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Risk-Sensitive Control with HARA Utility
Andrew E. B. Lim and Xun Yu Zhou, Senior Member, IEEE

Abstract—In this paper, a control methodology based on
the hyperbolic absolute risk averse (HARA) utility function is
presented as an alternative to the exponential-of-an-integral
approach to finding robust controllers. This work is inspired by
the intuition that HARA controllers, while being robust, may
give better performance than exponential controllers in normal
situations. The HARA problem is shown to be equivalent to a
certain differential game, and the asymptotic properties of the
HARA problem and this differential game are studied. As an
example, a linear-quadratic HARA problem is studied, where
the problem of finding a robust HARA controller is proved to be
equivalent to solving a standard linear-quadratic problem for a
system with a higher noise intensity. This reveals an interesting
relationship between robustness and uncertainty.

Index Terms—Differential games, HARA utility function, risk-
sensitive control, upper/lower Isaacs equations, viscosity solutions.

I. INTRODUCTION

I N THIS PAPER, we propose an approach based on the
hyperbolic absolute risk averse (HARA) utility function

[ , for and ] as an alternative to the
exponential utility [ , for ] approach to
finding robust controllers. This work is inspired by the intuition
that HARA controllers, while being robust, may perform better
than exponential controllers when applied to a system that is
operating under normal conditions.

Suppose that the evolution of a given system is determined
by the following stochastic differential equation (SDE):

(1)

where represents the initial time and state. Typically,
the objective is to find a control input such that the
system (1) with input satisfies a given set of performance
specifications; for example, certain specifications on the
minimum rise time, constraints on the maximum overshoot,
etc., may need to be satisfied. In recent years, many control
methodologies (e.g., proportional-integrator-differentiator
(PID), linear-quadratic-regulator (LQR), and , just to name
a few) have been proposed as alternative techniques for finding
controllers, each having its own advantages, disadvantages
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and characteristics. However, we emphasize that irrespective
of the methodology used to come up with a given controller,
the controller is designed as the input for the system (1) and
for this reason, thesameset of performance specifications are
used to evaluate whether or not it is suitable. For example,
suppose we have two controllers and such that

minimizes an norm while minimizes an
norm. When evaluating and and comparing their
performance, the crucial issue is the behavior of the system (1)
under each input; that is, both controllers are tested on the same
system (1) and evaluated according to how well theoriginal
performance criteria are met (e.g., “Does it satisfy the rise time
specifications?” and “Does it meet the constraints on maximum
overshoot?” etc.), and not the cost functions (e.g., or )
that may have been used to determine it.

If the system being controlled is not too complicated,
then finding a controller which satisfies all of the specifica-
tions is reasonably straightforward. For example, if (1) is a
linear, single-input–single-output (SISO), infinite-horizon,
time-invariant system, then, engineering insight together with
numerical techniques arising from optimization theory (see
[3] and [28]) can be used to tune the parameters. However,
things may not be so easy when dealing with more complex
systems (e.g., nonlinear, time-varying, stochastic). In this
case, the following simplifications are made. Rather than
introducing aset of performance specifications, one assumes
thatall performance specifications are summarized by asingle
performance measure

(2)

and the following convention is adopted: a controller which
makes (2) small satisfies the performance specifications better
than controllers that makes (2) large. That is, the set of perfor-
mance specifications is replaced by a single performance mea-
sure and, as in the classical case, all controllers, irrespective of
how they are determined, are evaluated using the same perfor-
mance measure (2).

The risk-sensitive methodology using the exponential utility
function is one approach to finding robust controllers for the
system (1) [with performance measure (2)]. Such controllers are
obtained by minimizing criteria of the form

(3)

Again, we emphasize that theperformanceof the optimal expo-
nential controller [which minimizes (3)] is evaluated using
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the cost functional (2): it is “good” if (2) is small, and “bad” if
(2) is large. One limitation of the exponential approach is that
optimal risk-sensitive controllers, while being robust, may re-
sult in poor performance under normal conditions. The simplest
explanation for this is that the exponential utility emphasizes the
large values of the (random) exponent

(4)

thus greatly amplifying the contribution of the large values of
(4) in the cost (3). That is, optimal exponential controllers are
conservative in that they are designed so that the largest (or
“worst case”) values of (4), should they occur, are kept small.
For this reason, however, the performance of the optimal expo-
nential controller in a “less than worst case” environment (which
often corresponds to “normal conditions”) may not be satisfac-
tory. Alternatively, one can look at the close relationship be-
tween exponential risk-sensitive control and the so-called
approach to robust control; see [22]. controllers are de-
signed to perform well in a “worst case disturbances” environ-
ment. Consequently, optimal controllers (and therefore, op-
timal risk-sensitive controllers) may perform poorly, according
to (2), in normal conditions.

In this paper, we study certain issues related to the perfor-
mance and robustness of controllers obtained by minimizing the
HARA utility of the cost. In particular, for the system (1) with
performance measure (2), the HARA cost functional is given by

(5)

where is a parameter. Since the HARA utility function is
of polynomial rather than exponential order, the resulting con-
trollers should be still robust but less risk-averse than optimal
exponential controllers. For this reason, HARA controllers may
perform better in normal conditions that optimal exponential
controllers which are obtained by minimizing (3). While this
remains to be verified conclusively, certain weaker, though re-
lated, comparisons between the value functions of the HARA
and exponential problems are obtained in this paper. In partic-
ular, we show how this may be viewed, in some sense, as a com-
parison between theguaranteed performanceof HARA con-
trollers and exponential controllers. In addition, we show that
the HARA problem is equivalent to a class of stochastic dif-
ferential games which are characterized by a cost function that
contains a logarithmic term that acts like a weight on different
components of the cost. We argue that the logarithmic term in
the cost may be viewed as making the disturbance player less
aggressive; that is, the (HARA) controller is designed in a “less
than worst case” environment. This is consistent with the intu-
ition that HARA controllers may perform better than exponen-
tial controllers when operating in normal conditions. In addi-
tion, the asymptotic properties (small noise limits) of the HARA
problem and the associated differential game are also studied.

