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Abstract

Max-min expected utility theory uses multiple prior distributions to represent a
decision maker’s uncertainty aversion. Robust control theory models a decision maker
who fears that the data are generated by an unknown perturbation of his approximating
model. We link the two approaches by interpreting the set of perturbations in robust
control theory as the multiple priors of the max-min expected utility theory. Using
a Brownian motion information structure, we construct recursive versions of max-min
expected utility theory and robust control theory.

1 Introduction

This paper links the max-min expected utility theory of Gilboa and Schmeidler (1989) to ap-
plications of stochastic robust control theory by James (1992), Petersen, James, and Dupuis
(2000), and Anderson, Hansen, and Sargent (2000). The max-min expected utility theory
represents uncertainty aversion with preference orderings over stochastic processes of deci-
sions c and states x, for example, of the form

inf
q∈Q∗Eq

[∫ ∞

0

exp(−δt)U(ct, xt)d t

]
(1)

where Q∗ is a convex set of probability measures over (c, x) and δ is a discount rate. We
shall call c consumption and include the state vector x in U to accommodate time nonsepa-
rabilities. Gilboa and Schmeidler’s theory represents aversion to uncertainty by minimizing
over Q∗, but leaves open how to specify Q∗ in particular applications.

Criteria like (1) also appear as objective functions in robust control theory, where min-
imization over Q∗ promotes robustness to misspecification of the decision maker’s single

∗We thank Fernando Alvarez, Gary Chamberlain, Ivar Ekeland, Christian Gourieroux, Peter Klibanoff,
Michael Allen Rierson, Aldo Rustichini, Jose Scheinkman, Christopher Sims, Nizar Touzi, and especially
Costis Skiadas for valuable comments on an earlier draft. Sherwin Rosen encouraged us to write this paper.
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explicitly specified approximating model, which lies in the interior of Q∗. Robust control
theory generates Q∗ by statistically perturbing that approximating model. By contemplat-
ing perturbations, the decision maker acknowledges possible model misspecification. Robust
control theory represents Q∗ implicitly through a positive parameter θ that penalizes relative
entropy, a measure of model misspecification, thereby capturing the idea that the decision
maker’s model is a good approximation. This penalty parameter appears in a ‘multiplier
problem’ related to but distinct from (1). This paper describes how to transform that mul-
tiplier problem into a ‘constraint problem’ like (1). The constraint and multiplier problems
differ in subtle ways, but the Lagrange multiplier theorem (Luenberger, 1969, pp. 216-221)
connects them. The two problems imply different preference orderings over {ct} that nev-
ertheless lead to the same decisions. We describe the senses in which the multiplier and
constraint problems are both recursive, and therefore how both are time consistent. To facil-
itate comparisons to Anderson, Hansen, and Sargent (2000) and Chen and Epstein (2000),
we cast our discussion within continuous-time diffusion models. The Brownian motion in-
formation structure simplifies the solution to the stochastic version of the robust control
problem.

Solutions of both problems satisfy Bellman equations. However, to make the constraint
problem recursive requires augmenting the state to include a continuation value for relative
entropy and also adding the increment to that continuation value to the control set of the
minimizing agent. Because it involves fewer states and controls, the multiplier problem is
easier to solve.

We also describe the constraints on the allocation of relative entropy over time that are
implicit in the recursive version of the constraint problem. Our recursive formulation makes
the minimizing agent ‘let bygones be bygones’ by requiring that at each point in time he
explores misspecifications that allocate continuation entropy only across yet to be realized
events. We argue that this class of misspecifications should concern the decision maker as
time unfolds.

We reinterpret a robust decision rule in two ways. First, under a Bellman-Isaacs condi-
tion, there exists a particular probability specification for the Brownian motion under which
the robust control law is optimal in a Bayesian sense. This probability law is obtained by a
pessimistic twisting of the probability distribution associated with the approximating model.
If the approximating model were actually true, this Bayesian decision maker would not have
rational expectations (the objective and subjective probability distributions would differ).

A second reinterpretation of a robust decision rule maintains the original Brownian mo-
tion model and rational expectations under the approximating model, but makes the pref-
erences of the decision-maker more risk sensitive. Risk-sensitive control theory, as initiated
by Jacobson (1973), provides a tractable way to let decision rules be more responsive to risk
by imposing an exponential adjustment to the instantaneous return function of the decision-
maker. A variety of results in the control theory literature link risk-sensitivity to a concern
about robustness, e.g. see James (1992). Hansen and Sargent (1995) and Anderson, Hansen,
and Sargent (2000) formulate a risk-sensitive objective by using the recursive utility theory
of Epstein and Zin (1989), Duffie and Epstein (1992) and Schroder and Skiadas (1999) to
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make an exponential risk adjustment to continuation values. Using recursive utility theory,
Anderson, Hansen, and Sargent (2000) re-establish the robustness/risk-sensitivity connection
for continuous-time Markov process models.

The remainder of this paper is organized as follows. Section 2 describes a standard
stochastic control problem without concern about model misspecification. Section 3 defines
and compares ‘time-zero’ versions of the multiplier and constraint robust control problems,
each of which is posed as a zero-sum two-person game under mutual commitment to stochas-
tic decision processes at time zero by an initial decision maker and a malevolent nature. To
measure model misspecifications, section 3 defines relative entropy for stochastic processes,
and section 4 obtains representations for stochastic perturbations that are useful for solving
commitment and recursive robust control problems. Section 5 then shows how the multi-
plier problem can be solved recursively. There we state a Bellman-Isaacs condition under
which there is tight connection between the Markov perfect equilibrium and the date zero
commitment equilibrium. Section 6 shows how to deduce the probability specification that
renders robust control processes optimal in a Bayesian sense. In section 7, we discuss the
connections between our robust control problems and the particular form of recursive utility
known as risk sensitivity. Section 8 returns to the constraint problem, and shows how it can
be solved recursively by augmenting the state and control vectors appropriately. Section 9
briefly compares and discusses Bellman equations for the multiplier problem, the constraint
problem, and the risk sensitive control problem. Section 10 defines and compares two prefer-
ence relations over consumption sequences that are inspired by the multiplier and constraint
robust control problems. Section 11 describes how both of these preference relations can be
represented recursively. Section 12 uses a rectangular prior specification in the spirit of Chen
and Epstein (2000) to reinterpret a robust decision problem. Section 13 concludes.

2 A Benchmark Resource Allocation Problem

As a benchmark for the rest of the paper, this section poses a discounted, infinite time
horizon optimal resource allocation problem in which the decision maker knows the model,
and so has no concern about robustness to model misspecification. Later sections of the
paper will assume that the decision maker regards his model as an approximation to some
nearby unknown model that actually governs the data.

Let {Bt : t ≥ 0} denote a d-dimensional, standard Brownian motion on an underlying
probability space (Ω,F , P ). Let {Ft : t ≥ 0} denote the completion of the filtration generated
by this Brownian motion. For any stochastic process {gt : t ≥ 0}, we use g or {gt} to denote
the process and gt to denote the time t-component of that process. The actions of the
decision-maker form a progressively measurable stochastic process {ct : t ≥ 0}, which means
that the time t component ct is Ft measurable.1 Let U be an instantaneous utility function

1Progressive measurability requires that we view c
.= {ct : t ≥ 0} as a function of (t, ω). For any t ≥ 0,

c : [0, t] × Ω must be measurable with respect to Bt × Ft where Bt is a collection of Borel subsets of [0, t].
See Karatzas and Shreve (1991) pages 4 and 5 for a discussion.
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and C be the set of admissible control processes.

Definition 2.1. Our benchmark control problem is:

sup
c∈C

E

[∫ ∞

0

exp(−δt)U(ct, xt)d t

]
(2)

subject to:
dxt = µ(ct, xt)dt+ σ(ct, xt)dBt (3)

where x0 is a given initial condition.

Later we shall alter the Brownian specification for B to allow for model uncertainty.
We restrict µ and σ so that any progressively measurable control c in C implies a pro-

gressively measurable state vector process x. We maintain

Assumption 2.2.

sup
c∈C

E

[∫ ∞

0

exp(−δt)U(ct, xt)d t

]
subject to (3) is finite.

Thus the objective for the control problem without model uncertainty has a finite upper
bound.

We express a concern for robustness in terms of a family of stochastic perturbations to
the Brownian motion process and measure these perturbations with relative entropy.

3 Robust Control Problems

In this section we pose two robust control problems and describe their relation. One prob-
lem is more convenient for computation while the other expresses an intertemporal version
of preferences that conform to axioms of Gilboa and Schmeidler (1989) for portraying uncer-
tainty aversion. We begin with a setting in which the maximizing and minimizing decision
makers both choose once and for all at date zero.

Just as a random variable induces a probability distribution over the real line, the d-
dimensional Brownian motion induces a distribution on a canonical space (Ω∗,F∗) defined
as follows. Let Ω∗ be the space of continuous functions f : [0,+∞) → R

d. Let F∗
t be the

Borel sigma algebra for the restriction of the continuous functions f to [0, t], where open sets
are defined using the sup-norm over this interval. Notice in particular that ιs(f) = f(s) is
F∗

t measurable for each 0 ≤ s ≤ t. Let F∗ be the smallest sigma algebra containing F∗
t for

t ≥ 0. An event in F∗
t restricts the properties of the continuous functions only on the finite

interval [0, t]. The Brownian motion B induces a multivariate Wiener measure on (Ω∗,F∗),
which we denote q0.
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3.1 Absolute Continuity

We are interested in probability distributions that are absolutely continuous with respect to
Wiener measure. For any probability measure q on (Ω∗,F∗), we let qt denote the restriction
to Ft

∗. In particular, q0
t is the multivariate Wiener measure over the event Ft

∗.

Definition 3.1. A distribution q is said to be absolutely continuous over finite intervals
with respect to q0 if qt is absolutely continuous with respect to q0

t for all t.2

Let Q be the set of all distributions that are absolutely continuous with respect to q0 over
finite intervals.

Remark 3.2. To capture the idea that they are difficult to detect from samples of finite
length, we require that perturbations to an approximating model be absolutely continuous with
respect to it over finite intervals. Finite interval absolute continuity is weaker than absolutely
continuity. When q is absolutely continuous with respect to q0 over finite intervals, a strong
Law of Large Numbers that applies to a process constructed with shocks dB̂t governed by
q0 would not necessarily also apply if the shock process were governed by q instead. Time
series averages that converge almost surely under q0 may not converge under q, so that q can
be distinguished from q0 given an infinite amount of data.3 Absolute continuity over finite
intervals, however, is sufficient to allow us to construct likelihood ratios between models for
finite histories at any calendar date t.

3.2 Relative Entropy

To limit the alternative models that the decision-maker entertains, we now construct a
relative entropy measure for a perturbed stochastic process. Form Ω̃ = Ω∗ × R

+ where R
+

is the nonnegative real line. Form the corresponding sigma algebra F̃ as the smallest sigma
algebra containing F∗

t ⊗ Bt for any t where Bt is the collection of Borel sets in [0, t]; and
form q̃ as the product measure q with an exponential distribution with density δ exp(−δt)
for any q ∈ Q.

Consider a progressively measurable family φ
.
= {φt : t ≥ 0} on (Ω∗,F∗). The q̃ expecta-

tion of φ is by construction ∫
φdq̃ = δ

∫ ∞

0

exp(−δt)
∫
φtdqtdt

which is an exponential average.

2Kabanov, Lipcer, and Sirjaev (1979) refer to this concept as local absolute continuity. Although Kabanov,
Lipcer, and Sirjaev (1979) define local absolute continuity through the use of stopping times, they argue
that their definition is equivalent to this “simpler one”.

3Our specification allows Q measures to put different probabilities on tail events, which prevents the
measures from merging as Blackwell and Dubins (1962) show will occur under absolute continuity. See Kalai
and Lerner (1993) and Jackson, Kalai, and Smordoninsky (1999) for implications of absolute continuity for
learning.
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We measure the discrepancy between the probability distributions q0 and q as the relative
entropy between q̃ and q̃0:4

R∗(q) = δ

∫ ∞

0

exp(−δt)
(∫

log

(
dqt
dq0

t

)
dqt

)
dt (4)

Here dqt

dq0
t

is the Radon-Nikodym derivative of qt with respect to q0
t .

Lemma 3.3. R∗ is convex on Q.

Proof. Relative entropy is known to be convex in the product measure q̃. Consider two
measures q̃1 and q̃2 formed from the product of q1 and q2 with the exponential distribution
with parameter δ. Then a convex combination of q̃1 and q̃2 is given by the product of the
corresponding convex combination of q1 and q2 with the same exponential distribution.

3.3 Two Robust Control Problems

We now have the vocabulary to state two related robust control problems. We use Q as
a family of distortions to the probability distribution. Initially we state the robust control
problems in terms of the induced distributions. This facilitates Lagrange multiplier methods.
Given a progressively measurable control c we solve the stochastic differential equation (3)
to obtain a progressively measurable utility process

U(ct, xt) = υt(c, B)

where υ(c, ·) is a progressively measurable family in (Ω∗,F∗). In what follows we will drop
the second argument of υt when we integrate using induced distributions. With this notation,
the objective can be represented as:∫ ∞

0

exp(−δt)
(∫

υt(c)dqt

)
dt.

Notice that this representation incorporates the state evolution. Our benchmark control
problem uses q0 for q.

