be computed using
the algorithms described in Hansen and Sargent (1996). Formula (37) shows that when
o <0 and £} is negative semidefinite, the conditional variance associated with the operator
% is always greater than or equal to CC”, because an identity matrix is replaced by a
larger matrix (f—oC’QC)"". Thus, to interpret 5 as a conditional expectation operator
requires both a pessimistic assignment of the conditional mean for the future state vector
and an increase in its conditional variance.”

We can interchange the risk sensitivity and the uncertainty aversion interpretations
of the optimal resource ailocation probiem. As shown by Epstein and Wang (1994), equi-
librium asset prices can be deduced by referring to the “pessimistic beliefs' that implement
optimal decisions. For the uncertainty aversion interpretation, the counterpart to the 7
operator is the distorted conditional expectation operator, cail it £,, induced by the state
transition equation of formula (11). This transition law distorts the conditional mean, but
not the conditional variance.*

Pricing multi-period streams

The valuation of the state-contingent utility can be used to evaluate future consumption
services. Construct a family of operators by sequentiai application of .~

ysf‘z:_{zr_:%_:-l\ . "y:—z—ls (38)

where .%/q is the identity map. Like .5, %, can be interpreted as a conditional expectation
under a transformed conditional probability measure except that 57, is a time ¢ con-
ditional expectation applied to random variables that are measurable with respect te J,..,.

In the permanent income model below, the consumption good is a bundle of claims
to future consumption services. We can use the equilibrium prices of services to deduce
corresponding prices of consumption goods. Thus, consider any process {s,} with compo-
nents in L7, and let {IJ,} denote the associated utility process. Let { U2} denote the utility

23. It follows from James (1992) that this covarianee correction vanishes in the continuous-time fdrmu-
lation of the prablem. Instead the original covariance structure is used.

24, Epstein and Wang (1994) consider different ways of introducing Knightian uncertainty, including ones
in which there is an important difference between the game with time zero commitment and the game with
sequential choice. Their specification of Knightian uncertainty can result in two-person games in which the
“beliefs”’ are not unique. This leads them to a farm of price indeterminacy, which they link to empirical findings
of excess valatility. In our setup, the “beliefs” turn out to be unique and price indeterminacy is absent.
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process associated with the equilibrium service process {57 }. Then by iterating on (34), we
find

U, - Uféz,:o,__-gﬁf‘—gf,t(d‘gi+ tS.[+t) _2‘:0=0ﬁ1%t(-,-/8‘7-;+15f+:)- (39)

Inequality (39) says that whenever {s,} is strictly preferred to {s7} as reflected by the
associated time zero utility index, (U, > U7), it also costs more. Hence {57} is a solution
to the consumer’s intertemperal optimization problem when the time ¢ value of {s,} 18
computed according to the formula Eioﬁ’_‘x"'f(,,é’iﬂaﬂ), This justifies regarding this
sum as the price of an asset offering a claim to the stream of services {s,}.

If services are not traded “unbundled™, but only as bundles of state and date contin-
gent claims, via the consumption goods, then what we really want is a consumption goods
counterpart to (39), namely

Ua: - Uféz;nzoﬁrugﬁt(u/{fi-{cr'?f) _Zj}za ﬁtugf,((u-él?hici»rt)- (4{})

A formula for the indirect marginal utility of consumption is deduced by ascertaining the
implicit service flow associated with a unit of consumption and then pricing that intertem-
poral bundle. Using this argument, it follows that .47 = M_x, where

M =2[(1+ M+ (1= 8 X2, B ) CAA)IS, - S, (41)

Single-period security pricing

A large body of empirical research has focussed on pricing one-period securities. Imagine
purchasing a security at time ¢ at a price 4., holding it for one time period, then collecting
the dividend and selling it at time 2+ 1 for a total payoff p, ., of the consumption good.
The payoff and price should satisfy

q.= FUBA i/ A NP}, (42)

where _#{ = M_x, is the marginai utility of consumption and the formula for M, is given
in (41). Under robustness, the price-payoff relationship would be given by

q::E;{[ﬁ-.ffﬂf-//ﬂprﬂ}; (43)

where £, is the distorted conditional expectations operator described above. A formula
for g, n terms of the original conditional expectation operator is

Qr:E(mz+l,:pr+l|Jr)s (44)

where the exact specification of m, ., will depend upon whether the robustness or the
risk-sensitivity interpretation is adopted. The two alternatives will be expiored in the next
section. The random variable m, ., has an interpretation as a one-period stochastic dis-
count factor, or alternatively as an equilibrium intertemporal marginal rate of substitution
for the consumption good. The next section will show how risk-sensitivity and uncertainty
aversion are reflected in the usual measure of the intertemporal marginal rate of substi-
tution being scaled by a random variable {that depends on the interpretation—robustness
or risk-sensitivity) with conditional expectation one. We use this multiplicative adjustment
to the stochastic discount factor to increase its variability and to enhance risk premia.
From the ane-period stochastic discount factor, we can easily deduce the “market
price of risk.” For simplicity, think of a one period payoff on an asset as a bundle of two
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attributes: its conditional mean and its conditional standard deviation. In our environ-
ment, these two attributes only partially describe asset payoeffs. Furthermore, we cannot
extract unique prices of the attributes, in part because one of the attributes, the standard
deviation, is a noniinear function of the asset payoff. Nevertheless, like any stochastic
discount factor model, ours conveys information about how these attributes are valued
(see Hansen and Jagannathan, 1991). To see this, consider the covariance decomposition
of the right-hand side of (42)