Our results on the relationship between the HARA problem
and differential games as well as the asymptotic properties of
the HARA problem are in line with those presented in [22] for
the exponential-of-an-integral problem. However, there are cer-
tain differences which we wish to point out. In this paper, we
consider a broader class of nonlinear systems. In particular, our
results apply to systems in which the diffusion term may be con-
trol dependent and/or degenerate, and the drift term may depend
nonlinearly on the control. (In fact, our analysis can be modified
to obtain parallel results for the exponential case for the same
class of nonlinear systems that we study in this paper.) These
results are obtained using results from nonsmooth analysis and
viscosity solutions. The inclusion of systems with control de-
pendent diffusions in our analysis has particular relevance to fi-
nance applications; see [16], [18], [25], [32].

On the other hand, the robust control literature has centered,
by and large, around the exponential utility function. This is
due to its relationship to differential games and control; see
[5], [22]. However, the HARA utility function and its associated
differential game are alternatives that should be kept in mind,
especially when exponential and controllers are found to
be too conservative.

Interestingly, the HARA utility function has been used in sev-
eral optimal control formulations of problems in mathematical
finance. For example, the problem of long term investment is
formulated in [18] as an ergodic control problem where the cost
functional involves the HARA utility of wealth. In [13], the in-
tegral, over time, of the (discounted) HARA utility of consump-
tion is used as a measure of total consumption (that is to be max-
imized). For recent work in mathematical finance which uses the
exponential utility function, we refer the reader to the papers [6],
[7].

We also note that the classical investment problem of
maximizing the expected (HARA) utility of terminal wealth
is studied in [16]. The lower value of a certain differential
game is identified as the large deviation rate of the associated
value function. It should be noted however that the analysis
in [16] relies heavily on the unique structure associated with
the finance application; in particular, the state is scalar, the
dynamics are linear in the state, there is no running cost and the
terminal cost is linear. The asymptotic results in [16] depend on
these assumptions being satisfied. On the other hand, the focus
of this paper is theperformance comparisonbetween HARA
controllers and exponential controllers for which we adopt
the standard assumptions from the risk-sensitive literature.
Note however that these standard assumptions require the drift,
diffusion, running and terminal costs to be uniformly bounded.
That is, the asymptotic results in this paper do not cover those
in [16], and vice versa.

The paper is organized as follows. In Section II, we introduce
the HARA optimal control problem and present the associated
Hamilton–Jacobi–Bellman (HJB) equation. In Section III, we
introduce a class of differential games which are related to the
problem of finding robust controllers and in Section IV, we show
the equivalence between the HARA problem and this family
of differential games. In Section V, we study the small noise
asymptotic properties of the HARA problem. In Section VI, we
obtain certain comparisons between the value function of the
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HARA problem and that of the exponential problem. This may
be interpreted, in some sense, as a comparison between the guar-
anteed performance of HARA controllers and exponential con-
trollers. In Section VII, we examine the LQR case of the HARA
problem. This example is interesting because it exhibits a rela-
tionship between robustness and uncertainty. In particular, we
show that the problem of finding a robust controller is equiv-
alent to solving an LQR problem with a larger noise intensity.
In Section VIII, we end with some concluding remarks. For the
convenience of the reader, we have summarized in the Appendix
some key results from the theories of viscosity solutions and
nonsmooth analysis which are used in the paper.

II. HARA STOCHASTIC OPTIMAL CONTROL

In this section, we introduce the HARA control problem. Sup-
pose that is fixed, is a filtered
probability space, and an -valued standard Brownian
motion defined on this space. Suppose that and
are given. We consider systems with dynamics given by the fol-
lowing SDE:

(6)
In this equation, is a -valued process, referred to as the
control input. (The precise definition of admissible controls will
be given later.) The associated cost functional is given by

(7)

where is the solution of the SDE (6) corresponding to
and . We introduce the following assumptions.

Assumptions:(A1) is a Polish space1 and .
(A2) The maps ,

, and
are uniformly continuous and bounded.is nonnegative on

and there exists a constant such that
for every . Also, there exists a constant

such that for , , ,

(8)

Remark II.1: The assumption that is nonnegative and is
uniformly positive (i.e., ) is required for the HARA
utility function to be well defined. The remaining assumptions
in (A1) and (A2) (and in particular, that of uniform bounded-
ness) are standard; see [5], [22] for risk-sensitive control and
[20] for differential games. On the other hand, under the as-
sumption of uniform boundedness, the additional requirement

1A Polish space is a separable complete metric space.

that and are nonnegative/uniformly positive is not restric-
tive. More precisely, recall that our basic aim is to find a con-
troller for the system (1). If is notnonnegative or is not
uniformly positive, we can replace and/or by
and for some sufficiently large constantand then
use the performance measure

instead of (2), to evaluate the performance of any given con-
troller. Clearly (2) and are equivalent and (due the assump-
tion of uniform boundedness)can be chosen so thatand
satisfy the required conditions. In particular, a risk-averse con-
troller with performance measured by[or equivalently by (2)]
can now be obtained by minimizing the HARA cost (7) with
and replaced by and .

