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Abstract

This paper discusses senses in which alternative representations of the preferences

that underlie robust control theory are or are not time consistent. The multiplier pref-

erences of Hansen, Sargent, Turmuhambetova, and Williams (2001) are time consistent
by construction. So too are their constraint preference, provided that continuation en-

tropy is carried along as an additional state variable. Gilboa and Schmeidler's min-max

expected utility theory depicts preferences using multiple prior distributions, a set of

distributions that robust control theory speci�es in a very parsimonious way.

1 Introduction

This paper responds to criticisms by Chen and Epstein (2000) and Epstein and Schneider
(2001) of the decision theoretic foundations of robust control theory and of our work that
builds on robust control theory. They focus on what they regard as an undesirable dynamic
inconsistency in the preferences that robust control theorists implicitly impute to the decision
maker. This paper describes various representations of robust control theory as two-player
zero-sum games, provides senses of time consistency that robust control theories do and do
not satisfy, and defends our opinion that the dynamic inconsistency that concerns Epstein
and his coauthors is not particularly troublesome for economic applications.

Hansen, Sargent, Turmuhambetova, and Williams (2001) used ideas from robust control
theory1 to form a set of time-zero multiple priors for the min-max expected utility theory
of Gilboa and Schmeidler (1989). The idea is to express the set of priors in terms of a
single explicitly stated benchmark model and a constrained family of perturbations to that
model. Hansen, Sargent, Turmuhambetova, and Williams (2001) call the resulting min-max
preferences the constraint preferences because they are formulated directly in terms of a set
of priors represented via a constraint on the magnitude of allowable perturbation from the

�We thank Sherwin Rosen for urging us to write this paper. We thank Nan Li and Martin Schneider for
useful comments on earlier drafts.

1Especially Anderson, Hansen, and Sargent (2000), which builds extensively on Basar and Bernhard
(1995), James (1992) and Petersen, James, and Dupuis (2000).
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benchmark model. In this way, Hansen, Sargent, Turmuhambetova, and Williams (2001)
connected Gilboa and Schmeidler's approach to uncertainty aversion with the literature on
robust control.

As emphasized by Hansen, Sargent, Turmuhambetova, and Williams (2001), the control
law that solves the time-zero robust control problem can also be expressed in terms of a re-
cursive representation of preferences that penalizes deviations from a reference or benchmark
model. These multiplier preferences are distinct from the date zero constraint preferences,
but are related to them in convenient ways via the Lagrange Multiplier Theorem. The
representation as a penalty or multiplier problem is standard in the robust control theory
literature, perhaps because it is most readily conducive to computation.

The multiplier preferences used by Hansen, Sargent, and Tallarini (1999) and Ander-
son, Hansen, and Sargent (2000) are dynamically consistent and have been given axiomatic
underpinnings by Rustichini (2000) and Wang (2001). But Chen and Epstein (2000) and
Epstein and Schneider (2001) assert that the constraint preferences, which link more directly
to Gilboa and Schmeidler (1989), re
ect `dynamically inconsistent' preferences. We shall ar-
gue that the type of dynamic inconsistency to which they refer di�ers from that familiar
to macroeconomists. Indeed the constraint preferences can be depicted recursively by using
an appropriate endogenous state variable. The robust control law can then be viewed as
a Markov solution to a two-player, zero-sum dynamic game. As a consequence, dynamic
programming methods are applicable.

This paper uses dynamic games to shed light on the concerns raised by Epstein and
Schneider (2001). The representation of preferences by Gilboa and Schmeidler (1989) makes
decision problems look like games. The game theoretic formulation has a long history in
statistical decision theory (see Blackwell and Girshick (1954)). We will argue that the form
of dynamic inconsistency that worries Epstein and his co-authors comes from halting the
unfolding of the equilibrium of a two-player game midstream. Their objection amounts to
a quarrel about the types of state variables that should and should not be allowed within
the dynamic game used to model behavior. The state variable used in Hansen, Sargent,
Turmuhambetova, and Williams (2001) arguably requires a form of commitment to the
preferences orders as they are depicted in subsequent time periods.