qr = E:(,U: + I)E:‘(mr+ L,:) + COVr(mt + 1,:,P:+ 1 ):

where cov, denotes the covariance conditioned on time ¢ information. Applying the
Cauchy-Schwarz Inequality, we obtain the price bound

g2 (prs 1 )E (m,, l,r) — std, (m;+ 1,:‘) std, (peet),

where std, denotes the standard deviation conditioned at time ¢. Along the so-called
“efficient frontier”, the “price of risk™ relative to expected return is given by the ratio:
std, (w4 )/ Edm, ) which is commonly referred to as the market price of risk. This
ratio is one way to encode information about how risk averse consumers are at the equilib-
rium consumption process.”” Appendix C describes how to compute the stochastic process
for the market price of risk when ¢ is negative under risk-sensitivity.

6. QUANTIFYING ROBUSTNESS FROM THE MARKET PRICE OF RISK

Because it is not identified from data on consumption and investment, other information
must be used to restrict the risk sensitivity parameter. In this section, we study how risk
sensitivity alters the predicted market price of risk. We then exploit the connection
between risk sensitivity and Knightian uncertainty by computing the magmtude of the
specification errors needed to generate implications comparable to various settings of the
parameter ¢. In particular, we show how allowing for mistakes transmits to the equilib-
rium market price of risk. We are attracted to the interpretation in terms of rabusiness
as a way of confronting an observation of Weil (1989}, who noted how market prices of
risk can be enhanced by risk sensitivity, but at the cost of making the implied risk aversion
“extreme”. Risk aversion has typically been measured by studying choice problems with
unique specifications of the probability laws. That our risk sensitivity parameter has a
nearly equivalent interpretation as reflecting aversion to uncertainty raises hopes for rein-
terpreting implausibly large estimates of risk aversion as coming partly from a “preference
for rébustness.”

Market price of risk

While the risk-sensitivity parameter ¢ and the preference curvature parameter p, are not
identifiabile from quantity data, we now show that they affect the market price of risk. In
Tables 3(a) and 3(b), we report median market prices of risk as functions of the risk
sensitivity parameter for three choices of y,. The tables are constructed using the implied
state vectors obtained by applying the Kalman filter. Where y,=[c, i}, and ‘x,=

25. Gallant, Hansen and Tauchen (1990), Hansen and Jagannathan (1991} and Cochrane and Hansen
(1992} interpret the equity premtium puzzle as the large market price of risk implied by asset market data. The
market price of risk can be expressed as the least upper bound on Sharpe ratios |E ¥, — #fl/std{r,, ) where
¥es1 18 2 one-periad return and # is the one-period riskless return. Thus the Sharpe ratio for the one-periad
return on equity gives a lower bound on the market price of risk.
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(oo ey 1 d dooy dF d7%.Y, we used the Kalman filter to compute
E(x,|ys, ¥~1, ..., ) for each time ¢ in our sample. It can be shown that the conditional
covariance of the time ¢ state vector given time ¢ information converges to zero, implying
that the “hidden™ states should be approximately revealed by the observations. Deviations
around the means of the implied endowment processes under habit persistence are graphed
in Figure 6. We used these fitted states to calculate the median market price of risk over
the sample. In Tables 3(a) and 3(b), we report results for the model estimated with and
without habit persistence, respectively. The tables show how we can achieve a “target”
market price of risk with alternative (o, i) pairs.

Given our high value of the risk free rate (2-3% per annum) and sampling error in
estimates of the market price of risk, model predictions in the range of ¢-075-0-150 seem
a reasonable “target.””® Thus in the absence of risk sensitivity, for the i, specifications

TABLE 3(a}
Median market price of risi (with habir persistence)
FITR 0 —0-00005 -0-0001 —(-00015
18 ' 0-0610 00739 (-0869 4-1000
24 0-0226 0-0575 0-0927 0-1281
30 00139 ¢-0708 0-1283 1865
34 0-1000 0-0890 0-1491 02509
TABLE ¥b)
Median maricet price of visk (no habit persistence, .= 10)
JIP 5 ] —(-00005 -0-0001 —0:00015
18 00182 00221 0-0261 0-0300
24 0-0068 00173 4-0279 0-0385
30 0-0042 00213 0-0383 00557
34 0-0030 0-0262 0-0506 0-0745