We consider two robust control problems:

Definition 3.4. A multiplier robust control problem is:

J̃(θ) = max
c∈C

min
q∈Q

∫ ∞

0

exp(−δt)
(∫

υt(c)dqt

)
dt+ θR∗(q). (5)

4Other measures of relative entropy for stochastic processes occur in the literature on large deviations.
For example, see Dupuis and Ellis (1997) page 299. As presented, our entropy measure is an exponential
weighted average of entropies of joint densities dqt, dq0t indexed by t. We will subsequently show that our
measure can also be viewed as a discounted integral of entropies of the continuous-time counterpart of
conditional densities indexed by t.
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Definition 3.5. A constraint robust control problem is:

J∗(η) = max
c∈C

min
q∈Q(η)

∫ ∞

0

exp(−δt)
(∫

υt(c)dqt

)
dt (6)

where Q(η) = {q ∈ Q : R∗(q) ≤ η}.
The first problem is a stochastic counterpart to ones found in the robust control theory
literature. The second embodies a date-zero version of the multiple priors model advocated
by Gilboa and Schmeidler (1989), and is analogous to (1) if we let Q∗ = Q(η). Consistent
with these definitions, in what follows we suppose that inf’s and sup’s are attained.

3.4 Relation Between Problems

As is typical in penalty formulations of decision problems, we can interpret the robustness
parameter θ in the first problem as a Lagrange multiplier on the specification-error constraint
R∗(q) ≤ η. This connection is regarded as self-evident throughout the literature on robust
control and has been explored in the context of a linear-quadratic control problem, informally
by Hansen, Sargent, and Tallarini (1999), and formally by Hansen and Sargent (2001b). Here
we study this connection within our continuous time stochastic setting, relying heavily on
developments in Petersen, James, and Dupuis (2000) and Luenberger (1969).

As a consequence of Assumption 2.2, the optimized objectives for the multiplier and
constraint robust control problems must both be less than +∞. These objectives could be
−∞, depending on the magnitudes of θ and η.

We use θ to index a family of multiplier robust control problems and η to index a family
of constraint robust control problems. We call admissible only those nonnegative values of
θ for which it is feasible to make the objective function greater than −∞. If θ̂ is admissible,
values of θ larger than θ̂ are also admissible, since these values only make the objective
larger. Let θ denote the greatest lower bound for admissible values of θ.

Given an η > 0, add −θη to the objective in (5). For a given value of θ this has no impact
on the control law.5 We motivate this subtraction by the Lagrange multiplier theorem (see
Luenberger (1969, pp. 216-221)) and use the maximized value of θ to relate the multiplier
robust control problem to the constraint robust control problem.

For a given c, the objective of the constraint robust control problem is linear in q and
the entropy measure R∗ in the constraint is convex in q. Moreover, the family of admissible
probability distributions Q is itself convex. We formulate the constraint version of the robust
control problem as a Lagrangian:

max
c∈C

min
q∈Q

max
θ≥0

∫ ∞

0

exp(−δt)
(∫

υt(c)dqt

)
dt+ θ [R∗(q) − η] .

It is well known that the optimizing multiplier θ is degenerate for many choices of q. It
is infinite if q violates the constraint and zero if the constraint is slack. Thus we allow for

5However, it will alter which θ results in the highest objective.
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θ = +∞ as part of the choice set for θ. We can exchange the order of the maxθ and minq

and still support the same value of q. The Lagrange Multiplier Theorem allows us to study:

max
c∈C

max
θ≥θ

min
q∈Q

∫ ∞

0

exp(−δt)
(∫

υt(c)dqt

)
dt+ θ [R∗(q) − η] . (7)

Unfortunately, the maximizing θ in (7) depends on the choice of c. In solving a robust
control problem, we are most interested in the c that solves the constraint robust control
problem. We can find the appropriate choice of θ by changing the order of maxc and maxθ

to obtain:

max
θ≥θ

max
c∈C

min
q∈Q

∫ ∞

0

exp(−δt)
(∫

υt(c)dqt

)
dt+ θ [R∗(q) − η]

Let maxθ to be attained at the optimizing value θ∗. When we fix θ at θ∗ we are led to solve

max
c∈C

min
q∈Q

∫ ∞

0

exp(−δt)
(∫

υt(c)dqt

)
dt+ θR∗(q),

which is the multiplier robust control problem (3.4). We can drop the term −θ∗η from the
objective without affecting the extremizing choices of (c, q) because we are holding θ fixed
at θ∗.

Claim 3.6. Suppose that for η = η∗, c∗ and q∗ solve the constraint robust control problem.
Then there exists a θ∗ ∈ Θ such that the multiplier and constraint robust control problems
have the same solution.

Proof. This result is essentially the same as Theorem 2.1 of Petersen, James, and Dupuis
(2000) and follows directly from Luenberger (1969).

Luenberger (1969) describes the following algorithm for constructing the multiplier. Let
J(c∗, η) satisfy:

J(c∗, η) = min
q∈Q

∫ ∞

0

exp(−δt)
(∫

υt(c
∗)dqt

)
dt

subject to R∗(q) ≤ η. As argued by Luenberger (1969), J(c∗, η) is decreasing and convex in
η. Given η∗, we let θ∗ be the negative of the slope of the subgradient of J(c∗, ·) at η∗. In
other words, θ∗ is the absolute value of the slope of a line tangent to J(c∗, ·) at η.

This argument shows how to construct θ∗ given η∗. It also suggests how to reverse the
process. Given θ∗, we find a line with slope −θ∗ that lies below J(c∗, ·) and touches J(c∗, ·)
at a point η∗.

This argument fails however to account for the fact that the optimized choice of c may
change as we alter η. Replacing J(c∗, ·) by J∗ from Definition 3.5 accounts for the optimiza-
tion with respect to c and can sometimes be used in the construction. To study this further,
consider the maximized objective J̃ from Definition 3.4. Then

J̃(θ) = max
c∈C

min
η≥0

J(c, η) + θη.

We shall study the consequences of the following assumption:
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Assumption 3.7. For any θ > θ

J̃(θ) = max
c∈C

min
q∈Q

∫ ∞

0

exp(−δt)
(∫

υt(c)dqt

)
dt+ θR∗(q)

= min
q∈Q

max
c∈C

∫ ∞

0

exp(−δt)
(∫

υt(c)dqt

)
dt+ θR∗(q).

Both equalities assume that the maximum and minimum are attained. More generally,
we expect the second equality to be replaced by ≤ because minimization occurs first. Section
5 tells how to verify Assumption 3.7 and discusses some of its ramifications.

Notice that

J̃(θ)
.
= max

c∈C
min
q∈Q

∫ ∞

0

exp(−δt)
(∫

υt(c)dqt

)
dt+ θR∗(q) (8)

≤ min
η≥0

max
c∈C

J(c, η) + θη

≤ min
η≥0

J∗(η) + θη

= min
q∈Q

max
c∈C

∫ ∞

0

exp(−δt)
(∫

υt(c)dqt

)
dt+ θR∗(q).

When Assumption 3.7 is satisfied, all of the inequalities become equalities, and

J̃(θ) = min
η≥0

J∗(η) + θη. (9)

Earlier we showed that the function J(c∗, η) is convex and decreasing in η. Because it is the
maximum of decreasing convex functions, the function J∗ in Definition 3.5 is decreasing and
convex in η . Equality (9) shows that J̃ is the Legendre transform of J∗, which is known to
be increasing and concave. The Legendre transform can be inverted to recover J∗ from J̃ :

J∗(η) = max
θ≥θ

J̃(θ) − ηθ. (10)

For a value of θ∗ > θ, formula (9) gives a corresponding value η∗ as a solution to a maximiza-
tion problem. For this η∗, formula (10) guarantees that there is a solution q∗ with relative
entropy η∗.

Claim 3.8. Suppose that Assumption 3.7 is satisfied and that for θ > θ, c∗ is the maximiz-
ing choice of c for the multiplier robust control problem 3.4. Then that c∗ also solves the
constraint robust control problem 3.5 for η = η∗ = R∗(q∗) where η∗ solves (9).

Claims 3.6 and 3.8 fully describe the mapping between the magnitudes of the constraint η
and the multiplier θ. However, given η∗, they do not imply that the associated θ∗ is unique,
nor for a given θ∗ > θ do they imply that the associated η∗ is unique. While Claim 3.8
maintains Assumption 3.7, Claim 3.6 does not. Thus, without Assumption 3.7, for some
values of θ a solution pair (c∗, q∗) of the multiplier problem cannot necessarily be interpreted
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as a solution to the constraint problem. Nevertheless, it suffices to limit attention to the
family of multiplier problems because for any constraint, we can find a multiplier problem
with the same solution pair (c∗, q∗).

Section 5 describes sufficient conditions for Assumption 3.7. Our interest in these con-
ditions extends beyond Claim 3.8 because they are informative about when solutions to the
multiplier problem are recursive.

3.5 Bayesian Interpretation

Although Gilboa and Schmeidler (1989) suggest an alternative to the Bayesian notion of
optimality, it is helpful to understand how a concern for robustness produces an implicit
prior distribution that could be used to justify a robust decision rule in Bayesian terms.
Assumption 3.7 allows us to construct a model for the shock process B under which the
robust decision rule is optimal in a Bayesian sense.

Consider the control problem:

max
c∈C

∫ ∞

0

exp(−δt)
(∫

υt(c)dqt

)
dt.

This problem takes as given the distortion q in the distribution of the Brownian motion.
The optimal choice of a progressively measurable c responds to this distortion but does
not presume to influence it. This optimized solution for c is not altered by adding θR∗(q)
to the objective. Thus Assumption 3.7 allows us to support a solution to the multiplier
problem by a particular distortion in the Brownian motion. The implied least favorable q∗

is a valid probability distribution for the exogenous stochastic process {Bt : t ≥ 0}, and c∗ is
the ordinary (non robust) optimal control process given that distribution. In the language
of Bayesian decision theory, we can depict c∗ as a Bayesian solution for a particular prior
distribution over {Bt : t ≥ 0}. (See Blackwell and Girshick (1954) and Chamberlain (2000)
for related discussions.)

A similar argument applies to the constraint version of the robust control problem. Since
the maximum of convex functions is convex,

max
c∈C

∫ ∞

0

exp(−δt)
(∫

υt(c)dqt

)
dt+ θR∗(q)

is convex in q. From the Legendre transform,

J∗(η) = max
θ≥θ

min
q∈Q

max
c∈C

∫ ∞

0

exp(−δt)
(∫

υt(c)dqt

)
dt+ θ[R∗(q) − η].

The parameter θ can now be interpreted as a Lagrange multiplier on the entropy constraint
and is optimized to produce the worst-case distribution q∗ that respects this constraint.
Again we can view the optimized control process c∗ from the inner-most maximization as a
Bayesian solution to the control problem.
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4 Parameterizing Perturbations

For conceptual and computational simplicity, we now reformulate the multiplier version of a
robust control problem as a two-player, zero sum, stochastic differential game. This allows
us to choose a probability measure and a control sequence recursively. We accomplish this
by reverting to the original probability space (Ω,F , P ) and by representing the alternative
probability specifications either as martingales or as perturbations on this space. The mar-
tingale formulation compels us to add a state variable to the control problem posed in section
2 and a second player who influences this state variable. The closely related perturbation
formulation avoids the use of an additional state variable, but omits some of the distributions
that are contemplated by the multiplier problem.

4.1 Martingales

Recall that we consider only those probability distributions on (Ω∗,F∗) that are absolutely
continuous with respect to Wiener measure over finite intervals. Such absolute continuity is
sufficient for us to obtain a martingale characterization of q. Let

κt(f) =

(
dqt
dq0

t

)
(f)

for any continuous function f in Ω∗. Here κt is the Radon-Nikodym derivative of qt with
respect to q0

t . Construct:
zt = κt(B) (11)

Claim 4.1. Suppose that q is absolutely continuous with respect to q0. The process {zt :
t ≥ 0} defined via (11) on (Ω,F , P ) is a nonnegative martingale adapted to the filtration
{Ft : t ≥ 0} with Ezt = 1. Moreover,∫

φtdqt = E [ztφt(B)] (12)

for any bounded and F∗
t measurable function φt. Conversely, if {zt : t ≥ 0} is a nonnegative

progressively measurable martingale with Ezt = 1, then the probability measure q defined via
(12) is absolutely continuous over finite intervals.

Proof. The first part of this claim follows directly from the proof of Theorem 7.5 in Liptser
and Shiryaev (2000). This proof is essentially a direct application of the Law of Iterated
Expectations and the fact that probability distributions necessarily integrate to one. Con-
versely, suppose that z is a nonnegative martingale on (Ω,F , P ) with unit expectation. Let
φt be any nonnegative, bounded and F∗

t measurable function. Define:∫
φtdqt = E [ztφt(B)] .
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This defines a measure because indicator functions are nonnegative, bounded functions.
Clearly

∫
φtdqt = 0 whenever Eφt(B) = 0. Thus qt is absolutely continuous with respect to

q0
t , the measure induced by Brownian motion restricted to [0, t]. Setting φt = 1 shows that
qt is in fact a probability measure for any t.

From this result we can perform integration on (Ω∗,F∗, q) by integrating against a mar-
tingale z on the original probability space (Ω,F , P ). In what follows, we will add a state
variable z to the robust formulation of the control problem. To prepare the way, we must
portray a martingale in a convenient way. Before proceeding, we note the following:

Remark 4.2. A nonnegative martingale z with unit expectation can also be used to define
a probability distribution on (Ω,F). We can build a probability measure on (Ω,Ft) using zt

as a Radon-Nikodym derivative. For the results in section 3, it was most convenient to work
with induced distributions. A martingale formulation for absolutely continuous probability
distributions on the original measurable space (Ω,F) is more convenient for solving the
control problem and demonstrating recursivity.