The remainder of this paper is organized as follows. Section 2 describes Bellman equations
for robust control problems. Section 3 reviews economic reasons for dynamically consistent
preferences. Section 4 describes how dynamic programming applies to robust control prob-
lems. Sections 5 and 6 describe the preference orderings induced by robust control problems
and alternative senses in which they are or are not time consistent. Sections 7, 8, and 9
describe the amounts of commitment, endogeneity, and separability of constraints on model
misspeci�cation built into robust control formulations, while section 10 concludes.
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2 Recursive Portrayal of Robust Control Problems

A recursive version of a robust control problem can be cast in discrete time in terms of the
Bellman equation

V (r; x) = max
c2C

min
q��0;r��0

U(c; x) + �

Z
q�(w)V [r�(w); g(x; c; w)]F (dw)

where the extremization is subject to:

r =

Z
q�(w)[log q�(w) + �r�(w)]F (dw)

1 =

Z
q�(w)F (dw)

In this speci�cation, F is the distribution function for a shock vector w that is assumed to
be independently and identically distributed, c is a control vector, and x is a state vector.
The decision maker's approximating model asserts that next period's realized state is

x� = g(x; c; w)

where w is the realized shock. To generate a class of perturbed models around the approxi-
mating model, the decision maker distorts the shock distribution F by using a nonnegative
density q� that serves as the Radon-Nikodym derivative of the distorted density vis-a-vis the
benchmark approximating model.

We refer to the endogenous state variable r as conditional entropy for reasons discussed
in Anderson, Hansen, and Sargent (2000). It measures the di�erence between two models
and is related to statistical discrimination through the construction of log-likelihood ratios.
The function r� allocates next period's continuation entropy as a function of the realized
shock. The pair (q�; r�) is constrained by the current entropy r. We assume that a discrete
time Isaacs condition makes the order of minimization and maximization irrelevant.

This problem has a special structure. The envelope condition is

Vr(x; r) = Vr(x
�; r�)

which implies a time invariant relation between x and r. As a consequence, we can depict
policies that attain the right side of the Bellman equation as functions only of x: c = �c(x)
and q� = �q(�; x). Moreover, it is convenient to parameterize the problem in terms of a
multiplier

� = Vr(x; r)

that is held �xed over time. Consider instead the control problem associated with the
Bellman equation:

W (x) = max
c2C

min
q��0

U(c; x) + �

Z
q�(w) log q�(w)F (dw) + �

Z
q�(w)W [g(x; c; w)]F (dw) (1)

3



subject to
Z

q�(w)F (dw) = 1

This problem has one fewer state variable, implies the same solutions for q� and c, and is
more manageable computationally. Setting the multiplier � corresponds to initializing the
state variable r.

3 Why Time Consistency?

Johnsen and Donaldson (1985) contribute a valuable analysis of time consistency outside the
context of model misspeci�cation. They want a decision maker follow through with his or
her initial plans as information accrues:

Let us consider a decision maker's dynamic choice problem, as time passes and
the states of the world unfold. Having carried out the current action of his chosen
plan and knowing that state s obtains, he is free to choose any action in the set
Ys. Having ruled out any surprise as to what his remaining options are, if his
choice deviates from the original plan, this may be taken as prima facia evidence
of \changing tastes". If on the other hand, the original plan is carried through
whatever state obtains, we may that the decision maker's tastes remain constant.
His dynamic preferences will then be said to admit time consistent planning.

They also seek preference speci�cations for which there is no incentive to reopen markets at
future dates provided that Arrow-Debreu contingent claims are traded at the outset. Solu-
tions to robust control problems ful�ll the desiderata that Johnsen and Donaldson express
and produce interpretable security market price predictions.

In what follows we describe two additional time consistency issues and comment on their
importance.