26. It is known from the work of Hansen and Jagannathan {1991) that achieving a market price of risk
target is weaker than satisfying the consumption Euler equation. For example, we have not enabled the madel
to explain one of the glaring empirical failures of consumption-based asset pricing models: the abserved lack of
carrelation between the implied intertemporal marginal rates of substitution and stock market returns. For a
description of how to build statistical tests based on market price of risk targets, see Burnside (1994}, Cecchetti,
Lamb and Mark (1994}, and Hansen, Heaton and Luttmer {1995).
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we consider, the market prices of risk are very small. The market price of risk can be
raised by reducing further the parameter 4, but at the cost of enhancing the probability
of satiation in the quadratic preference ordering. But increasing |g| pushes the model
predictions towards more empirically plausible market prices of risk without altering the
satiation probabilities.”” Roughly speaking, introducing habit persistence triples (or mul-
tiples by (1 + 1)) the market price of risk across all of the (u,, ¢} specifications that we
study. This conclusion from Table 3(b) emerges from the estimates from the second (No
habit persistence) column of Table 2. There the parameters governing the exogenous
dynamics are adjusted to match the temporal covariations of consumption and investment
as closely as possible.

Holding fixed ¢ and increasing the preference translation parameter p also enhances
the market price of risk except when ¢ is close to zero. To understand this finding, note
that under risk sensitivity, the stochastic discount factor can be represented as the product

iy T 1.¢ = er+ 1,:m?+ Lts (45)
where
e
f _ ~-/4§/f+l
mz+l,r=ﬁ .
A

is the “familiar” intertemporal marginai rate of substituticn in the absence of risk sensi-
tivity and

exp(ocUi. 1 /2)
Elexp (cUs. /D]

+ -
Wy =

(See Appendix C for an explicit formula for m,,,, in terms of the equilibrium laws of
motion.) When o= 0 this second term is one, and it always has conditional expectation
equal to one. The latter property is what permits us te interpret this second factor as a
pessimistic “distortion” of the conditional expectation operator. Finally, recall that the
market price of risk is simply the (conditional) standard deviation of m,, ,, divided by its
(conditional) mean.

When u, is increased and 6 =10, the single-period utility function is closer to being
linear (risk neutral) over the empirically relevant portion of its domain. As a consequence,
the market price of risk decreases as p, is increased (see the first columns of Tables 3(a)
and 3(b)).

Consider next cases in which {m7,,} is much smoother than {m, .}, so that the
market price of risk is approximately std (#}, | ,[J,). The (conditional) standard deviation
of {my, .} will be large when the distortion in the conditional expectation operator is
large. As i, increases, the representative consumer’s consumption is moved further away
from his ideal point and hence the scope for pessimism is more pronounced. Thus increas-
ing p, enhances the market price of risk.

More generally, the overall impact of increasing u, for a fixed ¢ is ambiguous except
when ¢=0 and depends on the particular features of the calibrated economy. For the

27 Tt can be argued that risk sensitivity is simply repairing a defect in quadratic preferences, a criticisim,
to which we certainly are vulnerable in this paper. The usual measure of relative risk aversion in the absence of
hahit persistence is —~cU7(c)/ U (c). In the case of our quadratic preferences, this is given by </(h — ¢}, which
requires that the bliss paint process be twice the consumption level to attain a risk aversion coefficlent of one.
For an investigation of risk sensitive preferences and lagarithmic utilicy, see Tallarini (1999).
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calculations reported in Tables 3(a) and 3(b), the median market price of risk increases
with g, except when & is near zera.

Market price of visk and robustness

As we have just seen, risk sensitivity introduces an additional (multiplicative) factor
My, into the stochastic discount factor. This factor changes only slightly when risk
sensitivity is reinterpreted as a preference for robustness, When interpreted as a preference
for robustness, we can abstract from the covariance enhancement of the shocks. However,
relative to those reported in Tables 3(a) and 3(b), the numbers for the market price of risk
barely change when computed assuming Kmightian uncertainty rather than risk-sensitive
preferences. :

Let #1;, |, denote the resulting multiplicative factor, so that the composite stochastic
discount factor is

v 1.7 = m?+ I,Em{f -
To aid our understanding, suppose initially that ##f, |, is constant, so the market price of
risk is given by

mpr, = std (w1l | J,).

The first columns of Tables 3(a) and 3(b) suggest that the conditional standard deviation
of 4., is indeed clase to zero for the preference specification used in our calculations.

