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A planner and agent in a permanent-income economy cannot observe part of the state,
regard their model as an approximation, and value decision rules that are robust across a
set of models. They use robust decision theory to choose allocations. Equilibrium prices
reflect the preference for robustness and so embody a “market price of Knightian
uncertainty.” We compute market prices of risk and compare them with a model that
assumes that the state is fully observed. We use detection error probabilities to constrain a
single parameter that governs the taste for robustness.
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1. INTRODUCTION

This paper studies decision making and asset pricing in the presence of model un-
certainty and an imperfectly measured state vector. Agents treat their model as a
good approximation to an unknown “true model.” Doubts about the model make
agents want decision rules that work well for a set of models close to their approxi-
mating model. We formalize model uncertainty using a robust decision theory cast
in terms of an explicit set of models. We augment previous work by formulating
how a robust decision maker should proceed when parts of the state that are useful
for forecasting are not observed.

We formulate a discounted linear-quadratic control problem with an unobserved
state, and then apply it to compute equilibrium asset prices within a stochastic
growth model calibrated to U.S. data.1 We use the stochastic growth model as a
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laboratory to study how agents’ preference for decisions robust to model misspec-
ification affects equilibrium allocation and asset prices.

Our laboratory is a model that Hansen et al. (1999) estimated from time series
on consumption and investment for the post-1970’s United States. In the Hansen–
Sargent–Tallarini (HST) model, the representative consumer faces an exogenous
endowment process that is a sum of two serially correlated stochastic components.
HST assumes that the representative consumer sees the state vector, including
current and lagged values of both components of the endowment process. At
their maximum likelihood parameter estimates, HST could actually infer the two
stochastic components of the endowment process from the data on consumption
and investment used to estimate the model.

In this paper, we recast the HST model by concealing elements of the state from
the consumer. We allow the consumer to see current and lagged values of only the
aggregate endowment and not its components. We follow HST in imputing model
uncertainty to the representative agent, inspiring a preference for robust estimators
and decision rules. The representative agent uses robust filtering and control, both
to choose a consumption savings plan and to price risky claims.

This setting requires that we reconstruct HST decision and pricing theory to
incorporate effects of model uncertainty that influence filtering. We accomplish
this by building on results of Hansen and Sargent (2000), who have modified and
extended the linear-quadratic robust decision and filtering theory of Basar and
Bernhard (1995) and Whittle (1990) to discounted problems of a type that are
especially relevant to economics and finance. We show how to adapt HST pricing
formulas when the state is unobserved. We follow HST in defining a multiplicative
adjustment to a stochastic discount factor that reflects the representative agent’s
preference for robustness. We use this adjustment to compute a “market price of
model uncertainty” and study how it affects the market price of risk.

We want quantitative estimates of how filtering affects the market price of model
uncertainty. Our hunch was originally that confounding the representative agent’s
problem by adding filtering can raise the market price of model uncertainty, thereby
helping to explain the equity premium.2 Quantifying the effects of a preference for
robustness on the market price of model uncertainty requires that we find a way to
discipline the one parameter that in our framework describes that preference. We
use Bayesian statistical detection theory to discipline that parameter, along the lines
described by Anderson et al. (2000). When we keep detection error probabilities
constant across the no-filtering-needed model of HST and the filtering-needed
model of this paper (to be dubbed the HSW model), we find little additional effect
on the market price of uncertainty from making agents filter. We suspect that this
reflects that the detection error probabilities do not properly penalize the added
complexity of the approximating model that is used by the agent who must filter.
We are not yet prepared to concede that the above hunch is misguided.

The following issue arises in asset-pricing models in which the hidden Markov
structure of an endowment or dividend process impels an agent to filter. Without
a preference for robustness, such a model is observationally equivalent to another
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with a fully observed state following a more complicated stochastic process. The
agents forecast future returns using that state and its stochastic process. Indeed,
the solution of the filtering problem in the original hidden Markov model produces
this more complicated state and stochastic process for the endowment or dividend.
Thus, rather than positing the filtering problem, one could simply begin with that
richer state and law of motion. Positing the hidden Markov model can only be
defended as a parsimonious way of specifying a richer stochastic process for the
observable data.

We show that a preference for robustness causes the filtering and decision prob-
lems to interact in a way that destroys the preceding observational equivalence.
We highlight this result by also constructing what we call a “comparison model”
that shuts down the interaction between the filtering and decision problems. This
model allows us to identify an additional dimension of model misspecification (or
“deception”) that concerns the robust decision maker when he takes into account
that the richer representation of the dividend or endowment process is itself the
result of solving a filtering problem. We also display numerical calculations that
show the quantitative effects of this additional source of misspecification.

We are interested in the HST model partly for studying the market price of Knigh-
tian uncertainty, and partly as a laboratory for applying robust decision methods
more generally. The combined robust filtering and control methods described in
this paper have applications in various macroeconomic models.3

The remainder of this paper is organized as follows: Section 2 describes key
asset-pricing formulas and gives a representation of the market price of risk in terms
of the HST market price of Knightian uncertainty. Section 3 describes the basic
robust decision theory, the set of models used to represent Knightian uncertainty,
and three salient models from within this set. Section 4 recasts the HST model in a
notation compatible with Hansen and Sargent’s (2000) machinery for joint filtering
and control. Section 5 describes detection error probabilities and how they can be
used to discipline θ , the single parameter that measures preferences for robustness.
Section 6 describes the HST observational equivalence result and the foundation of
its empirical strategy and ours. Section 7 reformulates the HST model by causing
the planner and the agent to estimate the state. A preference for robustness makes
the filtering problem interact with the control problem in a way that it does not
when the model is treated as known. Section 9 reports the computed multiperiod
market prices for our model. Section 10 concludes and suggests fruitful next steps.
Three appendices describe technical details about constructing detection error
probabilities, robust decision rules, and multiperiod asset prices.

2. ASSET-PRICING THEORY IN BRIEF

Let pt+1 be a payoff at t + 1 and qt be its price at t . Asset-pricing theories4 start
from the Euler equation

qt = E[mt+1 pt+1 |Jt ] ≡ Et [mt+1 pt+1], (1)
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where E is the mathematical expectation with Jt a time t σ -algebra, and mt+1 a
stochastic discount factor. To give content to (1), we must specify a model (i.e.,
a probability distribution) with respect to which E is evaluated. For most of this
paper, we let E be evaluated with respect to the planner’s approximating model.
We show how a preference for robustness modifies the ordinary formula for the
stochastic discount factor in consumption-based asset-pricing models.5

Using the definition of a conditional covariance and the Cauchy–Schwarz in-
equality, we obtain the inequality

qt

Et mt+1
≥ Et pt+1 − σt (mt+1)

Et mt+1
σt (pt+1), (2)

where [σt (mt+1)]/(Et mt+1) is called the market price of risk. Notice that the left
side is the ratio of the price of a claim to payoff pt+1 to the price of a riskless
claim on one unit of consumption next period. The right side then relates this price
ratio to the mean and standard deviation of the payoff. Inequality (2) becomes an
equality for payoffs on the conditional mean–standard deviation frontier. Hansen
and Jagannathan’s (1991) statement of the equity premium puzzle is that data on
asset market returns and prices give values of the market price of risk that are too
high to be reconciled with many particular models of the stochastic discount factor
mt+1. This is because those theories make the conditional standard deviation of the
stochastic discount factor σt (mt+1) too small.6 Two classic theories of the discount
factor mt+1 are

• Theory 1: mt+1 = β, used by Shiller (1981), where β ∈ (0, 1) is a constant.
• Theory 2: mt+1 = m f

t+1 ≡ β[u′(ct+1)]/u′(ct ) used by LeRoy (1973), Lucas
(1978), and Breeden (1979), where u(ct ) is a constant relative-risk-aversion
one-period utility function, and ct is consumption by a representative con-
sumer.

Both theories have small σt (mt+1): The former theory makes it zero by definition;
the latter makes it small under a constant relative-risk-aversion utility function
evaluated at aggregate U.S. consumption growth rates.7

This paper uses HST’s:

• Theory 3: mt+1 = m f
t+1mu

t+1, where mu
t+1 is a multiplicative adjustment to the

stochastic discount factor that reflects agents’ aversion to model uncertainty.

HST call mu
t+1 the market price of Knightian uncertainty. They deduce measures

of it using the robust decision theory described below. Those measures reflect
agents’ doubt about the approximating model that they use to evaluate the condi-
tional expectation in the asset-pricing formula (1). HST showed that, for empiri-
cally plausible parameterizations of model uncertainty, mu

t+1 possesses substantial
variability, raising the theoretical value of the equity premium, thereby helping to
explain the equity premium puzzle. Later, we define what is empirically plausible
in terms of the probability of erroneously distinguishing among the alternative
models described in the next section.
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3. THREE SALIENT MODELS

This section presents a brief overview of the robust decision theory that underlies
the rest of the paper. Fear of model misspecification makes a decision maker want
a decision rule to work well for a set of models. We consider a class of models
indexed by a vector process vt, with state xt , control ut , and i.i.d. Gaussian shock
process wt with mean zero and identity covariance matrix8:

xt+1 = Axt + But + C[wt+1 + vt ].

We use the vector vt to represent model misspecifications around an approximating
model; vt ≡ 0 in the approximating model. We impose the following bound on the
specification error:

1

1 − β
Ex0

[ ∞∑
t=0

β t vt · vt

]
≤ η0.

The parameter η0 sets the average size of the potential model misspecifications
where the average on the left side is taken across states and over time. Otherwise vt

can feed back arbitrarily on the history of xt . In this way, vt represents misspecified
dynamics. The robustness parameter θ , below, can be interpreted as a Lagrange
multiplier on the above constraint.9

Within this class of models, three are especially important:

• An unknown true model has vt = v̄t �= 0.
• An approximating model has vt = 0.
• A constrained worst-case model has vt = v̂t �= 0, where v̂t is a process that

depends on η0.