4 Dynamic Programming and Markov Perfect Equilib-

ria

One reason for imposing time consistency in preferences is that it guarantees that dynamic
programming methods can be applied. As we shall see, the dynamic inconsistency that
concerns Chen and Epstein (2000) and Epstein and Schneider (2001) does not impede ap-
plication of dynamic programming. Before discussing the kind of time inconsistency that
concerns them, we brie
y another time consistency issue that we view as central in robust
formulations of decision problems. Robust control theorists like James (1992) and Basar
and Bernhard (1995) like to emphasize the link to dynamic games. A recipe for choosing ro-
bust decisions requires a maximizing agent to rank control processes and a second malevolent
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agent whose distortions of probabilities relative to the approximating model induce the max-
imizing agent to prefer robust decisions. Thus prescriptions for robust decisions come from
solving a two-player, zero-sum dynamic game (see Basar and Bernhard (1995) and James
(1992)). An equilibrium of the dynamic game produces a sequence of robust decision rules.
We can study how dynamic games with di�erent timing protocols, manifested in alternative
restrictions on strategies, alter equilibrium outcomes and representations.

In what follows, we use a discrete-time counterpart to the games studied by Hansen,
Sargent, Turmuhambetova, and Williams (2001). Consider a two-player, zero-sum game
in which one player chooses a control process fctg and the other player chooses a belief
process fqt+1g, where qt+1 is nonnegative, depends on date t + 1 information, and satis�es
E(qt+1jFt) = 1: The transition probabilities between dates t and t + � are captured by
multiplying qt+1:::qt+� by the � -period transition probabilities for a benchmark model. A
value process

Vt = U(ct; xt) + �E(qt+1Vt+1jFt)

or

Wt = U(ct; xt) + E [qt+1(� log qt+1 + �Wt+1)jFt]

can be constructed recursively, where E(�jFt) is the expectation operator associated with
the benchmark model and Ft is the sigma algebra of date t events.2 Notice that the date
t recursions depend on the pair (ct; qt+1). No symptom of time inconsistency appears in
these recursions. The robustness games have one player choosing ct by maximizing and the
other choosing qt+1 by minimizing subject to intertemporal constraints, as in the two robust
decision problems described in the previous section.

Time consistency issues are resolved by verifying the Isaacs condition that guarantees
that the equilibrium of the date zero commitment game coincides with the Markov perfect
equilibrium. Whenever the Markov perfect equilibrium is of interest, recursive methods are
known to be appropriate. The equivalence of the equilibria of these two-player zero-sum
games under di�erent timing protocols (e.g., commitment of both players to sequences at
time 0 versus sequential decision making by both players) is central to the results in James
(1992), Basar and Bernhard (1995), and Hansen, Sargent, Turmuhambetova, and Williams
(2001).

The notion of time consistency satis�ed by robust control problems is distinct from
the notion of dynamic consistency that concerns Chen and Epstein (2000) and Epstein and
Schneider (2001). To see the source of the di�erence, recall that when Gilboa and Schmeidler
(1989) construct preferences that accommodate uncertainty aversion, they solve a minimiza-
tion problem over measures for each hypothetical consumption process, instead of computing
values for decision pairs (ct; qt+1), as in the dynamic games. A dynamic counterpart to

2While we have changed notation relative to that used in section 2, there is a simple relation. Since q�

was a function of w before and could be chosen to depend on x, the earlier q� when evaluated at xt and
wt+1 is a Ft+1 measurable random variable.
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Gilboa and Schmeidler's procedure would take as a starting point a given consumption pro-
cess fctg and then minimize over the process fqt+1g, subject to an appropriate constraint.
A time consistency problem manifests itself in the solution of this problem for alternative
choices of fctg, as we will see below. Nevertheless, the presence of this form of time consis-
tency problem does not lead to incentives to re-open markets nor does it subvert dynamic
programming.

5 A Recursive Portrayal of Preferences

Using recursions analogous to the ones described above, we can also de�ne preferences that
minimize over the process fqt+1g. Suppose now that the control is consumption and that
the utility function U depends only on ct, for simplicity.3 To de�ne preferences we construct
a value function for a general collection of consumption processes that are restricted by
information constraints but are not restricted to be functions of an appropriately chosen
Markov state.

We begin with a recursive constraint formulation of preferences in discrete time that uses
a convenient recursive speci�cation of a discounted version of the entropy of a stochastic pro-
cess. We display it in order to understand better the sense in which the resulting preferences
are recursive and to investigate their time consistency.