4.2 Representation

We attain a convenient representation of a martingale by exploiting the Brownian motion
information structure. Any martingale M with a unit expectation can be portrayed as

zt = 1 +

∫ t

0

kudBu (13)

where k is a progressively measurable d-dimensional process that satisfies:

P

{∫ t

0

|ku|2du <∞
}

= 1

for any finite t (see Revuz and Yor (1994), Theorem V.3.4). Define:

ht =

{
kt/zt if zt > 0

0 if zt = 0.
(14)

Then z solves the integral equation

zt = 1 +

∫ t

0

zuhudBu

and its differential counterpart
dzt = zthtdBt (15)

with initial condition z0 = 1 where

P

{∫ t

0

(zu)
2|hu|2du <∞

}
= 1.
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The scaling by (zu)
2 permits ∫ t

0

|hu|2du = ∞
provided that zt = 0 on this event.

We will use evolution equation (15) and index different martingales by different pro-
gressively measurable h’s. While a nonnegative martingale solves a stochastic differential
equation (15) for an appropriate h, for some progressively measurable h’s for which (15) has
a solution, the solution might be a supermartingale rather than a martingale. That is, the
resulting z may only satisfy the inequality

E (zt|Fs) ≤ zs

for 0 < s ≤ t even though z is a local martingale. For our robust control problems, we will
need to verify that the associated solution for h implies that the resulting z is a martingale
rather than the weaker supermartingale requirement.

4.3 Relative Likelihoods

We now study relative likelihoods under both the Brownian motion model and the alternative
associated with a nonnegative martingale z. This is a necessary step in constructing our
measure of relative entropy. First we consider the relative likelihood under the Brownian
motion model for B.

The solution to (15) can be represented as an exponential:

zt = exp

(∫ t

0

hu · dBu − 1

2

∫ t

0

|hu|2du
)
. (16)

But we must interpret this notation carefully. Since we allow for
∫ t

0
|hu|2du to be infinite with

positive probability, we adopt the convention that the exponential is zero when this event
happens. In the event that

∫ t

0
|hu|2du < ∞, we can define the stochastic integral

∫ t

0
hudBu

as an appropriate probability limit [see Lemma 6.2 of Liptser and Shiryaev (2000)].
This exponential formula leads naturally to a relative likelihood. Thinking of B as being

observed over an interval of time, we can construct a likelihood as a function of these data.
Before approaching this construction, we examine a simple motivating example:

Example 4.3. Consider two models of a vector y. In the first, y is normally distributed
with mean ν and covariance matrix I. In the second y is normally distributed with mean
zero and covariance matrix I. The logarithm of the ratio of first density to the second is:


(y) =

(
ν · y − 1

2
ν · ν

)
.

Let E1 denote the expectation under model one and E2 under model two. Then

E1 exp [
(y)] = 1,

13



which follows from properties of the log-normal distribution. Under the second model

E2
(y) = E1
(y) exp[
(y)] =
1

2
ν · ν,

which is a measure of relative entropy.

When z is a martingale, we can interpret the left side of (16) as a formula for the relative
likelihood of two models evaluated under the Brownian motion specification for B. Taking
logarithms, we find that


t =

∫ t

0

hu · dBu − 1

2

∫ t

0

|hu|2du.

Since h is progressively measurable, we can write:

ht = ψt(B).

Changing the distribution of B in accordance with q results in another characterization
of the relative likelihood. Let z be the martingale associated with q. The Girsanov Theorem
implies that

B̃t = Bt −
∫ t

0

hudu (17)

is a Brownian motion with respect to the filtration {Ft : t ≥ 0} where h is defined by (14).
Thus we can write the logarithm of the relative likelihood as:


̃t =

∫ t

0

ψu(B) · dB̃u +
1

2

∫ t

0

|ψu(B)|2du. (18)

The next claim asserts that both integrals on the right side are well-defined and finite, the
first being a stochastic integral against a Brownian motion. This likelihood construction will
allow us to obtain an alternative representation of relative entropy.

Claim 4.4. Suppose that qt is absolutely continuous with respect to q0
t for all 0 < t < ∞.

Let z be the corresponding nonnegative martingale on (Ω,F , P ) with Ezt = 1. Then

Ezt1{� t
0 |hu|2du<∞} = 1

where ht is given by (14). Moreover,∫
log

(
dqt
dq0

t

)
dqt =

1

2
E

∫ t

0

zu|hu|2du.

Proof. See appendix A.
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The first result in Claim 4.4 guarantees that formula (18) is well defined, while the second
result allows us to represent relative entropy of the induced distributions on the original
probability space. Applying this claim, we can depict the entropy [formula (4)] of the measure
q as:

R∗(q) = δ

∫ ∞

0

exp(−δt)
∫

log

(
dqt
dq0

t

)
dqtdt

=
δ

2
E

[∫ ∞

0

exp(−δt)
∫ t

0

zu|hu|2dudt
]

=
1

2
E

[∫ ∞

0

exp(−δt)zt|ht|2dt
]

where the last equality follows from integrating by parts. This motivates our definition of
entropy applied to nonnegative martingales:

R(z) =
1

2
E

[∫ ∞

0

exp(−δt)zt|ht|2dt
]

(19)

This representation along with stochastic differential equation (15) allows us to formulate
the robust control problem as a recursive stochastic differential game. Because we allow for
nonnegative supermartingales that solve (15) for some h, we extend the entropy construction
using (19) for some progressively measurable h.

Remark 4.5. Consider the process {zt log zt : t ≥ 0}, which is well defined until the process
z hits zero. The drift for this process is 1

2
zt|ht|2, the essential ingredient in our construction

of relative entropy as we saw in (19).

Remark 4.6. If we had limited the process h = ψ(B) so that the undiscounted integral∫ ∞

0

|ψt(B)|2dt <∞ (20)

with probability one under q, then q would necessarily be absolutely continuous with respect to
q0 on (Ω∗,F∗) [see Kabanov, Lipcer, and Sirjaev (1979)]. Any set that has Wiener measure
zero, would also have q measure zero including sets defined in terms of the entire sample
path of B. For instance, consider the large interval behavior of 1

N

∫ N

0
φu(B)du. If this obeys

a Strong Law of Large Numbers under q0, then it will under q as well. Discounting directs
the decision maker’s attention away from tail events and toward the more immediate future,
justifying a concern for misspecifications that are difficult to detect from finite amounts of
data. For discounted problems, we study misspecifications that violate (20). We deliberately
expand the set of misspecifications that concern the decision maker to include ones that can
be difficult to detect from large but finite amounts of data.
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4.4 A Penalized Martingale Problem

We now give an alternative specification of the multiplier version of the robust control
problem, which we call a martingale robust control problem. Let H denote the set of d-
dimensional progressively measurable processes.

Definition 4.7. A martingale robust control problem is:

max
c∈C

min
h∈H

E

(∫ ∞

0

exp(−δt)zt

[
U(ct, xt) +

θ

2
|ht|2

]
d t

)
(21)

subject to:

dxt = µ(ct, xt)dt+ σ(ct, xt)dBt

dzt = htztdBt (22)

with initial conditions x0, z0 = 1.

To allow for alternative probability distributions we have added zt as a multiplicative prefer-
ence shock to the objective function. This process scales both the instantaneous utility and
the quadratic penalty term θ

2
|ht|2.

We shall be interested in cases in which the following counterpart to Assumption 3.7 is
satisfied.

Assumption 4.8.

max
c∈C

min
h∈H

E

(∫ ∞

0

exp(−δt)zt

[
U(ct, xt) +

θ

2
|ht|2

]
d t

)
=

min
h∈H

max
c∈C

E

(∫ ∞

0

exp(−δt)zt

[
U(ct, xt) +

θ

2
|ht|2

]
d t

)

subject to (22) with initial conditions x0, z0 = 1.

In the next section, we will describe how to verify this assumption.
Since the martingale control problem admits some supermartingales in addition to all

nonnegative martingales for the process z, it is necessary that we verify that this enlargement
fails to alter the solution of the control problem. In particular, consider the second problem
in Assumption 4.8. Here it suffices to show that the minimizing h implies a z that is a
martingale. Later we describe ways to check this condition.

4.5 A Penalized Perturbation Problem

Instead of changing the distribution via a martingale, suppose that we perturb the stochastic
process used to model the shocks. That is, suppose that we replace the Brownian motion of
B by the Ito perturbation

Bt =

∫ t

0

hudu+ B̃t (23)
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where we assume that h is progressively measurable and B̃ is a Brownian motion adapted
to a filtration {Ft : t ≥ 0}. We make this specification on a probability space (Ω,F , P̃ ) and
for the time being do not require that {Ft : t ≥ 0} be the filtration generated by either B̃
or B. Later we will explain the role of this added flexibility and restrict the filtration.

We limit the magnitude of the perturbation by using a quadratic penalty in h:

1

2

∫ ∞

0

exp(−δt)Ẽ|ht|2dt, (24)

where Ẽ(·) denotes an expectation with respect to P̃ . This gives rise to a second well-posed
multiplier problem:

Definition 4.9. A perturbed robust control problem is:

max
c∈C

min
h∈H

Ẽ

(∫ ∞

0

exp(−δt)
[
U(ct, xt) +

θ

2
|ht|2

]
d t

)
(25)

subject to:

dxt = µ(ct, xt)dt+ σ(ct, xt)(htdt+ dB̃t) (26)

with initial condition x0.

This game alters the stochastic process used to model the shocks by appending a drift
distortion that is disguised by the Brownian motion, leading to a stochastic version of a robust
game analyzed by James (1992). James used the quadratic penalty in the drift distortion
in his study of deterministic and stochastic games. While James links to previous work on
robust control theory through the use of a deterministic game, the applications that interest
us require an explicitly stochastic structure. Stochastic formulations also appear in the
continuous-time formulation in Anderson, Hansen, and Sargent (2000) and the discrete-time
formulation in Petersen, James, and Dupuis (2000).

The counterpart to Assumption 3.7 is:

Assumption 4.10.

max
c∈C

min
h∈H

Ẽ

(∫ ∞

0

exp(−δt)
[
U(ct, xt) +

θ

2
|ht|2

]
d t

)
=

min
h∈H

max
c∈C

Ẽ

(∫ ∞

0

exp(−δt)
[
U(ct, xt) +

θ

2
|ht|2

]
d t

)

subject to (26) with initial conditions x0.

The perturbed robust control problem is closely related to the martingale robust control
problem. The martingale problem uses nonnegative martingales to parameterize alternative
distributions on (Ω,F) and hence alternative induced distributions on (Ω∗,F∗). In the
perturbed robust control problem, the Brownian motion B is replaced by a Brownian motion
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with a drift. This drift distortion induces an alternative distribution on (Ω∗,F∗). The
Girsanov Theorem used to justify (17) suggests that these two approaches to robustness are
related, as we show next.

In the perturbed robust control problem, we limit perturbations using (24). When this
discrepancy measure is finite, it follows that P̃{∫ t

0
|hu|2du <∞} = 1. Theorem 7.4 of Liptser

and Shiryaev (2000) implies that the distribution induced by B is absolutely continuous with
respect to Wiener measure over finite intervals of time. Thus the Ito perturbation (23) gives
a way to parameterize induced distributions that are absolutely continuous with respect to
Wiener measure.

Two potential complications affect this parameterization. First, how do we construct
the filtration used to restrict control processes and perturbations? Suppose the filtration is
generated by B̃. The process B built in (23) may generate a smaller filtration than B̃. When
B and B̃ happen to generate the filtration:

δ

∫ ∞

0

exp(−δt)
∫

log

(
dqt
dq0

t

)
dqtdt = Ẽ

∫ ∞

0

exp(−δt)|ht|2dt, (27)

where q is the distribution induced by B. When B generates a smaller filtration, however,
we can only say the right side of (27) is an upper bound for our measure of relative en-
tropy. While this possibility is admitted in the problem formulation, we will be interested
in solutions for which B generates {Ft : t ≥ 0}.

A second complication is that not all probability distributions that are absolutely con-
tinuous over finite intervals can be constructed using Ito perturbations of the form (23).
The Girsanov Theorem implies the following weaker result, which gives the perturbation
counterpart to Claim 4.4:

Claim 4.11. If q is absolutely continuous with respect to q0, then q is the induced distribution
for a (possibly weak) solution B to a stochastic differential equation defined on a probability
space (Ω,F , P̃ ):

dBt = ψt(B)dt+ dB̃t (28)

for some progressively measurable ψ defined on (Ω∗,F∗) and some Brownian motion B̃ that
is adapted to {Ft : t ≥ 0}. Moreover, for each t

P̃

[∫ t

0

|ψu(B)|2du <∞
]

= 1.

Proof. From Lemma 4.1 there is a nonnegative martingale z associated with the Radon-
Nikodym derivative of q with respect to q0. This martingale has expectation unity for all t.
The conclusion follows from a generalization of the Girsanov Theorem (e.g. see Liptser and
Shiryaev (2000) Theorem 6.2).

Since the solution to stochastic differential equation (28) is not necessarily a strong
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solution, B may generate a larger filtration than B̃.6 This leads us to consider weak solutions
to the penalized perturbation problem.

Remark 4.12. The conclusion that for each t,

P̃

[∫ t

0

|ψu(B)|2du <∞
]

= 1

in Claim 4.11 is the counterpart to the conclusion:

Ezt1{� t
0
|hu|2du<∞} = 1

for t > 0 in Claim 4.4. Consider a stochastic integral:∫ t

0

φu(B) · dBu

which is well defined on (Ω,F , P ) provided that
∫ t

0
|φu(B)|2du < ∞ with P probability one.

