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Abstract. There have been many recent attempts to extend the
static max-min expected utility theory of Gilboa and Schmeidler to dy-
namic environments. The purpose of this note is to re-direct attention
in portfolio choice to frameworks which are axiomatized and motivated
by a corresponding theory of choice. In particular, we argue that pa-
pers including Maenhout (2001), Uppal and Wang (2003), and Liu, Pan,
and Wang (2002) employ a transformation that is poorly motivated and
breaks the link to a foundation based on Gilboa and Schmeidler. We
show, instead, how the analytical results of these papers can be de-
rived in the recursive multiple priors framework that has been axioma-
tized and is clearly linked to Gilboa-Schmeidler. While the intuition for
the results are similar, the comparative statics are significantly differ-
ent. Finally, we offer some broader thoughts about whether Gilboa and
Schmeidler is a convincing nonexpected utility alternative for portfolio
choice.
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1. INTRODUCTION

There have been many recent attempts to extend the static max-
min expected utility theory of Gilboa and Schmeidler (1989) to a
dynamic environment useful for econometrics, finance, and macroe-
conomics. Unlike subjective expected utility, the extension of static
non-expected utility preferences to intertemporal lotteries is a non-
trivial undertaking.1 The main purpose of this paper is to critically
assess recent contributions to robust portfolio choice theory, building
on and modifying the framework proposed by Lars Hansen, Thomas
Sargent, and a set of authors. Our argument is that the utility spec-
ifications employed in a set of papers—namely Maenhout (2001),
Uppal and Wang (2003), and Liu, Pan, and Wang (2002)—have lost
their link to the motivating decision theory of Gilboa and Schmei-
dler.
The argument centers on a transformation, initially proposed by

Maenhout (2001). Expressed in terms of the framework of Hansen,
Sargent, Turmuhambetova, and Williams (2002), Maenhout trans-
forms a constant Lagrange multiplier into a function of the value
function for analytical tractability. The Hansen-Sargent framework,
however, has a constant Lagrange multiplier regulating the class of
models the decision maker considers in order to motivate their pref-
erences by Gilboa-Schmeidler. After making this explicit, we probe
deeper into the implications of Maenhout’s transformation and show
that all existing applications relying on Maenhout’s transformation
can be expressed in terms of the recursive multiple priors frame-
work for intertemporal Gilboa-Schmeidler axiomatized in Epstein
and Schneider (2002b). We obtain analytical solutions with simi-
lar intuitions, but different comparative statics. In the process of
establishing this point, we show a connection to the robust con-
trol framework. Lastly, we present some comments about whether
Gilboa-Schmeidler is a convincing non-expected utility foundation
for portfolio choice.
Gilboa and Schmeidler’s theory provides a tractable way of mod-

eling decision makers who display an aversion to uncertainty or am-

1See, for example, the class of recursive, but not necessarily expected utility
preferences in Epstein and Zin (1989).
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biguity and may desire a decision rule that is robust to model mis-
specification. There are many approaches to intertemporal prefer-
ences which are consistent with Gilboa-Schmeidler. Three different
approaches have been proposed by (1) Larry Epstein and a set of
co-authors, (2) Lars P. Hansen, Thomas J. Sargent, and a set of
co-authors and (3) Gary Chamberlain and Thomas A. Knox.2

The recursive multiple priors model has been introduced and stud-
ied by Epstein and a set of co-authors.3 Another framework, intro-
duced by Hansen and Sargent and a set of co-authors,4 is based
on robust control theory and motivated by Gilboa and Schmeidler.
Their main paper introduces two classes of preferences5 and provides
easy-to-use methods to find optimal robust decision rules using tools
from dynamic programming. Lastly, Chamberlain (2000) presents a
framework and numerical algorithm, and Knox (2002) axiomatizes
and generalizes it. These three frameworks all have similar implica-
tions, but they have subtle and important differences. Early appli-
cations of all three frameworks have studied the canonical problem
of portfolio choice.
Maenhout (2001) adopts and modifies the Hansen-Sargent frame-

work to study Merton’s (1969) optimal portfolio choice problem.
In the next section, we briefly review the Hansen, Sargent, Tur-

2Knox (2002), unlike the other approaches, does not constitute a joint project.
Other models include Klibanoff (1995), Siniscalchi (2001), and the framework
provided by Wang (2001) combined with Wang (2002) which falls in the Hansen-
Sargent class.