Given a consumption process fct : t � 0g, de�ne

V �t (r) = min
q�;r�

U(ct) + �E
�
q�V �t+1(r

�)jFt

�
(2)

subject to

r = E [q�(log q� + �r�)jFt] (3)

1 = E(q�jFt);

where now q� and r� are nonnegative Ft+1 measurable random variables. Here we are building
a function V �t (�) from V �t+1(�). The random variable q� distorts the one-period transition
probability. The second restriction in (3) is an adding up constraint that guarantees that
the multiplication by q� produces an alternative probability distribution.

As before, the constraint that entropy be r is used to limit the amount of model misspec-
i�cation that is acknowledged, q� log q� is the current period contribution to entropy, and r�

is a continuation value entropy that connotes the part of entropy to be allocated in future
time periods. The functions V �t are constructed via backward induction. The preferences
are initialized using an exogenously speci�ed value of r0.

Holding � �xed across alternative consumption processes gives rise to a second preference
ordering. This preference-ordering can be depicted recursively, but without using entropy as

3Below we consider a habit persistence speci�cation in which past consumptions are used to construct a
current habit stock that enters U .
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an additional state variable. The alternative recursion is

W �
t = min

q�
U(ct) + �E

�
q�W �

t+1jFt

�
+ �E (q� log q�jFt) ; (4)

which is formed as a penalty problem, where � > 0 is a penalty parameter.
Given two consumption processes, fc1tg and fc2tg we can construct two date zero func-

tions V �0;1 and V �0;2 using (2) for each process. We can rank consumptions by evaluating these
functions at r0. The larger function at r0 will tell us which of the consumption processes is
preferred. For instance, if V �0;1(r0) � V �0;2(r0), then the �rst process is preferred to the second
one. Holding the penalty parameter � �xed di�ers from holding �xed the entropy constraint
across consumption processes, however. The value � that makes the solution of model (4)
deliver that given value of r0 depends on the choice of the hypothesized consumption. Nev-
ertheless, holding �xed � gives rise to an alternative but well de�ned preference order. See
Wang (2001) for axioms that justify these and other preferences.

6 Conditional Preference Orders

Any discussion of time inconsistency in preferences must take a stand on the preference
ordering used in subsequent time periods. We now consider three di�erent ways to con-
struct preference orders in subsequent dates. We focus on the constraint preferences because
the multiplier preferences are automatically time consistent in the sense of Johnsen and
Donaldson (1985).

6.1 Implicit Preferences

Starting from date zero preferences, Johnsen and Donaldson (1985) construct an implied
conditional preference order for other calendar dates, but conditioned on realized events.
They then explore properties of the conditional preference order. As they emphasize, the
resulting family of conditional preference orders is, by construction, time consistent. The
question is whether these preference orders are appealing. To judge this, Johnsen and Don-
aldson (1985) de�ne properties such as history dependence, conditional weak dependence,
and dependence on unrealized alternatives.

At date zero, we can use a common r0 to initialize the constraint preference orders. Two
alternative consumption processes are, however, associated with two alternative speci�ca-
tions fqt+1 : 0 � t � � � 1g and also two processes for continuation entropy r� . In spite of
the separability over time and across states in the objective, the di�erent choices of qt+1 will
cause history dependence. Moreover, V �� (r� ) in states that are known not to be realized will
have an impact on the conditional preference order over states that can be realized based on
date � information. The minimization used in de�ning preferences apparently induces some
unappealing aspects in the implied consumption rankings as time unfolds. In spite of the
recursive construction, all branches in the construction of V �0 remain relevant in reassessing
the consumption preferences from the vantage point of date � .
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These aspects of the implied preference orders in subsequent time periods might seem to
threaten to undermine the applicability of dynamic programming, but in fact they do not.
Moreover, as we will see in section 6.3 there is another and more tractable way to specify
preferences over time.

6.2 Unconstrained Reassessment of Date Zero Models

In an analysis of a continuous-time multiple priors model, Chen and Epstein (2000) take a
di�erent point of view about the intertemporal preference orders. Suppose that the date �
minimizing decision maker uses the date zero family of models but cares only about con-
sumption from date � forward conditioned on date � information. The absence of dependence
on past consumptions is because, at least for the moment, U depends only on ct. Explor-
ing the conditional probabilities implied by the full set of date zero models generates time
inconsistency. The reason is as follows.