Then ∫ t

0

φu(B) · dBu =

∫ t

0

ψu(B) · φu(B)du+

∫ t

0

φu(B) · dB̃u

is well defined on (Ω,F , P̃ ) because
∫ t

0
|φu(B)|2du < ∞ with P̃ probability one (absolute

continuity) and
∫ t

0
|ψu(B)|2du <∞ with P̃ probability one as implied by Claim 4.4.

An advantage of the perturbation formulation over the martingale formulation is that
we avoid having to introduce a new state variable. In what follows we will use the solution
to the martingale problem to construct a solution to the perturbation problem in which
the filtration used to restrict decisions is generated by B. In particular, we will assume
that we have strong solution to the martingale problem but possibly a weak solution to the
perturbation problem. Because the Girsanov Theorem only justifies a weak solution, for the
perturbation problem we will allow the Brownian motion to generate a smaller information
set than the Markov state.

5 Recursivity of Multiplier Formulations

Building on a result from Fleming and Souganidis (1989), this section studies the recursivity
of the martingale robust control problem and thereby establishes a direct way to show the
recursivity of the multiplier robust control problem. The next section then shows how the
connections between the multiplier and constraint control problems make the recursivity of
the multiplier problem carry over to the constraint problem.

6See Tsirel’son (1975) for an example of a bounded ψ for which (28) fails to have a strong solution. In his
example, B generates a strictly larger filtration than B̃ although B̃ remains a Brownian motion with respect
to this larger filtration. The induced distributions that emerge from his example are equivalent (mutually
absolutely continuous).
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The robust martingale problem 4.7 is a special case of the two-player, zero-sum, stochastic
differential games studied by Fleming and Souganidis (1989). The martingale problem 4.7
assumes that at time zero both decision makers commit to decision processes whose time
t components are measurable functions of Ft. The decision maker who chooses distorted
beliefs {ht} takes {ct} as given; and the decision maker who chooses {ct} takes {ht} as
given. Assumption 3.7 asserts that the order in which the two decision makers choose these
processes does not matter: the date zero value function is unaffected by which decision maker
chooses first.

This description requires that at time zero both decision makers commit to their respec-
tive decision processes. We now alter the timing protocols and explore conditions under
which allowing the two players to choose sequentially implies the same time zero value func-
tion for the game. As a by-product, our argument will justify the exchange of orders of
extremization stipulated by Assumption 3.7.

We have used c to denote the control process. We now use č to denote the value of
a control at a particular date. In the recursive formulation, we restrict č to be in some
set Č common for all dates. This imposes more structure than we have before on the set
C of admissible control processes. We let ȟ denote the realized martingale control at any
particular date. We can think of ȟ as a vector in R

d. Similarly, we think of x̌ and ž as being
realized states.

We now let the initial state vary and define a value function Ṽ as the objective for the
martingale problem. In particular, we shall verify that J̃(θ) = žṼ (x̌, θ), provided that x̌
is initialized at x0 and ž is initialized at one. With a recursive solution, this same value
function is valid in subsequent time periods. The linearity of J in ž must be verified.

Fleming and Souganidis (1989) study when there exists a recursive solution to the mul-
tiplier problem 4.7.7 They use a Bellman-Isaacs condition to justify a recursive solution,
that is, to render equilibrium outcomes under two-sided commitment at date zero identical
with outcomes of a Markov perfect equilibrium in which the decision rules of both agents
are recursively chosen to be functions of the state vector xt.

The Hamilton-Jacobi-Bellman equation for a Markov counterpart to the martingale game

7Fleming and Souganidis (1989) impose as restrictions that µ, σ and U are bounded, uniformly continuous
and Lipschitz continuous with respect to x̌ uniformly in č. They also require that the controls č and ȟ reside in
compact sets. While these restrictions are imposed to obtain general existence results, they are not satisfied
for some important examples. Presumably existence in these examples will require special arguments. These
issues are beyond the scope of this paper.

Furthermore, it is known that in general the value functions associated with stochastic control problems will
not be twice differentiable, as would be required for the Hamilton-Jacobi-Bellman equations in Assumption
5.1 below to possess classical solutions. However Fleming and Souganidis (1989) prove that the value
function satisfies the Hamilton-Jacobi-Bellman equation in a weaker viscosity sense. Viscosity solutions are
often needed when it is feasible and sometimes desirable to set the control č so that σ(č, x̌) has lower rank
than d, which is the dimension of the Brownian motion.
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is:

δžṼ (x̌, θ) = max
č∈Č

min
ȟ
žU(č, x̌) + ž

θ

2
ȟ · ȟ + µ(č, x̌) · Ṽx(x̌, θ)ž

+ž
1

2
trace

[
σ(č, x̌)′Ṽxx(x̌, θ)σ(č, x̌)

]
+ žȟ · σ(č, x̌)′Ṽx(x̌, θ) (29)

where Ṽx is the vector of partial derivatives of Ṽ with respect to x̌ and Ṽxx is the matrix of
second derivatives. Equation (29) is a Bellman equation for an infinite-horizon zero-sum two-
player game. The diffusion specification makes this Bellman equation a partial differential
equation. It has multiple solutions that correspond to different boundary conditions. To find
the actual value function and justify the control laws requires that we apply a Verification
Theorem (e.g. see Theorem 5.1 of Fleming and Soner (1993)).

The partial differential equation (29) is scaled by ž, which verifies our guess that the
value function is linear in z and allows us to study the alternative equation:

δṼ (x̌, θ) = max
č∈Č

min
ȟ
U(č, x̌) +

θ

2
ȟ · ȟ+

[
µ(č, x̌) + σ(č, x̌)ȟ

] · Ṽx(x̌, θ)

+
1

2
trace

[
σ(č, x̌)′Ṽxx(x̌, θ)σ(č, x̌)

]
(30)

This partial differential equation only involves the state vector x̌ and not ž. Note also that
Ṽ is the value function for the recursive version of the perturbed robust control game.

The Bellman-Isaacs condition for this differential game is:

Assumption 5.1. The value function Ṽ satisfies

δṼ (x̌, θ) = max
č∈Č

min
ȟ
U(č, x̌) +

θ

2
ȟ · ȟ+

[
µ(č, x̌) + σ(č, x̌)ȟ

] · Ṽx(x̌, θ)

+
1

2
trace

[
σ(č, x̌)′Ṽxx(x̌, θ)σ(č, x̌)

]
= min

ȟ
max
č∈Č

U(č, x̌) +
θ

2
ȟ · ȟ+

[
µ(č, x̌) + σ(č, x̌)ȟ

] · Ṽx(x̌, θ)

+
1

2
trace

[
σ(č, x̌)′Ṽxx(x̌, θ)σ(č, x̌)

]
Fleming and Souganidis (1989) show that the freedom to exchange orders of maximization

and minimization guarantees that equilibria of the date zero commitment and the Markov
perfect multiplier games coincide. The ability to exchange orders of extremization in the
recursive specification implies that the orders of extremization can also be exchanged in the
date zero commitment problem, as required in Assumption 3.7. As we shall now see, the
exchange of order of extremization in Assumption 5.1 can often be verified without precise
knowledge of the value function Ṽ .
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5.1 No Binding Inequality Restrictions

Suppose that there are no binding inequality restrictions on c. Then a justification for
Assumption 5.1 can emerge from the first-order conditions for č and ȟ. Define

χ(č, ȟ, x̌)
.
= U(č, x̌) +

θ

2
ȟ · ȟ +

[
µ(č, x̌) + σ(č, x̌)ȟ

] · Ṽx(x̌, θ)

+
1

2
trace

[
σ(č, x̌)′Ṽxx(x̌, θ)σ(č, x̌)

]
, (31)

and suppose that χ is continuously differentiable in č. First, find a Nash equilibrium by
solving:

∂χ

∂c
(č∗, ȟ∗, x̌) = 0

∂χ

∂h
(č∗, ȟ∗, x̌) = 0.

In particular, the first-order conditions for ȟ are:

∂χ

∂h
(č∗, ȟ∗, x̌) = θȟ∗ + σ(č∗, x̌)′Ṽx(x̌, θ) = 0.

If a unique solution exists and if it suffices for extremization, the Bellman-Isaacs condition is
satisfied. This follows from the “chain rule.” Suppose that the minimizing player goes first
and computes ȟ as a function of x̌ and č:

ȟ∗ = −1

θ
σ(č, x̌)′Ṽx(x̌, θ) (32)

Then the first-order conditions for the max player selecting č as a function of x̌ are:

∂χ

∂c
+
∂h

∂c

′∂χ
∂h

= 0

where ∂h
∂c

can be computed from the reaction function (32). Notice that the first-order con-
ditions for the maximizing player are satisfied at the Nash equilibrium. A similar argument
can be made if the maximizing player chooses first.

5.2 Separability

Consider next the case in which σ does not depend on the control. In this case the decision
problems for č and ȟ separate. For instance, from (32), we see that ȟ does not react to č in the
minimization of ȟ conditioned on č. Even with binding constraints on č, the Bellman-Isaacs
condition (Assumption 5.1) is satisfied, provided that a solution exists for č.
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5.3 Convexity

A third approach that uses results of Fan (1952) and Fan (1953) is based on the global shape
properties of the objective. When we can reduce the choice set C to be a compact subset
of a linear space, Fan (1952) can apply. Fan (1952) also requires that the set of conditional
minimizers and maximizers be convex. We know from formula (32) that the minimizers of
χ(č, ·, x̌) form a singleton set, which is convex for each č and x̌.8 Suppose also that the
set of maximizers of χ(·, ȟ, x̌) is non-empty and convex for each ȟ and x̌.9 Then again the
Bellman-Isaacs condition (Assumption 5.1) is satisfied. Finally Fan (1953) does not require
that the set Č be a subset of a linear space, but instead requires that χ(·, ȟ, x̌) be concave.
By relaxing the linear space structure we can achieve compactness by adding points (say
the point ∞) to the control set, provided that we can extend χ(·, ȟ, x̌) to be upper semi-
continuous. The extended control space must be a compact Hausdorff space. Provided that
the additional points are not attained in optimization, we can apply Fan (1953) to verify
Assumption 5.1.10

6 Recursive Representation of the Commitment Equi-

librium

We have discussed the connection between a robust control problem and a two-person zero-
sum game in which at date zero both players commit to entire decision processes.11 In that
time-zero game, the decision maker’s (i.e., the maximizing player’s) actions do not alter
the distribution q. This was necessary for us to be able to represent the control problem
as a Bayesian solution for a particular prior distribution. The Markov perfect equilibrium
characterized by (29) has a different timing protocol that makes it less evident that the
decision maker’s actions don’t influence the distribution q. Since the control law for h can
depend on states that can be influenced by the control c, it appears that the decision maker
can alter the distribution. However, there is a way of interpreting the (constrained) worst-
case model as one in which {Bt : t ≥ 0} cannot be influenced by the decision maker’s
choice of control. In this section we use a version of the ‘big X, little x’ trick common in
macroeconomics to isolate the choice of the distribution. In particular, we use the Markov
solution to the robust multiplier game to get a recursive representation of the equilibrium
under two-sided commitment at time zero where the minimizing player first chooses q. The

8Notice that provided Č is compact, we can use (32) to specify a compact set that contains the entire
family of minimizers for each č in Č and a given x̌.

9See Ekeland and Turnbull (1983) for a discussion of continuous time, deterministic control problems
when the set of minimizers is not convex. They show that sometimes it is optimal to chatter between
different controls as a way to imitate convexification in continuous time.

10Apply Theorem 2 of Fan (1953) to −χ(·, ·, x̌). This theorem does not require compactness of choice set
for ȟ, only of the choice set for č. The theorem also does not require attainment when optimization is over
the noncompact choice set. In our application, we can verify attainment directly.

11See Hansen and Sargent (2001b) for a related discussion cast in terms of a discrete time version of a
permanent income model.
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‘big X, little x’ trick allows us to derive an exogenous specification of {Bt : t ≥ 0} for
which the control process from the robust perturbation game is optimal. We find a recursive
version of the commitment solution by revisiting our discussion at the end of section 3.

Since we allowed for a supermartingale as a solution for the martingale problem, we also
suggest a way to verify that the supermartingale is actually a martingale. This is needed for
us to argue that the h solution to the martingale problem implies a well defined alternative
probability model.

6.1 State Evolution

Suppose that a progressively measurable process c is chosen optimally given a process h that
is used to model the martingale process z.12 Under this view, the control c cannot influence
future values of h. The determination of the constrained worst-case process {ht : t ≥ 0} will
depend on the initial state x0, but the evolution for the forcing process B cannot be influenced
by c. The distorted evolution facing the decision-maker can be portrayed recursively as:13

dxt = µ(ct, xt)dt+ σ(ct, xt)dBt

dzt = ztαh(Xt)dBt

dXt = µ∗(Xt)dt+ σ∗(Xt)dBt. (33)

Here the decision maker views x as a potentially controllable part of the state and regards
X and hence z as an uncontrollable part. In (33), ct = αc(xt) and ht = αh(xt) is the Markov
solution of the differential game (30). The coefficients for the evolution of X satisfy

µ∗(X̌) = µ[αc(X̌), X̌]

σ∗(X̌) = σ[αc(X̌), X̌].

Thus the evolution of (X, z) agrees with the solution to the Markov martingale game.
By construction, the control process c is not allowed to influence the state vector process

X in (33) and the drift distortion ht = αh(Xt) for the martingale z depends only on this
uncontrollable state vector. The solution ct = ξc(xt, Xt) to the Markov control problem will
satisfy αc(x̌) = ξc(x̌, x̌). Provided that X0 is initialized at the same value as x0, at the
optimized solution Xt = xt because the implied stochastic evolution for the two state vector
processes coincide.14

12Under this timing protocol, Fleming and Souganidis (1989) refer to a decision rule making {ct : t ≥ 0}
depend on {ht : t ≥ 0} as a strategy. In their language, a strategy maps one progressively measurable process
into another one.