The true model actually generates the data. The approximating model is the
decision-maker’s model.10 Figure 1 depicts these three models graphically. The

FIGURE 1. Three models: the approximating model v = 0, the true model v = v̄, and the
worst-case model v̂.
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worst-case model v̂ is created as a by-product of the process of designing a rule to
work well over the entire set of models in the circle.

We consider a decision maker who, when he fears no specification error (i.e.,
believes v ≡ 0), has preferences ordered by

V0 = E
∞∑

t=0

{−β t R(xt , ut )
}
, (3)

where R(x, u) is a quadratic function. In (3), E is the mathematical expectation
taken with respect to the approximating model. We want to evaluate (3) under a
time-invariant decision rule u = −Fx . For fixed F , write the one-period return
function RF (x) = R(x, −Fx).

For fixed F , we want to evaluate

VF (x0) = Ex0

∞∑
t=0

[−β t RF (xt )
]

(4)

under the approximating model. Under the approximating model (vt = 0), equa-
tion (3) can be evaluated as the fixed point of the recursion

VF (x) = −RF (x) + βEx VF (x∗),

where the asterisk denotes a next-period value and Ex is the conditional expectation
evaluated with respect to the approximating model. This is an ordinary Bellman
equation.

Now suppose we admit specification error, so that multiple models are in play,
multiple probability distributions, with respect to each of which a mathematical
expectation in (3) might be taken. We want a way to evaluate continuation utility
that is conservative with respect to model misspecification, meaning that it ad-
mits the presence of multiple models. Anderson et al. (2000) construct a distorted
expectations operator R that delivers a conservative evaluation of a next-period
continuation value and that serves as a constant in a robustness bound. It is con-
servative in the following sense: Let

R(V ) = inf
v

J (v) ≡ J (v̂), (5)

where

J (v) = θv′v + Ex V (x∗), (6)

x∗ = Aox + C(w + v), (7)

v̂ = θ−1(I − θ−1C ′C)−1C ′Aox, (8)

and where Ao = A − B F and x ′x is part of the value function for the zero sum
game defined by (25) and (20), below.11 Note that the dependence of J (v) on v
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comes through the distorted transition law (7) induced by v. The definition of inf
in (5) implies that, for any distortion v,

EV [Aox + C(w + v)] ≥ J (v̂)(x) − θv′v.

The left side of this equation is the expectation of the one-period continuation value
evaluated under a particular model indexed by the distortion v. The inequality
thus bounds the rate at which performance deteriorates with respect to model
misspecification as measured by v′v. Furthermore, under the approximating model
(v = 0), J (v̂) =R(V ) gives a conservative estimate, that is, a lower bound, of the
one-period continuation value.12

4. REFORMULATING THE HST MODEL

Our ultimate goal is to modify the HST model by concealing the state of the
economy, thereby impelling the planner to estimate it. To accomplish this, it is
convenient to rearrange the HST model to avail ourselves of the results of Hansen
and Sargent (2000). We recount and recast the HST model.

4.1. HST Model

This section describes the HST model, a linear quadratic stochastic growth model
with a habit. A planner values a scalar process s of consumption services according
to

V0 = E
∞∑

t=0

β t
{−(st − µb)

2
}
. (9)

The service s is produced via the household technology

st = (1 + λ)ct − λht−1,
(10)

ht = δhht−1 + (1 − δh)ct ,

where λ ≥ 0 and δh ∈ (0, 1), c is a scalar consumption process, µb is a prefer-
ence parameter governing curvature of the utility function, and h is a scalar stock
of household habits.13 A linear technology converts a scalar endowment d into
consumption or capital:

kt = δkkt−1 + it ,
(11)

ct + it = γ kt−1 + dt .

Here, kt , it , and dt are the capital stock, gross investment, and the exogenous
stochastic endowment at time t , respectively. The parameter γ is the constant
marginal product of capital and δk is the depreciation factor for capital. Combining
(11) leads to

ct + kt = Rkt−1 + dt , (12)
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where R = γ + δk . Relation (12) makes the gross return on a one-period risk-free
asset be R.

HST assumed the following two-component model for the endowment14:

dt+1 = µd + d1
t+1 + d2

t+1,

d1
t+1 = g1d1

t + g2d1
t−1 + c1w

1
t+1,

≡ (φ1 + φ2)d
1
t − φ1φ2d1

t−1 + c1w
1
t+1, (13)

d2
t+1 = a1d2

t + a2d2
t−1 + c2w

2
t+1,

≡ (α1 + α2)d
2
t − α1α2d2

t−1 + c2w
2
t+1,

where

wt+1 =
[
w1

t+1

w2
t+1

]

is an i.i.d. Gaussian disturbance vector with mean zero and identity covariance ma-
trix. The two-component specification (13) allows separate permanent and transi-
tory components of dt , and is a specification often found in the micro literature on
permanent-income models.15 HST also assumed that the planner observes current
and lagged values of both components di

t , i = 1, 2, at all t . Later in this paper, we
withdraw from the planner knowledge of the history of the individual components
of the endowment process, and let only the history of their sum be observed.

4.2. Features of the HST Model

HST show that optimal consumption can be expressed as

ct = 1

1 + λ
(µb − µst ) + λ

1 + λ
ht−1, (14)

where µst is the shadow price of services in the planning problem. It obeys

µst = µb + ψ0

∞∑
j=0

R− j Et dt+ j + ψ1ht−1 + ψ2kt−1. (15)

HST show that (15) implies that

µst = µst−1 + ν ′wt , (16)

where ν is a vector, so that µs is a martingale.
Equations (15) and (14) imply that µb has no effect on the allocation be-

cause µb − µst does not depend on µb. However, µb does affect prices, includ-
ing the market price of risk. HST show that the shadow price of consumption,
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Mc
t , the marginal utility of consumption in the solution of the planning problem,

satisfies

Mc
t = (1 + λ) + (1 − δh)Et

[ ∞∑
τ=1

βτ δτ
h (−λ)(µb − st+τ )

]
, (17)

where µb − st = µst . The stochastic discount factor (without a preference for ro-
bustness) is

m f
t+1,t = β

Mc
t+1

Mc
t

. (18)

Finally, note that the coefficient of relative risk aversion for the one-period utility
function −(st − µb)

2 is st/(µb − st ).

4.3. Recasting the State Vector

The main purpose of this paper is to alter the HST model by changing assumptions
about what the planner observes. To accomplish this, we first recast the model so
that it conforms to a framework of Hansen and Sargent (2000) for getting, robust
solutions of joint filtering and control problems. To set the HST model into the
Hansen and Sargent (2000) form, we redefine the state vector. Thus, we let the
state vector be

xt =




ht−1

kt−1

dt−1

1

dt

d1
t

d1
t−1




≡




ft

yt

zt


, (19)

with the partitioning of the state

ft ≡




ht−1

kt−1

dt−1

1


, yt ≡ dt , and zt ≡

[
d1

t

d1
t−1

]
.

Please note that although d2t , d2t−1 are not explicitly included in the state vector,
they can be recovered from the dt , d1t components.

4.3.1. Reason for state partitioning. We partitioned the state because we an-
ticipate formulating a robust decision problem in which part of the state, namely
zt , is unobserved. Even with incomplete information, we assume that the first two
components ft and yt are known to the decision maker or can be correctly inferred
from current and past information. However, later we shall assume that the third
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component, zt , consists of states that are hidden from the decision maker. The
decision maker uses current and past data to make inferences about this vector. In
many problems, there is a redundancy in the available information. For our predic-
tion algorithms, it is important to eliminate redundant information. We accomplish
this by eliminating ft from the information set. Current and past values of yt are
sufficient to generate the current information set. Knowledge of ft or its history
conveys no additional information.

In terms of the permanent income model, the partitioned law of motion can be
written in the recursive form


f ∗

y∗

z∗


 =




A f f A f y 0

Ay f Ayy Ayz

Az f Azy Azz







f

y

z


 +




B f

0

0


u +




0

Cy

Cz


w, (20)

where the asterisk denotes a next-period value,

Cy = [c1 c2],

and

Cz =
[

c1 0

0 0

]
.

Notice that f ∗ is an exact function of f , current y, and the control u. No information
is conveyed by the f vector. Notice also that CyC ′

y is nonsingular, and so, the entire
y∗ vector is required to capture the arrival of new information next period. In what
follows, we will sometimes use the shorthand notation

x∗ = Ax + Bu + Cw, (21)

to depict the state evolution where

A =




A f f A f y 0

Ay f Ayy Ayz

Az f Azy Azz


 ≡




A f

Ay

Az


, B =




B f

0

0


, and C =




0

Cy

Cz


. (22)

We can express the objective function (9) as

E
∞∑

t=0

{
β t r( ft , yt , ut )

}
, (23)

where

r( f, y, u) = −( f ′y′)R

(
f

y

)
− u′ Qu − 2u′W

(
f

y

)
. (24)

The objective function (23) does not depend directly on zt . Instead, zt enters the
problem only as an information vector that helps predict yt , which does appear in
the objective function.
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The robust control problem with objective (9) and transition law (20) is just
a rewriting of HST’s problem. They solved this problem using a robust decision
theory, which we now briefly recount.

4.4. Robustness via a Two-Player Game

HST compute a robust decision rule by solving the two-person game defined by
the fixed point of

−x ′x − a = max
u

min
v

{r( f, y, u) − βEx∗′
x∗ − βa + βθv′v}, (25)

subject to

x∗ = Ax + Bu + C(w + v). (26)

The equilibrium of the game is a pair of decision rules

u = −Fx,
(27)

v̂ = κx,

where F and κ are given by (B.6) to (B.9) in Appendix B, with volatility matrix C .
The decision rule for v̂ induces a “worst-case” adjustment to the conditional mean
of the innovation w. In effect, a robust rule for u is constructed by planning
against this worst-case v̂. Please note that this worst-case model is not the decision-
maker’s model: His model has v = 0. The decision maker admits multiple models
surrounding his approximating v = 0 model and does not know enough to unify the
multiple models by choosing a unique prior distribution over them. The worst-case
model is simply a by-product of the planning process.