The function V �� (�) is constructed via backward induction. But at date � the minimization
suggested by Chen and Epstein (2000) includes minimizing over r� . To make the date �

conditional entropy r� large, the minimizing agent would make small the ex ante probability
of the date � observed information. For instance, suppose that � is one. Then at date one
we consider the problem:

min
q�;r�

V �1 (r
�)

subject to:

r0 = E [q�(log q� + �r�)jF0]

1 = E(q�jF0)

where q� and r� are restricted to be nonnegative and F1 measurable. The objective is to be
minimized conditioned on date one conditioning information. Notice that when q� is zero
for the realized date one information, r� can be made arbitrarily large. Thus the date one
re-optimization becomes degenerate and inconsistent with the recursive construction of V �0 .
The source of the time inconsistency is the ability of the date � minimization to reassign
distorted probabilities that apply to events that have already been realized. To avoid this
problem, Chen and Epstein (2000) argue for separability in the speci�cation of alternative
models across dates and realized events. For instance, instead of the recursive constraint (3)
we could require

E [q�(log q�)jFt] � �t (5)

E(q�jFt) = 1

for an exogenously speci�ed process f�tg.
4

4Alternatively, Epstein and Schneider (2001) suggest that one might begin with a family of models
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6.3 A Better Approach

Our recursive construction of V and V �� suggests a di�erent approach than either the implicit
approach of section 6.1 or the unconstrained reassessment approach of section 6.2. Suppose
that the re-optimization from date � forward does not allow a reassessment of the distortion of
probabilities of events that have already been realized as of date � . That can be accomplished
by endowing the time � minimizing agent with a state variable r� . This state variable is held
�xed at date � when evaluating alternative consumption processes. We use appropriately
constructed valuations V �� (r� ) to rank consumption processes from date � forward. Across
consumption processes, the common value of the state variable r� was chosen earlier (as a
function of date � shocks) and is inherited by the date � decision-maker(s). Conditioning
on this state variable makes contributions from previous dates and from unrealized states
irrelevant.

Distortions of the probabilities of future events that can be realized given current infor-
mation can still be explored by the date � decision-maker. Reallocation of future conditional
relative entropy r� given (3) is permitted at date � . Given our recursive construction, this
more limited type of re-exploration will not cause the preferences to be time inconsistent.

We see very little appeal to the idea of distorting probabilities of events that have already
been realized, and thus are not bothered by limiting the scope of the re-evaluation in this
way. Nevertheless, our formulation does require a form of commitment and a state variable
to keep track of this commitment.

While this approach results in a di�erent family of preference orders than the implicit
approach, the di�erences are inconsequential in recursive control problems. The preferences
remain consistent in the following sense. Consider the re-evaluation of the process fc1tg.
Associated with this process is a continuation entropy r� for date � . Consider an alternative
process fc2tg that agrees with the original process up until (but excluding) time � . If fc1tg
is preferred to fc2tg at date � with probability one, then this preference ordering will be
preserved at date zero.5 The date zero problem allows for a more 
exible minimization, but
this 
exibility will only reduce the date zero value of fc1tg.

6

constrained in accordance with di�erence equation (3) solved forward from date zero. One could then
expand this family of models su�ciently to satisfy their dynamic consistency requirement. In particular, one
might hope to �nd an implied choice of �t's in (5) to support this construction. Unfortunately, the attempted
construction of the �t's would su�er from an analogous problem. The restriction on the density q's in future
periods would be e�ectively removed and the �t's in (5) would have to be in�nite. This proposed repair is
uninteresting for the decision-problems described here because the expanded set of probability models is too
large.

5This can be seen by computing a date zero value for the fc2
t
g using the minimizing distortions between

date one and � .
6See also Epstein and Schneider (2001) for a closely related discussion of a weaker dynamic consistency

axiom.
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7 Commitment

Provided that the date � decision-maker commits to using r� in ranking consumptions from
date � forward, the implied preferences by (2) are made recursive by supposing that the date
� minimizing agent can assign the continuation entropy for date � + 1 chosen as a function
of tomorrow's realized state. A possible complaint about this formulation is that it requires
too much commitment. In ranking consumption processes from date � forward, why should
the r� chosen for a particular consumption process be credibly adhered to?