13See the appendix B for more details about the ‘big X , little x’ evolution equation (33) and the associated
value function.

14This interpretation of (29) isolates the distortions from influence by the decision maker. We would not
always want to insist on this interpretation. Indeed, as a vehicle for promoting robustness to misspecification
of endogenous dynamics, there are contexts in which we may want to allow the decision maker to imagine
that his choice of c affects future distortions h.
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6.2 Martingale Solution

While the solution process z is a local martingale and a supermartingale, for it to correspond
to an alternative probability assessment we require that z be a martingale. This is important
for two reasons. In formulating the martingale problem we added some local martingales
into the choice set for the minimizing agent for technical convenience. We must check that
this augmentation does not alter the solution. Since the Bellman-Isaacs condition 4.8 is
satisfied, it suffices to check this for the decision order

min
h∈H

max
c∈C

E

(∫ ∞

0

exp(−δt)zt

[
U(ct, xt) +

θ

2
|ht|2

]
d t

)

subject to (22) with initial conditions x0, z0 = 1.15 We also need the z solution to be a
martingale to support a Bayesian interpretation. In Appendix C we formally establish that
the solution is indeed a martingale.

6.3 Interpretation

Under the perturbation interpretation, the formula for αh

αh(x̌) = −1

θ
σ∗(x̌)′Ṽx(x̌, θ).

introduces a drift distortion that is directly related to how the value function stochastic
process responds to a Brownian motion shock. A shock that shifts this value function
positively is offset by a negative drift distortion. Similarly, we can get a formula for the
martingale used in constructing the distorted probability distribution. Suppose that Ṽ (x̌, θ)
is twice continuously differentiable. Applying the formula on page 226 of Revuz and Yor
(1994), form the positive function:

W (x̌, θ) = exp

[
−1

θ
Ṽ (x̌, θ)

]

Then

zt =
W (Xt, θ)

W (X0, θ)
exp

[
−
∫ t

0

w(Xu)du

]
15To see this let H∗ ⊆ H be the set of controls h for which z is a martingale and let obj(h, c) be the

objective as a function of the controls. Then under a Bellman-Isaacs condition we have

min
h∈H∗

max
c∈C

obj(h, c) ≥ min
h∈H

max
c∈C

obj(h, c) = max
c∈C

min
h∈H

obj(h, c) ≤ max
c∈C

min
h∈H∗

obj(h, c). (34)

If we demonstrate, the first inequality ≥ in (34) is an equality, it follows that

min
h∈H∗

max
c∈C

obj(h, c) ≤ max
c∈C

min
h∈H∗

obj(h, c).

Since the reverse inequality is always satisfied provided that the extrema are attained, this inequality can be
replaced by an equality. It follows that the second inequality ≤ in (34) must in fact be an equality as well.
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where w is used to ensure that z has a zero drift. The worst case distribution assigns more
weight to bad states as measured by an exponential adjustment to the value function.

7 Risk Sensitivity

The Hamilton-Jacobi-Bellman equation (30) also arises from a risk-sensitive control problem.
Risk sensitive optimal control was initiated by Jacobson (1973) and Whittle (1981) in the
context of discrete-time linear-quadratic decision problems. Letting ρ be an intertemporal
return function, instead of maximizing Eρ (where E continues to mean mathematical expec-
tation), risk-sensitive control theory maximizes E[exp(θ−1ρ)], where θ−1 is a risk-sensitivity
parameter. Jacobson and Whittle showed that the risk-sensitive control law can be computed
by solving a robust multiplier problem of the type we have studied here. Hansen and Sargent
(1995) showed how to use recursive utility theory to introduce discounting into the linear-
quadratic, Gaussian risk-sensitive decision problem. James (1992) studied a continuous-time,
nonlinear diffusion formulation of a risk-sensitive control problem and its robust counterpart
in the absence of discounting. Again, the control law that solves the risk-sensitive problem
also solves a stochastic robust multiplier problem. As emphasized by Anderson, Hansen, and
Sargent (2000), this equivalence carries over to problems with discounting when a recursive
counterpart to the risk-sensitive objective is used.

The Bellman equation for the recursive, risk-sensitive control problem is obtained by
substituting the solution (32) for h into the partial differential equation (30):

δṼ (x̌, θ) = max
č∈Č

min
ȟ
U(č, x̌) +

θ

2
ȟ · ȟ+

[
µ(č, x̌) + σ(č, x̌)ȟ

] · Ṽx(x̌, θ)

+
1

2
trace

[
σ(č, x̌)′Ṽxx(x̌, θ)σ(č, x̌)

]
= max

č∈Č
U(č, x̌) + µ(č, x̌) · Ṽx(x̌, θ) (35)

+
1

2
trace

[
σ(č, x̌)′Ṽxx(x̌, θ)σ(č, x̌)

]
− 1

2θ
Ṽx(x̌, θ)

′σ(č, x̌)σ(č, x̌)′Ṽx(x̌, θ)

The term

µ(č, x̌) · Ṽx(x̌, θ) +
1

2
trace

[
σ(č, x̌)′Ṽxx(x̌, θ)σ(č, x̌)

]
in Bellman equation (35) is the local mean or dt contribution to the value function process
{Ṽ (xt, θ) : t ≥ 0} without any reference to model misspecification. Thus (35) coincides with
the Bellman equation for the benchmark control problem (2), (3), but with an additional
term included:

− 1

2θ
Ṽx(x̌, θ)

′σ(č, x̌)σ(č, x̌)′Ṽx(x̌, θ).

This term is familiar from the analysis of continuous-time, stochastic specifications of recur-
sive utility by Duffie and Epstein (1992). Notice that Ṽx(xt, θ)

′σ(ct, xt)dBt gives the local
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Brownian contribution to the value function process {Ṽ (xt, θ) : t ≥ 0}. The additional
term in the Bellman equation is the negative of the local variance of the continuation value
weighted by 1

2θ
. Thus the risk sensitive interpretation excludes worries about misspecified

dynamics and instead enhances the control objective with aversion to risk in a way captured
by the local variance of the continuation value.

Duffie and Epstein (1992) refer to 1
θ

as the variance multiplier. Notice that here the
variance multiplier is state independent, which emerges because an exponential risk adjust-
ment is made to the continuation value.16 As a consequence of this adjustment, the Bellman
equation contains a contribution from the local variance of the continuation value function.
Solving the Bellman equation for the robust multiplier problem is equivalent to solving the
Bellman equation for the risk-sensitive problem. While mathematically similar to the situ-
ation discussed in James (1992) (see pages 403 and 404), the presence of discounting in our
setup compels us to use a recursive representation of the objective of the decision-maker. In
the remainder of this paper we will be primarily concerned with the robustness interpreta-
tion, although we will revisit the recursive formulation of risk-sensitivity when we discuss
preference orders.

8 Recursivity of the Constraint Formulation

This section shows that after we add an additional state variable and an additional vector
of controls, the constraint robust control problem also has a recursive structure.

For the date zero constraint problem, we studied how the objective depended on the
magnitude of the entropy constraint. Now at each date we must carry along a state variable
that measures the entropy that remains to be allocated. Instead of a value function Ṽ that
depends only on the state x, we now use a value function V ∗ that depends also on that
additional state variable, denoted r.

8.1 An Alternative Bellman Equation

Our strategy will be to use (9) to link the value functions for the multiplier and constraint
problems, then to deduce from the Bellman equation (30) a partial differential equation that
can be interpreted as the Bellman equation for another two-player game with additional
states and controls. By construction, that new game is recursive and will have the same
equilibrium outcome and representation as game (30). We shall then interpret this new
game as recursively solving our original robust constraint problem 3.5.

In section 3 we argued that the date zero value functions for the constraint and multiplier
problems are related via the Legendre transform. This leads us to construct:

žV ∗(x̌, ř) = max
θ≥θ

žṼ (x̌, θ) − řžθ (36)

16This is analogous to the exponential risk adjustment used elsewhere in the risk-sensitive control literature.
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where J∗(η) = V ∗(x̌, ř) provided that x̌ is equal to the date zero state x0, ř is set to the
initial entropy constraint η and ž = 1. The Legendre transform (36) scales linearly in the
nonnegative variable ẑ. In subsequent subsections we have cause to introduce an additional
state variable r that we interpret as the continuation entropy. Before doing that, we deduce
a partial differential equation for V ∗. While žV ∗(x̌, ř) will be the value function for the
martingale version, as with the multiplier game we can interpret V ∗ as the value function
for a perturbation formulation.

Inverting (36) yields
Ṽ (x̌, θ) = min

ř≥0
V ∗(x̌, ř) + θř.

The function V ∗ is convex in r and has −θ as a subgradient with respect to r. In particular,
when V ∗ is differentiable in r,

∂V ∗

∂r
(x̌, ř) = −θ. (37)

Inverting this function gives r as a function of x for a given θ. By the Implicit Function
Theorem,

∂r

∂x
= −V

∗
rx

V ∗
rr

.

Thus
Ṽx = V ∗

x (38)

and

Ṽxx = V ∗
xx + V ∗

xr

∂r

∂x

= V ∗
xx −

V ∗
xrV

∗
rx

V ∗
rr

. (39)

The Hamilton-Jacobi-Bellman partial differential equation (30) for Ṽ implies a corre-
sponding partial differential equation for V ∗ that can be deduced by using formulas (38) and
(39). Notice first that

1
2
trace

[
σ(č, x̌)′Ṽxx(x̌, θ)σ(č, x̌)

]
=

min
ǧ

1
2
trace

([
σ(č, x̌)′ ǧ

] [ V ∗
xx(x̌, ř) V ∗

xr(x̌, ř)
V ∗

rx(x̌, ř) V ∗
rr(x̌, ř)

] [
σ(č, x̌)
ǧ′

])
.

This equality follows because the solution to the minimization problem is

ǧ∗ = −σ(č, x̌)′V ∗
xr(x̌, ř)

V ∗
rr(x̌, ř)

and (39) is satisfied. Thus game (30) implies that

δV ∗(x̌, ř) = max
č∈Č

min
ȟ,ǧ

U(č, x̌) +
[
µ(č, x̌) + σ(č, x̌)ȟ

] · V ∗
x (x̌, ř) +

(
δř − ȟ · ȟ

2

)
· V ∗

r (x̌, ř)

+
1

2
trace

([
σ(č, x̌)′ ǧ

] [ V ∗
xx(x̌, ř) V ∗

xr(x̌, ř)
V ∗

rx(x̌, ř) V ∗
rr(x̌, ř)

] [
σ(č, x̌)
ǧ′

])
, (40)
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given (37).
Equation (40) supports a recursive formulation of the constraint game. In particular,

(40) is interpretable as a Hamilton-Jacobi-Bellman equation with a new control g and a new
state r with evolution:

drt =

(
δrt − ht · ht

2
− gt · ht

)
dt+ gt · dBt

=

(
δrt − ht · ht

2

)
dt+ gt · dB̃t. (41)

The first equation is used for a martingale specification of the probability distortion captured
by a nonnegative martingale z. Recall that in the martingale problem, B is a Brownian
motion. The second equation is pertinent for the perturbation specification in which B̃ is
a Brownian motion and h is the drift distortion. Notice that V ∗

r in the partial differential
equation (40) multiplies the drift in the second evolution equation.

The control gt in (41) is chosen by the minimizing agent. This interpretation is valid
provided that we can show that (40) is satisfied along the solution trajectory for the implied
game. Before addressing this point, the next section shows that (41) describes the evolution
of the continuation of relative entropy.

8.2 Recursivity of Relative Entropy

Building a recursive specification of the constraint problem requires a recursive representa-
tion of relative entropy. For a given probability distribution q, let z be the corresponding
martingale with date t drift ztht. Recall formula (19) for relative entropy of a nonnegative
martingale:

R(z)
.
= E

∫ ∞

0

exp(−δt)zt|ht|2dt.

We define a date t conditional counterpart as follows:

Rt(z)
.
= E

[∫ ∞

0

exp(−δu)
(
zt+u

zt

)
|ht+u|2du

∣∣∣Ft

]

provided that zt > 0 and Rt(z) to be zero otherwise. Notice that Rt(z) is a random variable
defined on the original probability space indexed by t. This family of random variables
induces the recursion for ε > 0:

ztRt(z) = exp(−δε)E
[
zt+εRt+ε(z)

∣∣∣Ft

]
+ E

[∫ ε

0

exp(−δu)zt+u
|ht+u|2

2
du
∣∣∣Ft

]
. (42)

We now wish to view rt
.
= Rt(z) as state variable in our decision problem. Consider

first the product process zr. Then ztrt is just the expected discounted value of a dividend
process {zt+u|ht+u|2/2 : u ≥ 0} with discount rate δ. As such this process has a time t
drift δztrt − zt|ht|2/2. In the recursive, continuous-time specification of the constraint game,
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the minimizing decision-maker is permitted to choose a continuation value for conditional
entropy rather than committing to an entire future h process. To capture this we introduce
a weighting ztg

∗
t on the Brownian motion and let g∗t be chosen by the minimizing agent.17

Thus we take the evolution of zr to be:

d(ztrt) =

(
δztrt − zt

|ht|2
2

)
dt+ ztg

∗
t · dBt

where the nonnegative martingale z evolves according to:

dzt = ztht · dBt.

Since rt can be expressed as (ztrt)/zt provided that zt is positive, an application of Ito’s
formula yields the first equation of (41) with gt = g∗t − rtht. The second equation then
follows by substituting ht + B̃t for dBt. Instead of having the minimizing agent choose g∗t ,
we may equivalently have this agent choose gt.