4.5. Approximating and Distorted Models

The min-max decision theory leads to two salient models: the approximating and
the distorted or worst-case model, both evaluated under the robust decision rule
ut = −Fxt . The former becomes the economist’s (and also the planner’s and the
agent’s) model of the time series on quantities (ct , it ); the latter gives the measure
to be used for pricing risky securities. The distortion of the worst-case model vis
a vis the approximating model boosts rates of return for risky assets, giving rise to
“Knightian uncertainty premia.”

Then, under the control law u = −Fx , the approximating model is

f ∗ = (A f − B f F)x,

y∗ = Ay x + Cyw, (28)

z∗ = Az x + Czw.
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The distorted or worst-case law of motion is

f ∗ = (A f − B f F)x,

y∗ = (Ay + Cyκ)x + Cyw, (29)

z∗ = (Az + Czκ)x + Czw.

Evidently, the distorted model can be obtained from the approximating model
by displacing the zero conditional mean of wt+1 in the approximating model
by v̂t = κxt . The Radon–Nikodym derivative, or likelihood ratio, of the distorted
conditional probability of xt+1 with respect to the approximating conditional
probability is

mu
t+1,t = exp

[− 1
2 (wt+1 − v̂t )

′(wt+1 − v̂t )
]

exp
[− 1

2w′
t+1wt+1

] , (30)

mu
t+1,t = exp

(
w′

t+1v̂t − 1

2
v̂′

t v̂t

)
. (31)

HST show that this Radon–Nikodym derivative is the market price of Knightian
uncertainty that appears in the multiplicative adjustment of the stochastic discount
factor

mt+1,t = m f
t+1,t m

u
t+1,t ,

where m f
t+1,t = β(Mc

t+1/Mc
t ) is the “ordinary” (θ = +∞) stochastic discount fac-

tor without a preference for robustness. Here, Mc
t+1 is the shadow price of time

t + 1 consumption in the planning problem without a preference for robustness
and m f

t+1,t is an intertemporal marginal rate of substitution between consumption
rates at t + 1 and t .

Evidently, θ is a critical parameter influencing mu
t+1,t through its impact on

v̂t . For θ = +∞, there is no preference for robustness, κ = 0, and mu
t+1,t = 1.

Lowering θ increases the taste for robustness and allows mu
t+1,t to depart from unity

and become stochastic and variable. This increases the volatility of the stochastic
discount factor mt+1.

We require a way of thinking about reasonable values of θ . As we see in the next
section, different settings of θ lead to different probabilities of detecting differences
of the approximating model from the worst-case model from a time series on xt

of given length. We use the detection statistics to guide our setting of θ .

5. DETECTION-ERROR PROBABILITIES

Anderson et al. (2000) link the preference-for-robustness parameter θ and
detection-error probabilities, a link that we use later to discipline our choice of
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plausible θ ’s. Detection-error probabilities can be calculated using likelihood ra-
tio tests. Thus, consider two alternative models. Model A is the approximating
model, and model B is the distorted model associated with the worst-case shock
implied by θ . Consider a fixed sample of observations. Let Li j be the likelihood
of that sample for model j , assuming that model i generates the data. Define the
log likelihood ratio

ri ≡ log
Lii

Li j
,

where j �= i , and i = A, B. Now, consider the probabilities of two kinds of mistakes.
First, assume that model A generates the data and calculate

pA = Prob(mistake | A) = freq(rA ≤ 0).

Thus, pA is the frequency of negative log likelihood ratios rA when model A is true.
Similarly, pB = Prob(mistake | B) = freq(rB < 0) is the frequency of negative log
likelihood ratios rB when model B is true. Call the probability of a detection error

p(θ) = 1

2
(pA + pB). (32)

Here, θ is the robustness parameter used to generate a particular model B. Ap-
pendix A shows in detail how to estimate the detection-error probability by using
simulations. We propose to set p(θ) to a reasonable number, and then invert p(θ)

to find a plausible value of θ .

6. OBSERVATIONAL EQUIVALENCE

We follow HST and define σ ≡ −θ−1; σ is the risk-sensitivity parameter of Whit-
tle (1990) and Jacobson (1973). HST’s two-part empirical strategy rested on the
fact that the likelihood function for quantity data (ct , it ) has a ridge that makes
(β, σ ) not separately identifiable. However, (β, σ ) pairs that are observationally
equivalent for quantities can have very different implications for asset prices, as
summarized by the market price of risk. HST’s strategy was, first, to estimate the
model’s free parameters from quantity observations; and, second, to select a (β, σ )

pair from the likelihood function ridge that matches market-based measures of the
market price of risk.

The free parameters of the HST model are [λ, δh, δk, γ, g1, g2, a1, a2, c1, c2] and
a locus of (σ, β) pairs. Using data on quantities (ct , it ) alone, HST computed max-
imum likelihood estimates of these parameters for geometrically detrended quar-
terly U.S. time series from 1970I to 1996III. HST proved the following proposition.

OBSERVATIONAL EQUIVALENCE PROPOSITION. Fix all parameters
except β and σ . Suppose β R = 1. There exists a σ < 0 such that the optimal
(c, i) plan with σ = 0 is also the optimal (c, i) plan for any σ satisfying σ < σ ≤ 0
and a smaller discount factor β̂(σ ) satisfying16
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β̂(σ ) = 1

R
+ ση2

R − 1
, (33)

where η2 = ν ·ν, and ν is the vector that appears in the martingale representation
(16) for the shadow price of consumption services µst . Representation (16) comes
from the solution of the planning problem when σ = 0.

Recall the decomposition of the stochastic discount factor

mt+1,t = m f
t+1,t m

u
t+1,t ,

where

m f
t+1,t = β

Mc
t+1

Mc
t

is the “ordinary” (σ = 0) stochastic discount factor without a preference for ro-
bustness and mu

t+1,t is the likelihood ratio defined above. The marginal utility
of consumption Mc

t+1 is tied down by the quantities (ct , it , kt−1, ht−1) and so is
identical across observationally equivalent (β, σ ) pairs satisfying (33). However,
mu

t+1,t does depend on σ ≡ −θ−1, through formula (30). Increasing the absolute
value of σ generally increases the norm of v̂t and affects the stochastic discount
factor.

It will ameliorate the equity premium puzzle17—the low theoretical volatility
of the stochastic discount factor—if we can somehow increase the volatility of
mu

t+1,t . HST note that

E
[(

mu
t+1,t

)2 ∣∣Jt
]= exp(v̂′

t v̂t ).

Because E[mu
t+1,t |Jt ] = 1 by construction, it follows that the conditional standard

deviation of mu
t+1,t

σ
(
mu

t+1,t

∣∣Jt
) = √

exp(v̂′
t v̂t ) − 1. (34)

HST call σ(mu
t+1,t |Jt ) the market price of Knightian uncertainty. The robustness

parameter θ affects std(mu
t+1,t |Jt ) through v̂t .

In summary, in the HST model:

• Variations in the robustness parameter σ have no effect on quantities, in the
sense that there is an offsetting change in β that leaves F and all quantities
unaltered.

• (β, σ ) pairs that are observationally equivalent for quantities affect the mar-
ket price of risk through the market price of uncertainty (34).

7. TWO MODELS WITH FILTERING

We now turn to the main purpose of this paper. We modify one assumption in
the HST model. We assume that the planner does not observe the entire state. In
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particular, we assume that the planner observes the history of dt but not its indi-
vidual components. This assumption can be expressed by saying that the planner
observes current and past values of f, y but never sees z in (20). Because z contains
information about future values of y, the planner is impelled to estimate z, and
to base decisions on that estimate. The planner is induced jointly to solve robust
control and filtering problems.

7.1. An Elementary Problem with Filtering

Hansen and Sargent (2000) show how to modify the two-player game (25) to
incorporate unobserved elements of the state vector. They begin with an elementary
formulation of a game that is designed to induce robust filtering and control, and
show how that elementary game can be transformed to a simpler game, taking
the form of (45)–(46) via a two-step procedure involving a first step that solves a
filtering problem.

Now, the decision maker enters a period knowing the components of the state
f, y but having only an estimator ž of z, whose covariance matrix about z, �,
is known. To express a preference for robust filtering and control, Hansen and
Sargent consider the following dynamic game:

−x̌ ′x̌ − a = max
u

min
v,vz

{r( f, y, u) − βEx̌∗′
∗ x̌∗ − βa∗ + βθ(v′v + v′

zvz)}, (35)

subject to
x∗ = Ax + Bu + C(w + v), (36)

and
z = ž + Gz(wz + vz). (37)

Here, wz is another i.i.d. Gaussian process, independent of w; wz has mean
zero and identity covariance matrix; wz is the error in reconstructing the hid-
den part of the state. The matrix Gz is a Cholesky factor of a covariance matrix
� ≡ E(z − ž)(z − ž)′, namely, GzG ′

z = �, and ž is an estimate of z constructed
from current and past observed values of y. This game assumes that the maxi-
mizing agent arrives at the current period with an estimate ž of the subcomponent
z of the state x . To promote robustness, the game also lets the minimizing agent
distort the conditional mean vz of the state-reconstruction error wz , allowing it to
depend on the history of the state. One step of minimizing and maximizing in (35)
will “backdate” the value function as parameterized by ∗, a∗ and “update” the
factored covariance matrix Gz .