Some such form of commitment in individual decision-making does not seem implausible
to us. We can debate how much commitment is reasonable, but then it also seems appropri-
ate to ask what leads decision makers to commit to an exogenously speci�ed process f�tg of
entropy distortions speci�ed period-by-period as in (5). Neither our decision-making envi-
ronment nor that envisioned by Chen and Epstein (2000) and Epstein and Schneider (2001)
is, in our view, rich enough to address this question.

8 Endogenous State Variable

Our representation requires an additional endogenous state variable to describe preferences.
The fact that we have carried along that state variable as an argument in the function V �t
distinguishes our formulation from usual speci�cations of preferences in single agent decision
problems. State variables do play a role in other preference orders. For instance, preferences
with intertemporal complementarities such as those with habit persistence include a state
variable constructed from past consumptions called a habit stock.

To illustrate the di�erences between the use of a state variable to depict habit persistence
and the state variable used in our preferences, suppose that the habit stock is constructed
as a geometric weighted average:

ht = (1� �)ct + �ht�1; (6)

for 0 < � < 1. De�ne the date t preferences using

~Vt = U(ct; ht�1) + �E
�
~Vt+1jFt

�
(7)

where (6) is used to build the habit stock from current and past consumption. A feature
of (7) is that we may be able depict date t preferences in terms of consumption from date
t forward and the habit stock ht�1 coming into time t. A state variable ht�1 is used to
de�ne the date t preferences, but this variable can be constructed mechanically from past
consumption.

Consider now two consumption processes fc1tg and fc
2
tg that agree from date zero through

date � � 1 and suppose that h�1 is �xed at some arbitrary number. Thus h1t = h2t for
t = 0; 1; :::; � � 1. If ~V 1

� � ~V 2
� with probability one, then ~V 1

0 � ~V 2
0 with probability one.

This is the notion of time consistency in preferences used by Du�e and Epstein (1992) and
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others, appropriately extended to include a state variable. Habit persistent preferences are
dynamically consistent in this sense, once we introduce an appropriate a state variable into
the analysis. In contrast to the conditional entropy rt, the habit stock state variable ht�1

can be formed mechanically from past consumptions. There is no reference to optimization
needed to construct ht�1 when we compare consumption processes with particular attributes.

In contradistinction, our state variable r� cannot be formed mechanically in terms of
past consumption. It is constructed through optimization and is therefore forward-looking.
This might seem unattractive because it makes the date � preferences look `too endogenous'.
The forward-looking nature of this variable makes it depend on unrealized alternatives. (See
Epstein and Schneider (2001) for an elaboration on this complaint.) Thus we are using state
variables of a rather di�erent nature than occur with time nonseparable preferences. If we
condition on an initial r0 and compare consumption processes that agree between dates zero
and � � 1, we will not necessarily be led to use the same value of r� .

A complaint about being too endogenous is perhaps not so devastating. Proponents
of habit persistence like to emphasize the endogeneity of the resulting preference ordering.
While the habit-stock state variable can be formed mechanically, along a chosen consumption
path the realized habit stock will typically depend on beliefs about the future and be forward-
looking. This feature is emphasized in models of \rational addiction" and is an attribute for
which apologies are not o�ered.7 Whenever we have history dependence in preference orders,
along a chosen consumption path the date � preference order will depend on `unrealized
alternatives' through the endogeneity of the state variable. Just as minimization induces
this dependence in our investigation, utility maximization will induce it along a chosen
path. The time consistency problem in preferences over consumption processes comes from
studying half of a two-player, dynamic game.

9 Separable Entropy

Our aim in studying preferences for robustness is to explore extensions of rational expec-
tations that accommodate model misspeci�cation. We seek convenient ways to explore the
consequences of decisions across dynamic models with similar observable implications. Sta-
tistical discrimination leads us to study relative likelihoods. By their very nature, likelihood
ratios involve intertemporal tradeo�s.