In the recursive version of the constraint game, the state variable rt is the continuation
entropy left to allocate across states at future dates. We restrict rt to be allocated across
states that can be realized with positive probability, conditional on date t information. The
state variable rt is initialized at η at date zero. The process g becomes a control vector for
allocating continuation entropy across the various realized states. The vector gt does not
affect the date t local mean of the continuation entropy, but it does alter the entropy that
can be allocated in the future.

A discrete-time analog is depicted in Figure 1. This figure is motivated by a binomial
approximation to a Brownian motion and considers a formulation in which two states are
accessible from date t. Suppose that a move upward and downward can each occur with prob-
ability one half under the approximating model. Distorting these probabilities is achieved
in our continuous-time formulation by introducing a nonzero mean to the Brownian incre-
ment. Continuation entropies are also set for each of the two states that can be realized next
time period. These continuation entropies are specified at date t in our continuous-time
formulation through the choice of the control vector gt. In the discrete-time representation,
probabilities and continuation entropies in each of the two states are assigned at date t sub-
ject to an entropy constraint. The contribution to entropy coming from the distortion of the
probabilities is:

I(pt) = pt log pt + (1 − pt) log(1 − pt) + log 2

which is the discrete state analogue of
∫

log
(

dqt

dq0
t

)
dqt. The continuation entropies are dis-

counted and averaged according to the distorted probabilities, so that we have:

rt = I(pt) + exp(−δ) [ptrt+1(ω1) + (1 − pt)rt+1(ω2)] .

17Since zr is defined by an expectation, it can be formally shown that the difference between the process
and its drift is a continuous martingale. Therefore, it can be represented as a weighted integral with respect
to a Brownian motion. The entropy constraint places no restriction on the weighting (other than square
integrability), which is why we allow it to become a choice variable for the minimizing agent.
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Figure 1: A representation of the recursive constraint game in discrete time using a binomial
specification. The entropy level rt is given as of date t, and the minimizing player chooses
a distorted state probability and state-dependent continuation entropy levels rt+1(ω). The
current period rt limits the probability distortion and next period continuation entropies.
Continuation entropies are discounted, averaged using the distorted probabilities, and added
to the relative entropy from the current period.
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Remark 8.1. Notice that zt+τ

zt
depicted as a function of B gives the Radon-Nikodym deriva-

tive of the distribution implied by qt+τ conditioned on date t information, which we denote
qt+τ |t. This formula is applicable provided that zt is not zero. We can use this conditional
distribution to define:

R∗
t (q)

.
=

∫ ∞

0

exp(−δu)
∫

log

(
dqt+u|t
dq0

t+u|t

)
dqt+u|tdu.

For each t and q, this conditional entropy measure is a nonnegative random variable defined
on (Ω∗,F∗). As with the unconditional counterpart, we can show that

R∗
t (q)(B) = Rt(z)

where the dependence on the Brownian motion B makes the left-hand side a nonnegative
random variable on (Ω,F).

8.3 State Variable Degeneracy

Because the multiplier and constraint problems have identical outcomes and equilibrium rep-
resentations, and because the (ct, ht) that solve game (30) (and therefore (29)) are functions
of xt alone, it must be true that the state rt fails to influence either ct or ht in the equilibrium
of game (40). This subsection verifies and explains the lack of dependence on rt of these
decisions in the equilibrium (40).

We reconsider equation (37)
V ∗

r (x̌, ř) = −θ,
and verify that it holds for the solution path to constraint game (40) for a fixed θ. Construct

λ(x̌, ř) = V ∗
r (x̌, ř).

From the g solution to game (40), it follows that

λr(x̌, ř)ǧ
∗ + λx(x̌, ř)σ(č∗, x̌) = 0,

implying that φ(xt, rt) has a zero loading vector on the Brownian increment dBt. Differen-
tiating the Hamilton-Jacobi-Bellman equation with respect to r, implies that

[
µ(č∗, x̌) + σ(č∗, x̌)ȟ∗

] · λx(x̌, ř) +

(
δř − ȟ∗ · ȟ∗

2

)
λr(x̌, ř) +

1

2
trace

([
σ(č∗, x̌)′ ǧ∗

] [ λxx(x̌, ř) λxr(x̌, ř)
λrx(x̌, ř) λrr(x̌, ř)

] [
σ(č∗, x̌)
ǧ∗′

])
= 0.

Thus the local mean or dt coefficient of {λ(xt, rt)} is also zero. As a consequence, this process
remains time invariant at the solution to the constraint game.
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It can happen that {rt : t ≥ 0} hits the zero boundary in finite time along the solution to
the constraint control problem. This occurs when it is optimal to eliminate exposure to the
Brownian motion risk from some date forward. Once rt is frozen at zero, we no longer expect
equation (37) to hold. To accommodate this possibility, the state evolution for {rt : t ≥ 0}
should be stopped whenever the zero boundary is hit. From this point forward V ∗ should be
equated to the value function for the benchmark control problem. Thus we must add an exit
time and a terminal value to the specification of game (40). Exit time problems such as this
in which the termination occurs when a state variable hits a boundary and a terminal value
function is specified are common in the continuous time literature on stochastic control. For
instance, see Fleming and Soner (1993) Chapter IV.5.

8.4 Discussion of the ‘Irrelevance’ of Continuation Entropy

The lack of dependence of c and h on r is reminiscent of the λ-constant or Frisch demand func-
tions used in microeconomics. The relative entropy constraint is forward-looking, as is the
intertemporal wealth constraint that faces a consumer. For convenience, the Frisch demand
functions use the Lagrange multiplier λ (the marginal utility of wealth) on a wealth constraint
instead of wealth itself to depict consumer demands for alternative calendar dates.18

9 Comparison of Three Decision Problems

The previous two sections offered descriptions and interpretations of three closely related
decision problems. Each has an associated Bellman partial differential equation and each
implies the same control law for c. The Bellman equations for the three problems are:

Risk Sensitive Control Problem:

δṼ (x̌, θ) = max
č∈Č

U(č, x̌) + µ(č, x̌) · Ṽx(x̌, θ) +
1

2
trace

[
σ(č, x̌)′Ṽxx(x̌, θ)σ(č, x̌)

]
− 1

2θ
Ṽx(x̌, θ)

′σ(č, x̌)σ(č, x̌)′Ṽx(x̌, θ)

18See Frisch (1959) for a preliminary discussion and Heckman (1974) for an initial application to an in-
tertemporal optimization problem with time separable preferences. There are extensive formal connections
between the recursivity of the constraint robust control problem and the recursivity of dynamic contracts
studied by Spear and Srivastava (1987), Thomas and Worrall (1988), and Kocherlakota (1996). The re-
cursive contract literature makes the problem of designing optimal history-dependent contracts recursive
by augmenting the state to include the discounted expected utility that the contract designer promises the
principal. The contract is subject to a promise-keeping constraint that takes the form of (42), with contin-
uation utility of the principal playing the role that continuation entropy does in our problem. Subject to
the promise-keeping constraint, the contract designer chooses how to make continuation utility respond to
the arrival of new information. As time and chance unfold, the dependence of payments on the promised
value makes them history-dependent. Relative to the recursive contracts specification, our problem has some
special features that allow the time t decisions not to be history dependent, as we have shown. These special
features are also satisfied by settings with sequentially complete markets in macroeconomics, for example
Lucas (1982), in which time t wealth plays the role that continuation entropy does here, and in which the
Lagrange multiplier on the wealth constraint is also time invariant.
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(Scaled Martingale or Perturbation) Multiplier Robust Control Problem:

δṼ (x̌, θ) = max
č∈Č

min
ȟ
U(č, x̌) +

θ

2
ȟ · ȟ+

[
µ(č, x̌) + σ(č, x̌)ȟ

] · Ṽx(x̌, θ)

+
1

2
trace

[
σ(č, x̌)′Ṽxx(x̌, θ)σ(č, x̌)

]

Constraint Robust Control Problem:

δV ∗(x̌, ř) = max
č∈Č

min
ȟ,ǧ

U(č, x̌) +
[
µ(č, x̌) + σ(č, x̌)ȟ

] · V ∗
x (x̌, ř) +

(
δř − ȟ · ȟ

2

)
· V ∗

r (x̌, ř)

+
1

2
trace

([
σ(č, x̌)′ ǧ

] [ V ∗
xx(x̌, ř) V ∗

xr(x̌, ř)
V ∗

rx(x̌, ř) V ∗
rr(x̌, ř)

] [
σ(č, x̌)
ǧ′

])

The first two problems share the same value function and the same control law for
c. They differ only in their interpretation. The first features an enhanced response to
risk and the second an adjustment for model misspecification. The second problem has an
additional control h that is used to implement the robustness adjustment. This can be either
a component part of a martingale indexing a probability measure or a perturbation of the
state. The second and third problems are zero-sum two-player differential games. The third
problem has an additional state variable and as a consequence a different value function.
Moreover, the third problem uses an additional control g to set continuation entropy for
future time periods. The control laws for c and h remain the same for the two differential
games. The third problem has the virtue of linking up more immediately to the min-max
expected utility theory of Gilboa and Schmeidler (1989). However, it is much easier to solve
the second problem because there is no need explicitly to carry along the additional control
and state associated with continuation entropy.

As noted above, in the recursive version of the constraint problem, continuation entropy
rt and the control gt associated with it play similar roles to those of ‘continuation wealth’
and ‘continuation utility’ in recursive versions of competitive equilibria and optimal con-
tract design problems, respectively. In each case, those state variables serve to make the
problem recursive. Our problem has the special feature that while it is necessary to choose
continuation entropy appropriately, the optimal solution isolates decisions for (ct, ht) from
any dependence on continuation entropy.

10 Observational Equivalence of Two Preference Or-

derings

This section uses the preceding results to study the relationship between preference orderings
induced by versions of the multiplier and constraint problems (3.4), (3.5).19 The implied

19The first two authors studied some of these issues earlier in Hansen and Sargent (2001a).
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preference orderings differ but are related at the common solution to both problems, where
their indifference curves are tangent.

10.1 Preference Orderings

Throughout this section, we fix the filtration {Ft, t ≥ 0} and consider a space of consumption
processes c that are progressively measurable. In particular the time t component ct must be
Ft-measurable. This means that we can find a progressively measurable family of functions
φ on (Ω∗,F∗) so that ct = φt(B). In particular, ct will only depend on the process B up until
date t. Although earlier we did not stipulate that the control is consumption, throughout
this section and c will depict a progressively measurable consumption process.

We consider two preference orderings. To construct them, we use an endogenous state
vector st:

dst = µs(st, ct)dt, (43)

where this differential equation can be solved uniquely for st given, s0 and a process {cu :
0 ≤ u < t}. We assume that the solution is a progressively measurable process {st : t ≥ 0}.
We define preferences to be time separable in (st, ct) which can be represented using a utility
function U . For a given process c, we may construct a process s and a process {U(ct, st) : t ≥
0}. The utility process can be written as a function of B subject to information constraints.
In particular, we can construct a function ν such that

νt(c)(B) = U(ct, st)

where νt(c) depends on the process B only until time t.
In relation to our control problems, we think of st as an endogenous component of the

state vector xt. Individual agents recognize this endogeneity and take it into account in their
preferences. We use st to make preferences nonseparable over time, as in models with habit
persistence.

We now define two preference orderings. One preference ordering uses the valuation
function:

W ∗(c; η) = inf
R∗(q)≤η

∫ ∞

0

exp(−δt)
(∫

νt(c)dqt

)
dt.

Definition 10.1. (Constraint preference ordering) For any two progressively measurable c
and c∗, c∗ 	η c if

W ∗(c∗; η) ≥ W ∗(c; η).

The other preference ordering uses the valuation function:

W̃ (c; θ) = inf
q

∫ ∞

0

exp(−δt)
(∫

νt(c)dqt

)
dt+ θR∗(q)

Definition 10.2. (Multiplier preference ordering) For any two progressively measurable c
and c∗, c∗ 	θ c if

W̃ (c∗; θ) ≥ W̃ (c; θ).
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The first preference order has the multiple-priors form justified by Gilboa and Schmeidler
(1989). The second is of a form that is commonly used to compute robust decision rules and
is the form that is closest to recursive utility theory. We now explore their relation.

10.2 Relation Between the Preference Orders

The two preference orderings differ. Furthermore, given η, there exists no θ that makes
the two preference orderings agree. However, the Lagrange Multiplier Theorem delivers a
weaker result that is very useful to us. While globally the preference orderings differ, we
can relate indifference curves that pass through a given point c∗ in the consumption set,
e.g. indifference curves that pass through the solution c∗ to an optimal resource allocation
problem.

Use the Lagrange Multiplier Theorem to write W ∗ as

W ∗(c∗; η∗) = max
θ

inf
q

∫ ∞

0

exp(−δt)
(∫

νt(c)dqt

)
dt+ θ [R∗(q) − η∗] ,

and let θ∗ denote the maximizing value of θ, which we assume to be strictly positive. Suppose
that c∗ 	η∗ c. Then

W̃ (c; θ∗) − θ∗η∗ ≤ W ∗(c; η∗) ≤W ∗(c∗; η∗) = W̃ (c∗; θ∗) − θ∗η∗.

Thus c∗ 	θ∗ c.
The observational equivalence results from Claims 3.6 and 3.8 apply to consumption

profile c∗. The indifference curves touch but do not cross at this point. We illustrate this
relation in Figure 2.