Thus, this game produces

(A) a backward (in time) recursion mapping ∗ into  and a∗ into a;
(B) an estimator ž∗ of next period’s hidden state z∗;
(C) a forward (in time) recursion mapping � into �∗, which generates a covariance

matrix to be used for next period’s version of the problem;
(D) a robust adjustment to the estimate of the current state z.
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Building on the work of Basar and Bernhard (1995), Hansen and Sargent (2000)
show that item C is the same recursion associated with an ordinary Kalman filter,
and that ž∗ from item B is the ordinary Kalman filter estimate of the state. Thus,
the ordinary Kalman filter solves a filtering problem that embeds a preference for
robustness. Although the Kalman filter is used to construct ž given current and
past data on y, item D makes a conservative adjustment in the estimated z, aimed
at making the control law more robust.

7.2. Interactions of Filtering and Decisions

Hansen and Sargent (2000) show that (35), (36), and (37) can be reformulated in
terms of an ordinary Kalman filtering problem and a particular ordinary robust
control problem without filtering. In particular, they show that the solution of (35),
(36), and (37) can also be obtained via the following three-step procedure:

Step 1. For the purpose of solving the filtering part of the problem, form the
small state-space system:

zt+1 = Azzzt + Czwt+1,
(38)

yt+1 = Ayzzt + Cywt+1.

Form the ordinary Kalman filter for the system, that is, the Kalman filter for the
system matrices18

[Azz, Cz, Ayz, Cy, CzC
′
y].

In particular, solve the Ricatti equation for � ≡ E(z − ž)(z − ž)′,

� = [Azz� A′
zz + CzC

′
z] − [Azz� A′

yz + CzC
′
y]

× [Ayz� A′
yz + CyC ′

y]−1[Azz� A′
yz + CzC

′
y]′. (39)

Form the Kalman gain

K = [Azz� A′
yz + CzC

′
y] × [Ayz� A′

yz + CyC ′
y]−1.

Define the covariance matrix of errors in forecasting

[
yt+1

zt+1

]

from {ys, s ≤ t},

� =
[

Ayz� A′
yz + CyC ′

y Ayz� A′
zz + CyC ′

z

Azz� A′
yz + CzC ′

y Azz� A′
zz + CzC ′

z

]
. (40)
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Factor � according to

� =
[

Č y 0

Č z C̃ z

][
Č y 0

Č z C̃ z

]′
≡

[
�11 �12

�21 �22

]
, (41)

where Č y is the Cholesky factor of �11, Č z = K Č y, and C̃ z is the Cholesky factor
of [�22 − �21�

−1
11 �12]. Note that � = �22 − �21�

−1
11 �12 and that the Kalman

gain is K = �21�11
−1. By construction, Č y and C̃ z are nonsingular.

Step 2. Write the state evolution equation as19

x∗ = Ax̌ + Bu + Cw + A(x − x̌),

= Ax̌ + Bu + C∗w∗,

where

C∗ =




0 0

Č y 0

Č z C̃ z


,

and w∗ is a normally distributed vector with mean zero and covariance matrix I ,
which we partition as

w∗ =
[
w̌

w̃

]
. (42)

The vector w∗ is the shock in an innovations representation for the (y, z) process.20

Note that the dimension of the composite shock w∗ is 1 + 2 = 3, where 1 is the
dimension of y and 2 is the dimension of z. Recall that the dimension of w in the
original transition law (26) with full state observation was 2.

We can use the process w∗ to form a law of motion for the predicted state.
By construction, the shock w̌ is in the information set of the decision maker next
period: It is revealed by y∗ (remember that Č y is, by construction, nonsingular).
Also, by construction, w̌ is independent of w̃. Therefore, the law of motion for the
predicted state is obtained by replacing w̃ with zero in the following representation:

x̌∗ = Ax̌ + Bu + Čw̌, (43)

where

Č =




0

Č y

Č z


.

The f ∗ and y∗ components of x∗ match those for x∗ because both components are
in the decision-maker’s information set tomorrow. However, z∗ and ž∗ will differ.
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For future reference, we also define

C̃ =




0

0

C̃ z


, (44)

and note that x∗ = x̌ + C̃w̃.

Step 3. Compute the decision rule for u that solves

−x̌ ′x̌ − a = max
u

min
v̌, ṽ

{r( f, y, u) − βEx̌∗′x̌∗ − βa + βθ(v̌′v̌ + ṽ′ṽ)}, (45)

subject to

x̌∗ = Ax̌ + Bu + Č(w̌ + v̌) + C̃ ṽ. (46)

In this game, the composite vector w∗ disguises model misspecification. The
two-dimensional misspecification term ṽ appears in the evolution for the predicted
state x̌∗, but is hidden in the evolution for the actual state vector x∗. The predicted
state ž∗ is created by the agent and not directly observed. The ṽ misspecification
appears in the agent’s perception of how z∗ will evolve and is thereby transmitted
into how ž∗ is constructed.

As mentioned above, Hansen and Sargent (2000) derive the three-step procedure
(45)–(46) from the more elementary recursive specification of a game, (35), (36),
and (37), which involves both the unknown state and the control. Several things
about this procedure are remarkable. First, filtering is done using an ordinary (i.e.,
nonrobust) Kalman filter.21 Second, the two-player game (45)–(46) is associated
with an ordinary robust decision problem that treats the state as observed and given
by [

y′ f ′ ž′].
Third, there is an interaction between the filtering problem and the control problem
due to robustness. The interaction comes from the presence of the term C̃ ṽ, which
captures the ability of the minimizing agent to deceive the maximizing agent by
altering the gap between the estimated and actual values of the unobserved part of
the state z. Later, we expand upon this third point by describing a comparison model
that, inappropriately according to the elementary recursive game that induces (45)–
(46), ignores this avenue of deception.

A solution of (45) and (46) is a decision rule

u2 = −F2 x̌,

and laws of motion for the worst case mean

v̌2 = κ̌2 x̌,
(47)

ṽ2 = κ̃2 x̌,
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where coefficients F2 and

κ2 ≡
[
κ̌2

κ̃2

]

are determined by equations (B.6) to (B.9) in Appendix B, with volatility matrix

C2 =




0 0

Č y 0

Č z C̃ z


.

We can use these worst-case means to form the distorted law of motion to be used
for asset pricing and detection-error probabilities. Thus, the approximating model
under the robust rule is

x̌∗ = (A − B F2)x̌ + Čw̌, (48)

and
x∗ = x̌∗ + C̃w̃. (49)

The distorted model under the robust rule is

x̌∗ = (A − B F2 + Č κ̌2 + C̃ κ̃2)x̌ + Čw̌, (50)

or

x̌∗ = (A − B F2)x̌ + Čw̌,
(51)

x∗ = x̌∗ + C̃w̃ + Č v̌ + C̃ ṽ.

These are the representations that we need to calculate detection-error probabilities
and the market price of uncertainty.

7.3. Comparison Model

To highlight an interaction between filtering and control, we display another game
that emerges from ignoring that interaction. This game is formed by the following
two-step procedure.

Step 1. Perform steps 1 and 2 from earlier three-step procedure.

Step 2. Solve a recursive game (45) where the extremization is now subject to
the transition equation

x̌∗ = Ax̌ + Bu + Č(v̌ + w̌), (52)

The difference between (46) and (52) is the absence of ṽ from the latter. The
elementary recursive game referred to earlier directs Hansen and Sargent (2000)
to include this term in (46). This term embodies an interaction between filtering
and control for inducing robustness.
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Notice that game (45)–(52) comes from replacing the original transition equation
for y in (20) with the ordinary Kalman filter “innovations representation” for y, then
treating the innovations representation as though it were the original model of the y
process in HST. This pushes the original representation of the y process in (25) into
the background and replaces it with another that ignores its hidden state structure,
then proceeding as in HST. The robust decision rule and the worst-case means are
solved by (B.6) to (B.9) in Appendix B by setting the volatility matrix equal to

Č =




0

Č y

Č z


.

This two-step procedure without the interaction term was appropriate in analyses
such as those of Detemple (1986), Dothan and Feldman (1986), Gennotte (1986),
and Veronesi (1999), which study asset pricing in the face of filtering without a pref-
erence for robustness. With a preference for robustness, the procedure is not correct.

We call (45)–(52) the “comparison model.” Although Hansen and Sargent (2000)
show that it does not give the robust solution to the joint filtering and control prob-
lem, we compute market prices of risk and detection-error probabilities for the
comparison model as well as for (45)–(46).

8. MARKET PRICE OF UNCERTAINTY UNDER FILTERING

This section and Appendix C describe how to compute market prices of uncertainty.
We extend HST’s calculations to pricing multiperiod returns.

8.1. One-Period Market Price of Uncertainty

We can compute the market price of uncertainty by again using a Radon–Nikodym
derivative of the distorted model of x∗ with respect to the approximating model.
Write

x∗ = x̌∗ + C̃w̃.

Form

mu∗ = exp

(
w∗ · v∗ − 1

2
v∗ · v∗

)
,

where

v∗ =
[
v̌

ṽ

]
.

While this will generate the correct pricing formulas, we can also use the condi-
tional expectation

E[mu∗ | w̌, v∗] = exp

(
w̌ · v̌ − 1

2
v̌ · v̌

)
,
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since w̌ is the innovation to the information set of economic agents. Below, inspired
by (2), we compute the conditional standard deviation of mu to measure the boost
in the market price of risk contributed by uncertainty aversion.

We extend the calculations to multiperiod returns because the effects of filtering
on prices of risk operate through ṽ and appear only in prices of multiperiod returns.

8.2. Multiperiod Market Prices of Uncertainty

To derive formulas for multiperiod market prices of uncertainty with filtering, we
impose the permanent-income control law and let the resulting state evolution
under the approximating model with filtering be

x̌ t+1 = A∗ x̌ t + Čw̌t+1,

and under the (constrained) worst-case model,

x̌ t+1 = Ǎx̌ t + Čw̌t+1.