In order to study (6) and (7) using dynamic programming, we
introduce the following controlled SDE and cost functional, of
which (6) and (7) are a special case. Let , where
is the constant in (A2). For every

, consider the following SDE:

(9)

and cost functional

(10)

Note in particular that since , is nonnegative,
, and and are uniformly bounded [see (A2)], there is

a constant such that

(11)

Therefore, (which is required if we are to
use the HARA utility function) and the cost (10) is well defined.

Clearly, (6) and (7) corresponds to the special case of (9)
and (10) when . The class of admissible controls (in
the weak formulation; see [30, Ch. 2]) is the set of 5-tuples

which satisfy the following properties:

1) is a complete probability space;
2) is a -dimensional standard Brownian

motion defined on over , and is
augmented by all the -null sets

in ;
3) is an -progressively measur-

able process on ;
4) Under , for any initial condition ,

the SDE (9) admits a unique weak solution
on .
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If it is clear from the context what and
are, we will write as shorthand for 5-tuple

.
Assumptions (A1) and (A2) guarantee the existence

of a unique weak solution of the SDE (9),
for every admissible control . Further-
more, the cost functional (10) is well defined for every

and . The
value function associated with (9) and (10)

(12)

is well defined [30], and has a positive lower bound.
The HJB equation associated with (9) and (10) is

tr

(13)

We have the following result.
Theorem II.1: Assume that (A1) and (A2) hold. Then, the

value function , as defined by (12), is the unique viscosity so-
lution of (13).

Proof: Following the proof in [19, Sec.V3 and V9], it can
be shown that is a viscosity solution of (13). (Note that in
this proof, continuity of is all that is assumed.) However, for
the uniqueness we cannot immediately apply the results in [19]
since the terminal condition of (13) is unbounded due to the
presence of . To get around this, we follow a technique in [27]
and consider the following transformation:

where . Then, (13) becomes

tr

This equation has a uniformly bounded terminal condition and,
hence, admits at most one viscosity solution. It follows then that
(12) is the unique viscosity solution of (13).

III. D IFFERENTIAL GAMES

In this section, we introduce a class of differential games
which can be used to find robust controllers.

A. General Formulation

We shall follow the Elliott–Kalton formulation of two-player,
zero-sum differential games [15], [20], [22], a summary of

which is as follows. Suppose that is given and fixed.
Let be a fixed filtered probability space,
and a fixed -valued standard Brownian motion on this
space. Assume that is augmented with
all the -null sets of . Suppose that the system dynamics are
governed by the following SDE:

(14)

where is the -valued input of player 1 (the control player),
and is the -valued input of player 2 (the disturbance
player, or opponent). The cost functional is given by

(15)

1) Admissible Inputs:The set of admissible controls for
player 1 is

is -progressively measurable (16)

For any , two admissible inputs ,
are said to beequivalent on if a.e. on ,

-a.s. We shall denote this by on .
The set of admissible disturbances for player 2 is

is -progressively measurable and

(14) has a unique solution (17)

As in the case of admissible controls, we consider two admis-
sible disturbances as being equivalent
on (for a given ) if a.e. on ,

-a.s., and denote this by on .
In the deterministic case (i.e., ), the class of admissible

controls/disturbances is given by

is -measurable

and

is -measurable

and (14) has a unique solution

where denotes the Borel-algebra on . Also, for
any and , , on

if a.e. on . (Similarly for disturbances.)
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2) Admissible Strategies:The class ofadmissible strategies
for player 2 is

for every

on

on (18)

Similarly, the class of admissible strategies for player 1 is

for every

on

on (19)

In the deterministic case, the admissible strategies of players
1 and 2 (denoted by and , respectively), are
defined in the obvious manner.

3) Upper/Lower Differential Games:The upper stochastic
differential gameassociated with (14) and (15) can be stated as
follows: Find such that

(20)

is commonly referred to as theupper valueof the stochastic
differential game (14) and (15).

The lower stochastic differential gameassociated with (14)
and (15) can be stated as follows: Find

such that

(21)

is commonly referred to as thelower valueof the (sto-
chastic) differential game (14) and (15).

It is well known that on (see [4],
[20]). On the other hand, the differential game (14) and (15) is
said to havevalueif .

Upper and lower deterministic differential games are defined
analogously.

4) Isaacs Equations:A summary of basic definitions and
results from the theory of viscosity solutions can be found in
the Appendix.

Under certain assumptions, it can be shown that is the
unique viscosity solution of theupper Isaacs equation

(22)
while is the unique viscosity solution of thelower Isaacs
equation

(23)

where

tr

and

tr

(In the next section, we shall present assumptions which guar-
antee existence and uniqueness of viscosity solutions for the
class of problems which we are studying.) In the deterministic
case, the upper and lower Isaacs equations are given by (22)
and (23), with . A sufficient condition for the existence
of value in (14) and (15) is the so-calledIsaacs(or min–max)
condition

(24)

Under this assumption, the existence of value follows imme-
diately from the uniqueness of viscosity solutions of (22) and
(23). (For further details about the Isaacs equation, the reader is
directed to [20] for the stochastic case, and [4] for the determin-
istic case.)