While the preferences differ, this difference is concealed along a given equilibrium trajec-
tory of consumption and prices. The tangency of the indifference curves implies that they
are supported by the same prices. Observational equivalence claims made by econometri-
cians commonly refer to equilibrium trajectories and not to off-equilibrium aspects of the
preference orders. Furthermore, although the two preference orders differ, the multiplier
preferences are of interest in their own right. See Wang (2001) for an axiomatic development
of entropy-based preference orders that nests a finite state counterpart to this multiplier
preference order.

11 Recursivity of the Preference Orderings

This section discusses the time consistency of our two preference orders. We use the fact that
solutions of both of our two robust resource allocation problems satisfy Bellman equation
(30), which depicts a Markov perfect equilibrium in a two-player zero-sum game. For both
the multiplier and the constraint specifications, we must describe the date t > 0 preferences
that are consistent with this solution.
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Figure 2: Indifference curves for two preference orderings that pass through a common
point. There is a single time period and two states. The utility function is logarithmic
in consumption in the two states. The states are equally likely under the approximating
model. Probabilities are perturbed subject to a relative entropy constraint or a penalty
parameter. The solid line gives the indifference curve for the preferences defined using
an entropy constraint and the dashed line gives the indifference curve for the multiplier
preferences.
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At date t > 0, information has been realized and some consumption has taken place. Our
preference orderings focus the attention of the decision maker on current and subsequent
consumption in states that can be realized given current information. To study recursivity,
we formulate preferences at date t to respect this vantage point. We accomplish this by
using the time t conditional counterparts to the expected discounted utility process and to
the relative entropy measure.

To pose the conditional preferences, we find it convenient to use the martingale represen-
tation on the original probability space (Ω,F , P ). At date t the decision-maker cares only
about states that can be realized from date t forward. That means that expectations used to
average over states should be conditioned on date t information. It would be inappropriate to
use date zero relative entropy to constrain probabilities conditioned on time t information.20

This leads us to use the conditional counterpart to our relative entropy measure. The date
t counterpart to the multiplier preferences is based on the valuation function W̃t given by:

ztW̃t(c; st, θ) = inf
h∈H

∫ ∞

0

exp(−δu)E
(
zt+uU(ct+u, st+u) + θzt+u

|ht+u|2
2

∣∣∣Ft

)
du (44)

subject to:

dzt+u = zt+uht+udBt+u (45)

dst+u = µs(st+u, ct+u)du.

It is only the choices of ht+u for u ≥ 0 that matter for this minimization problem.
For the constraint preferences, at date t we ask the decision-maker to explore changes in

beliefs that affect only outcomes that can be realized in the future. That is, we impose the
constraint

Rt(z) ≤ rt

where rt is a state variable inherited from the minimizing agent that limits the choice of
h from date t forward. Thus our constraint preferences are defined using the valuation
function:

ztW
∗
t (c; st, rt) = inf

h∈H

∫ ∞

0

exp(−δu)E
(
zt+uU(ct+u, st+u)

∣∣∣Ft

)
du (46)

subject to (45) and ∫ ∞

0

exp(−δu)E
(
zt+u

|ht+u|2
2

∣∣∣Ft

)
du ≤ ztrt

20Imposing a date zero relative entropy constraint at date t would introduce a temporal inconsistency by
allowing the minimizing agent at date t to put no probability distortions for events at dates u < t and at
states that at date t are known not to have been realized. Moreover, the minimizing agent could reduce the
probabilities of realized events at date t. Instead, we want the date t decision-maker to explore probability
distortions that alter outcomes only from date t forward.
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11.1 Multiplier Problem Revisited

We now consider the recursive nature of the optimization problem used to construct the
valuation function W̃ (·; θ) and its relation to problem (44). For progressively measurable c,
let

W̃ (c, θ) = inf
h∈H

E

∫ ∞

0

exp(−δu)zu

[
U(cu, su) + θ

|hu|2
2

]
du (47)

subject to:

dzu = zuhudBt (48)

dsu = µs(su, cu)dt.

The problem on the right of (47) can be decomposed into two parts. First, condition on Ft

and a process {hu : 0 ≤ u < t}. We want to solve for {hu : u ≥ t}. The conditioning makes
the problem separate across disjoint events. Therefore, we can write the optimized objective
(47) as:

W̃ (c; θ) = inf
{hu:0≤u<t}

E

[∫ t

0

exp(−δu)zu

(
U(cu, su) + θ

|hu|2
2

)
du+ exp(−δt)ztW̃t(c; st, θ)

]

subject to (48). Conditional rankings based on W̃t depend on past consumptions only
through the implied date t value of st. They do not depend on past values of h chosen
by the minimizing agent.

This preference ordering is equivalent to a particular form of the stochastic differential
utility studied by Duffie and Epstein (1992). This has been shown formally by Skiadas (2001)
using results from Schroder and Skiadas (1999). This link can be illustrated as follows.
Suppose that the C̃t

.
= W̃t(c; st, θ) process has a stochastic differential representation

dC̃t = ωtdt+ βtdBt.

The value function process rescaled so that zt = 1 satisfies a Bellman equation

δC̃t = min
ȟ
U(ct, st) + θ

|ȟ|2
2

+ ωt + βt · ȟ

= U(ct, st) + ωt − 1

2θ
βt · βt

[see Theorem 5 of Skiadas (2001)]. Consistent with our discussion of recursive forms of risk-
sensitive control problems, the variance multiplier is 1

θ
and does not vary with the state.21

The equivalence of the multiplier preference order for robustness to a risk-adjustment of
the continuation value does not mean that the latter interpretation is a more valid one. That
a given preference order can be motivated for alternative reasons does not inform us about

21As in the discussion of risk sensitivity, the function used to adjust for risk in the continuation value is
− exp

(− 1
θW

)
.
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which provides a better motivation. The robustness motivation would lead a calibrator to
think differently about the parameter θ than the risk motivation. Moreover, the link between
the preference orders would vanish if we limited the concerns about model misspecification
to a subset of the Brownian motions.22 We shall return to this point in the conclusion.

11.2 Constraint Problem Revisited

We next consider the recursive nature of the optimization problem used to construct the
valuation function W ∗(·; θ) and its relation to problem (46). For progressively measurable c,
let:

W ∗(c, η) = inf
h∈H

E

∫ ∞

0

exp(−δu)zuU(cu, su)du

subject to (48) and R(z) ≤ η. Analogous to our multiplier problem, we have the recursion:

W ∗(c; η) = inf
{hu:0≤u<t},rt≥0

E

[∫ t

0

exp(−δu)zuU(cu, su)du+ exp(−δt)ztW
∗
t (c; st, rt)

]

subject to (48) and to:

E

[∫ t

0

exp(−δu)zu
|hu|2

2
du+ exp(−δt)ztrt

]
≤ η. (49)

By standard duality arguments, W ∗ and W ∗
t are convex in η and rt, respectively. A standard

envelope argument implies that

dW ∗(c, η)
dη

=
dW ∗

t (c; st, rt)

dr

which we may use to define the corresponding penalty parameter θ.23

Implicit in the construction of the valuation function W ∗(c, η) is a partition of relative
entropy over time and across states as in (49). In contrast to the multiplier problem, we
are compelled to introduce a state variable rt for the minimizing agent in addition to st.
This state variable is introduced so that at date t the minimizer explores changes only in
beliefs about outcomes that can be realized in the future. We thus tie the hands of the date
t minimizer to inherit how conditional relative entropy is to be allocated across states that
have already been realized at date t. The inherited rt is determined from past minimizations.

The single relative entropy constraint

R∗(q) ≤ η (50)

22In fact in Wang (2001)’s axiomatic treatment, the preferences are defined over both the approximating
model and the family of perturbed models. Both can vary. By limiting the family of perturbed models we
can break the link with recursive utility theory.

23In the absence of differentiability at some points, this relation may be extended using subgradients. In
particular, this extension may be needed if either W ∗ or W ∗

t have finite derivatives at η = 0 or rt = 0
respectively.
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in the time zero problem allows for tradeoffs in allocating the probability distortion across
time periods. As a consequence, Chen and Epstein (2000) rule it out because without further
constraining the decision makers (i.e., the players in the zero-sum game), the date zero
constraint cannot be used in future time periods to depict preferences. Chen and Epstein
(2000) want to make the decision-maker use the full date zero set of models at all dates
u > 0, allowing for appropriate conditioning. Chen and Epstein’s approach thus precludes
using our single intertemporal entropy constraint (50) in the manner just described. Their
wish to allow the decision maker to use all date 0 models at all dates prompts Chen and
Epstein (2000) to eliminate intertemporal tradeoffs and to put instant-by-instant restrictions
on the vector ht.

Rather than separating the misspecification decision across dates and states, we imple-
ment constraint (50) recursively by limiting the model misspecifications that the decision
maker can explore at time t: we restrain the choices of the time t minimizing agent in
terms of an appropriately constructed continuation entropy rt. This continuation entropy
concentrates the re-evaluation of models based on date t information but requires that the
restricted set of models be consistent with the entropy allocation decided earlier.

A practical reason for wanting time consistency is that it permits dynamic programming.
We have shown that the recursivity of the multiplier robust control problem is sufficient
to justify dynamic programming for the robust constraint control problem. Further, we
can solve the constraint problem using dynamic programming. The constraint preferences
introduce an additional state variable rt. For that reason, it is much easier just to solve the
multiplier control problem recursively.

Another motivation for wanting time consistency is to insure that if Arrow-Debreu date
and state contingent trades are made in the initial time period there will be no reason to
trade such securities at future dates.24 This is also true for the constraint preferences. By
construction, the shadow prices for the constraint preferences match those of the multiplier
preferences and the multiplier preferences are time consistent.

12 Separating Entropy

As we have seen, the class of model perturbations that concerns our decision maker is not
described by the particular time-separable constraints that Chen and Epstein (2000) put
on ht. In this section we reinterpret the solution to the multiplier perturbation problem in
terms of preferences that impose another set of separated constraints on h.

We limit the magnitude of the perturbation by using a quadratic penalty in h:

θ

2

∫ ∞

0

exp(−δt)Ẽ|ht|2dt, (51)

where Ẽ(·) denotes an expectation with respect to P̃ . This gives rise to the multiplier
problem 4.9 and a corresponding restriction embodied in Assumption 4.10. Recall that this

24See Johnsen and Donaldson (1985) for a discussion of time consistency and how it relates to general
equilibrium theory for dynamic economies.
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condition presumes that we can exchange orders of minimization and maximization without
altering the value function. It is interesting to explore a third order of decision making that
imitates an aspect of two-stage budgeting.

We can decompose a choice of perturbation ht by first choosing a magnitude dt and then
choosing ht subject to the constraint dt = |ht|. Define a feasible set D to be the set of
nonnegative, progressively measurable processes d for which the penalty term (51) is finite.
Consider a three-agent problem:

max
c∈C

min
d∈D

min
h∈H,|ht|=dt

Ẽ

∫ ∞

0

exp(−δt)
[
U(ct, xt) +

θ

2
|ht|2

]
d t

subject to (26). In light of the constraint imposed via the d process, this objective can be
written as:

max
c∈C

min
d∈D

min
h∈H,|ht|=dt

Ẽ

∫ ∞

0

exp(−δt)
[
U(ct, xt) +

θ

2
(dt)

2

]
d t

We can replace the restriction |ht| = dt by |ht| ≤ dt without changing the solution. If the
inequality constraint were slack, then the penalty term (51) could be reduced by lowering
the corresponding dt. The optimization with respect to d ensures that |ht| = dt even when
we allow for smaller values of |ht|. Thus we are led to:

max
c∈C

min
d∈D

min
h∈H,|ht|≤dt

Ẽ

∫ ∞

0

exp(−δt)
[
U(ct, xt) +

θ

2
(dt)

2

]
d t (52)

subject to (26). Similarly, we can pose the multiplier game with orders reversed:

min
d∈D

min
h∈H,|ht|≤dt

max
c∈C

Ẽ

∫ ∞

0

exp(−δt)
[
U(ct, xt) +

θ

2
(dt)

2

]
d t (53)

subject to (26). Assumption 4.10 requires that games (52) and (53) have the same value.
So far, the new decision-maker has played an innocuous role in the games. We have

simply split the minimizing actions into two components, an intertemporal allocation d and
an intratemporal allocation of dt among the components of ht. But now consider a third
game in between the previous two:

min
d∈D

max
c∈C

min
h∈H,|ht|≤dt

Ẽ

∫ ∞

0

exp(−δt)
[
U(ct, xt) +

θ

2
dt

2

]

subject to (26). The separation of the minimization now plays an interesting role. The value
function for this game is always weakly greater than the value function for the max−min
game (52) and weakly less than the value function of the min−max game (53). In light of
the equality implied by Assumption 4.10, the three value functions should coincide.

Notice that we can ignore the intertemporal allocation penalty (51) when solving the
inner two-player game. That is we can solve:

max
c∈C

min
h∈H,|ht|≤dt

Ẽ

[∫ ∞

0

exp(−δt)U(ct, xt)dt

]
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subject to (26), which is separable.
In this three-agent perturbation problem, the outer minimizer submits a process d that

can be depicted as a function of the Brownian motion B̃. There is no scope for the per-
turbation to alter this process. While the outer minimizer can distort how dt depends on
this Brownian motion, the choice of ht subject to the constraint |ht| ≤ dt will not alter
the stochastic specification of d. However, in a martingale counterpart to this problem, the
choice of ht would typically alter probability assessment of future dt through its influence on
the martingale. As a consequence, there is no longer a simple connection between a pertur-
bation and a martingale formulation. The preceding argument for separation thus applies
only to the perturbation formulation. While the perturbation problem can be separated, the
martingale problem cannot.