Here A∗ = A − B F and Ǎ = A − B F + Č κ̌2 + C̃ κ̌2, so that Ǎ captures the feed-
back of both v̌ and ṽ on the state.

We want to form the ratio of conditional densities for the observed state vector

y j
t+ j =




yt+1

yt+2

...

yt+ j


,

under the two models for each j . To represent this ratio, we construct the conditional
means and shock weighting matrices for y j

t+ j in terms of the composite shock
vector

w̌ j
t+ j =




w̌t+1

w̌t+2

...

w̌t+ j


.

Then, we can write
y j

t+ j = H∗
j x̌ t + G∗

j w̌
j
t+ j

under the approximating model and

y j
t+ j = Ȟ j x̌ t + Ǧ j w̌

j
t+ j

under the worst-case model for some matrices H∗
j , Ȟ j , G∗

j , and Ǧ j . Form the
likelihood ratio
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mu
t+ j,t =

|det(G∗
j )|

|det(Ǧ j )|
exp

{− 1
2

[
(Ǧ j )

−1
(

y j
t+ j − Ȟ j x̌ t

)] · [(Ǧ j )
−1

(
y j

t+ j − Ȟ j x̌ t
)]}

exp
{− 1

2

[
(G∗

j )
−1

(
y j

t+ j − H∗
j x̌ t

)] · [(G∗
j )

−1
(

y j
t+ j − H∗

j x̌ t
)]}.

Since we evaluate this under the approximating model, we can write

(G∗
j )

−1
(

y j
t+ j − H∗

j x̌ t
) = w̌

j
t+ j

and

(Ǧ j )
−1

(
y j

t+ j − Ȟ j x̌ t
) = (Ǧ j )

−1G∗
j (G

∗
j )

−1
(

y j
t+ j − H∗

j x̌ t + H∗
j x̌ t − Ȟ j x̌ t

)
,

= (Ǧ j )
−1G∗

j

[
w̌

j
t+ j − (G∗

j )
−1(Ȟ j − H∗

j )x̌ t
]
,

and substitute this into the likelihood ratio. In Appendix C, we obtain a formula
for mu

t+ j,t from which we can readily compute σt (mu
t+ j,t ), which is the j-period

market price of Knightian uncertainty. We proceed to construct recursions for
Ȟ j , H∗

j , Ǧ j , G∗
j .

8.3. Conditional Means

Consider first the recursive construction of the conditional mean matrices. Let
U = [01×4 1 01×2] denote a selection matrix designed so that yt+ j = U xt+ j . Let
Ȟ 1 = U Ǎ, and use the recursion

Ȟ k+1 =
[

Ȟ k

U ( Ǎ)k+1

]

to construct Ȟ j . Then, the conditional mean for y j
t+ j is Ȟ j x̌t , which captures the

contributions of both v̌ and ṽ. Form H∗
j analogously with A∗ used in place of Ǎ

for the approximating model.

8.4. Shock Dependence

Consider next the recursive construction of the matrices encoding shock depen-
dence. Let Č1 = Č , C∗

1 = Č and define Č and G∗ recursively as follows:

Čk+1 = [
ǍČk

... Č
]
,

(53)
C∗

k+1 = [
A∗C∗

k

... Č
]
.

Using these matrices and the facts that Ǧ1 = UČ and G∗
1 = UČ as inputs into the

recursion, we have



62 HANSEN ET AL.

Ǧk+1 =
[

Ǧk 0

U ǍČk Ǧ1

]
,

(54)

G∗
k+1 =

[
G∗

k 0

U A∗C∗
k G∗

1

]
.

9. RESULTS

This section presents estimates of market prices of Knightian uncertainty for three
models: the HST; ours, which we dub the HSW model; and the comparison model.
The first assumes that both components of the endowment process are observed,
whereas the second and third assume that only the sum is observed, impelling
agents to filter. The HSW model takes into account the interaction between filtering
and decision making under a preference for robustness, whereas the comparison
model suppresses that interaction.

9.1. HST Empirical Procedure

HST estimated the identifiable parameters by maximizing a Gaussian likelihood
function. They estimated the model from geometrically detrended time series on
ct , it . They found that, given the parameters, the model reveals time series of the two
components d1

t , d2
t of the endowment shock. They recovered those two components

and used them to construct the state xt for computing the mean distortion v̂t and
mu

t+1,t .

9.2. Filtering the Endowment Process

We use HST’s parameter estimates but we want to assume that the planner and
agents do not see the components di

t , only their sum dt , up to a constant. We form dt

as the sum of the components d1
t + d2

t recovered by HST, and then use the Kalman
filter to construct filtered estimates of the components based on the history of the
sum dt up to time t . In that way, we form žt as a component of x̌ t . We then use x̌ t

to form v̌t , ṽt , and mu
t+1,t . In more detail, we form žt+1 recursively from

w̌t+1 = Č−1
y (yt+1 − Ay x̌ t ), (55)

žt+1 = Az x̌ t + Č zw̌t+1. (56)

Here Č−1
y wt+1 is the innovation in yt+1. This is a standard recursive application of

the Kalman filter to construct state estimates.
Figure 2 shows the two components of the endowment process recovered by

HST. Figure 3 shows the filtered estimates of these two components. Not surpris-
ingly, the filtered components are smoother than their true counterparts. Below,
we calculate mu

t+1,t based on these filtered components.
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FIGURE 2. Actual permanent and transitory components of endowment process HST model.

TABLE 1. Parameter estimates
from HST

Parameter estimate

β 0.9971
δh 0.6817
λ 2.4433
α1 0.8131
α2 0.1888
φ1 0.9978
φ2 0.7044
µd 13.7099
c1 0.1084
c2 0.1551

Table 1 reports HST’s estimates of the free parameters of their model with
habit persistence. For those parameters, Figure 4 shows the locus of (β, σ ) pairs
that are observationally equivalent for the HST model, the HSW model, and the
comparison model. These were computed by evaluating the exact formula (33).
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FIGURE 3. Filtered estimates of permanent and transitory components of endowment process
from HST model.

The locus for the comparison model is virtually identical with that for the HST
model, while the locus for the HSW model is steeper, reflecting the larger inno-
vation “volatility” coming from C̃ z . By construction, all three loci go through the
same point at σ = 0.

Table 2 computes the median market prices of risk from one to four periods for
the HST model for some combinations22 of parameter values (µb, σ ). The prefer-
ence specification makes µb a curvature parameter. Table 3 reports coefficients of
relative risk aversion associated with various values of µb, which we formed by
injecting the derivatives of the utility function ucc and uc injected into the standard
formula for the coefficient of relative risk aversion:

rc ≡ −cucc

uc
. (57)

We apply the chain rule to calculate the risk aversion coefficient defined in terms
of consumption, as in (57). The marginal utility of consumption is related to that
for services by uc = (1 + λ)us = −2(1 + λ)(s − µb). The second derivative of the
utility function with respect to consumption is ucc = −2(1 + λ)2. Therefore, we
take the coefficient of relative risk aversion for consumption gambles to be
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FIGURE 4. Observationally equivalent (β, σ ) pairs, with β on the vertical axis. The steeper
line is for the HSW model, the overlapping less steep line is for the HST model and the
comparison model.

rc = c
1 + λ

µb − s
.

We evaluated (57) along the c, s realization of HST. Table 3 records various quan-
tiles of the resulting coefficients of relative risk aversion for different bliss points
µb.23

In Tables 4, 5, 6, and 7, as σ varies, we alter β according to the observa-
tional equivalence formula (33). That (β, σ ) respect the observational equivalence
formula (33) implies that F stays fixed for all three models and all values of σ (this
is what the observational equivalence proposition means). However, the worst-case
shock v varies with σ , and across models, because the volatility matrices (the C’s)
vary across models and also time series of the state vector.24 Tables 4 to 7 report
the market prices of uncertainty for one to four periods for all three models.25

Consider the comparison between the HSW and benchmark models. Recall that
the difference between the games underlying these models is that the HSW game
has an additional perturbation not present in the benchmark model. This perturba-
tion takes more than one time period before it is reflected in the market price of
uncertainty. For a given choice of robustness penalty parameter θ = −1/σ , there
is virtually no difference in the one-period median market prices of uncertainty
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TABLE 2. Multiperiod market price of model uncertainty (with habit persistence)

µb\σ 0 −0.000025 −0.00005 −0.000075 −0.00010 −0.00015

(A) 1 period

24 0 0.0174 0.0348 0.0523 0.0697 0.1048
30 0 0.0284 0.0568 0.0853 0.1140 0.1718
36 0 0.0394 0.0789 0.1186 0.1586 0.2399

(B) 2 period

24 0 0.0246 0.0493 0.0740 0.0989 0.1491
30 0 0.0402 0.0805 0.1211 0.1620 0.2454
36 0 0.0557 0.1118 0.1685 0.2260 0.3450

(C) 3 period

24 0 0.0302 0.0604 0.0909 0.1215 0.1835
30 0 0.0492 0.0987 0.1487 0.1994 0.3035
36 0 0.0683 0.1372 0.2073 0.2790 0.4298

(D) 4 period

24 0 0.0348 0.0699 0.1051 0.1407 0.2131
30 0 0.0569 0.1142 0.1722 0.2314 0.3540
36 0 0.0789 0.1588 0.2405 0.3248 0.5049

TABLE 3. Implied coefficients of relative risk aversion

µb

Quantile 18 24 30 36

0.25 13.1 5.1 3.1 2.3
0.5 14.2 5.2 3.2 2.3
0.75 15.4 5.4 3.3 2.4

between the HSW game and the benchmark game. The additional perturbation,
however, enhances the uncertainty prices for longer time horizons in the HSW
model. For instance, Table 5 shows that that the HSW model leads to a 50% in-
crease in the market price of Knightian uncertainty for horizon 4. However, the
meaning of θ or σ is different across models. For a given σ , the worst-case model
associated with the HSW game is, from a statistical vantage point, further away
from the approximating model than is the worst-case model that is associated with
the benchmark game. An active learner may have an easier time detecting these
model departures using historical data. We now turn to this question.

