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Risk-Sensitive Control with HARA Utility

Andrew E. B. Lim and Xun Yu ZhouSenior Member, IEEE

Abstract—n this paper, a control methodology based on and characteristics. However, we emphasize that irrespective
the hyperbolic absolute risk averse (HARA) utility function is  of the methodology used to come up with a given controller,
presented as an alternative to the exponential-of-an-integral {he controller is designed as the input for the system (1) and
approach to finding robust controllers. This work is inspired by for this reason, theameset of performance specifications are
the intuition that HARA controllers, while being robust, may ' o -
give better performance than exponential controllers in normal used to evaluate whether or not it is suitable. For example,
situations. The HARA problem is shown to be equivalent to a suppose we have two controllers(-) and uo(-) such that
certain differential game, and the asymptotic properties of the u1(+) minimizes anH,, norm whilew,( - ) minimizes anH,
HARA problem and this differential game are studied. As an 1 \When evaluating (-) andu»(-) and comparing their
example, a linear-quadratic HARA problem is studied, where S . .
the problem of finding a robust HARA controller is proved to be performancg, the cruc[al issue is the behavior of the system (1)
equivalent to solving a standard linear-quadratic problem for a Under each input; thatis, both controllers are tested on the same
system with a higher noise intensity. This reveals an interesting system (1) and evaluated according to how well ¢higinal
relationship between robustness and uncertainty. performance criteria are met (e.qg., “Does it satisfy the rise time

Index Terms—Differential games, HARA utility function, risk-  specifications?” and “Does it meet the constraints on maximum
sensitive control, upper/lower Isaacs equations, viscosity solutions. gvershoot?” etc.), and not the cost functions (e}, or H»)
that may have been used to determine it.

If the system being controlled is not too complicated,
then finding a controller which satisfies all of the specifica-

N THIS PAPER, we propose an approach based on tfigns is reasonably straightforward. For example, if (1) is a

hyperbolic absolute risk averse (HARA) utility functionjinear, single-input-single-output (SISO), infinite-horizon,
[U(z) = (1/7)z7, forz > 0andy > 0] as an alternative to the time-invariant system, then, engineering insight together with
exponential utility [/(z) = v exp(yx), for v > 0] approach to nymerical techniques arising from optimization theory (see
f|nd|ng robust controllers. This work is inspired by the II’IIUItIOI”Eg] and [28]) can be used to tune the parameters_ However,
that HARA COﬂtrO"erS, while being rObUSt, may perform bettqh”qgs may not be so easy when dea“ng with more Comp|ex
than eXponentiaI controllers when applled to a System thatsi§stems (e.g” nonlinear, time_varying, Stochastic). In this

I. INTRODUCTION

operating under normal conditions. _ _case, the following simplifications are made. Rather than
Suppose that the evolution of a given system is determingroducing asetof performance specifications, one assumes
by the following stochastic differential equation (SDE): thatall performance specifications are summarized Isinale
da(t) = b(t, o(t), u(t)) dt performance measure
+o(t, z(t), w(t)) dB(t), tels, T] (1) T
z(s) == J(s, z; u(-)) = E / f(t, z(t), u®)) dt + g(=(T))
where (s, z) represents the initial time and state. Typically, 2)

the objective is to find a control input(-) such that the _ o _
system (1) with input(-) satisfies a given set of performancénd the following convention is adopted: a controller which
specifications; for example, certain specifications on tHBakes (2) small satisfies the performance specifications better
minimum rise time, constraints on the maximum overshodfan controllers that makes (2) large. That is, the set of perfor-
etc., may need to be satisfied. In recent years, many contince specifications is replaced by a single performance mea-
methodologies (e.g., proportional-integrator-differentiatire and, as in the classical case, all controllers, irrespective of
(PID), linear-quadratic-regulator (LQR), adfl.., just to name how they are determined, are evaluated using the same perfor-
a few) have been proposed as alternative techniques for findlRgnce measure (2).

controllers, each having its own advantages, disadvanta?eg—h? risk-sensitive methodology using the exponential utility
unction is one approach to finding robust controllers for the
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the cost functional (2): it is “good” if (2) is small, and “bad” if Our results on the relationship between the HARA problem
(2) is large. One limitation of the exponential approach is thand differential games as well as the asymptotic properties of
optimal risk-sensitive controllers, while being robust, may reahe HARA problem are in line with those presented in [22] for
sultin poor performance under normal conditions. The simplasie exponential-of-an-integral problem. However, there are cer-
explanation for this is that the exponential utility emphasizes thain differences which we wish to point out. In this paper, we
large values of the (random) exponent consider a broader class of nonlinear systems. In particular, our
results apply to systems in which the diffusion term may be con-
T trol dependent and/or degenerate, and the drift term may depend
/ f(t, z(t), u(t)) dt + g(=(T)) (4) nonlinearly on the control. (In fact, our analysis can be modified
s to obtain parallel results for the exponential case for the same

thus greatly amplifying the contribution of the large values di@ss of nonlinear systems that we study in this paper.) These
(4) in the cost (3). That is, optimal exponential controllers alré:sults are obtained using results from nonsmooth analysis and

conservative in that they are designed so that the largest Y5cOSity solutions. The inclusion of systems with control de-

“worst case”) values of (4), should they occur, are kept Smaﬂgandent diffusions in our analysis has particular relevance to fi-

For this reason, however, the performance of the optimal exrﬂﬁnce applications; see [16], [18], [25], [:_32]'
nential controller in a “less than worst case” environment (which On the other hand, the robust con_trol Ilf[e_zrature has cen_ter_ed,
often corresponds to “normal conditions”) may not be satisfaY and large, around the exponential utility function. This is

tory. Alternatively, one can look at the close relationship b&Ye€ t0 its relationship to differential games afd, control; see
tween exponential risk-sensitive control and the so-calfed [5], [22]. However, the HARA utility function and its associated

approach to robust control; see [2#., controllers are de- differential game are alternatives that should be kept in mind,
signed to perform well in a “worst case disturbances” envirofgSPecially when _exponentlal atid, controllers are found to
ment. Consequently, optimal.., controllers (and therefore, op- P€ (00 conservative. . _ _
timal risk-sensitive controllers) may perform poorly, according 'Ntérestingly, the HARA utility function has been used in sev-
to (2), in normal conditions. eral optimal control formulations of problems in mathematical
In this paper, we study certain issues related to the perf(];'rrlancle' For example, the prqblem ofllong Term |Evestrrr]1ent IS
mance and robustness of controllers obtained by minimizing tf?émg ated_ in [18] as an ergodic _c_ontro problem where t ¢ cost
HARA utility of the cost. In particular, for the system (1) Withfuncnonal involves the HARA utility of wealth. In [13], the in-

performance measure (2), the HARA cost functional is given 599“?“’ aver time, of the (discounted) HARA_ut|I|ty of consump-
tion is used as a measure of total consumption (that is to be max-

imized). For recent work in mathematical finance which uses the

J(S, T U(-)) exponential utility function, we refer the reader to the papers [6],
T 1/e [7].
= F </ f(t7 x(t), u(t)) dt—l—g(a:(T))) (5) We also note that the classical investment problem of
s maximizing the expected (HARA) utility of terminal wealth

is studied in [16]. The lower value of a certain differential
wheree > 0 is a parameter. Since the HARA utility function isgame is identified as the large deviation rate of the associated
of polynomial rather than exponential order, the resulting comalue function. It should be noted however that the analysis
trollers should be still robust but less risk-averse than optimial [16] relies heavily on the unique structure associated with
exponential controllers. For this reason, HARA controllers makhe finance application; in particular, the state is scalar, the
perform better in normal conditions that optimal exponentialynamics are linear in the state, there is no running cost and the
controllers which are obtained by minimizing (3). While thigerminal cost is linear. The asymptotic results in [16] depend on
remains to be verified conclusively, certain weaker, though rétese assumptions being satisfied. On the other hand, the focus
lated, comparisons between the value functions of the HAR®K this paper is theerformance comparisobetween HARA
and exponential problems are obtained in this paper. In partgontrollers and exponential controllers for which we adopt
ular, we show how this may be viewed, in some sense, as a cahe standard assumptions from the risk-sensitive literature.
parison between thguaranteed performancef HARA con- Note however that these standard assumptions require the drift,
trollers and exponential controllers. In addition, we show thdiffusion, running and terminal costs to be uniformly bounded.
the HARA problem is equivalent to a class of stochastic diffhat is, the asymptotic results in this paper do not cover those
ferential games which are characterized by a cost function ta{16], and vice versa.
contains a logarithmic term that acts like a weight on different The paper is organized as follows. In Section I, we introduce
components of the cost. We argue that the logarithmic termtime HARA optimal control problem and present the associated
the cost may be viewed as making the disturbance player létamilton—Jacobi—-Bellman (HJB) equation. In Section I, we
aggressive; that is, the (HARA) controller is designed in a “lesstroduce a class of differential games which are related to the
than worst case” environment. This is consistent with the intproblem of finding robust controllers and in Section IV, we show
ition that HARA controllers may perform better than exponerthe equivalence between the HARA problem and this family
tial controllers when operating in normal conditions. In addif differential games. In Section V, we study the small noise
tion, the asymptotic properties (small noise limits) of the HARAsymptotic properties of the HARA problem. In Section VI, we
problem and the associated differential game are also studiedbtain certain comparisons between the value function of the
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HARA problem and that of the exponential problem. This mathat f and g are nonnegative/uniformly positive is not restric-
be interpreted, in some sense, as a comparison between the givar- More precisely, recall that our basic aim is to find a con-
anteed performance of HARA controllers and exponential cotreller «(-) for the system (1). Iff is notnonnegative og is not
trollers. In Section VII, we examine the LQR case of the HARAniformly positive, we can replacg and/org by f := f + k
problem. This example is interesting because it exhibits a rebmdg := g + k for some sufficiently large constahtand then
tionship between robustness and uncertainty. In particular, wee the performance measure