Under our particular specification of uncertainty aversion, recall that asset prices
are computed using the “pessimistic” view of tomorrow’s shock vector: w, ., 1s normally
distnibuted with conditional mean ¥, and covariance matrix I where ¥, is computed from
the solution to the two-person game. It follows that

M _ exp [_(wr+l_ﬁ:)'(wt+l_ﬁr);2]
[ Y P
exp (—wi . W41 /2)

H

which is the density ratio of the “distorted” relative to the “true” probability distribution.
By a straightforward calculation, it follows that
E [ 1,)"] = exp (979,),
and by construction
Emer )= 1.
Therefare,

std (s, . IJ|JI) =[exp (¥¥,) — l]m = Iﬁr

3

for small distortions. In other words, the market price of risk is approximately equal to
the magnitude of the time ¢ specification error. Our market prices of risk caleulated under
uncertainty aversion are only slightly smaller than those computed under risk sensitivity
due to the small variance adjustment associated with the operator .4

To understand better this approximate mapping from the permissible specification
errors to the market price of risk, consider the following. Under the correct model specifi-
cation, the shock vector is nermally distributed and is normalized to have the i1dentity as
its covariance matrix. Suppose a misspecification takes the form of a conditional mean
distortion of, say, 10% times a direction vector with Euclidean norm one. This direction
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vectar has the same dimension as the shock vector and picks the direction of the con-
ditional mean distortion. This 10% distortion would alter a Gaussian log-likelihood fune-
tion by

0-005 = 2%
2

times the number of time periods in the sample. Thus a distortion of this magmtude would
be hard to detect using a sample like ours, which consists of a little more than one hundred
time periods. Having economic agents allow for distortions of this magnitude gives a
market price of risk of approximately 0-10, assuming that there is no variation in the
usually constructed stochastic discount factor. The fact that a mistake in forecasting w, ..,
could lead to a direct enhancement of the market price of risk by the magnitude of the
mistake is perhaps not surprising. What is conveyed here is how concern for robustness
approximately directs the associated pessimism to returns that are conditionally mean-
standard deviation efficient.

More generally, we expect that || is an upper bound on the approximate enhance-
ment to the market price of risk caused by the concern for robustness. Given the “pessi-
mistic”’ construction of v,, we expect the two components »1/,(, and e, i, of the
stochastic discount factor to be positively correlated. This upper bound is closer to being
attained when the two terms are highly positively correlated.

Measuring Knightian uncertainty

Let v;, and 7, be the two components of ¥, associated with the innovation to the two
endowment shocks. Equation (10) makes these “worst case” specification errors linear
functions of the current Markov state. We report measures of the sizes of the 1, , and
3, processes in Tables 4(a) and 4(b). The tables report the medians in ¥, as well as minima
and maxima over the sample. Like the market prices of risk, these measures are evaluated
at the estimated values of the shock processes (d,, dF) over the estimation period.

Recall from our previous discussion that the enhancement of the market price of risk
caused by Knightian uncertainty is approximately |%| The tables show how |¥| is mostly
composed of specification errors in the shock for the persistent component of income
d*. Figure 7 displays time series estimates of 4 and ¥, for g, = 30, 6= —0-0001. Relative
to the transition density induced by the undistorted model, the distorted mean is a random
walk, as shown in the proof of the observational equivalence proposition.

7. INTERTEMPORAL MEAN-RISK TRADEOFFS

The market price of risk reported above conveys information about the one-period trade-
off between the mean and standard deviation of asset returns as encoded in shadow prices.
We now investigate the implied intertemporal tradeoff between means and standard devi-
ations associated with our alternative configurations of u, and . Specifically, given a
proportionate increase in the innovation standard deviation of an endowment shock, we
aim to compute what proportionate increase in the conditional mean of that component
of the endowment is required to keep the social planner on the same indifference curve.
Initially we answer this question “lecally” by considering small interventions. This imi-
tates in part local measures of risk aversion. However, local measures of risk aversion are
often computed around certainty lines. In our case, we localize around the soluticn to the
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TABLE 4(a)
Median 14 = (with habit persistence)

I 0] —3-00003 —{-0001 —0-00015
18 4] -0:0129 —-0259 —0-038§

0 (—0-0146, —0-0096) (—0-0331,-0-0191) {-0-0494, ~0-0287}
24 1] -0-0349 -0-0698 ~0-1048

(1] (—0-0385,-0-0315) (—-0-0771,-0-0431) (—0-1158, -0-0947)
30 0 —0-0563 —0-1138 —0-1708

(0,0) {—0-0605, —0-0535) (—1211,-0-1071) (—0-1814, -0-1607)
36 ] ~0-0788 —{-1578 —(+2368

(0,0 {—0-0825,-0-0754) {—0-1650, —0-1514) (—0-2478, -0-2267)

TABLE 4(h)
Median iz, » (with habit persistence)

Hy 0 —0-00005 —0-0001 ~0-00015
18 0 —0-0002 ~0-0004 —(3-0005

{0, 0) {—0-0002, —0-0001) (—0-0005, - 0-0003) (—0-0007, -0-0004)
14 (] —0-0005 -0-0010 —3-0015

0,0 {—0-0005, —0-0004) (—0-0011, —0-0009) (—0-0014, -0-0013)
30 0 ~0-0008 ~0016 ~-0024

(0,0 (—0-0009, -0-0008) (—0-0017, —0-0015) {-0-0026, -0-0023}
36 1] -0-0011 —0-0022 —0-0033

0,0 (—3-0012, -0-0011) (—0-0023,-0-0021) (-0-0035,-0-0032)

* Note: Minimum and maximum values are in parentheses below each median.