For each of our three models, Table 8 records the detection-error probabilities
for distinguishing the approximating model from the worst-case model affiliated
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TABLE 4. One-period median market price of model uncer-
tainty (with habit persistence)

µb\σ 0 −0.000025 −0.00005 −0.000075

(A) HST model

24 0 0.0174 0.0348 0.0523
30 0 0.0284 0.0568 0.0853
36 0 0.0394 0.0789 0.1186

(B) Comparison model

24 0 0.0175 0.0350 0.0525
30 0 0.0285 0.0570 0.0857
36 0 0.0395 0.0792 0.1191

(C) HSW model

24 0 0.0175 0.0350 0.0526
30 0 0.0285 0.0571 0.0858
36 0 0.0396 0.0793 0.1193

TABLE 5. Two-period median market price of model uncer-
tainty (with habit persistence)

µb\σ 0 −0.000025 −0.00005 −0.000075

(A) HST model

24 0 0.0246 0.0493 0.0740
30 0 0.0402 0.0805 0.1211
36 0 0.0557 0.1118 0.1685

(B) Comparison model

24 0 0.0247 0.0495 0.0744
30 0 0.0403 0.0808 0.1216
36 0 0.0559 0.1122 0.1692

(C) HSW model

24 0 0.0310 0.0622 0.0935
30 0 0.0506 0.1016 0.1531
36 0 0.0702 0.1412 0.2135

with a given σ . Each of these was calculated by counting frequencies from 20,000
simulations of the detection-error statistics described in Appendix A. Each simu-
lation started from HST’s estimate of the initial condition for the state, and con-
tained the same number of periods as the data set that HST used to estimate their



68 HANSEN ET AL.

TABLE 6. Three-period median market price of model uncer-
tainty (with habit persistence)

µb\σ 0 −0.000025 −0.00005 −0.000075

(A) HST model

24 0 0.0302 0.0604 0.0909
30 0 0.0492 0.0987 0.1487
36 0 0.0683 0.1372 0.2073

(B) Comparison model

24 0 0.0303 0.0607 0.0912
30 0 0.0494 0.0991 0.1493
36 0 0.0686 0.1378 0.2082

(C) HSW model

24 0 0.0436 0.0874 0.1318
30 0 0.0711 0.1431 0.2164
36 0 0.0987 0.1993 0.3034

TABLE 7. Four-period median market price of model uncer-
tainty (with habit persistence)

µb\σ 0 −0.000025 −0.00005 −0.000075

(A) HST model

24 0 0.0348 0.0699 0.1051
30 0 0.0569 0.1142 0.1722
36 0 0.0789 0.1588 0.2405

(B) Comparison model

24 0 0.0350 0.0702 0.1056
30 0 0.0571 0.1147 0.1730
36 0 0.0793 0.1595 0.2416

(C) HSW model

24 0 0.0551 0.1108 0.1673
30 0 0.0900 0.1816 0.2760
36 0 0.1250 0.2537 0.3894

model. For a given σ , the detection-error probability is lower for the HSW model
than for the HST model, meaning that it is easier to distinguish the worst-case
model from the approximating model in the HSW case. In Figures 5, 6, 7, and 8,
we plot the relationship between the market price of Knightian uncertainty and
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TABLE 8. Detection-error probability

µb\σ 0 −0.000025 −0.00005 −0.000075

(A) HST model

24 0.5000 0.4605 0.4254 0.3844
30 0.5000 0.4390 0.3739 0.3216
36 0.5000 0.4165 0.3371 0.2576

(B) Comparison model

24 0.5000 0.4637 0.4237 0.3857
30 0.5000 0.4370 0.3796 0.3231
36 0.5000 0.4169 0.3380 0.2647

(C) HSW model

24 0.5000 0.4410 0.3781 0.3191
30 0.5000 0.4063 0.3092 0.2238
36 0.5000 0.3731 0.2466 0.1481

FIGURE 5. One-period market price of Knightian uncertainty versus detection-error proba-
bility.
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FIGURE 6. Two-period market price of Knightian uncertainty versus detection-error proba-
bility.

the detection-error probability, using statistics from Tables 4, 5, 6, 7, and 8. For
each model for each pricing horizon, there is a tight inverse relationship between
the detection-error probability and the market price of uncertainty. For the shorter
pricing horizons, the market price of uncertainty is actually lower for a given
detection-error probability for the HSW model than for the other models. At hori-
zon 4, however, the loci of detection-error probabilities and market prices of un-
certainty of all three models coincide. The graph at horizon 4 demonstrates that the
link between the detection-error probabilities and the market prices of uncertainty
that was discussed and documented by Anderson et al. (2000) extends to at least
some models with hidden Markov states, provided that we look beyond the initial
response.

9.3. Detection-Error Probabilities and Model Complexity

The preceding subsection indicated that, for a given detection-error probability,
all three models give rise to nearly the same market prices of uncertainty for
the four-period pricing horizon. We suspect that it is not really appropriate to
compare detection-error probabilities as we have across different approximating
models. Those models are associated with games that assume different types of
perturbations. The worst-case model for the HSW game was derived by looking
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FIGURE 7. Three-period market price of Knightian uncertainty versus detection-error prob-
ability.

at more complicated perturbations than those allowed for the benchmark game. In
studying detection, we explored only pairwise comparisons between worst-case
models and the approximating model. In statistically exploring a richer class of
perturbations, it may instead be reasonable to imagine detection problems with a
more complicated family of alternative models. Enlarging the family of alternative
models might make statistical detection more challenging. Our current detection
comparison misses the additional complexity that emerges from adding candidate
models into the choice set of a hypothetical statistician. When some of the state
variables are hidden from decision makers, taking account of this complexity might
well boost the market price of uncertainty.

10. CONCLUDING REMARKS

This paper has shown how to adapt the asset pricing theory of HST to a setting
where part of the state is not observed, putting the planner and the agents into a
situation where they have to both filter and control. By using results of Hansen and
Sargent (2000), the joint filtering and control problem can be broken in two, the
first being an ordinary Kalman filtering problem, and the second being an ordinary
robust control problem with observed state. HST’s formulation of asset pricing
then applies directly, including their formula for the market price of Knightian
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FIGURE 8. Four-period market price of Knightian uncertainty versus detection-error proba-
bility.

uncertainty in terms of the Radon–Nikodym derivative of the distorted with respect
to the approximating model. This two-step procedure still embodies an interaction
between filtering and control that is captured by an extra innovation volatility term
in the control problem relative to what is found in the nonrobust formulations
of related problems by Detemple (1986), Dothan and Feldman (1986), Gennotte
(1986), Veronesi (1999), and others.

We used detection-error probabilities to discipline our choice of the critical ro-
bustness parameter σ = − θ−1 across models. For fixed detection-error probabili-
ties, we find that the market price of risk measured using the approximating model
does not increase in moving from HST’s specification to ours. The explanation is
this. For fixed σ , the added confusion caused by the filtering problem increases
the gap between the distorted and the approximating model by enlarging the mean
distortion vt , making deviations between the approximating and distorting models
easier to detect statistically. Adjusting σ toward zero to compensate for this effect
erases much of the boost in the market price of risk coming from the increased
volatility from filtering.

However, we doubt this apparent irrelevance result because, in comparing de-
tection errors across models, it may be important to adjust the likelihood ratios
for the differing complexities of the models. We suspect that adjusting for model
complexity would alter our interpretation of the above findings.
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We intend this paper partly as a prolegomenon to a paper in which we alter
the specification of the trend in the HST model. Instead of positing a known
geometric trend, we would like to work with a stochastic-trend model, say, by let-
ting the endowment process have repeated unit roots. That specification is capable
of matching “trend breaks” in productivity growth. The filtering machinery in this
paper then applies directly to the problem of estimating an unobserved trend com-
ponent of GDP growth, allowing for breaks. The HST model could be reestimated
under such a modification.

The joint robust filtering and control problem has many potential applications
in macroeconomics and monetary economics. A class of examples that especially
interests us has stochastic unobserved trends in productivity or “potential GDP,”
estimates of which enter monetary policy rules. See Cagetti et al. (2000) for a
formulation in continuous time.

NOTES

1. The combined estimation and control calculations extend Hansen and Sargent’s (1995) formu-
lation of a discounted risk-sensitive problem.

2. See Mehra and Prescott (1985), Weil (1989), and Hansen and Jagannathan (1991), Cochrane and
Hansen (1992), Constantinides and Duffie (1996).

3. See Cagetti et al. (2000) and Hansen and Sargent (2000).
4. See Harrison and Kreps (1979)
5. As in the HST model, another way to interpret our calculations is as perturbing the measure with

respect to which the expectation is evaluated, while retaining the ordinary formula for the stochastic
discount factor.

6. Whereas Hansen and Jagannathan (1991) looked at the unconditional counterpart to this pricing
inequality for multiple assets, Gallant et al. (1990) studied the conditional version (2).

7. See Hansen and Singleton (1983), Mehra and Prescott (1985), or Hansen and Jagannathan (1991)
for alternative statements of this phenomenon.

8. See Anderson et al. (2000) for an alternative specification of a class of models. Their approxi-
mating model is a controlled Markov process. They form a set of alternative models by multiplying
the one-step transition density of the approximating model by a strictly positive function. It can be
shown that the formulation for the linear stochastic difference equation in this paper is consistent with
Anderson, Hansen, and Sargent’s.