show that the problem of finding a robust controller is equiv- .

alent to solving an LQR problem with a larger noise intensity. — = _

In Section VIII, we end with some concluding remarks. For the‘](s’ z u() =B {/5 J(# a(®), u(t)) dt + g(x(T))}
convenience of the reader, we have summarized in the Appendix

some key results from the theories of viscosity solutions afkstead of (2), to evaluate the performance of any given con-

nonsmooth analysis which are used in the paper. troller. Clearly (2) andJ are equivalent and (due the assump-
tion of uniform boundednesg) can be chosen so thitandg
1. HARA STOCHASTIC OPTIMAL CONTROL satisfy the required conditions. In particular, a risk-averse con-

. : . troller with performance measured Byjor equivalently by (2)]
In this section, we introduce the HARA control problem. Sup- . P _
pose thas € [0, T) is fixed, (2, F, {7 }is,, P) is a fitered can now be obtained by minimizing the HARA cost (7) wjth

o ‘ . _andg replaced byf andg.
probability space, and3(-) an R*-valued standard Brownian . , .
motion defined on this space. Suppose that R™ ande > 0 In order to study (6) and (7) using dynamic programming, we

. . . . ) introduce the following controlled SDE and cost functional, of
are given. We consider systems with dynamics given by the f(\)/\lfhich (6) and (7) are a special case. iget (0, C), whereC
lowing SDE: T L

is the constant inA2). For every(s, z, y) € [0, T) xR™ x

“ te€ls 1] de(t) = b(t, x(2), u(t)) dt
X{S) = .
©6) +vea(t, x(t), u(t)) dB(t) ©)
In this equationy(-) is a U-valued process, referred to as the dy(t) = f(t, 2(t), u(t)) dt, t€ s, T]
control input. (The precise definition of admissible controls will z(s) =z, y(s)=vy

be given later.) The associated cost functional is given by and cost functional

I (s, w5 u(?) I(s, w5 u()) = E{L(u(@) +9(=(m))}. (10)

T 1/e
=F { </ F(t, 2(t), w(t)) dt + 9($(T))> } (7)  Note in particular that since € (=7, o), f is nonnegative,
’ g > C,andf andg are uniformly bounded [se@R)], there is

) . } a constant’; < oo such that
wherez(+) is the solution of the SDE (6) corresponding o )

andu(-). We introduce the following assumptions. y+Cy
Assumptions:(Al) (U, d) is a Polish spaceand?” > 0. > (T T
(A2) The mapsh: [0, 7] x R” x U — R", o [0, T] x U+ (#(1))
R? > U = R J: [0, 7] x R x U — Roandg: R —~ —y+ [ 120, ) de+ g o(D)
R are uniformly continuous and boundeflis nonnegative on s
[0, T] x R™ x U and there exists a constafit > 0 such that >C-y>0. (11)

g(z) > Cforeveryz € R". Also, there exists a constaht> 0 o o

such that forg(t, ., u) = b(t, z, w), olt, @, ), f(t, =, u), Thereforey(T) +9(z(T)) > 0 (which is required if we are to

9(z) use the HARA utility function) and the cost (10) |s_well defined.
Clearly, (6) and (7) corresponds to the special case of (9)

and (10) wheny = 0. The class of admissible controls (in

the weak formulation; see [30, Ch. 2]) is the set of 5-tuples

(Q, F, P, B("), u(-)) which satisfy the following properties:

8) 1) (R}, F, P) is a complete probability space;

2) {B(t)}+>s is a R*-dimensional standard Brownian
motion defined on(§2, F, P) over [s, T], and F} is
o{B(r)|s < r < t} augmented by all thé’-null sets
in JF,

3) u: [s, T] x @ — U is an{Fy’ },>,-progressively measur-
able process off2, F, P);

4) Underu(-), for any initial condition(x, ) € R™ x R,
the SDE (9) admits a unique weak solutips(-), y(-))

IA Polish space is a separable complete metric space. on(Q, F, {F h>s, P).

Vtel[0,T], z,yeR", wuwel.

Remark II.1: The assumption that is nonnegative and is
uniformly positive (i.e.g > C > 0) is required for the HARA
utility function to be well defined. The remaining assumptions
in (A1) and @A2) (and in particular, that of uniform bounded-
ness) are standard; see [5], [22] for risk-sensitive control and
[20] for differential games. On the other hand, under the as-
sumption of uniform boundedness, the additional requirement
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If it is clear from the context wha{2, 7, P) and B(-) whichis as follows. Suppose tha& [0, T') is given and fixed.

are, we will writeu(-) € U[s, T] as shorthand for 5-tuple Let (2, F, {F} }:>s, P) be a fixed filtered probability space,

(Q, F, P, B(:), u(:)) € U[s, T]. and B(-) a fixed R*-valued standard Brownian motion on this
Assumptions A1) and (@2) guarantee the existencespace. Assume thd; iso{B(r)|s < r <t} augmented with

of a unique weak solution(z(-), y(-)) of the SDE (9), all the P-null sets of7. Suppose that the system dynamics are

for every admissible controk(-) € U[s, T]. Further- governed by the following SDE:

more, the cost functional (10) is well defined for every

(s, z,y) € [0, T] x R" x (-7, oo) andu(-) € U[s, T]. The dz(t) = b(t, z(t), u(t), w(t)) dt
value function associated with (9) and (10) +o(t, z(t), u(t), w(t)) dB(t), te[s,T] (14)
. . z(s) ==z
U(Sv x, y) - u()érlxltf[‘s,T1 ](87 T, Y ( ))7

(12) whereu(~) is theU-valued ir}put of player 1 (the contr.ol player),
andw(-) is the W-valued input of player 2 (the disturbance
is well defined [30], and has a positive lower bound. player, or opponent). The cost functional is given by
The HJIB equation associated with (9) and (10) is
J(Sv x5 (), w())

(s, t,z,4) €0, T] x R" x (-7, o0)

vt—i—infuey{%tr[vmrfrf’]—i—v;b—i—vyf} =0 T

(b 2. 5) € [0. T) x R" x (—7, ) =FE {/ f(t 2(t), w(t), wt)) dt + g(=(T))
v T = T 1/e T " -7y, 00). T

(T2, 9) = (y+9@) ", (2,9) R x (-7, (23) _%/ |w(t)|2dt}. (15)

We have the following result. . ) .
Theorem I1.1: Assume thatA1) and @2) hold. Then, the plz:;e,rb\(ljrir;lssmle Inputs:The set of admissible controls for

value functionw, as defined by (12), is the unique viscosity so-
lution of (13). )
Proof: Following the proofin [19, Sec.V3 and V9], it can Uls, T = {ul): [_3’ > Q- U_|

be shown that is a viscosity solution of (13). (Note that in u(-) is F7-progressively measuratfle  (16)
this proof, continuity ofu is all that is assumed.) However, for

the uniqueness we cannot immediately apply the results in [T anyt € (s, 7], two admissible inputs, (-), u(-) € U]s, 1]
since the terminal condition of (13) is unbounded due to ti¥€ said to bequivalent orfs, #] if wu;(-) = u2(-) a.e. onfs, ],
presence of. To get around this, we follow a technique in [27}°-@.S. We shall denote this by (-) = u2(-) on[s, #].