0.4

-08

1 Il

i

1975 1986

Frourg 7

1985 1990

1995

897

Estimated innovation to &7 (solid line), distorted mean f,., (dashed line}, and sum of innavation and distorted
mean (dotted line) for u, = 30, a = -0.0001
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permanent income optimal resource allocation problem. Our localization permits us to
depict risk-aversion as the ratio of two appropriately chosen intertemporal prices. Thus, '
like the market price of risk, our intertemporal measure of risk aversion also can be
interpreted as a price ratio. We supplement this local experiment with a global one in
which the standard deviation of the shock is set to zero. The intertemporal vantage point
adopted in this section affects the character of the implied measures of risk aversion. The
calculations will be conducted using the “risk-sensitive” decentralization. A corresponding
“robust™ decentralization gives rise to essentially the same numbers.

Local measure of risk aversion

We form a local intertemporal tradeoff between the standard deviation and the mean of
the endowment about the equilibrium process for consumption and investment. Specifi-
cally, given a proportional enhancement of standard deviation of the endowment innec-
vation in all future time periods, we aim to compute what proportional mean increase in
the endowment is required to keep the social planner on the same indifference curve, at
least locally. To perform this computation we attain two “value expansions,” both of
which we describe below. The first-order terms or “derivatives” in these expansions can
be interpreted as prices of appropriately chosen infinitely lived securities.

We implement a “local” modification in the state evolution equation by adopting the
parameterization of the law of motion starting for j2Q as

xf+j+.[ = Aon.;.j + (C+ EG)W;.'. L+/s

where £ is a small positive scalar. A positive £ initiates a change in the innovation standard
deviation starting with date ¢+ 1. Here the matrix & is designed to select one of the
endowment innovations. For example, it can be identical to C except with zeros for entries
associated with the other endowment shock. Let U, = W#(x,) denote the value function
for the resulting control problem indexed by £; we take W as the value function for a
baseline control preblem {say the risk sensitive permanent income model). Let

Xr+i =AQI,+ Cw.r-t-l:

be the corresponding £=0 state evolution equation when the optimal control law is
imposed. We aim to compute an expansion of the form

We(x) = Wx) + e Wy(x) +o(g),

where o£} converges to zero as £ tends to zere uniformly on compact subsets of the state
space. We will derive an asset pricing formulation of W, that, among other uses, facilitates
calculations.

A corresponding experiment delivers a “robust control’ expansion. Alter the inter-
vention that takes place at tune ¢ by introducing “mistakes” in the conditional mean.
Now suppose instead that starting for jz0 we have

Xeajuor = AoX s F(CHEGHWes (4 + Veaj)-

As before the parameter ¢ 1s used to restrain mistakes, rather than to make a risk adjust-
ment in the utility recursion. This perturbed system gives rise to an expansion that, from
a quantitative vantage point, is virtually identical to that we report. The subsequent asset
pricing interpretation also applies, provided that we use the prices for the “robust™ decent-
ralization in place of the prices of the “risk sensitive” decentralization.
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Of course, W* is a translated quadratic function of the state vector. We write this
function as :

We(x) =x"Fx+ph.
The function W, is quadratic
Wd(x) = )C'de + Pa.

In effect, 3, is the derivative with respect to £ of the matrix function €, evaluated at £=
0. Similarly, p, is the derivative with respect to £ of the scalar function p*. Computations
of these derivatives are simplified by the fact that we can abstract from the role of optimiz-
ation of the control vector for small changes in £. This famibiar property follows from the
first-order conditions satisfied by the optimal control law, which imply that the contri-
bution to the value function expansion is second order 10 £. Hence we can compute the
derivatives as if we are holding fixed the control law and hence the state evolution matrix
Aq. The matrix @, can be computed easily as the solution of a Sylvester equation.

Measuring risk aversion by asset pricing

Holding fixed the equilibrium law of motion for consumption, ¥ = S.x,, we can use our
asset pricing formula to evaluate how utility responds to changes in £. To compute the
desired “derivative” of U, with respect to £, we begin by forming a new state vector
process

xf+j - x?ﬂ' =EVer sy (46)

where { v, } evolves according to
Verjrt = AaVeu; ¥ GWos 14,

with y, = 0. Notice the linear scaling in £. A consumption process associated with £ >0 is

=+ ESYery
It follows from our subgradient inequality (40) that

£ 4]
E]_(f;)_;__%_}gzi B A SeVen).

It can be verified that as £ declines to zero, this becomes an equality. Therefore, we can
evaluate the desired “derivative” by using the following asset pricing formula

W) =2 BT (A5 iSeyeei).

This is the time ¢ price, scaled in units of marginal utility, of an infinitely-lived security
with dividend {S.y,.;}.”