9. Thus, θ is +∞ for η0 = 0, and falls as η0 rises above zero.
10. This is called the reference model in much of the control theory literature.
11. See Appendix B for a formula for .
12. This R operator also appears in the literature on recursive utility. See Kreps and Porteus (1978),

Epstein and Zin (1989), and Duffie and Epstein (1992).
13. For studies of preferences with habit formation, see Ryder et al. (1973), Becker and Murphy

(1988), Sundaresan (1990), Constantinides (1990), Heaton (1993).
14. The two parameterizations each for d1 and d2 are equivalent, the first being used in this paper

and the second in the HST model.
15. For HST, the two-component structure served also the purpose of ensuring “stochastic nonsin-

gularity,” meaning a spectral density of full rank for the observables ct , it for which they constructed
a likelihood function for estimating free parameters.

16. Formula (33) solves and simplifies an implicit function in the HST model.
17. See Hansen and Jagannathan (1991) for this characterization of the equity premium puzzle.
18. Here CzC ′

y measures the covariance between the state and measurement errors.
19. The spectral factorization achieved by (41) ensures the equality Cw + A(x − x̌) = C∗w∗.
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20. See Anderson and Moore (1979) for a discussion of innovations representations, also called
Wold representations.

21. This differs from the procedure recommended by Basar and and Bernhard (1995) and Whittle
(1990). The difference stems from their using a different criterion, according to which the decision
maker cares equally about past and future returns.

22. These combinations include ones originally reported by HST and some additional ones besides.
23. Given the time separabilities in preferences, there are important distinctions between consump-

tion and wealth lotteries. See Constantinides (1990) for a discussion of this point and suggestions for
other measures of risk aversion.

24. The market prices of uncertainty are computed using the exact formula (34) whereas HST used
an approximation.

25. We chose a smaller range of σ ’s because some of the σ ’s in the tables are beyond the “breakdown
point” for the HSW model. See Hansen et al. (1999) and Whittle (1990) for explanations of the
breakdown point.
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APPENDIX A. DETECTION-ERROR
PROBABILITIES

This appendix describes how we compute the detection-error probabilities. First, we describe
detection-error probabilities for the basic HST model, and then for the HSW and comparison
models.

A.1. LIKELIHOOD RATIO UNDER THE APPROXIMATING MODEL

Represent the approximating model as

xt+1 = Aoxt + Cwt+1, (A.1)

where wt+1 is a sequence of i.i.d. Gaussian vectors with mean zero and covariance matrix
I . In this part, we assume that the true data-generating process is this approximating model.

Represent the distorted model as

xt+1 = Aoxt + C(w̌t+1 + vt ),

= Âxt + Cw̌t+1. (A.2)



76 HANSEN ET AL.

Define vA as the worst-case shock, assuming that the underlying data-generating process
is the approximating model, i.e., vA = κx A and Â = Ao + Cκ , where x A is generated under
(A.1). Hence, we can express the innovation under the worst-case model as

w̌t+1 = wt+1 − vA
t . (A.3)

The log likelihood function under the approximating model is

log L AA = − 1

T

T −1∑
t=0

{
log

√
2π + 1

2
(wt+1 · wt+1)

}
. (A.4)

The likelihood function for the distorted model, given that (A.1) is the data-generating
process, is

log L AB = − 1

T

T −1∑
t=0

{
log

√
2π + 1

2
(w̌t+1 · w̌t+1)

}
,

= − 1

T

T −1∑
t=0

{
log

√
2π + 1

2

(
wt+1 − vA

t

)′(
wt+1 − vA

t

)}
. (A.5)

Hence, assuming that the approximating model is the data-generating process, the likelihood
ratio, rA, is

rA ≡ log L AA − log L AB,

= 1

2T

T −1∑
t=0

{w̌t+1 · w̌t+1 − wt+1 · wt+1},

= 1

T

T −1∑
t=0

{
1

2
vA′

t vA
t − vA′

t wt+1

}
. (A.6)

A.2. LIKELIHOOD RATIO UNDER THE DISTORTED MODEL

Now suppose that the data-generating process is the distorted model, described as follows:

xt+1 = (Ao + Cκ)xt + Cεt+1,

≡ Âxt + Cεt+1, (A.7)

where Â = Ao + Cκ. Under the approximating model, we have

xt+1 = Aoxt + C ε̌t+1. (A.8)

Hence, ε̌t+1 = εt+1 + vB
t , where vB = κx B

t and x B
t is the time series generated under (A.7).

The log likelihood function log L B B for the distorted model, assuming that the distorted
model generates the data, is

log L B B = − 1

T

T −1∑
t=0

{
log

√
2π + 1

2
(εt+1 · εt+1)

}
. (A.9)
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The log likelihood function log L B A for the approximating model, assuming that the distorted
model (A.7) generates the data, is

log L B A = − 1

T

T −1∑
t=0

{
log

√
2π + 1

2
(ε̌t+1 · ε̌t+1)

}
,

= − 1

T

T −1∑
t=0

{
log

√
2π + 1

2

(
εt+1 + vB

t

)′(
εt+1 + vB

t

)}
. (A.10)

Hence, the likelihood ratio rB , assuming that the distorted model is the data-generating
process, is

rB ≡ log L B B − log L B A,

= 1

2T

T −1∑
t=0

{ε̌t+1 · ε̌t+1 − εt+1 · εt+1},

= 1

T

T −1∑
t=0

{
1

2
vB′

t vB
t + vB′

t εt+1

}
. (A.11)

A.3. DETECTION-ERROR PROBABILITY

The detection-error probability is defined as

p(θ) = 1

2
(pA + pB), (A.12)

where pi = freq(ri ≤ 0), i = A, B. We attach equal prior weights to models A and B. To
compute p(θ), we simulate a large number of trajectories and calculate the empirical
detection-error probability.

A.4. HSW AND COMPARISON MODELS

For the HSW model, this appendix describes in detail how we simulated the approximating
and worst-case models and evaluated their likelihood functions to calculate the detection-
error probabilities.

A.4.1. Simulating Data Under the Worst-Case Model

First, simulate under the worst-case model, described by the following law of motion:

y∗ = Ay x̌ + Č y(w̌ + v̌),

ž∗ = Az x̌ + Č zČ
−1
y (y∗ − Ay x̌) + C̃ z ṽ,

(A.13)
f ∗ = A f x̌ + B f u,

= (A f − B f F)x̌,
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given the initial condition x̌0 from HST (after appropriate transformation to the newly
defined state vector notation in order to make CyC ′

y nonsingular). Note that

v =
[
v̌

ṽ

]
=

[
κ̌

κ̃

]
x̌ ≡ κ x̌, (A.14)

where x̌ is generated under (A.13).
First, given initial x̌ value from HST, calculate v̌ = κ̌ x̌ , draw a w̌ from N (0, 1), and

calculate y∗. Second, compute the next period’s ž∗ using y∗ and ṽ = κ̃ x̌ . Third, calculate
the next period’s endogenous f ∗ using the third equation in (A.13). Finally, construct
x̌∗ = [ f ∗ y∗ ž∗]T for the next period and repeat this procedure.

A.4.2. Simulating Data Under the Approximating Model

Perform the same procedure under the approximating model, except that now simulation is
done under the following law of motion:

y∗ = Ay x̌ + Č yw̌,

ž∗ = Az x̌ + Č zČ
−1
y (y∗ − Ay x̌),

(A.15)
f ∗ = A f x̌ + B f u,

= (A f − B f F)x̌ .

Note that there is no v̌ or ṽ appearing in the simulation.

A.5. SIMULATION UNDER THE COMPARISON MODEL

A.5.1. Simulating Data Under the Worst-Case Model

In the spirit of Section A.4, from the initial condition on x̌ , we simulate using

y∗ = Ay x̌ + Č y(w̌ + v̌),

ž∗ = Az x̌ + Č zČ
−1
y (y∗ − Ay x̌),

(A.16)
f ∗ = A f x̌ + B f u,

= (A f − B f F)x̌ .

Given the initial condition x̌0, we iterate out the simulated data series for {y}T
t=1.

A.5.2. Simulating Data Under the Approximating Model

Perform the following simulation:

y∗ = Ay x̌ + Č yw̌,

ž∗ = Az x̌ + Č zČ
−1
y (y∗ − Ay x̌),

(A.17)
f ∗ = A f x̌ + B f u,

= (A f − B f F)x̌ .
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Note that these equations for simulation under the approximating model for the comparion
model are the same as those for simulation under the approximating model for the HSW
model (A.15).

A.6. LIKELIHOOD RATIO FOR THE HSW MODEL

Given one realization of simulated data {yt }T
t=1, [whether (A.15) or (A.13) generates the

data,) we can compute the likelihood under the worst-case and approximating models as
follows.

A.6.1. Likelihood Under the Worst-Case Model

The likelihood under the worst-case model is

T∑
t=1

[
−1

2
(yt+1 − Ay x̌ t − Č y v̌t )

′(Č yČ ′
y)

−1(yt+1 − Ay x̌ t − Č y v̌t )

]
, (A.18)

where x̌ t is filtered using the Kalman filter under worst-case model:

žt+1 = Az x̌ t + Č zČ
−1
y (yt+1 − Ay x̌ t ) + C̃ z ṽt ,

(A.19)
ft+1 = (A f − B f F)x̌ t .

Again, note that ṽt = κ̃ x̌ t and

x̌t+1 =


 ft+1

yt+1

žt+1


. (A.20)

Equation (A.19) generates the filtered state. Then, we can compute v̌ and hence construct
the log likelihood defined in (A.18).

A.6.2. Likelihood Under the Approximating Model

The likelihood under the approximating model is

T∑
t=1

[
−1

2
(yt+1 − Ay x̌ t )

′(Č yČ ′
y)

−1(yt+1 − Ay x̌ t )

]
, (A.21)

where x̌ t is filtered using the following Kalman filter under the worst-case model:

žt+1 = Az x̌ t + Č zČ
−1
y (yt+1 − Ay x̌ t ),

(A.22)
ft+1 = (A f − B f F)x̌ t .