and consider the fo"owing transformation: The set of admissible disturbances for player 2is
E(tv x, y) = <y>_(1/€) U(t7 x, y) W[S, T]
where(y) := \/1+ [y|2. Then, (13) becomes ={w():[s, T] x Q= W|
) w(-) is F;-progressively measurable and
. €. : :
vt + inf {5 r[0zy 0] (14) has a unique solutionu(-) € U[s, T]}.  (17)
1
+v, b+ <5y + - LQ E) f} =0 As in the case of admissible controls, we consider two admis-
© @ sible disturbances (-), wa2(-) € W[s, T'] as being equivalent
(t, 2z, y) € [0, T) x R" x (=¥, 0) on[s, t] (for a givent e (s, T) if wy(-) = wy(-) a.e. onfs, 1],
B Y+ g(x) 1/e P-a.s., and den_ot_e Fhis byl(:) ~ wsy(-) on[s, . o
o1, x, y) = W) In the deterministic case (i.er,= 0), the class of admissible
y_ controls/disturbances is given by
. (.’IZ’, y) € R™" x (_ya OO)

This equation has a uniformly bounded terminal condition andia[s, 7] = {u(-): [s, T] — U |u(-) is B[s, T]-measurablg
hence, admits at most one viscosity solution. It follows then that

(12) is the unigue viscosity solution of (13). m and
[ll. DIFFERENTIAL GAMES Wals, T
In this section, we introduce a class of differential games = {w("): [s, ] — W |[w(.) is B[s, T]-measurable
which can be used to find robust controllers. and (14) has a unique solutidhu(-) € Uyls, T}
A. General Formulation wheref3[s, T'] denotes the Boret-algebra oris, 7. Also, for

We shall follow the Elliott—Kalton formulation of two-player, anyt € (s, T] andui(-), uz(-) € Uals, T], u1(-) = u2(-) on
zero-sum differential games [15], [20], [22], a summary df, ¢]if u;(-) = u(-) a.e. ofs, t]. (Similarly for disturbances.)
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2) Admissible StrategiesThe class ohdmissible strategies where
for player 2 is

H+(t7 x? p7 P)
Pls, T ={ac Uls, T] = Wis, T]| foreveryt € [s, T}, u1 () = inf sup {1 tro(t, , u, w)o(t, x, u, w) P
~ uz(-) ons, t] = afui(+)] wel yew | 2
~ a[UIQ(')] On [87 t]}' (18) +b(t7 x? U’? w) 'p + f(t7 x? U’? w)}
Similarly, the class of admissible strategies for player 1is and
H_(t7 x? p7 P)
Als, T] ={8: WIs, T| — U[s, T| for everyt € [s, T], w1(-) 1
!
~ wg() on [8, t] = /j[wl()] - 52‘1;‘) 111&15 {5 tr O'(t, Ly U, w) O'(t, Ly U, w) P

~ ] on . 1

Blwa(-)] on[s, t]} (19) bt o w) -t S 7 w)}'
In the deterministic case, the admissible strategies of players
1 and 2 (denoted byAy4[s, T] andT'y4[s, 71, respectively), are (In the next section, we shall present assumptions which guar-
defined in the obvious manner. antee existence and uniqueness of viscosity solutions for the

3) Upper/Lower Differential GamesThe upper stochastic class of problems which we are studying.) In the deterministic
differential gameassociated with (14) and (15) can be stated asse, the upper and lower Isaacs equations are given by (22)
follows: Find (u(-), w(-)) € Uls, T] x W]s, T] such that and (23), witho = 0. A sufficient condition for the existence

of value in (14) and (15) is the so-calléshacs(or min—max)

V¥t (s, z) = J(s, z; u(-), (")) condition
= inf su J(s, x; u(-), alu(-)]).
u(-)EU[s, T] a[}EFI[Z 7] ( ( ) [ ( )]) H+(t7 Z, P, P) = H_(tv Z, D, P) (24)
(20)

Under this assumption, the existence of value follows imme-
v+ is commonly referred to as thsper valueof the stochastic diately from the uniqueness of viscosity solutions of (22) and

differential game (14) and (15). (23). (For further details about the Isaacs equation, the reader is
The lower stochastic differential gamassociated with (14) directed to [20] for the stochastic case, and [4] for the determin-
and (15) can be stated as follows: Fifwl-), w(-)) € U[s, T]x istic case.)

Wls, T] such that B. A Class of Differential Games

Vo (s, z):=J(s, z; u(-), w(-)) Let (2, F, {F }+>5, P) be afiltered probability space and
= s inf  J(s, @ Blw()], w()) B(-) a standardR*-valued Brownian motion, as discussed in
w(yews,r) Blleals,rp T ’ "~ Section lll-A. Letz € R™ ande > 0 be given and fixed. Con-

(21) sider the following special case of (14):

V'~ is commonly referred to as thewer valueof the (sto- da(t) = [b(t, 2(2), u(t)) + o (t, 2(t), w(t)) w(®)] dt

chastic) differential game (14) and (15). +yeo(t, z(t), u(t)) dB(2), tels, 1] (25)
It is well known thatV~ < V* on|[0, 7] x R™ (see [4], a(s) =

[29]). On the othe_r hand, the differential game (14) and (15)v§here the inputs.(-) of player 1 andu(-) of player 2 satisfy

said to havevalueif V := V* = V.

€ U[s, T) andw(-) € WIs, T]. We consider cost func-
Upper and lower deterministic differential games are defmq nals of the following form:
analogously.
4) Isaacs Equations:/A summary of basic definitions and J(s, x; u(-), w(-))
results from the theory of viscosity solutions can be found in T
the Appendix. =E{ln / F(t, x(t), u(t)) dt + g(=(T))
Under certain assumptions, it can be shown #atis the s
unigue viscosity solution of thepper Isaacs equation 1 /T
=T <>|2dt} (26)
{Vt +HY(t, 2, Vg, Vo) =0, (¢, 2) €10, T) x R® s

VT, ) = g(2) (22) We assume throughout this section th&R) holds. In certain

places, we shall replac@&{) by the following.

while V'~ is the unique viscosity solution of tHewer Isaacs ;
Assumption: (A1)’ U € R™ andW C R* are compact,

equation
and?” > 0.
Vi+ H (t, 2, Vp, Var) =0, (t,2) € [0, T) x R" In order to study (25) and (26) using dynamic programming,
V(T, 1) = g(x) we follow the same procedure that we used for the HARA

(23) problem (Section II) by considering the following related
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differential game. Lef € (0, C) be fixed, where” > 0 is the The deterministic differential game (25) and (26) [respec-

constant in A2), andy € (-7, ~o). Consider the SDE tively, (27) and (28)] is the special case of (25) and (26) [re-
spectively, (27) and (28)] whea = 0 and the classes of ad-
da(t) = [b(t, x(t), u(t)) + U(t a(t), u(t)) w(t)] dt missible inputs for players 1 and 2 drg[s, 7] andW,[s, 17,
+\ﬁ0(t z(t t)) dB (27) respectively. The corresponding upper Isaacs equation is (30)
dy(t) = f(¢, z(t), u(t) ) € [s, T with ¢ = 0. We have the following result.
z(s) =, y( ) =y Theorem 111.2: Suppose thatX1)' and @A2) hold. Then
with cost P(t, z, y)= inf sup  J(s, @, y; u(*), afu(-)])
u()ewd[s T] a[)eTq4[s, T)
1 T
=FE {111 (y(T) + g(x(T))) 3 / |w(t)|? dt} . (28) isthe unique viscosity solution of the upper Isaacs equation (30)
? with ¢ = 0.