13 Concluding Remarks

To use the max-min expected utility theory of Gilboa and Schmeidler (1989) for applications
in macroeconomics and finance, we have turned to robust control theory for parsimonious
ways of specifying a decision maker’s multiple models. Empirical studies in macroeconomics
and finance typically assume a unique and explicitly specified dynamic statistical model.
Concerns about model misspecification naturally admit that one of a set of alternative models
might instead govern the data. But how should one specify those alternative models?

Robust control theory supplies a parsimonious (one parameter) set of alternative models
with rich alternative dynamics. The theory leaves those models only vaguely specified and
obtains them by perturbing the decision maker’s approximating model to let shocks to feed
back on state variables arbitrarily. Among other possibilities, this allows the approximating
model to miss the serial correlation of exogenous variables and also to miss the dynamics
of how those exogenous variables impinge on endogenous state variables. Via statistical
detection error probabilities, Anderson, Hansen, and Sargent (2000) show how the multiplier
parameter or the constraint parameter in the robust control problems can be used to create a
set of perturbed models that are difficult to distinguish statistically from the approximating
model given a sample of T time-series observations.

Our alternative formulations of robust control problems lead to different preference order-
ings but to identical decisions, and so they have tangent indifference curves at a competitive
equilibrium allocation.25 Other multiplier and constraint preferences could be obtained by
perturbing only a subvector of the multivariate Brownian motion. Such perturbations could
capture the notion that the misspecification is concentrated in only some aspects of the
stochastic dynamics. Chen and Epstein (2000) use such a specification to produce prefer-
ence orderings consistent with the Ellsberg paradox; it is immediate that analogous results
would hold in our formulation. While there will no longer be a connection to recursive, risk-
sensitive preferences, essentially the same relations will exist between robust multiplier and
constraint control problems. These relations can be established by applying the Lagrange

25We can reinterpret the solution of a stochastic growth problem as a competitive equilibrium allocation.
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Multiplier Theorem.

A Proofs

The following is a restatement of Claim 4.4

Claim A.1. Suppose that qt is absolutely continuous with respect to q0t for all 0 < t < ∞. Let z be the
corresponding nonnegative martingale on (Ω,F , P ) with Ezt = 1. Then

Ezt1{� t
0 |hs|2ds<∞} = 1,

where ht is given by (14). Moreover, ∫
log

dqt
dq0t

dqt =
1
2
E

∫ t

0

zs|hs|2ds.

Proof. Consider first the claim that
Ezt1{� t

0 |hs|2ds<∞} = 1,

Formula (11) gives us the construction for the nonnegative martingale z. This martingale solves:

dzt = zthtdBt

Construct an increasing sequence of stopping times {τn : n ≥ 1} where τn
.= inf{t : zt = 1

n} and let
τ = limn τn. The limiting stopping time can be infinite. Then zt = 0 for t ≥ τ and

zt = zt∧τ

Form:
zn

t = zt∧τn

which is nonnegative martingale satisfying:

dzn
t = zn

t h
n
t dBt

where hn
t = ht if 0 < t < τn and hn

t = 0 if t ≥ τn. Then

P

{∫ t

0

|hn
s |2(zn

s )2 <∞
}

= 1

and hence

P

{∫ t

0

|hn
s |2ds <∞

}
= P

{∫ t∧τn

0

|hs|2ds <∞
}

= 1.

Taking limits as n gets large,

P

{∫ t∧τ

0

|hs|2ds <∞
}

= 1.

While it is possible that τ < ∞ with positive P probability, as argued by Kabanov, Lipcer, and Sirjaev
(1979) ∫

zt1{τ<∞}dP =
∫
{zt=0, t<∞}

ztdP = 0.

Therefore,

Ezt1{� t
0 |hs|2ds<∞} = Ezt1{� t∧τ

0 |hs|2ds<∞,τ=∞} + Ezt1{� t
0 |hs|2ds<∞,τ<∞} = 1.
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Consider next the claim that ∫
log

dqt
dq0t

dqt = E

∫ t

0

zs|hs|2ds.

We first suppose that

E

∫ t

0

zs|hs|2ds <∞. (54)

We will subsequently show that this condition is satisfied when R∗(q) <∞. Use the martingale z to construct
a new probability measure P̃ on (Ω,F). Then from the Girsanov Theorem [see Theorem 6.2 of Liptser and
Shiryaev (2000)]

B̃t = Bt −
∫ t

0

hsds

is a Brownian motion with respect to the filtration {Ft : t ≥ 0}. Moreover,

Ẽ

∫ t

0

|hs|2ds = E

∫ t

0

zs|hs|2.

Write

log zt =
∫ t

0

hs · dBs − 1
2

∫ t

0

|hs|2ds =
∫ t

0

hs · dB̃s +
1
2

∫ t

0

|hs|2ds.

which is well defined under the P̃ probability. Moreover,

Ẽ

∫ t

0

hs · dB̃s = 0

and hence

Ẽ log zt =
1
2
Ẽ

∫ t

0

|hs|2ds =
1
2
E

∫ t

0

zs|hs|2ds,

which is the desired equality. In particular, we have proved that
∫

log dqt

dq0
t
dqt is finite.

Next we suppose that ∫
log

dqt
dq0t

dqt <∞,

which will hold when R∗(q) <∞. Then Lemma 2.6 from Föllmer (1985) insures that

1
2
Ẽ

∫ t

0

|hs|2ds ≤
∫

log
dqt
dq0t

dqt.

Föllmer’s result is directly applicable because
∫

log dqt

dq0
t
dqt is the same as the relative entropy of P̃t with

respect to Pt where P̃t is the restriction of P̃ to events in Ft and Pt is defined similarly. As a consequence,
(54) is satisfied and the desired equality follows from our previous argument.

Finally, notice that 1
2 Ẽ
∫ t

0 |hs|2ds is infinite if, and only if
∫

log dqt

dq0
t
dqt is infinite.

B Bayesian Interpretation

In this appendix, we justify the evolution equation (33) that we used to reinterpret a robust control process
as the optimal Bayesian solution to a control problem. We also construct the value function V b for the
corresponding control problem. Our justification is admittedly heuristic. In addition to being casual about
the smoothness of the value function, we do not formally establish a Verification Theorem. While Fleming
and Souganidis (1989) provide a formal justification for the existence of some such evolution equation, they
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do not describe how to construct this equation in practice, and how to depict conveniently the problem as
a Markov control problem. Our aim is to produce a Markov depiction with an augmented state vector.

Suppose that Bellman-Isaacs condition 5.1 is satisfied. Write two partial differential equations:

δžṼ (x̌, θ) = max
č∈Č

žU(č, x̌) + ž
θ

2
αh(x̌) · αh(x̌) + µ(č, x̌) · Ṽx(x̌, θ)ž

+ž
1
2
trace

[
σ(č, x̌)′Ṽxx(x̌, θ)σ(č, x̌)

]
+ žαh(x̌) · σ(č, x̌)′Ṽx(x̌, θ) (55)

δžV d(X̌, θ) = ž
θ

2
αh(X̌) · αh(X̌) + žµ∗(X̌) · V d

X(X̌, θ)

+ž
1
2
trace

[
σ∗(X̌)′V d

XX(X̌, θ)σ∗(X̌)
]
+ žαh(X̌) · σ∗(X̌)′V d

x (X̌, θ) (56)

where

σ∗(X̌) .= σ[αc(X̌), X̌ ]
µ∗(X̌) .= µ[αc(X̌), X̌ ].

Equation (55) is a Bellman equation for an infinite-horizon discounted control problem, and equation (56) is
a Lyapunov equation for evaluation of an infinite horizon, discounted objective function. (In particular, it is
proportional to the evaluation of the relative entropy as in (19), where ht = αh(Xt) and Xt satisfies (33).)
Form the separable value function:

V b(x̌, X̌, θ) .= Ṽ (x̌, θ) − V d(X̌, θ)

and subtract equation (56) from (55), dividing both sides by ž.

δV b(x̌, X̌, θ) = max
č∈Č

U(č, x̌) +
θ

2
αh(x̌) · αh(x̌) − θ

2
αh(X̌) · φh(X̌)

+µ(č, x̌) · V b
x (x̌, X̌, θ) + µ∗(X̌) · V b

X(x̌, X̌, θ)

+
1
2
trace

[
σ(č, x̌)′V b

xx(x̌, X̌, θ)σ(č, x̌)
]
+

1
2
trace

[
σ∗(X̌)′V b

XX(x̌, X̌, θ)σ∗(X̌)
]

+αh(x̌) · σ(č, x̌)′V b
x (x̌, X̌, θ) + αh(X̌) · σ∗(X̌)′V b

X(x̌, X̌, θ)

In forming this differential equation from our previous ones, we have exploited the additively separable
structure of V b in computing first and second derivatives.

Consider this differential equation along the subspace where x = X . Then it may be rewritten as:

δV b(x̌, X̌, θ) = max
č∈Č

U(č, x̌) + µ(č, x̌) · V b
x (x̌, X̌, θ) + µ∗(x̌) · V b

X(x̌, X̌, θ)

+
1
2
trace

[
σ(č, x̌)′V b

xx(x̌, X̌, θ)σ(č, x̌)
]
+

1
2
trace

[
σ∗(X̌)′V b

XX(x̌, X̌, θ)σ∗(X̌)
]

(57)

+αh(X̌) · σ(č, x̌)′V b
x (x̌, X̌, θ) + αh(X̌) · σ∗(X̌)′V b

X(x̌, X̌, θ) (58)

Then žV b(x̌, X̌, θ) is the Bellman equation for a control problem with discounted objective:

E

∫ ∞

0

exp(−δt)ztU(ct, xt)dt (59)

and evolution:

dxt = µ(ct, xt)dt+ σ(ct, xt)dBt

dzt = ztαh(Xt)dBt

dXt = µ∗(Xt)dt+ σ∗(Xt)dBt. (60)
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The evolution equation is just a rewriting of (33). The c that attains the right side of the Bellman equation
can be depicted as c = ξc(x̌, X̌), but where ξc(x̌, x̌) = αc(x̌). At this solution, x and X have the same
evolution equation, so that when x0 and X0 are initialized at the same value, xt = Xt for all t. This is true
even though {Xt} is an uncontrollable or exogenous state vector while {xt} can be influenced by the control
process {ct}.

In summary since zt is initialized at one, V b is the value function for a single-agent control problem with
objective (59) and dynamic evolution equation (60). Provided that x0 and X0 are initialized at the same
value, the processes {xt} and {Xt} agree and the optimal control process satisfies ct = αc(xt) = ξc(xt, Xt).

C Martingale Solution

In this appendix we describe methods for showing that the solution for z is in fact a martingale.
Write the solution for the implied state X in (33) as:

Xt = Φt(B)

where Φ is a progressively measurable process on (Ω∗,F∗). In other words, Φt(B) only depends on the
Brownian path up until time t. We will have cause to use the functions {Φt : t ≥ 0} in our study of the
solution to the perturbation problem.

Consider the state vector process associated with the solution to the perturbation problem. This state
vector satisfies:

dX̃t = µ(X̃t)dt+ σ∗(X̃t)
[
αh(X̃t)dt+ dB̃t

]
(61)

where {B̃} is a Brownian motion defined on an alternative probability space, say (Ω, F̃ , P̃ ). Recall that the
perturbation problem penalizes the discounted expected square of h. Thus the solution to the perturbation
problem satisfies:

Ẽ

∫ t

0

|αh(X̃u)|2du <∞ (62)

for any t > 0.
While the solution to (61) may not be representable in terms of the past history of B̃, it should satisfy

the recursion:

X̃t = Φt (B∗)

B∗
t = B̃t +

∫ t

0

αh(X̃u)du.

We refer to this as a recursion because B∗
t itself constructed from past values of X̃t. Since X̃t can be

expressed as a function of past B∗
t we may write

B∗
t = B̃t +

∫ t

0

Φ̃u(B∗)du

for a progressively measurable Φ̃ defined on (Ω∗,F∗). Moreover, for each t

P̃

{∫ t

0

|Φ̃u(B∗)|2du <∞
}

= 1.

since inequality (62) is satisfied. It follows from Theorem 7.5 of Liptser and Shiryaev (2000) that the prob-
ability distribution induced by B∗ under the solution to the perturbation problem is absolutely continuous
with respect to Wiener measure q0.
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Let κt denote the Radon-Nikodym derivative. Then

Zt = κt(B)

is a nonnegative martingale defined on (Ω,F , P ) and is the unique solution to the stochastic differential
equation:

dZt = Ztαh(Xt)dBt

subject to the initial condition Z0 = 1. See Theorem 7.6 of Liptser and Shiryaev (2000).
The preceding argument used the fact that the solution to the perturbation problem satisfied inequality

(62). In fact, all that is needed is the weaker requirement that

P̃

{∫ t

0

|αh(X̃u)|2du <∞
}

= 1.

To explore this weaker inequality, recall that

αh(x̌) = −1
θ
σ∗(x̌)′Ṽx(x̌, θ).

Provided that σ∗ and Ṽx(·, θ) are continuous in x̌ and that X̃ does not explode in finite time, this inequality
follows immediately.

Another strategy for checking absolute continuity is to follow the approach of Kunita (1969), who
provides characterizations of absolute continuity and equivalence of Markov models through restrictions on
the generators of the processes. Since the models for X and X̃ are Markov diffusion processes, we can
apply these characterizations provided that we include the respective Brownian motions as part of the state
vector. Abstracting from boundary behavior, Kunita (1969) requires a common diffusion matrix, which can
be singular. The differences in the drift vector are restricted to be in the range of the common diffusion
matrix. These restrictions are satisfied in our application.
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