To compute the lacal mean-risk tradeoff, we also estimate the utility change associ-
ated with a small change in the conditional mean of the endowment. We capture this

28 Ta perform the computation, first form the state transition equation for the composite state
(x%, ). The transition equation has a block diagonal state matrix with diagonal blacks 4q. The counterpart
to < is constructed by stacking € on top of G. Consumption will be formed by using a matrix (S, 0) and the
dividend will be faormed by {0 S,). Prices can now he computed recursively using a doubling algorithm.
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small change as follows
xra-t— 1= Aﬂxr + 5Dxr + CWH L
3 _ &
Xewjel = onr+j + Oy s

for j=1, 2,.... This envisions the change in the conditional expectation as occurring at
date 1+ 1 continuing into the future and leads us to the time ¢ value-function expansion

Wo(x) = WOx) + §Wy(x) + o(8).

Here W, is a quadratic function of the state vector, which we represent as x’C,x.
Imitating our earlier derivation, we form

XD =x ;= 844 "Dx,.
Notice the linear scaling in 8. The new consumption process can be expressed as
., =&, +8S. AL Dx,.
From our subgradient inequality (39),
W) - Wo%x) o . . -
TSN PSS AT D).

Again we can show that this subgradient is actually a gradient by driving § to zero.
Therefore, our target derivative is given by

Walx) = Y0 B5 0 (A ey S AL DX,

which is the (time ¢ util) price of an infinitely-lived security with dividend {S.4% 'Dx,}.
Thus, {£2,} solves a Sylvester equation.
Using cur two expansions, the compensation measure is

_ x;ﬂdx; + pd - _ Wd(x;}

d,=

LN ) Ll
X180, Walx,)
which we index by 7 to accommodate the change in vantage point as time passes.
TABLE 5
Local mean-risk trade-off
TP a —(-00003 —0-0001 —(-00015
18 0-3182 0-4347 07358 1-9230
24 G L1179 0-3754 39432 31017
3¢ 04723 0-4828 13775 4-7178
15 03522 0-6175 1-8423 64053

In Table 5, we report our {local) intertemporal measures of risk aversion. The effect
of increasing (in absolute value) ¢ has a stronger effect on the mean-risk trade-off than
on the market price of risk (compare Table 5 to Table 3{a)). Increases in y, also have a
slightly greater impact for the trade-off calculation.”

We next verify the local nature of these computations by considering the following
experiment. Let £=—1, which sets to zero the shock variance for the endowment process.

29, Increasing the market price of risk by enlarging fi, has the virtue of further reducing the probability
of satiation. This would appear to increase the mtertermpaoral substitutability of consumption. However, recall
that p1, does not appear in the permanent income decision rule. Thus, by design we have not changed the
consumption-savings behaviour of the consumer as we change y,. On the other hand, some perverse implications
“aff the equilibrium pach™ can occur for large values of fi,.
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By extrapolating the local measures reported in Table 5, the entries in this table should
canvey what fraction of the endowment the consumer would be willing to forego to
achieve this reduction in volatility. Such an inquiry relates to Lucas’ (1987) quantification
of the welfare costs to fluctuations, except that we are using a permanent income maodel
that permits investment (see also Obstfeld (1994) and Tallarini (1999)). From this vantage
point, the numbers in Table 3 lock to be enormous, particularly for the larger (in absolute
value) specifications of ¢. However, that extrapolation of our local measure turns out to
he misleading. To see this, in Table 6 we report global numbers for the £ = —1 experiment
that holds fixed the permanent income decision rule for the two competing specifications
of the endowment process. The global mean-risk tradeoffs are much smaller by a factor
ranging from two to four. Nevertheless, the tradeoffs remain quite large, except when o
is close to zero.™

TABLE &
Gilobal mean-risk trade-off
7 a: 1} —0-00005 —0-0001 —0-00015
18 01247 0-1635 (2440 0-4363
24 (0564 0-1664 (+-3709 0-9206
30 (0355 0-2189 (5495 1-4281
36 00258 02818 0-7393 1-9503

8. CONCLUSIONS

Robert E. Lucas, Jr. (1973} warned us about theorists bearing free parameters. Having
heard Lucas, we devoted this paper to scrutimzing some of the implications for prices and
quantities of a single additional parameter designed to quantify a preference for robust-
ness to specification errors. By exploiting the connection between robustness and the risk-
sensitivity specification of Jacobson (1973) and Whittle (1990}, we have shown how to
decentralize dynamic, stochastic general equilibrium models with a consumer who fears
model misspecification. Formulas for consumption, investment, and the risk-free interest
rate are identical to ones coming from the usual permanent income models. We presented
formulas for the market price of risk, then applied them to account for the market price
of risk observed in the U.S. data.

Like Brock and LeBaron (1996), Brock and Hommes (1994}, Cochrane (1989), Mazr-
cet and Sargent {1989), and Krusell and Smith (1996), we can regard the consumer-inves-
tors in our economy as making “mistakes”, but as managing them differently than do
those in these authors® models.” Qur agents are very sophisticated in how they accommo-
date possible mistakes: they base decisions on worse-case scenarios, following Gilboa and
Schmeidler (1989) and Epstein and Wang (1994).