Using the same argument for (28) as for (11), it can be seen that Proof: Following the same arguments in [4], it can be

for everye > 0, there is a constamt; < oo, independent of, Shown that (32) is a viscosity solution of (30) (with= 0).
such that Uniqueness is shown using the same techniques as in Theorem

.1. [ |
y+ K1 >y(T)+g(z(1) >C—-5>0 Clearly, (32) is the upper value of the deterministic differen-
tial game (27) and (28) with = 0.
forall (s, z, y) € [0, T] X R"™ x (=¥, co) and (u(-), w(-)) €
U[s, T] x W[s, T). In addition, wheri¥ C R* is compact by IV. HARA PROBLEMS AND DIFFERENTIAL GAMES
(A1), it follows that there is a constaiif; > —oo, which is

independent of > 0, such that In this section, we show that (under certain conditions) the

HARA problem (9) and (10) is equivalent to the stochastic dif-
Ky < J(s, x5 u(-), w()) <ln(y+K,)  (20) ferential game (27) and (28). :
Consider the following transformation:
forall (s, z, y) € [0, T] X R"™ x (=¥, co) and (u(-), w(-)) €
Uls, T] x W][s, T]. The upper Isaacs equation associated witt?(t, ¢, ¥) =€ Inv(t, z, y)

(27) and (28) is V(¢ x, y) €0, T] x R" x (-7, o). (33)
z/;t + 1nf sup {% tr [¢zz 0 0] Note that by (10)—(12) is well defined [sinces(t, =, y) > 0]
uCl wew and

YL+ ow) 9 f - S [wP} =0
(£, 2, ) € [0, T) x R™ x (=7, ) —oco < In(C' —7) < ¢(t, z, y) < ln(y + C1)
z/)(f, ;c,y) = 1;1 (v + 9(2)) " V(t z, y) € [0, T] x R" x (=7, 00). (34)

L (3, ) € R X (=, 20). (30) Sincev is the unique viscosity solution of (13) (Theorem I1.1),

Theorem I11.1: Suppose thatX1)' and A2) hold. Then it follows [from substituting (33) into (13)] that is the unique
viscosity solution of the following PDE:

”(/}(S, ‘Tv y) = lnf Sup ](87 ‘Tv y7 u()? a[u()])
u(-)€U[s, T] o[]CT[s, T] ¢y + inf sup {% tr [ 0 0]

(31) uel  cRk
/ / 1 20 _
is the unique viscosity solution of (30). (£ 2.1) € [0 TJ)F%S{):;(@—JF %)f 2 [l } 0
Proof: Following the arguments in [20], it can be shown B Y S 1 Y, 0
that (31) is a viscosity solution of (30). As in the case of The- | (47 % v) _nhl (y T 9(@))
orem II.1, we can not immediately use the results in [20] to (@, y) € R x (=7, 00). (35)
obtain unigueness since the terminal condition in (30) is URithough the PDE (35) closely resembles the upper Isaacs equa-
bounded. To get around this, consider the following transfan, (30), we are not yet able to use Theorem lil.1 to characterize
mation: ¢ as the upper value of the stochastic differential game (27) and
D(t, @, y) =¥ — Infy) (28) _because theup in (35) is overw € R* whereas theup in
(30) is overw € W, whereW C R is a compact set. Note that
where({y) := /1 + |y|2. Following the same arguments as irthe compactness d¥ is necessary in proving Theorem I11.1;
the proof of Theorem I1.1, we conclude that (30) has at most osee also [20]. In order to establish the equivalence between the
viscosity solution. m HARA problem and the stochastic differential game, we need
It follows from Theorem Il1.1 that the upper value of the stoProposition 1V.1, which gives conditions under whidh C R*
chastic differential game (27) and (28) is the unique viscositgay be considered as being compact. The proof of Proposition
solution of (30). IV.1 depends on the following assumption.
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Assumption: (A3) o(t, =, u) = of(t, u), and b(t, z, u), and(z(-), y(-)) is the state process obtained from (9) when the
f(t, z,w) and g(z) are differentiable inz,V(t,u) € inputisw(-). Therefore
[0, T] x U.

Proposition IV.1: Suppose that > 0 and AssumptionsX1), d(s, x4+ 2, y) — P(s, z, y)
(A2) and @3) hold. Letv be the unique viscosity solution of <J(s, w4z y () —JI(s, x, oy () +6. (41)
(30). Suppose thap := elnwv, and Dtlj’é;’f;)d)(s, z, y) and

tlj’é;’;)d)(& z, y), the super and subdifferentials ¢f respec- It is easy to show that
tively, be defined as in (94) and (95) in the Appendix. Then,

there exist¥( < oo, independent ofs, z, ¥) € [0, T] x R™ x J(s, 2+ 20 al-) — J(s, 2, y; ul-))
(—lyé 3—0) ande > 0, slugh thatp| < K, for all (¢, p, P) € 1
Dy s, @ y) UD 0 (s, @, ). = .
CBroof: Lete > 0and(s o, ) € [0, T]x R" x (—7, x0) E{ly(T) + g(o(T) 1/}
be given and fixed, anfiz(-), 3(-), u(-)) be an admissible triple [y(T) + g(x(T))]¢
for (9) with the initial condition(s, =, ¥). For anyz € R", let x E{ L[ (1) + g(=(1))]
(z(-), y(-), w(-)) be an admissible triple for (9) corresponding Y g
to the initial condition(s, = + z, y). It follows that {gm (Z(1)) }’ [a}(T) _ E(T)} }
X
w(t) —T(t) = U(t) 2 (36) 1 y(1) —y(T)
where theR"™*"-valued proces¥(-) is the solution of the SDE o j#(D) == D+ (@) v 42)
Since
dU(t) = [be (¢, T(t), w(t)) + 1 ()] ¥(t) dt,
.1, 37 T
qft(f) > S0 )+ gm @) =y + / F(t, 2(2), ult)) dt + g(F(T))
and it follows from (A2) that
1
- _ w0, @ 1 1 1
20 = [ Be(t 70 +a (o) - 00). 1) V<R S TR S O
—ba(t, Z(t), u(t))] dov. Yy € (=7, 00) (43)

In addition . .
whereC' > 0is the constantinA2) and0 < K < oco. Note that

B t o CandK areindependentef z, (s, z, ) andu(-). Substituting
y(t) —y(t) = </ [fo (r, T(r), T(r)) + ()] U (r) dT) % (36) and (38) into (42), and noting (39), (43), and the uniform
z

/

— (1) (38) Lipschitz continuity ofg, it follows that:
where X, (+) is defined likeX,(-), but with f, replacingéb,. ¢(s, &+ 2, y) — (s, x, y)
Sinceb is Lipschitz continuous inc, uniformly in (¢, u) € < J(s, x4 z,y u() = I (s, 2, y; u-)) +6
[0, T] x U, it follows from Gronwall's inequality that there ex- < Ky |z|+o()z]) +6 (44)
ists a constanf{ > 0, which is independent dfs, =, v) and
¢ > 0, such that for some constanf; < oo, which is independent ofi(-),

(s, z,¥), z, e € (0,1)andé > 0. Since this is true for all
() < K, [¥()| <K, Vte[s,T], P-as. (39) §>0,wecanlet — 0in (44).In asimilar way, the reverse in-
equality can be obtained. Hence, it follows from (44) and (102)
In particular, the bound (39) (together with the uniform Lips(See Appendix) thalp| < K for all p € 3,¢(s, z, y), where
chitz continuity of / in x) implies that d,¢ denotes the partial generalized gradiens efith respect to
x; see the remarks following Definition VIII.3 in the Appendix.

(1) —z(D)| < K|z],  |o(T) —g(I)[ < K|z (40) our result is then an immediate consequence of

For any § > 0, there exists an admissible triple P 1,2+ 1,2—
) by e D7 ot x,y)UD T ot x,
(z(), 7(-), w(-)), possibly depending ors, z, ), ¢, and (@2, P) € Dy 9t 2, 0) U D,y 9l . 9)

6, such that = p € 0, ¢(t, =, y).
(s, z,y) 2 J (s, z, y; () — 6 [This follows from (99), (100), and (103)]. ]
Theorem IV.1: Suppose that Assumption&X), (A2) and
where (A3) hold. Lete > 0 be fixed, andv be the unique viscosity
solution of (13). Thenp := ¢elnw is the unique viscosity

J(s, 2z, y; u()) = elnE{(y(T)Jrg(a:(T)))l/e} solution of (35). Moreover, there exists a compact subset
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W C R¥ which is independent of > 0 such thatp has the
representation

I (s, @, y; u(), oful)])

(45)

inf sup

d) 87 t? x? y =
( ) u(-)eUls, T] o[)eT[s,T]

wherel{[s, T is defined by (16)]'[s, T by (18) via (17), and

:E{ln[y<T>+g<x<T>)1—§ / |w<t>|2dt}

with (z(), y(-)) being the solution of (27) associated with

(u(), w())-

Proof: It is immediate from the derivation of (35) that

¢ = elnw is the unique viscosity solution of (35). Singe

is a viscosity super-solution of (35), it follows that for ever

(Q7 D, P) € Di:a%-i—d)(t? &, y) Wherep = (p17 p?) € R" x R’

we have

{E tr[P o o’]
2

g+ inf sup (46)

uclU wERK

1
s kou) b f - gl 2 0. @)

Moreover, the maximizings € R¥ in (47) is given by

w = pyo(t, u). (48)

Sinces (¢, «) andp, are uniformly bounded of®, 7 x I/ and

[0, T] x R™ x (-7, oo) respectively [seeA2) and Proposition
IV.1], it follows that

w=plolt,u) e W

V(t,z,y) €0, T] x R" x (-7, c0), wel
for some compadd’ C R¥, which is independent af There-
fore, we may replace € R¥ by w € W in (47), for any com-
pactW C R¥ (with W C W), and the maximizingy in (47)
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(10), as defined by (12), by, andp(® := elnv(9). A similar
comment applies to the upper val€) of the differential game
(27) and (28) when > 0. In the deterministic case of (27) and
(28) with e = 0, we continue to usé.