B. A Class of Differential Games

Let be a filtered probability space and
a standard -valued Brownian motion, as discussed in

Section III-A. Let and be given and fixed. Con-
sider the following special case of (14):

(25)

where the inputs of player 1 and of player 2 satisfy
and . We consider cost func-

tionals of the following form:

(26)

We assume throughout this section that (A2) holds. In certain
places, we shall replace (A1) by the following.

Assumption:(A1)′ and are compact,
and .

In order to study (25) and (26) using dynamic programming,
we follow the same procedure that we used for the HARA
problem (Section II) by considering the following related
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differential game. Let be fixed, where is the
constant in (A2), and . Consider the SDE

(27)

with cost

(28)

Using the same argument for (28) as for (11), it can be seen that
for every , there is a constant , independent of,
such that

for all and
. In addition, when is compact by

(A1)′, it follows that there is a constant , which is
independent of , such that

(29)

for all and
. The upper Isaacs equation associated with

(27) and (28) is

tr

(30)
Theorem III.1: Suppose that (A1)′ and (A2) hold. Then

(31)

is the unique viscosity solution of (30).
Proof: Following the arguments in [20], it can be shown

that (31) is a viscosity solution of (30). As in the case of The-
orem II.1, we can not immediately use the results in [20] to
obtain uniqueness since the terminal condition in (30) is un-
bounded. To get around this, consider the following transfor-
mation:

where . Following the same arguments as in
the proof of Theorem II.1, we conclude that (30) has at most one
viscosity solution.

It follows from Theorem III.1 that the upper value of the sto-
chastic differential game (27) and (28) is the unique viscosity
solution of (30).

The deterministic differential game (25) and (26) [respec-
tively, (27) and (28)] is the special case of (25) and (26) [re-
spectively, (27) and (28)] when and the classes of ad-
missible inputs for players 1 and 2 are and ,
respectively. The corresponding upper Isaacs equation is (30)
with . We have the following result.

Theorem III.2: Suppose that (A1)′ and (A2) hold. Then

(32)

is the unique viscosity solution of the upper Isaacs equation (30)
with .

Proof: Following the same arguments in [4], it can be
shown that (32) is a viscosity solution of (30) (with ).
Uniqueness is shown using the same techniques as in Theorem
III.1.

Clearly, (32) is the upper value of the deterministic differen-
tial game (27) and (28) with .

IV. HARA PROBLEMS AND DIFFERENTIAL GAMES

In this section, we show that (under certain conditions) the
HARA problem (9) and (10) is equivalent to the stochastic dif-
ferential game (27) and (28).

Consider the following transformation:

(33)

Note that by (10)–(12), is well defined [since ]
and

(34)

Since is the unique viscosity solution of (13) (Theorem II.1),
it follows [from substituting (33) into (13)] that is the unique
viscosity solution of the following PDE:

tr

(35)
Although the PDE (35) closely resembles the upper Isaacs equa-
tion (30), we are not yet able to use Theorem III.1 to characterize

as the upper value of the stochastic differential game (27) and
(28) because the in (35) is over whereas the in
(30) is over , where is a compact set. Note that
the compactness of is necessary in proving Theorem III.1;
see also [20]. In order to establish the equivalence between the
HARA problem and the stochastic differential game, we need
Proposition IV.1, which gives conditions under which
may be considered as being compact. The proof of Proposition
IV.1 depends on the following assumption.



LIM AND ZHOU: RISK-SENSITIVE CONTROL WITH HARA UTILITY 569

Assumption:(A3) , and ,
and are differentiable in

.
Proposition IV.1: Suppose that and Assumptions (A1),

(A2) and (A3) hold. Let be the unique viscosity solution of
(30). Suppose that , and and

, the super and subdifferentials of, respec-
tively, be defined as in (94) and (95) in the Appendix. Then,
there exists , independent of

and , such that , for all
.

Proof: Let and
be given and fixed, and be an admissible triple
for (9) with the initial condition . For any , let

be an admissible triple for (9) corresponding
to the initial condition . It follows that

(36)

where the -valued process is the solution of the SDE

(37)

and

In addition

(38)

where is defined like , but with replacing .
Since is Lipschitz continuous in , uniformly in

, it follows from Gronwall’s inequality that there ex-
ists a constant , which is independent of and

, such that

a.s. (39)

In particular, the bound (39) (together with the uniform Lips-
chitz continuity of in ) implies that

(40)

For any , there exists an admissible triple
, possibly depending on , , and

, such that

where

and is the state process obtained from (9) when the
input is . Therefore

(41)

It is easy to show that

(42)

Since

it follows from (A2) that

(43)

where is the constant in (A2) and . Note that
and are independent of, , and . Substituting

(36) and (38) into (42), and noting (39), (43), and the uniform
Lipschitz continuity of , it follows that:

(44)

for some constant , which is independent of ,
, , and . Since this is true for all

, we can let in (44). In a similar way, the reverse in-
equality can be obtained. Hence, it follows from (44) and (102)
(see Appendix) that for all , where

denotes the partial generalized gradient ofwith respect to
; see the remarks following Definition VIII.3 in the Appendix.

Our result is then an immediate consequence of

[This follows from (99), (100), and (103)].
Theorem IV.1:Suppose that Assumptions (A1), (A2) and

(A3) hold. Let be fixed, and be the unique viscosity
solution of (13). Then is the unique viscosity
solution of (35). Moreover, there exists a compact subset
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which is independent of such that has the
representation

(45)

where is defined by (16), by (18) via (17), and

with being the solution of (27) associated with
.