3. The global numbers would be enhanced a little if we reaptimize when setting the endowment shack
to zero. The solution to a linear-quadratic problem is unappealing in this context because with less uneertainty,
capital ceases to be an attractive way to transform goods from one period to the pext. In light of this, it seems
crucial to reoptimize subject to a nonnegativity constraint on capital. Qur imposition of the suboptimal “perma-
nent income™ consumption rule diminishes the impact of this nonnegativity constraint while possibly misstating
the global tradeoff.

31. Cochrane’s (1989) and Krusell and Smith’s (1996) agents use decision rules that are perturbed by small
amounts in arbitrary directions from optimal ones. Marcet and Sargent’s (1989) agents correctly solve dynamic
programming prohlems, but subject to subtly misspecified constraints: they use estimated transition laws (usually
of the correct functional forms} which they mistakenly take as non-random and time-invariant, See Brock and
LeBaran (1996}, especially their footnote 2, for a lucid explanation of a class of models that mix “adaptatign”—
to induce local instability near rational expectations equilibria—with enough “ratonality” to promote global
attraction toward the vicinity of rational expectations. Brock and LeBaron {1996) and Brock and Hommes
{1994) balance the tension between adaptation and rationality to mimic some interesting return and volume
dvnamics.
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In contrast to Cochrane (1989} and Krusell and Smith (1996), for our permanent
income economy, the quantity allocations are cbhservationally equivalent to those in an
economy in which no “mistakes™ are contemplated. This situation stems partly from the
econometrician’s ignorance of the subjective discount factor. Like Epstein and Wang
(1994} and Melino and Epstein (1995), we focus on how aversion to mistakes transmits
into security market prices. We find that a conditional mean “mistake™ of x% of a unit
norm vector for a multivariate standard normal shock process increases the market price
of risk by approximately x/100.

We have concentrated on a robust interpretation of the permanent income model of
consumption. The permanent income model seemed a natural starting point for exploring
the consequences of robust decision theory, partly because of its simplicity. Recent work
by Carroll (1992} has emphasized a departure from the permanent income model induced
by precautionary savings, low discount factors, and big utility costs to zero consumption.*
As we have emphasized, our reinterpretation of the permanent income model also relies
on smaller discount factors and precautionary savings. It does not, however, permit us to
explore the ramifications of big utility costs to zero consumption, which is central to the
work of Carroll (1992) and others, and which requires nonquadratic objective functions.
However, Anderson, Hansen and Sargent (1998) have shown how the connection between
risk sensitivity and robustness extends to discounted control problems with nonquadratic
criteria and nonlinear, stochastic evolution equations. They formulate a recursive nonlin-
ear robust control problem that applies readily to consumption and savings decisions.

Maybe we take the representative agent paradigm too seriously. We use the represen-
tative agent as a convenient starting point to understand the workings of risk sensitivity
and robustness in decentralized economies. In other settings, we know how heterogeneity
of preferences and incomplete risk sharing affect investment behaviour and the market
price of risk. In our model (and Epstein and Wang’s (1994)), agents agree on the amount
and location of the Knightian uncertainty. Thus, madels like ours can contribute an
additional dimension upon which heterogeneity alters equilibrium quantities and prices.

APPENDIX
A Subgradient inegualiry

This derives the subgradient inequality used for equilibrium pricing. Let U/° denote the ariginal nonpositive
random utility index, &f any other nonpositive random utility index and J a sigma algebra of events. We will
show that

U - Sp(USY SE[VSU - U J1 BV | (47)
where
SP(UY=(2/0) log { Elexp (o U/2}| 7], @)
F=exp(a U/

We assume that Efexp(dU/°/2)|J] and hence .#(L°) is finite with probability ane. Define A= /- /%, and let §
be any real number in (0, 1). Interpret & as determining the magnitude of a perturbation in direction 4. In ather
words, the perturbation away from £ under consideration is 4.

By the convexity of the exponential funetion

exp (oL + A48)/2) —exp (o U/ )2 §h(a /2) 17 {49)

32, See Leland (1968) and Miller {1974) for important early contributions to the literature on precaution-
ary saving.



HANSEN ET AL PERMANENT INCOME 903

This inequality remains true when computing expectations conditioned an J, although either side may be infinite

Elexp[a{U* + D)/ 2|13 - E{exp(o U/ D [ F 12 8(a/E V4|1, {50}
Divide each side of (50} by E(F*|J)
Etexp[otU° + 18/ )/ E{exp (U2} - | 2 8(a/ BV R /B, (51)

Sinee <=8 < 1, (I/°+ hd) is a convex combination of U® and &7 with weights (1 — &) and & respectively. By the
conditional version of the Holder Inequality,

Efexp[o(U*+28}/2]1J} = E(lexp (@U*/D)]' *[exp (6 U/DI1J)

S (Elexp (U2} 7 (Elexp (UM} (31)
Cambining (31) and (52) and dividing by 3, we have that
(1/8)( Elexp (GU/IVEW11)}° — 12(0/DEV R/ E(V| ). (53)

Ta complete the derivation, we use the Familiar approximation result for logarithms
lim (A% - 1)/8= log (A}, (34)
A
where the limit is from above. {This limit can be verified by applying L'Hépital’'s Rule or by using the series
expansian for exp[8 log (A)]). Taking limits of the left side of {33} as § declines to zera yields
lag {Elexp (g U/2)| 7]} —log [ECH* [N 2 (o /D EW R L)/ E(V*| ). (33

The desired inequality (47) is obtained by multiplying both sides of (55) by the negative number (2/q) and
reversing the inequality.