We have shown that under AssumptioAd), (A2), and @A3)
with ¢ > 0, the HARA problem (9) and (10) is equivalent to a
stochastic differential game of the form (27) and (28); see The-
orem IV.1. In this section, we study the asymptotic properties
of () and)(¢) ase — 0. We prove that)(? — ¢ and hence
[under A1), (A2) and A3)] {9 — 1 whene — 0. This reveals
arelationship between the HARA problem and the deterministic
differential game.

Our convergence proof follows the general methods of Barles
and Perthame [2]. In particular, the notion of solution that is used
n this approach is the generalized definition of a discontinuous
viscosity solution. This is required since the functions (49) and
(51) below are only semi-continuous in general. In addition, the
proof uses a comparison theorem for semi-continuous viscosity
%ub- and super-solutions. The definition of a discontinuous vis-
cosity solution is quite similar to that of a continuous solution.
The reader should refer to [19, Ch. VII] for a detailed account
of the Barles and Perthame method. The definition of a discon-
tinuous viscosity solution as well as the comparison theorem for
semi-continuous sub and supersolutions can also be found there.

We begin with the following asymptotic result fgr<).

Proposition V.1: Suppose thatX1)' and @A2) hold. Let()
and+ be the upper values of the stochastic and deterministic
cases of the differential game (27) and (28), respectively. Then

limm s, z, y) = ¥(s, z, y)
V(Sv X, y) € [07 T] X R™ x (_yv OO)

uniformly on compact subsets.
Proof: Define

Y, z,y) =  limsup (s, p, q)

€l0,s—t, p—w, q—y

(49)

forall (t, z, y) € [0, T] xR"™ x (=7, oo). In view of (29),(*)
is uniformly bounded whefs, z, ) ande > 0 belong to com-

will still be given by (48) andp = ¢In v is still a super-solution pact subsets. Thereforg,is well defined and upper semicon-
of (47). Itis easy to see that the same argument applies for tifgious. We now show that is a viscosity subsolution of (30)
case of sub-solutions and hence, under the constaiatiw’, (with ¢ = 0). Lety € ([0, T] xR™ x (-7, oc)). Suppose
¢ = ¢Inwis still the unique viscosity solution of (35). Howeverthat: — ¢ has a local maximum ovéd, 7] x R™ x (-7, o)
under the constraint that € W, it follows from Theorem I11.1  at(t°, 2°, 4°) € (0, T) x R™ x (=%, o). Then, there exists a
that the unique viscosity solution of (35) is the upper value stibsequencé&*, z*, y°) € (0, T) xR"™ x (-7, oo) (indexed
a stochastic differential game, as defined by the right hand side< > 0) such that (see [19])
of (45). Hence, we have equality in (45). [ | 1) ') — ¢ has a local maximum &t¢, ¢, y°);

Remark IV.1: Itis clear from the proof of Theorem IV.1that = 2) (<) (¢, z¢, y¢) — (12, 2°, 4°) ase | 0;
we may chooséV to be a closed ball ilR*, centered at the  3) (<, 2, y) — (%, 2, 4°) ase | 0.
origin, of sufficiently large radius; that i8)” = B(0, R), for - sincey(©) is a viscosity subsolution of (30) (Theorem Iil.1), it

someX > 0. In particular, thi§ guarantees thae W, which  follows that for every > 0 [denotingye: = ¢, (¢, z°, y°) etc.]
simplifies some of the analysis in Section VI-B.

@S + inf sup {% tres, 0 o]

V. ASYMPTOTIC ANALYSIS wel wew

For the remainder of this paper, for any givert> 0, we

e’ € 1 2
shall denote the value function of the HARA problem (9) and tea (bt ow)+ oy f— 5 vl } = 0. (50)
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Letting e | 0, it follows from (51) and the continuous differen- VI. COMPARISONS
tiability of ¢ that A. HARA Controllers

0, - o 0 1, 5 In Section I, we introduced the HARA utility function as an
o+ inf et a {% (b+ow)+ ¢y, f = 5wl } 20 alternative to the exponential utility approach to finding robust
controllers. Intuitively, we expect the HARA approach to give
at(t%, z°, y°). Clearly,s(T’, z, y) = In (y+ g(x)). Therefore robustcontrollers that have superior performance characteristics
) is an upper-semi-continuous viscosity sub-solution of (3¢9 exponential controllers. A conclusive proof of this statement
(with ¢ = 0); see [19, Ch. VII.4] for a generalization of theremains an open problem. In this section, we obtain some re-
definition of subsolution that applies to discontinuous functionktionships between the value function of the HARA problem

Similarly, it can be shown that if is defined by and that of the exponential problem. Using this result, a weaker
- statement about the performance of HARA controllers and ex-
W(t, x, y) = lim inf (s, p, q) (51) ponential controllers can be made.
o €10, 5=t p=a, 4=y Suppose once again that the system dynamics are given by

theny is a lower semicontinuous viscosity super-solution dhe following SDE:

(30) (withe = 0); see [19, Ch. VII4]. By the definition of de(t) = f(t, «(t), u(t)) dt

ands), it follows thaty < 4. On the other hand, the comparison ’ ’ 59
theorem for discontinuous viscosity sub and supersolutions (see ;E;)ﬁ_agf’ «(t), u(t)) dB(), tels 1] (52)
[19, Ch. VIL.8]) implies that) < . Thereforey® = =1 is o
a continuous viscosity solution of (30) (with= 0) and and that the performance of a particular conirpl) € U(s, T

is measured by the following cost functional:
11%1 Pt @, y) =9t =, y)

T
uniformly on compact subsets. Since the upper-valusf the (s, 25 u() = B {/S F (@t @(t), u(®)) di + g(x(T))} :

deterministic case of the differential game (27) and (28) is the (53)
unique viscosity solution of (30) with= 0 (see Theorem I1.2),
it follows that° = 1. [ |

Let ¢ > 0 be given. The exponential risk-sensitive perfor-

The following result relates the HARA problem (9) and (lOPnance measure associated with the system (52) for a given
and the deterministic case of the differential game (27) and (2%)(.) € Uls, T] is

Theorem V.1:Suppose thatA1), (A2) and @A3) hold. For
everye > 0, letv(®) be the value function of the HARA problem e (s, 73 u(-))
(9) and (10)p'? := eInv(9) andW C R* be the compact set T .
from Theorem IV.1. Suppose thdtis the upper value of the _ .|, g {exp 1 </ f(t7 2(t), u(t)) dt +g(x(T))> }
deterministic differential game (27) and (28) associated With € \Js
Then,» and¢(*) are the unique viscosity solutions of (30) (with (54)
e = 0) and (35), respectively. Moreover

and the associated value function is defined by
limn PNt z, y) = p(t, 7, )

W (s, 2) = inf  Jp(s, z; u(),
V(t, 2, y) € [0, T] x R" x (=7, ) wrdblo 77 )
Vs, z) € [0, T] x R". (55)

uniformly on compact subsets.

Proof: It follows from Theorems I1l.2 and IV.1 that and  One method of obtaining robust controllers for the system (52)
¢(<) are the unique viscosity solutions of (30) (with= 0) [with the performance measure (53)] is to solve the exponential
and (35), respectively. By Theorems Il.1 and I\ is also  risk-sensitive problem (52), (54) for the optimal exponential
the unique viscosity solution of (30) with” C R* being the risk-sensitive controller’,(-), and to uses%,(-) in the system
e-independent compact set determined by Theorem IV.1. T{82). The performance of (52) withs,(-) is measured by
convergence result then follows from Proposition V.1. = J(S’ z; u;:(.))_

In [22], there is a similar asymptotic result for the exponen- On the other hand, an immediate consequence of Jensen’s
tial risk-sensitive cost. However, stronger assumptions than Agequality [8], [30] is the following:
sumptions A1), (A2), and @A3) are made. In particular, non-
degeneracy of is assumed, which guarantees the existence of (s, z; u(-)) < Jg (s, z; u(-)), Yu(-) € U[s, T]. (56)
classical solutions to the HIB equation associated with-thee
rametrized risk-sensitive problems, whereas Assumptidhk ( The inequality (56) can be viewed as a performance guarantee:
(A2) and A3) only guarantee the existence of viscosity solu-or any controller(-) € U[s, T, the performance associated
tions of (13). As can be seen from the proof of Theorem V.with u(-) [which is measured by the value df(s, z; u(-))]
having classical solutions is not a fundamental requirement ferbounded above by the exponential c@@(s, x; u(-)) asso-
the result to hold. ciated withw(-). In particular, the optimal exponential control
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wh,(-) minimizes the family of upper boundss (s, z; u(-)) g) is not satisfied; see also Remark II.1. In particular, uniform

overU(s, TJ. boundednessAR) implies that (61) is satisfied by := f + &
Similarly, if we define andg := g + k for sufficiently largek > 0. Denoting
Tu (s, w5 u(-)) VO, )