With input {yt }T
t=1 and initial condition x̌0, we construct the filtered state for the comparison

model assuming that the approximating model generates the data based on (A.27).
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A.7. LIKELIHOOD RATIO FOR THE COMPARISON MODEL

Given one draw from, say, simulated data {yt }T
t=1, whether (A.17) or (A.16) generates the

data, we can compute the likelihood under the worst-case and approximating models.

A.7.1. Likelihood Under Worst-Case Model

First compute under the worst-case model:

T∑
t=1

[
−1

2
(yt+1 − Ay x̌ t − Č y v̌t )

′(Č yČ ′
y)

−1(yt+1 − Ay x̌ t − Č y v̌t )

]
, (A.23)

where x̌ t is filtered using the Kalman filter under worst-case model:

žt+1 = Az x̌ t + Č zČ
−1
y (yt+1 − Ay x̌ t ),

(A.24)
ft+1 = (A f − B f F)x̌ t .

Again, note that ṽt = κ̃ x̌ t and

x̌ t+1 =


 ft+1

yt+1

žt+1


. (A.25)

Equation (A.24) generates the filtered state. Then, we may compute v̌ and hence construct
the log likelihood defined in (A.23).

A.7.2. Likelihood Under Approximating Model

The likelihood under the approximating model is

T∑
t=1

[
−1

2
(yt+1 − Ay x̌ t )

′(Č yČ ′
y)

−1(yt+1 − Ay x̌ t )

]
, (A.26)

where x̌ t is filtered using the Kalman filter under the worst-case model:

žt+1 = Az x̌ t + Č zČ
−1
y (yt+1 − Ay x̌ t ),

(A.27)
ft+1 = (A f − B f F)x̌ t .

With input {yt }T
t=1 and initial condition x̌0, we construct the filtered state for the comparison

model, assuming that the approximating model generates the data based on (A.27).

APPENDIX B. COMPUTING ROBUST
DECISION RULES

Consider a general optimization problem in a discounted linear-quadratic environment when
the agent is concerned about model misspecification. Let xt be an (n × 1) state vector, ūt be
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a (k × 1) control variable, and wt be an (m × 1) Gaussian noise hitting the system at time
t . The state vector is assumed to follow

xt+1 = Āxt + Būt + Cwt+1, (B.1)

where Ā is an (n × n), B is an (n × k), and C is an (n × m) matrix, respectively. We define
the time-homogeneous instantaneous return function, r(x, ū), to have the quadratic form:

r(x, ū) = −(x ′ ū′)

[
R̄ W

W ′ Q

](
x

ū

)
, (B.2)

where R̄ is an (n × n), Q is a (k × k), and W is an (n × k) matrix, respectively. Her concern
about the model uncertainty is summarized by the parameter θ . She solves the following
minmax optimization problem:

ṽ(x) = sup
ū

inf
v

r(x, ū) + β[θv′v + E ṽ( Āx + Bū + C(w + v))],

= −x ′x − a. (B.3)

To eliminate the cross product between the state vector and the control variable, we define

R = R̄ − W Q−1W ′,

A = Ā − B Q−1W ′, (B.4)

u = ū + Q−1W ′x .

The above transformation converts the law of motion (B.1) to the following equivalent
representation:

xt+1 = Axt + But + Cwt+1. (B.5)

The agent’s optimal decision rule and the worst-case shock take the form of

u = −F ◦D()x,
(B.6)

v̂ = θ−1(I − θ−1C ′C)−1C ′[A − BF ◦D()]x ≡ κx,

where

F() = β[Q + β B ′B]−1 B ′A,

D() =  + θ−1C(I − θ−1C ′C)−1C ′, (B.7)

κ = θ−1(I − θ−1C ′C)−1C ′[A − BF ◦D()].

D captures the notion of robustness through its second term and F is the standard decision
rule for the discounted linear-quadratic regular problem. To compute the solution of the
optimizers from (B.6) and (B.7), we first need to compute the value function . This can
be achieved by solving the following fixed-point problem

 = T ◦D(), (B.8)
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where

T (P) = R + F(P)′ QF(P) + β[A − BF(P)]′ P[A − BF(P)],

= R + β A′(P − β P B(Q + β B ′ P B)−1 B ′ P)A. (B.9)

APPENDIX C. MULTIPERIOD MARKET
PRICES OF KNIGHTIAN UNCERTAINTY

This appendix describes the detailed computations of multiperiod market prices of Knightian
uncertainty with a perfectly observable state vector, as in HST. The one-period market
prices of Knightian uncertainty in HST’s calculation is subsumed here. The notation in this
appendix is self-contained. Some notation from the text has been recycled. (We use xt for
what was x̌ t in the text.)

The law of motion under the approximating model is

xt+1 = A∗xt + Cw̌t+1,

and under the worst-case model is

xt+1 = Ǎxt + Cw̌t+1.

There is perfect observability of the state vector x, as assumed under HST.
Define

x j
t+ j =




xt+1

xt+2

...

xt+ j


, and w̌

j
t+ j =




w̌t+1

w̌t+2

...

w̌t+ j


. (C.1)

Note that the dimension of x j
t+ j is (nj) × 1, where n is the dimension of state vector x, for

our analysis n = 7. Under the approximating model, x j
t+ j follows by induction,

x j
t+ j = M∗

j xt + N ∗
j w̌

j
t+ j , (C.2)

where

M∗
j =




A∗

(A∗)2

...

(A∗) j


 =

[
M∗

j−1

(A∗) j

]
, and N ∗

j =




C 0 · · · 0

A∗C C · · · 0

. . . . . . . . . . . . . . . . . . . . . . . .

(A∗) j−1C · · · A∗C C


 =

[
N ∗

j−1 0

S∗
j−1 N ∗

1

]
,

(C.3)
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and where S∗
j is defined recursively as

S∗
j = [(A∗) j C S∗

j−1], with S∗
1 = A∗C.

Under the worst-case model,

x j
t+ j = M̌ j xt + Ň j w̌

j
t+ j , (C.4)

where

M̌ j =




Ǎ

Ǎ2

...

Ǎ j


 =

[
M̌ j−1

Ǎ j

]
, and Ň j =




C 0 · · · 0

ǍC C · · · 0

. . . . . . . . . . . . . . . . . . . . . .

( Ǎ) j−1C · · · ǍC C


 =

[
Ň j−1 0

Š j−1 Ň 1

]
,

(C.5)
and where Š j is defined recursively as Š j = [( Ǎ) j C Š j−1], with Š1 = ǍC .

The initial conditions for these matrices are

N ∗
1 = Ň 1 = C, M∗

1 = A∗, and M̌1 = Ǎ.

Recall that, under HST, Ǎ = A∗ + Cκ, where κ is the worst-case shock coefficient.
Under the approximating model,

w̌
j
t+ j = [(N ∗

j )
′ N ∗

j ]−1(N ∗
j )

′(x j
t+ j − M∗

j xt

)
. (C.6)

Under the worst-case model,

[(Ň j )
′ Ň j ]

−1(Ň j )
′(x j

t+ j − M̌ j xt

) = [(Ň j )
′ Ň j ]

−1(Ň j )
′(x j

t+ j − M∗
j xt − (M̌ j − M∗

j )xt

)
,

= L j w̌
j
t+ j − O j xt , (C.7)

where

L j = [(Ň j )
′ Ň j ]

−1(Ň j )
′ N ∗

j ,
(C.8)

O j = [(Ň j )
′ Ň j ]

−1(Ň j )
′[M̌ j − M∗

j ].

Hence, the likelihood ratio

mu
t+ j,t = exp

[− 1
2

(
L j w̌

j
t+ j − O j xt

) · (L j w̌
j
t+ j − O j xt

)]
exp

[− 1
2 w̌

j
t+ j · w̌

j
t+ j

] . (C.9)

We assume that 2L ′
j L j − I is positive definite and let Pj be its Cholesky decomposition

factor:

P ′
j Pj = 2L ′

j L j − I,
(C.10)

Q j = 2(P ′
j )

−1 L ′
j O j .
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The second moment of the market price of Knightian uncertainty hence can be expressed
as follows:

Et

[
mu

t+ j,t

]2 =
[

1√
2π

] j ∫ ∞

−∞


(
w̌

j
t+ j

)
dw̌

j
t+ j , (C.11)

where


(
w̌

j
t+ j

) = exp

[
−1

2

(
w̌

j
t+ j

)′
P ′

j Pj w̌
j
t+ j + x ′

t

(
2O ′

j L j P−1
j

)
Pj w̌

j
t+ j − (O j xt ) · (O j xt )

]
.

Hence, the conditional second moment of the market price of Knightian uncertainty is

Et

[
mu

t+ j,t

]2 = (det Pj )
−1 exp[x ′

t R j xt ], (C.12)

where

R j = 1

2
Q ′

j Q j − O ′
j O j ,

= 2O ′
j L j P−1

j (P ′
j )

−1 L ′
j O j − O ′

j O j ,

= O ′
j [2L j L ′

j − I ]−1 O j . (C.13)

Note that, by construction, the conditional expectation of the market price of Knightian
uncertainty is 1, namely, Et mu

t+ j,t = 1. Finally, the market price of Knightian uncertainty

σt

(
mu

t+ j,t

)
Et

(
mu

t+ j,t

) =
√

(det Pj )−1 exp[x ′
t R j xt ] − 1. (C.14)

It seems we need to show that
det(Pj ) ≤ 1

and R j is positive semidefinite.
HST’s calculation is our special case with j = 1. Obviously, L1 = I , O1 = κ , P1 = I , and

R1 = κ ′κ . Hence,

σt

(
mu

t+1,t

)
Et

(
mu

t+1,t

) =
√

(det P1)−1 exp[x ′
t R1xt ] − 1,

=
√

exp[vt · vt ] − 1, (C.15)

where vt = κxt .