To accommodate misspeci�cation in a dynamic evolution equation using a separable
speci�cation would seem to require some form state dependence in the constraints. For
instance, many interesting misspeci�cations of a �rst-order autoregression would require a
state-dependent restriction on the one-period conditional entropy. This state dependence
is permitted by Chen and Epstein (2000) and Epstein and Schneider (2001) but its pre-
cise nature is in practice left to the researcher or decision-maker.8 It is intractable to ex-

7A form of commitment is also present in habit persistent models since the date � decision-maker remains
`committed' to past experience as measured by the habit stock h��1.

8Epstein and Schneider (2001) feature state dependence in one of their examples.
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plore misspeci�cation that might arise from arbitrary state dependence in the setting of �t
period-by-period. For this reason we have considered nonseparable speci�cations of model
misspeci�cation with explicit intertemporal tradeo�s.

We achieve computational tractablity in part by our separable speci�cation of an entropy-
penality for distortioning q�. (See the contruction for W in (1).) But this di�ers from
adopting a separable constraint on the date t conditional entropy9; 10

E
�
log(q�t+1)q

�
t+1jFt

�
� �t:

A virtue of the robust control theory approach is that it delivers state dependence in the
implied �t's from a low parameter representation. For instance, we could back-solve �t from
our date zero commitment problem via the formula:

�t = rt � �E
�
q�t+1rt+1jFt

�
where frtg is the date t continuation entropy. However, back-solving for the �'s will typically
not produce identical decisions and worst case distortions as would emerge from simply
exogenously specifying the �'s. In the separable constraint speci�cation, the minimization
problem for q�t+1 will take account of the fact this choice will alter the probabilities over
constraints that will pertain in the future. That will result in di�erent valuation processes
and may well lead to a substantively interesting di�erences between the two approaches.

Nevertheless, this back-solving remains interesting in our investigation because of its
links to maximum likelihood estimation and statistical detection. See Anderson, Hansen,
and Sargent (2000) for a discussion. Just as a Bayesian explores when a given decision rule
is a Bayes rule and evaluates that rule by exploring the implicit prior, we may wish to use
the implied f�tg process to understand better the probability models that are admitted in
robust control problems.11

10 Concluding Remarks

In all approaches to robustness and uncertainty aversion, the family of candidate models is ad
hoc. Savage's single-prior theory and multi-prior generalizations of it are not rich enough to

9For su�ciently nice speci�cations of the state dependence, presumably tractable recursive computation
methods can also be developed to solve sparable-constraint models.

10By extending the notions of dynamic consistency used by Epstein and Schneider (2001) to include state
variables like those that support habit persistence, we suspect that separability in the construction of this
constraint will no longer be required. Instead of being speci�ed exogenously, the �t's will possibly also depend
on the same state variables used to capture more familiar forms of time nonseparability. In particular, �t
might depend on past consumptions. Martin Schneider concurred with this guess in private correspondence.

11Thus it might illuminate situations in which our continuation entropy approach is not very attractive
relative to an approach with an exogenous speci�cation of f�tg. For instance, if it is optimal to `zero out'
the exposure to risk in some given date, the minimizing agent will chose not to distort beliefs at that date
and approximation errors will be allocated in future dates. If the f�tg were instead exogenously set to be
positive, then multiple beliefs would support the no exposure solution and change substantially the pricing
implications.
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produce beliefs for alternative hypothetical environments. A virtue of rational expectations
is that it delivers one well de�ned endogenous speci�cation of beliefs, and predicts how
beliefs change across environments. Robust control theory does too, although it is not clear
that r0 or �t should have the status of a policy invariant parameter to be transferred from
one environment to another.12 What is transportable under hypothetical interventions is
an important question that can only be addressed with more structure or information from
other sources.

Nevertheless, the development of computationally tractable tools for exploring model
misspeci�cation and its rami�cations for modeling dynamic economies should focus on what
are the interesting classes of candidate models for applications. It would impede this endeavor
if we were to remove robust control methods from economists' toolkit, since these methods
have been designed to be tractable.
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