" Y = inf
S T 1/e
X (E {/ F(t, x(t), u(®)) dt + E(x(T))} )

— KT +1) (63)

then for everyu(-) € U[s, T, we have the inequality:

J(s, x; u()) < Jy (s, x; u()) (58)

. —(e) .
: . . one can easily see that (s, x) is the least upper bound as-
ggsngp])tlr?al HAI(Q')AS gsgtrogf;ergz([-) ;nqlnlmlzes the upper sociated with the HARA problem (63) for theriginal perfor-
A N NN mance measure (53), white () (s, z), as defined by (55), is the

Intuitively, we expect the optimal HARA controller, (-) to least upper bound for the original performance measure associ-

resultin better performance for the system (52) [as measured : .
(53)] than the optimal exponential controllef,(-); that is, we a Xd_ with the ex_ponentlal approacﬂ.(;)r heorem VI.(lE)can now be
applied from which we conclude thit (s, x) < W9 (s, z).

expectJ (s, z; uf (")) < J(s, z; uj(-)). Unfortunately, we _ /
have not been able to establish this statement conclusively. HAerefore, the HARA approach and the inequality (62) can be

ever, we have been able to obtain some related, though Wea%];ended to thej general ca}se \.Nhen.(Gl) is not satisfied. )
relationships between the (risk-neutral) performance measyr&emark V1.2: The following is a simple example of a situa-
(53), the value function of the HARA problem and the valytion where the comparison (62) holds with strict inequality. Let
function of the exponential problem. ce=lm=1n=1, bQ(t, T, u) = éﬂﬁ + Bu, o(t, x, u) = L
Consider the following transformation of): f(t @, u) = (1/2) Q™ + (1/2) [uf® andg(z) = (1/2) Ha
where@, H > 0. It can be shown that

V(F)(tv T, y) = [U(F) (t, =, y):| © 1 , 1 T
VO 2) = 2 P#)a +—/ P(s)ds
V(t, 2z, y) €0, T] x R" x (=7, c0), 2 2 /i
> 0. 59 1 1t
‘ 9 W, x)=§Z(t)x2+§/ Z(s)ds
t
Adopting the convention
whereP andZ are the unique solutions of the Riccati equations
VOt z) = VO, z, 0), Y(t, z) € [0, T] x R" .
P+PA+ AP - PBB'P+Q=0, +t€]0,T]
itis clear from the definition of(®) that, for anye > 0, we have P(T) = H,

VO, a) =  inf  Jg(t, @z ul) Z+ZA+AZ-Z(BB —-DZ+Q=0, telo, T,
u()eU[s, T)
Z(T)=H
V(t, x) € [0, T] x R" (60)

respectively. (See [23] for a derivationidf<. On the other hand,
where Jy (¢, x; u(-)) is defined by (57). The following result sincec = 1, the HARA problem coincides with the risk-neutral
shows the relationship betwe&H?) andW (). LQ problem, a solution of which can be found in [30]). When

Theorem VI.1: Suppose thatA1) and A2) hold. Lete >0 A= -1/2,B=1,Q =0,R=1,H = 1andT = 1, these
and(s, ) € [0, 7] x R™ be given and fixed. If, for every equations can be solved explicitly to give
admissible paifz(-), u(-)), we have
t—1

=y a1

T P(t) Zt)=¢"t  telo, 1]
/ f(t, z(t), u(t)) dt +g(az(T)) >1—¢, P-—as. (61)
° Clearly,0 < P(t) < Z(¢)forallt € [0, 1) and it follows imme-
then diately thatV () (¢, z) < W()(¢, z) forall (¢, z) € [0, 1) x R.
The following results are used in the proof of Theorem VI.1.
V(s z) < W(s, ). (62)  Lemma VI.1:Let§ > 0 be given and fixed. Suppose that
g: [6, 00) — R is twice differentiable ang’: [5, o0) — oo is
Remark VI.1: The condition (61) is simply for the sake ofgiven by
convenience and Theorem VI.1 can be extended to cover the
case when (61) (and nonnegativity/uniform positivityfoand f(x) = exp{g(x)}. (64)
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Then, f is convex if and only if
(ggc(ac))2 + Guz(z) >0 YV € [b, 00). (65)

Proof: f is convex if and only if

foal) = explg(@)} - [ (9(2))" + gaal)] 2 0

YV € [6, 00).
]
LemmaVl1.2: Lete € (0, 1] be given and fixed. Thefi: [(1—
)Y€ o) — R where
1
o) =exp{ 1o}
€
is convex.
Proof: Letg(x) = (1/¢)z*. Since
(gg,;(ac))2 + geo(@) =2z " +e—1)>0
Ve [(1—eYe, x0)
it follows from Lemma VI.1 thatf(-) is convex. ]

The proof of Theorem VI.1 is as follows.
Proof: For any given admissible pafr:(-), u(-)), define
the random variable

- 1/
z= </ f(t, 2(t), w(t)) dt + g(a:(T))) .

We begin by considering the casec (0, 1]. Then by (61),

it follows that = > (1 — ¢)/¢, P — a.s. By Lemma VI.2,
f(z) = exp{(1/¢) z} is convex orf(1 —¢)'/¢, oo) and, hence,

by Jensen’s inequality, we have

exp{% (EZ)F} < Eexp{%zf} (66)

or, equivalently

[E </ST St x(t), u(®)) dt +9($(T))> 1/1

< elnEexp% </ f(t, z(t), u(t)) dt +g(a:(T))> .
(67)

€
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B. Deterministic Differential Games

In this section, we turn our attention to the deterministic
system

{ #(t) = b( z(t), “(t))v te[s, 11, (68)

x(s)==x

with performance measure

T
J(s, x; u()) = / f(t, z(t), u(t)) dt —|—g(x(T)). (69)
Consider the following system

()—b(t z(t) ,ut)

+o(t, z(t), u(t)) w(t), tels 1], (70)
x(s) = .

In H., control, robust controllers are obtained by solving the

upper deterministic differential game associated with the system
(70) and the cost

J(s, x; ul(-), w()) = / f(t, z(t), u(t)) dt +g(x(T))

1 T
—§/S |w(t)|? dt. (72)

In Section IlI-B, we introduced a deterministic differential game
with cost

T
J(s, 2 u(), w()) = In </ f(t, 2(t), u(t)) dt—i—g(a:(T)))

2 e a 72)

and dynamics (70). The main difference between (71) and (72)
is the introduction of thén(-) term. To get a feel for the role
that this term plays, consider a situation where the first player
chooses an input(-) and applies this input to (70) and (71)
and then to (70), (72). In the first case, the opponent chooses an
inputw(-) to maximize the cost (71) corresponding to this).

This corresponds to the standard approach to robust control. In
the second situation, tHe(-) term acts like a weight between
the two components of the cost. In particular, thé) term
reduces the importance of the first component relative to second
component in the optimization of the opponent player. For this
reason, one expects the input-) of the opponent chosen by
maximizing (72) will be less “aggressive” than the input of the
opponent player chosen by maximizing (71). That is, the first
player in (72) is dealing with a more conservative opponent than
the first player in (71). For this reason, we expect the controller
w1 (+) obtained by solving (70), (72) to be robust, but at the same
time, to have better performance [as measured by (69)] than the

We obtain (62) by takingnf,,.yc.(s, 4 On both sides of (67) and controlleru.(-) obtained by solving (70) and (71).

noting the definitions (55) and (60). On the other hand if 1,
thenf(z) = exp{(1/¢) 2} isconvex orr € [0, co) andz > 0;

In Theorem IV.1, itis shown that undek), (A2), and A3),
for everye > 0, the HARA problem is related to a differential

see A2). Therefore, we can apply Jensen’s inequality again g@ame of the form (70), (72), in which the input of player 2 is

obtain (66), (67) and our result (62). [ |

restricted tolW; = B(0, R;), ane-independent closed ball in
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R* of radiusR; > 0; see Remark VI.1. Similarly, it is shown where, as before(z(-), u(-)) on the left-hand side of (75) is
in [22] that the exponential-of-an-integral problem is related @n admissible pair for (68), whiléc(-), w(-), afu(-)]) on the
a differential game of the form (70) and (71) in which, as in theght-hand side of (75) is admissible for (70); that is