Proof: It is immediate from the derivation of (35) that
is the unique viscosity solution of (35). Since

is a viscosity super-solution of (35), it follows that for every
where ,

we have

tr (46)

(47)

Moreover, the maximizing in (47) is given by

(48)

Since and are uniformly bounded on and
respectively [see (A2) and Proposition

IV.1], it follows that

for some compact , which is independent of. There-
fore, we may replace by in (47), for any com-
pact (with ), and the maximizing in (47)
will still be given by (48) and is still a super-solution
of (47). It is easy to see that the same argument applies for the
case of sub-solutions and hence, under the constraint ,

is still the unique viscosity solution of (35). However,
under the constraint that , it follows from Theorem III.1
that the unique viscosity solution of (35) is the upper value of
a stochastic differential game, as defined by the right hand side
of (45). Hence, we have equality in (45).

Remark IV.1: It is clear from the proof of Theorem IV.1 that
we may choose to be a closed ball in , centered at the
origin, of sufficiently large radius; that is, , for
some . In particular, this guarantees that , which
simplifies some of the analysis in Section VI-B.

V. ASYMPTOTIC ANALYSIS

For the remainder of this paper, for any given , we
shall denote the value function of the HARA problem (9) and

(10), as defined by (12), by , and . A similar
comment applies to the upper value of the differential game
(27) and (28) when . In the deterministic case of (27) and
(28) with , we continue to use .

We have shown that under Assumptions (A1), (A2), and (A3)
with , the HARA problem (9) and (10) is equivalent to a
stochastic differential game of the form (27) and (28); see The-
orem IV.1. In this section, we study the asymptotic properties
of and as . We prove that and hence
[under (A1), (A2) and (A3)] when . This reveals
a relationship between the HARA problem and the deterministic
differential game.

Our convergence proof follows the general methods of Barles
and Perthame [2]. In particular, the notion of solution that is used
in this approach is the generalized definition of a discontinuous
viscosity solution. This is required since the functions (49) and
(51) below are only semi-continuous in general. In addition, the
proof uses a comparison theorem for semi-continuous viscosity
sub- and super-solutions. The definition of a discontinuous vis-
cosity solution is quite similar to that of a continuous solution.
The reader should refer to [19, Ch. VII] for a detailed account
of the Barles and Perthame method. The definition of a discon-
tinuous viscosity solution as well as the comparison theorem for
semi-continuous sub and supersolutions can also be found there.

We begin with the following asymptotic result for .
Proposition V.1: Suppose that (A1)′ and (A2) hold. Let

and be the upper values of the stochastic and deterministic
cases of the differential game (27) and (28), respectively. Then

uniformly on compact subsets.
Proof: Define

(49)

for all . In view of (29),
is uniformly bounded when and belong to com-
pact subsets. Therefore,is well defined and upper semicon-
tinuous. We now show that is a viscosity subsolution of (30)
(with ). Let . Suppose
that has a local maximum over
at . Then, there exists a
subsequence (indexed
by ) such that (see [19])

1) has a local maximum at ;
2) as ;
3) as .

Since is a viscosity subsolution of (30) (Theorem III.1), it
follows that for every [denoting etc.]

tr

(50)
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Letting , it follows from (51) and the continuous differen-
tiability of that

at . Clearly, . Therefore
is an upper-semi-continuous viscosity sub-solution of (30)

(with ); see [19, Ch. VII.4] for a generalization of the
definition of subsolution that applies to discontinuous functions.
Similarly, it can be shown that if is defined by

(51)

then is a lower semicontinuous viscosity super-solution of
(30) (with ); see [19, Ch. VII.4]. By the definition of
and , it follows that . On the other hand, the comparison
theorem for discontinuous viscosity sub and supersolutions (see
[19, Ch. VII.8]) implies that . Therefore, is
a continuous viscosity solution of (30) (with ) and

uniformly on compact subsets. Since the upper-valueof the
deterministic case of the differential game (27) and (28) is the
unique viscosity solution of (30) with (see Theorem III.2),
it follows that .

The following result relates the HARA problem (9) and (10)
and the deterministic case of the differential game (27) and (28).

Theorem V.1:Suppose that (A1), (A2) and (A3) hold. For
every , let be the value function of the HARA problem
(9) and (10), and be the compact set
from Theorem IV.1. Suppose that is the upper value of the
deterministic differential game (27) and (28) associated with.
Then, and are the unique viscosity solutions of (30) (with

) and (35), respectively. Moreover

uniformly on compact subsets.
Proof: It follows from Theorems III.2 and IV.1 that and
are the unique viscosity solutions of (30) (with )

and (35), respectively. By Theorems III.1 and IV.1, is also
the unique viscosity solution of (30) with being the
-independent compact set determined by Theorem IV.1. The

convergence result then follows from Proposition V.1.
In [22], there is a similar asymptotic result for the exponen-

tial risk-sensitive cost. However, stronger assumptions than As-
sumptions (A1), (A2), and (A3) are made. In particular, non-
degeneracy of is assumed, which guarantees the existence of
classical solutions to the HJB equation associated with the-pa-
rametrized risk-sensitive problems, whereas Assumptions (A1),
(A2) and (A3) only guarantee the existence of viscosity solu-
tions of (13). As can be seen from the proof of Theorem V.1,
having classical solutions is not a fundamental requirement for
the result to hold.

VI. COMPARISONS

A. HARA Controllers

In Section II, we introduced the HARA utility function as an
alternative to the exponential utility approach to finding robust
controllers. Intuitively, we expect the HARA approach to give
robust controllers that have superior performance characteristics
to exponential controllers. A conclusive proof of this statement
remains an open problem. In this section, we obtain some re-
lationships between the value function of the HARA problem
and that of the exponential problem. Using this result, a weaker
statement about the performance of HARA controllers and ex-
ponential controllers can be made.