B: Computing prices for state-contingent utility

In this Appendix we provide a characterization of the aperator ., used in pricing state-contingent utility. The
characterization relies on a restriction that the utility index U7, . For notational canvenience, we will suppress
superseripts and subseripts.

Suppose that 2 utility index is quadratic in a narmally distributed random vector xe R”

U=xQx+p, (56)
where Q is a negative semidefinite matrix and p=0. In addition, suppose that
x=p+ Cw, (37

where w is normally distributed random vector with mean zero and covarjance matrix f. Recall that .5 can be
interpreted as a conditional expectation with 4 change of probahility measure. In terms of the notation just
developed, the new probability measure is constructed using P/ EV as a Radon-Nikodym derivative where

V=exp{all/2) e« exp{aw COCw 2 + ow COu). (58}
We can compute expectations with respect to the transformed measure as follows. Let ¢ be any bounded, Borel
measurable function mapping R” —R. Then

E[Vq&]/‘Ech[ diw)exp (ow' CQCw/2 + aw C'Ey1) exp (—w'w/ 2)dw. ' (59}

Naote that
aw' C'QCwW/ 2+ ow' C'Qu — ww /2 = —w'(l — s C'QCIw/2 + Wil ~ o C'QCNT ~ oC'QCY 'a C Sy (60)

Cansequently, the operator on the left side of {39} can be evaluated by integrating ¢ with respect to a normal
density with mean vector

fi=(I-aCQCY aC Oy, (61}
and covariance matrix
L=(f-acQCy (62)

The corresponding mean vector and covariance matrix for x are it + Cf and CEC’, respectively. The .7 operator
will only be well defined so long as aC'QC < £
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C: Computing the conditional variance of the stochastic discount facigr

From equation (45}, we know that »,.,,, the intertemporal marginal rate of substitution between time ¢ and
time £ + | can be written as

. Blexp (o lUl NV 40 ]
r+ e ™ . 1
Elexp (ol /D1 3vid?

(63)

Or as

" _ ﬁ{QXD[U(l/Hlﬂxrfl+P}/2]U’M¢.‘le}
(SN - R
exp [alx/Cx, + A}/ 2Av' M. x,

. (64)

where € and § are given by (8). By applying the results of Appendix B we can compute the mean af m,,,,
conditional on information available at time ¢ The result can be written as

Bt | 2) = BOCM Ax (M x,). {65)

Our present goal is to compute the conditional second moment of #t,., (a5 2 means for computing its conditional
variance. We will accomplish this by manipulating B, 1, 50 that we can transform the probability measure as
in Appendix B with a different function . We have

(VM. xY  explo(xQx + P W Moxio ) {66}

”13+ w=
Multiply the numerator and denominator by the time ¢ conditional mean of the exponential term in the numer-
ator, E{exp [a(x}, Lx,, +p)]|J,}. This gives us

. = BEexp(0(6, Qx + P T} explate 6w+ oV Mo, 4 )
T (MY eploeiQe+ 8] Eexp oG Qx + )G

(67)
This conditional expectation can be computed by using a formula found in Jacobson (1973}, only substituting
2o for o
Elexp[a(x), Qx, .+ mI{J,} = [det (T - 2aCQCN ™ exp [o(x;€dx, + p}]
= explo(x:Qx, + i, (68}
where = A4'[Q+ 26QC0 — 26 C'QCY C'Q 4 and f=—(1/20) logdet (f - 20C'QC) +p. So we get that
Elexplote. Qx. + 004

o I ©)
This gives us
Pl cxdzexp{o[x;(ﬂ Qx,+ 4 - 41} AR (70)
where ﬁﬁ v exp lof{x . Qx,.  + )] So
X
E(mi. A0 = exp {ala(@ - Q)x, + 5~ LAV Mox, 1)), a1

(v M, x,V

where Jf is the transformed conditional expectation operator for a 20 economy. We can evaluate the % term.
in the above expression using results from Appendix B

O Moxee (¥l = X0 A M M, Ax, + trace (V' M, CE ML), (72
where
A=(I+ 20C(f~2oc’QC}-‘c’Q]A, (713
and
&8 =i -20CQCY'C {74

Finally, we know that the conditional variance of m. (. Is given by its conditional second moment minus the
square of its conditional mean.
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