HARA case, the input of player 2 may be restricted to a closed,

e-independent ball iR*, W, = B(0, Ry). Throughout this J2(Sv T “('))

section, we shall assume th&t = B(0, R) for both (70) and T
(71) and (70), (72), whereo > R > max{Ry, R,} is fixed. = exp In / F(t, 2(t), u(t)) dt+g(=(T))
Suppose thai(-) € Uy[s, T] is given. Since the strategy]] st °
which satisfiesy[u(-)] = 0 is admissible, we have the following 1 /T lfu(®)]|? dt
inequality: 2 J,
T . . . S
£ (), u(t)) dt + T is an upper bound o# (s, z; u(-)), which is minimized, over
| 120 u) @t +g(a() e
T
< t, x(t t)) dt T W(s, z) 1= inf Jo (s, x; ul-
= alierale, T {/ Pt 2(®), u(t)) e+ 9(«(1) (0= o diem o ©)
1 (T = inf sup
T2 / |afu(t)]|* dt (73) w()€Uals, T] af)eTals, T1
§ T
where(z(+), u(-)) on the left-hand side of (73) is an admissible X €Xp {hl </S F(t @(t), u(t)) dt + g(x(T))>
pair for (68), andx(-), u(+), afu(-)]) on the right-hand side of
(73) is an admissible 3-tuple for (70). 1 /T )
For (73), it can be seen that for any controliér) € 4,[s, 1] 3 /S |afu(®]] dt (76)
Ji(s, @3 u(")) the upper value of (70) and (72). Clearly
T
=  sup {/ [t 5(t), u(®)) dt + g(=(T)) U(s, ) = exp1)(s, z, 0)
al]eTq[s, T) E
1 wherey (s, z, y) is the upper value of the deterministic case of

T
—= / |lafu(®)]|? dt} the differential game (27) and (28), as defined by (32).
2 Js Our next result shows the relationship betwéemd .

is an upper bound on the performance of the system (68) un e;]’heorerg \T/I.2:§angose_ Al)’W(AE) ;T)d }?3) hO?Id' Letd

u(-), where performance is measuredbfg, «; u(-)). Clearly, \> z) € [0, 7] x e given, W = B(0, R) as discusse

the right-hand side in (73) is minimized by above,f(s, x) the upper value of (70) and (71) as defined by
(74) andW¥(s, x), the upper value of (70), (72) as defined by

6(s, x) = inf Ji(s, @ ul)) (76). If g(z) > 1 for everyz € R™, then
u()EU4[s, T
_ inf sup W(s, z) < 0(s, x).
u()€Uals, T] al.]cT 4[5, T] A
Remark VI1.3: As in the case of Theorem VI.1, the assump-
T tion thatf(x) > 0 [from (A2)] andg(x) > 1 in Theorem V1.2
X / F(t, 2 (t), w(t)) dt is simply for convenience. It is straightforward to extend this
? . result to the case whefiandg are only bounded; see Remark
1 9 VI.1.
+g(x(T)) 2 L (]l dt} (74) Proof: By Theorem V.1 and (59), we have:
the upper value of (70) and (71). V(s z) =V (s 2, 0) = [v(e)(s, x, 0)}E

Similarly, it is easy to see that

T
|1t att), ) de+ g(ol1) and
= a['1€sll"ldrfs,T] 151%1 V(E)(Sv z) = expip(s, z, 0) = U(s, z).
o {ln </T £t w(t), u() dt+9($(T))> In [26], it is shown that under the conditions of the theorem

lim W (s, z) = 6(s, x)

1 T €l0
-3/ |a[u<t>]|2dt}
2.Js whereW (© is defined by (55). Sinc® () (s, z) < W (s, ),
(75) see Theorem VI.1, it follows thak (s, =) < (s, ). [ |
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VIl. LQR CoNTROL WITH HARA UTILITY

In this section, we study an LQR problem with HARA utility.
This problem is interesting because it reveals an interesting re

lationship between robustness and uncertainty.

1) HARA Problem: Consider the following linear-quadratic

problem with HARA utility (we assume throughout thiédt > 0)

575

where P(-) is the unique (positive) solution of the stochastic
Riccati equatior#:
—1
P+PA+AP-PB [(2 _ 1) ﬁ'Pﬁ} BP =0,
€
P(T)=H.
(80)
Note that (80) is a linear ODE, hence, it must admit a solution.

The optimal feedback control for (77) is

u(t) = — <<§ - 1) E(t)'ﬁ(t))_lﬁ(t)'x(t). (81)

We also note that for the LQR problem wigiponentialitility,

te[s 1] it seems that there is no closed—fo_rm expr_essipn for the qptimal
’ control when the control appears in the diffusion (which is the

T case in many finance applications). In fact, for this particular

problem, the issue of existence and uniqueness of solutions of

the associated HJB equation is still an open question.

2) Stochastic LQR ProblemConsider the following sto-
chastic LQR problem:

( min
u(-)CU[s, T]

dz(t) = [A(t) z(t) + B(t)u(t)] dt

J(s, z; u(’)) = E {35 Hﬁt(T)Q}l/E

(77)

whereB(t) = (B(t),..., B*(t)) is the Brownian motion.
Throughout this section, we shall assume tha) is scalar
valued andu(-) is R™-valued, form > 1. Define D(t)’ =

(D1(t),..., Di(t)").We shall assume th&¥(t)’ D(t) > 0 for u()lé% 1 I (s, w3 u()) = E {3 Ha(T)*}

allt € [s, T'), and that € (0, 2) is given and fixed. In partic- U —

ular, it should be noted that the model (77) (with scalar state, but| @2(t) = [A(t) () + B(t) u(t)] dt

a multivariable control) is one that arises quite frequently in fi- D) ¢ , (82)

nancial applications; see [16], [18], [32] for an example of this. | +1/7 —1 21 Di(w(t)dB'(t),  tels T,
Suppose thaD = 0. Then, (77) is a deterministic problem =

with a nonnegative infimal cost and hence is well posed. How- * w(s) = .

ever, this infimal cost in general can not be achieved. For dkis easy to show (see [9]) that

ample, when(A(-), B(-)) is controllable, the infimal cost is 1 )

zero, but is not achievable. In this situation, we must be sat- Vit ) = 2 Pt)x (83)

isfied with near-optimal controls. (For a discussion on near-op; the value function associated with (82), whéte) is deter-

timal controls for infinite_-time singular LQR problems, ref_ert(_)mined by (80), and (81) is the optimal control. This shows an

the paper [29].) In particular, we can make the cost arbitrarilyy, ialence between the HARA problem (77) and the stochastic

close to 0 by choosing a “sufficiently large” control. LQR problem (82). In particular, theparameter in the cost (77)
WhenD # 0, (77) is a well-posed stochastic problem, anflas been transferred to the state equation (82).

the Optlmal cost is achieved by a Unique Optlmal control. In this 3) Discussion: The equiva|ence between (77) and (82)

case, the value function involves the solution of the so-callehows an interesting relationship between uncertainty and

stochastic Riccati equatiothe properties of which are studiedrobustness. Suppose that under “normal” conditions, the
in [9]. The fundamental difference between the case= 0 dynamics are given by the system

andD # 0 is the role that the uncertainty plays. The reader is — —
directed to [9] for a deeper discussion of this and other related da(t) = [A(t) 2(t) + B(t) u(t)] dt
issues. LA h
The HJB equation associated with (77) is +]§1 D;(t)u(t)dB(2), tels, 7], (84)
z(s) = x.
In addition, suppose that thgerformanceof any given con-

vy + inf {%u’ﬁ/vmﬁu
uwER™ . .
troller w(-) is measured by the cost functional:

+ul, (Az+Bu) } =0
(t,x)e[s, T xR
v(T, x) = (%Ha:Q)l/e,

(78) ! ,
J(s, z; u(-)) = E {5 Hax(T) } , H>0. (85)
r€R. As stated in the Introduction, the cost functional (85) is used to
evaluate thegerformanceof any given controller, irrespective

It is easy to show that the unique solution of (78) [and, henc@f how this controller was obtained. [Of course, controllers ob-
the value function associated with (77)] is tained by using different control methodologies, while not being

= <% P(t) x2>1/6

2Although the stochastic Riccati equation (80) is clearly deterministic, it is
actually a special case of a Riccati-type backward stochastic differential equa-
tion that is introduced in [9], and is deterministic only under the assumptions of

v(t, x) this paper.