Suppose once again that the system dynamics are given by
the following SDE:

(52)

and that the performance of a particular control
is measured by the following cost functional:

(53)

Let be given. The exponential risk-sensitive perfor-
mance measure associated with the system (52) for a given

is

(54)

and the associated value function is defined by

(55)

One method of obtaining robust controllers for the system (52)
[with the performance measure (53)] is to solve the exponential
risk-sensitive problem (52), (54) for the optimal exponential
risk-sensitive controller , and to use in the system
(52). The performance of (52) with is measured by

.
On the other hand, an immediate consequence of Jensen’s

inequality [8], [30] is the following:

(56)

The inequality (56) can be viewed as a performance guarantee:
For any controller , the performance associated
with [which is measured by the value of ]
is bounded above by the exponential cost asso-
ciated with . In particular, the optimal exponential control
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minimizes the family of upper bounds
over .

Similarly, if we define

(57)

then for every , we have the inequality:

(58)

The optimal HARA controller minimizes the upper
bound over .

Intuitively, we expect the optimal HARA controller to
result in better performance for the system (52) [as measured by
(53)] than the optimal exponential controller ; that is, we
expect . Unfortunately, we
have not been able to establish this statement conclusively. How-
ever, we have been able to obtain some related, though weaker,
relationships between the (risk-neutral) performance measure
(53), the value function of the HARA problem and the value
function of the exponential problem.

Consider the following transformation of :

(59)

Adopting the convention

it is clear from the definition of that, for any , we have

(60)

where is defined by (57). The following result
shows the relationship between and .

Theorem VI.1:Suppose that (A1) and (A2) hold. Let
and be given and fixed. If, for every
admissible pair , we have

a.s. (61)

then

(62)

Remark VI.1: The condition (61) is simply for the sake of
convenience and Theorem VI.1 can be extended to cover the
case when (61) (and nonnegativity/uniform positivity ofand

) is not satisfied; see also Remark II.1. In particular, uniform
boundedness (A2) implies that (61) is satisfied by
and for sufficiently large . Denoting

(63)

one can easily see that is the least upper bound as-
sociated with the HARA problem (63) for theoriginal perfor-
mance measure (53), while , as defined by (55), is the
least upper bound for the original performance measure associ-
ated with the exponential approach. Theorem VI.1 can now be
applied from which we conclude that .
Therefore, the HARA approach and the inequality (62) can be
extended to the general case when (61) is not satisfied.

Remark VI.2: The following is a simple example of a situa-
tion where the comparison (62) holds with strict inequality. Let

, , , , ,
and

where . It can be shown that

where and are the unique solutions of the Riccati equations

respectively. (See [23] for a derivation of . On the other hand,
since , the HARA problem coincides with the risk-neutral
LQ problem, a solution of which can be found in [30]). When

, , , , and , these
equations can be solved explicitly to give

Clearly, for all and it follows imme-
diately that for all .

The following results are used in the proof of Theorem VI.1.
Lemma VI.1: Let be given and fixed. Suppose that

is twice differentiable and is
given by

(64)
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Then, is convex if and only if

(65)

Proof: is convex if and only if

Lemma VI.2: Let be given and fixed. Then
where

is convex.
Proof: Let . Since

it follows from Lemma VI.1 that is convex.
The proof of Theorem VI.1 is as follows.

Proof: For any given admissible pair , define
the random variable

We begin by considering the case . Then by (61),
it follows that , a.s. By Lemma VI.2,

is convex on and, hence,
by Jensen’s inequality, we have

(66)

or, equivalently

(67)

We obtain (62) by taking on both sides of (67) and
noting the definitions (55) and (60). On the other hand, if ,
then is convex on and ;
see (A2). Therefore, we can apply Jensen’s inequality again to
obtain (66), (67) and our result (62).

B. Deterministic Differential Games

In this section, we turn our attention to the deterministic
system

(68)

with performance measure

(69)

Consider the following system

(70)

In control, robust controllers are obtained by solving the
upper deterministic differential game associated with the system
(70) and the cost

(71)

In Section III-B, we introduced a deterministic differential game
with cost

(72)

and dynamics (70). The main difference between (71) and (72)
is the introduction of the term. To get a feel for the role
that this term plays, consider a situation where the first player
chooses an input and applies this input to (70) and (71)
and then to (70), (72). In the first case, the opponent chooses an
input to maximize the cost (71) corresponding to this .
This corresponds to the standard approach to robust control. In
the second situation, the term acts like a weight between
the two components of the cost. In particular, the term
reduces the importance of the first component relative to second
component in the optimization of the opponent player. For this
reason, one expects the input of the opponent chosen by
maximizing (72) will be less “aggressive” than the input of the
opponent player chosen by maximizing (71). That is, the first
player in (72) is dealing with a more conservative opponent than
the first player in (71). For this reason, we expect the controller

obtained by solving (70), (72) to be robust, but at the same
time, to have better performance [as measured by (69)] than the
controller obtained by solving (70) and (71).

In Theorem IV.1, it is shown that under (A1), (A2), and (A3),
for every , the HARA problem is related to a differential
game of the form (70), (72), in which the input of player 2 is
restricted to , an -independent closed ball in



574 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 46, NO. 4, APRIL 2001

of radius ; see Remark VI.1. Similarly, it is shown
in [22] that the exponential-of-an-integral problem is related to
a differential game of the form (70) and (71) in which, as in the
HARA case, the input of player 2 may be restricted to a closed,
-independent ball in , . Throughout this

section, we shall assume that for both (70) and
(71) and (70), (72), where is fixed.