(79)
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optimal according to the measure (85), may have other advésance attenuation properties of the HARA controller, especially
tages, such as robustness, that the optimal controller for (84) avtten compared to those of the exponential controller; see [17]
(85) may not have.] Note that the optimal controller associatéar related analysis for the exponential problem. As an example,

with (84) and (85) is given by we examined a particular linear-quadratic case of the HARA
problem. For this problem, we showed that finding a robust con-
u(t) = — (ﬁ(t)’ﬁ(t))_l B(t) a(t). (86) troller for a certain class of linear systems with a quadratic ter-

minal cost is equivalent to solving a linear-quadratic problem of
the sameform, but with a larger noise intensityl' his shows an

Suppose that we wish to find a controlief) for the system jaasting relationship between robustness and uncertainty.
(84) that is more robust (or risk-averse) than the optimal

controller (86). One method for finding such a controller

is to solve the HARA problem (77) corresponding to some
€ (0, 1). [That is, to use the optimal HARA controller (81), We present here some basic definitions and results from the

with e € (0, 1), in the system (84)]. On the other hand, théheory of viscosity solutions and nonsmooth analysis which are
equivalence between (77) and (82) shows that the (robugﬁjerred to in this paper. For a detailed discussion of viscosity
HARA controller (81) corresponding to € (0, 1) is also the Solutions, the reader is referred to [11] and [12], as well as [1],
optimal controller for (82) with the same value ofMioreover, [19], and [30]. For a discussion of nonsmooth analysis, we rec-
since /(2/¢)— 1 > 1 whene € (0, 1), finding this robust ommend[10]. A proof of the relationship between sub/superdif-
HARA controller corresponds to solving a standard |_Q|:f@rentials and Clarke’s generalized gradient can be found in [30]
problem [since (82) is of the same form as (84) and (85)] bahd [31].
with a higher noise intensity. It should also be noted that greater
robustness corresponds to a controller of smaller magnitude
li.e., decreasing € (0, 1) corresponds to the magnitude of Consider the following nonlinear, scalar, first-order PDE
u(t) in (81) decreasing].

Whene € (1, 2), the optimal controller (81) for the HARA {”t Al @ ) =0, (t2) € [0, T) xR (87)
problem is risk-seeking. The relationship between the HARA | v(T, z) = g(z)
problem (77) and the LQR problem (82) shows that a risk- ) o ) )
seeking controller for the system (84) under the criterion (85) @ Special case of which is (30) with= 0], and the nonlinear,
obtained by solving an LQR problem (82) with a smaller noiseFalar second-order PDE
intens_ity [sinc_e (2/e) —1 < 1whene € (1, 2)]. Note also ve + H(t, 2, U, V3a) = 0, (t, z) € [0, T) x R™
that risk-seeking controllers have a larger magnitude than the{
optimal controller (86). (T, x) = g(x). (88)

APPENDIX

Viscosity Solutions

It is well known that the upper/lower Isaacs equations (22) and
VIl CONCLUSION (23), which are special cases of (88), do not, in general, have
In this paper, we have studied some of the properties of gpassical (smooth) solutions. A generalized concept of solution,
timal HARA controllers. Our study of the HARA problem wascalled a viscosity solution, is introduced in [12]. The main result
motivated by the belief that in addition to being robust, oph [12]isthatunder certain mild conditions, there exists a unique
timal HARA controllers are less conservative than optimal exiscosity solution of (87). In the second-order case, uniqueness
ponential controllers. We have shown that the HARA problefg proven in [21], [23]. The definition of a viscosity solution of
is equivalent to a certain stochastic differential game, differetfte first-order PDE (87) is as follows.
from the one commonly encountered in the robust control lit- Definition VIIL1: Let v+ € C([0,7] x R") and
erature, and have studied the asymptotic properties of both the ©o) € (0, 7) x R". Then the first-order superdiffer-
HARA problem and the associated game problem. One feat@fial of v at (to, o) is given by
of this differential game is that it involves a logarithmic term
which acts like a weight for the different components of the cost. Dt,’gjv(to, o)
We have argued that this weighting has the effect of making the = { (v, (to, zo), ¥ (to, z0)) | ¥ € C((0, T) x R")
opposing (disturbance) player less aggressive; that is, the con-
troller in the logarithmic-weighted game (i.e., the HARA con-
troller) is designed in a “less than worst case” environment. This i _ _
is consistent with the intuition that HARA controllers, while?nd the first order subdifferential by
being robust, may perform better than exponential controllers _; _
(which are designed in a “worst case environment”) when ap—th“f v(to, o)
plied to a system operating under normal situations. While con- = {(¢+(to, x0), = (to, £0)) [¢ € C=((0, T) x R™)
clusive theoretical justification of this intuition remains an im- andv — « has a local minimum &to, z0)}.  (90)
portant open question, certain related, though weaker, compar-
isons between the value functions of the HARA exponentidMoreover,v is a viscosity solution of (87) if
problems have been obtained in this paper. Another important
issue that we have not addressed relates to the robustness/distur- v(T, ) = g(x) VzeR" (91)

andv — ¢ has a local maximum &g, z9)}  (89)
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and
g+ H(t z,p) >0 V(g p)€Dytut z) (92)
q+H(t, 2, p) <0 V(g p) €D tu(t,x) (93)
forall (¢, ) € [0, T) x R™.

In particular,v is called aviscosity subsolutioif it satisfies
(91) and (92), and@iscosity supersolutioifiit satisfies (91) and
(93). Also, for anyv € C([0, T] x R™), we can defingartial
super/subdifferentialef v with respect tar at (to, o) [which
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B. Nonsmooth Analysis

The following results from nonsmooth analysis are used in
our proof of Proposition IV.1. For an in depth discussion, we
recommend the book [10].

We begin with a definition of thgeneralized gradient

Definition VII1.3 (Generalized Gradient)Let f: R* — R
be a locally Lipschitz function. The generalized gradienf af

z € R"is

{geRn f(z+hy) ~ J(2)
(101)

(¢, y) < limsup

z—x, h|0

we denote byl)_;7+v(t, x) andD;,_:—v(t, x), respectively] by ¢ . Rn » {7 — R for some subsel/ of R™, then thepar-
keepingt = ¢, fixed, and calculating the super/subdifferentialg generalized gradienof f at(z, @) € R" x U/ is obtained

of v(to, ) in thez variable.
For the second-order case, we have the following.
Definition VIII.2: Letv € C([0, T| x R™) and (o, xo) €
(0, T) x R". Then the second-order superdifferentiatuoht
(to, xo) is defined by

D}E Fu(to, o)
= {(¢+(to, z0), ¥a(to, 20), Ya(to, x0))
¥ € C*°((0, T) x R™) andv — v

has a local maximum dto, xo)} (94)

and the second order sub-differentiakof defined by

Dl’ 2, _U(to, 370)

- {(¥:(to, z0), Ya(to, 20), Vs (to, o))
¥ € C*°((0, T) x R™) andv — v

has a local minimum &to, xo)}- (95)

Moreover,v is a viscosity solution of (88) if

(T, z) = g(x) Yz e R" (96)

and

V(g p, P) € Dy 2 Fut, z) (97)

t,z

g+ H(t,z,p, P) >0
g+ H(t x,p, P)<0  Y(q,pP)€ Dy u(t, x) (98)

forall (¢, ) € [0, T) x R™.

As in the first-order case;,is called aviscosity subsolutioaf
(88) if (96) and (97) are satisfied, and/iscosity supersolution
if (96) and (98) are satisfied. Clearly

(¢ p, P) € Dy Folt, )

= (g, p) € Dy’ Fo(t, z)

= pe Dyt x) (99)
and
(¢, p, P) € D2 "u(t, x)
= (g, p) € Dy v(t, z)
= p € Dy Tu(t, z). (100)

by fixing « = @, and calculating the generalized gradient by
treatingf(z, @) as a function ofr.

An alternative characterization 8ff is obtained from the fol-
lowing well known result: If f: R® — R is Lipschitz, then
/ is differentiable almost everywhere (Rademacher’'s Theorem
[10]). Let2; denote the set of all points at whighs not differ-
entiable. Then we have the following result. (See [10, Th. 2.5.1,

p. 63)).

Theorem VIII.1: Let f satisfy the conditions in Definition
VIII.3 and suppose tha$ is any set of Lebesgue measure 0.
Then

af(x) = co{ lim Vf(a)| 2 — 2, 2 @85, 2 & Qf}

(102)

whereco denotes the convex hull.

The following result is used in the proof of Proposition IV.1.
(See [30] and [31)).

Proposition VIII.1: If v is locally Lipschitz in(¢, z), then

DLVt ) U DY ~w(t, ) C dp v(t, ). (103)
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