Suppose that is given. Since the strategy
which satisfies is admissible, we have the following
inequality:

(73)

where on the left-hand side of (73) is an admissible
pair for (68), and on the right-hand side of
(73) is an admissible 3-tuple for (70).

For (73), it can be seen that for any controller

is an upper bound on the performance of the system (68) under
, where performance is measured by . Clearly,

the right-hand side in (73) is minimized by

(74)

the upper value of (70) and (71).
Similarly, it is easy to see that

(75)

where, as before, on the left-hand side of (75) is
an admissible pair for (68), while on the
right-hand side of (75) is admissible for (70); that is

is an upper bound on , which is minimized, over
, by

(76)

the upper value of (70) and (72). Clearly

where is the upper value of the deterministic case of
the differential game (27) and (28), as defined by (32).

Our next result shows the relationship betweenand .
Theorem VI.2:Suppose (A1), (A2) and (A3) hold. Let

be given, as discussed
above, the upper value of (70) and (71) as defined by
(74) and , the upper value of (70), (72) as defined by
(76). If for every , then

Remark VI.3: As in the case of Theorem VI.1, the assump-
tion that [from (A2)] and in Theorem VI.2
is simply for convenience. It is straightforward to extend this
result to the case whenand are only bounded; see Remark
VI.1.

Proof: By Theorem V.1 and (59), we have:

and

In [26], it is shown that under the conditions of the theorem

where is defined by (55). Since ,
see Theorem VI.1, it follows that .
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VII. LQR CONTROL WITH HARA UTILITY

In this section, we study an LQR problem with HARA utility.
This problem is interesting because it reveals an interesting re-
lationship between robustness and uncertainty.

1) HARA Problem:Consider the following linear-quadratic
problem with HARA utility (we assume throughout that )

(77)

where is the Brownian motion.
Throughout this section, we shall assume that is scalar
valued and is -valued, for . Define

.We shall assume that for
all , and that is given and fixed. In partic-
ular, it should be noted that the model (77) (with scalar state, but
a multivariable control) is one that arises quite frequently in fi-
nancial applications; see [16], [18], [32] for an example of this.

Suppose that . Then, (77) is a deterministic problem
with a nonnegative infimal cost and hence is well posed. How-
ever, this infimal cost in general can not be achieved. For ex-
ample, when is controllable, the infimal cost is
zero, but is not achievable. In this situation, we must be sat-
isfied with near-optimal controls. (For a discussion on near-op-
timal controls for infinite-time singular LQR problems, refer to
the paper [29].) In particular, we can make the cost arbitrarily
close to 0 by choosing a “sufficiently large” control.

When , (77) is a well-posed stochastic problem, and
the optimal cost is achieved by a unique optimal control. In this
case, the value function involves the solution of the so-called
stochastic Riccati equation, the properties of which are studied
in [9]. The fundamental difference between the case
and is the role that the uncertainty plays. The reader is
directed to [9] for a deeper discussion of this and other related
issues.

The HJB equation associated with (77) is

(78)

It is easy to show that the unique solution of (78) [and, hence,
the value function associated with (77)] is

(79)

where is the unique (positive) solution of the stochastic
Riccati equation:2

(80)
Note that (80) is a linear ODE, hence, it must admit a solution.
The optimal feedback control for (77) is

(81)

We also note that for the LQR problem withexponentialutility,
it seems that there is no closed-form expression for the optimal
control when the control appears in the diffusion (which is the
case in many finance applications). In fact, for this particular
problem, the issue of existence and uniqueness of solutions of
the associated HJB equation is still an open question.

2) Stochastic LQR Problem:Consider the following sto-
chastic LQR problem:

(82)

It is easy to show (see [9]) that

(83)

is the value function associated with (82), where is deter-
mined by (80), and (81) is the optimal control. This shows an
equivalence between the HARA problem (77) and the stochastic
LQR problem (82). In particular, the-parameter in the cost (77)
has been transferred to the state equation (82).

3) Discussion: The equivalence between (77) and (82)
shows an interesting relationship between uncertainty and
robustness. Suppose that under “normal” conditions, the
dynamics are given by the system

(84)

In addition, suppose that theperformanceof any given con-
troller is measured by the cost functional:

(85)

As stated in the Introduction, the cost functional (85) is used to
evaluate theperformanceof any given controller, irrespective
of how this controller was obtained. [Of course, controllers ob-
tained by using different control methodologies, while not being

2Although the stochastic Riccati equation (80) is clearly deterministic, it is
actually a special case of a Riccati-type backward stochastic differential equa-
tion that is introduced in [9], and is deterministic only under the assumptions of
this paper.
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optimal according to the measure (85), may have other advan-
tages, such as robustness, that the optimal controller for (84) and
(85) may not have.] Note that the optimal controller associated
with (84) and (85) is given by

(86)

Suppose that we wish to find a controller for the system
(84) that is more robust (or risk-averse) than the optimal
controller (86). One method for finding such a controller
is to solve the HARA problem (77) corresponding to some

. [That is, to use the optimal HARA controller (81),
with , in the system (84)]. On the other hand, the
equivalence between (77) and (82) shows that the (robust)
HARA controller (81) corresponding to is also the
optimal controller for (82) with the same value of. Moreover,
since when , finding this robust
HARA controller corresponds to solving a standard LQR
problem [since (82) is of the same form as (84) and (85)] but
with a higher noise intensity. It should also be noted that greater
robustness corresponds to a controller of smaller magnitude
[i.e., decreasing corresponds to the magnitude of

in (81) decreasing].
When , the optimal controller (81) for the HARA

problem is risk-seeking. The relationship between the HARA
problem (77) and the LQR problem (82) shows that a risk-
seeking controller for the system (84) under the criterion (85) is
obtained by solving an LQR problem (82) with a smaller noise
intensity [since when ]. Note also
that risk-seeking controllers have a larger magnitude than the
optimal controller (86).

VIII. C ONCLUSION

In this paper, we have studied some of the properties of op-
timal HARA controllers. Our study of the HARA problem was
motivated by the belief that in addition to being robust, op-
timal HARA controllers are less conservative than optimal ex-
ponential controllers. We have shown that the HARA problem
is equivalent to a certain stochastic differential game, different
from the one commonly encountered in the robust control lit-
erature, and have studied the asymptotic properties of both the
HARA problem and the associated game problem. One feature
of this differential game is that it involves a logarithmic term
which acts like a weight for the different components of the cost.
We have argued that this weighting has the effect of making the
opposing (disturbance) player less aggressive; that is, the con-
troller in the logarithmic-weighted game (i.e., the HARA con-
troller) is designed in a “less than worst case” environment. This
is consistent with the intuition that HARA controllers, while
being robust, may perform better than exponential controllers
(which are designed in a “worst case environment”) when ap-
plied to a system operating under normal situations. While con-
clusive theoretical justification of this intuition remains an im-
portant open question, certain related, though weaker, compar-
isons between the value functions of the HARA exponential
problems have been obtained in this paper. Another important
issue that we have not addressed relates to the robustness/distur-

bance attenuation properties of the HARA controller, especially
when compared to those of the exponential controller; see [17]
for related analysis for the exponential problem. As an example,
we examined a particular linear-quadratic case of the HARA
problem. For this problem, we showed that finding a robust con-
troller for a certain class of linear systems with a quadratic ter-
minal cost is equivalent to solving a linear-quadratic problem of
thesameform, but with a larger noise intensity. This shows an
interesting relationship between robustness and uncertainty.

APPENDIX

We present here some basic definitions and results from the
theory of viscosity solutions and nonsmooth analysis which are
referred to in this paper. For a detailed discussion of viscosity
solutions, the reader is referred to [11] and [12], as well as [1],
[19], and [30]. For a discussion of nonsmooth analysis, we rec-
ommend [10]. A proof of the relationship between sub/superdif-
ferentials and Clarke’s generalized gradient can be found in [30]
and [31].

A. Viscosity Solutions

Consider the following nonlinear, scalar, first-order PDE

(87)

[a special case of which is (30) with ], and the nonlinear,
scalar second-order PDE

(88)
It is well known that the upper/lower Isaacs equations (22) and
(23), which are special cases of (88), do not, in general, have
classical (smooth) solutions. A generalized concept of solution,
called a viscosity solution, is introduced in [12]. The main result
in [12] is that under certain mild conditions, there exists a unique
viscosity solution of (87). In the second-order case, uniqueness
is proven in [21], [23]. The definition of a viscosity solution of
the first-order PDE (87) is as follows.

Definition VIII.1: Let and
. Then the first-order superdiffer-

ential of at is given by

and has a local maximum at (89)

and the first order subdifferential by

and has a local minimum at (90)

Moreover, is a viscosity solution of (87) if

(91)
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and

(92)

(93)

for all .
In particular, is called aviscosity subsolutionif it satisfies

(91) and (92), and aviscosity supersolutionif it satisfies (91) and
(93). Also, for any , we can definepartial
super/subdifferentialsof with respect to at [which
we denote by and , respectively] by
keeping fixed, and calculating the super/subdifferentials
of in the variable.

For the second-order case, we have the following.
Definition VIII.2: Let and

. Then the second-order superdifferential ofat
is defined by

and

has a local maximum at (94)

and the second order sub-differential ofis defined by

and

has a local minimum at (95)

Moreover, is a viscosity solution of (88) if

(96)

and

(97)

(98)

for all .
As in the first-order case,is called aviscosity subsolutionof

(88) if (96) and (97) are satisfied, and aviscosity supersolution
if (96) and (98) are satisfied. Clearly

(99)

and

(100)

B. Nonsmooth Analysis

The following results from nonsmooth analysis are used in
our proof of Proposition IV.1. For an in depth discussion, we
recommend the book [10].

We begin with a definition of thegeneralized gradient.
Definition VIII.3 (Generalized Gradient):Let

be a locally Lipschitz function. The generalized gradient ofat
is

(101)

If for some subset of , then thepar-
tial generalized gradientof at is obtained
by fixing , and calculating the generalized gradient by
treating as a function of .

An alternative characterization of is obtained from the fol-
lowing well known result: If is Lipschitz, then

is differentiable almost everywhere (Rademacher’s Theorem
[10]). Let denote the set of all points at whichis not differ-
entiable. Then we have the following result. (See [10, Th. 2.5.1,
p. 63]).

Theorem VIII.1: Let satisfy the conditions in Definition
VIII.3 and suppose that is any set of Lebesgue measure 0.
Then

(102)

where denotes the convex hull.
The following result is used in the proof of Proposition IV.1.

(See [30] and [31]).
Proposition VIII.1: If is locally Lipschitz in , then

(103)
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