3Epstein and Wang (1994) first introduced a nonaxiomatic version of recursive
multiple priors in discrete-time, Chen and Epstein (2002) present a continuous-
time version of multi-prior utility, Epstein and Schneider (2002b) present an
axiomatization of the recursive priors model, and Epstein and Schneider (2002a)
present an application with learning and multiple priors. We will hereafter refer
to the model as recursive multiple priors.

4See Hansen and Sargent (2001b), Hansen and Sargent (2001c), Hansen and
Sargent (2001d), Anderson, Hansen, and Sargent (2002), Hansen, Sargent, Tur-
muhambetova, and Williams (2002), and the manuscript Hansen and Sargent
(2001a). We will hereafter refer to this as the robust control model and focus
only on the multiplier preferences presented in Hansen, Sargent, Turmuhambe-
tova, and Williams (2002).

5An axiomatization of one of these preferences - the “multiplier” preferences
can be constructed by combining Wang (2001) and Wang (2002).
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muhambetova, and Williams (2002) (hereafter, known as HSTW)6

robust-control formulation of Gilboa and Schmeidler (1989). Section
3 discusses Maenhout’s (2001) adaptation of Merton’s (1969) port-
folio choice problem for a robust investor and both Uppal and Wang
(2003) and Liu, Pan, and Wang (2002) who extend this foundation.
We aim to clarify why the transformation breaks a link to the foun-
dation of Gilboa and Schmeidler. Section 4 describes the alternative
recursive multiple priors model and obtains closed-form rules for the
portfolio choice problem. In section 5, we show how to obtain analyt-
ical solutions for existing applications employing Maenhout’s (2001)
transformation using recursive multiple priors. In section 6, we offer
some general remarks about the direction of this literature. The last
section concludes.

2. OVERVIEW OF ROBUST CONTROL

Motivated by Knight (1921) and Ellsberg (1961), Gilboa and Schmei-
dler (1989) present axioms of choice and a representation theorem
for an individual with preferences over a set of subjective priors. The
theory is known as max-min expected utility because the agent evalu-
ates lotteries by calculating the expected utility for each distribution
Q ∈ Q and makes a comparision according to the minimum value of
this index. Gilboa and Schmeidler’s axiomatization is presented for
lotteries defined in the Anscombe and Aumann (1963) domain, but
has been recently adapted to Savage acts by Casadesus-Masanell,
Klibanoff, and Ozdenoren (2000).
Define the states of the world by Ω, with algebra of subsets Σ

and denote the set of outcomes or prizes by X where Y = ∆(X),
the set of finite-support probability distributions on X. The set
of lottery-acts L is defined as the set of Σ-measurable finite step
functions from Ω to Y. We are interested in comparing lottery-acts
of the form f ∈ L where f : Ω → Y, over which individuals have
a given preference relation �. Gilboa-Schmeidler’s representation
result relies on axioms which are typical in decision theory with the

6While there are some differences across the Hansen-Sargent work, we focus on
Hansen, Sargent, Turmuhambetova, and Williams (2002) because it places the
most emphasis on a decision-theoretic approach motivated by Gilboa-Schmeidler.
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exception of a weakened independence axiom.7 Their result states
that for some closed and convex set of distributions Q, there exists
an affine function u : Y → R such that for all f, g ∈ L,

f � g ⇔ inf
Q∈Q

∫
Ω
u(f(ω))dQ(w) � inf

Q∈Q

∫
Ω
u(g(ω))dQ(w). (1)

The challenge is taking this static theory and suitably adapting it
to intertemporal lotteries and placing a reasonable restriction on the
set Q.
In HSTW, an intertemporal version of the Gilboa-Schmeidler deci-

sion theory is operationalized through the techniques of robust con-
trol theory. HSTW posit that Gilboa and Schmeidler’s decision the-
ory implies preferences over uncertainty of the form:

inf
Q∈Q

EQ

[∫ ∞

0
e−δtU(ct, xt)dt

]
, (2)

where U(·) is the utility function, ct is consumption, xt is the state
variable, and δ is the subjective discount factor. We can re-write
the utility process in terms of ct alone once we have specified the
dynamics of xt. This will constitute an objective which is an infinite-
horizon time-additive specification of Gilboa-Schmeidler. Specifying
the dynamics of xt goes hand-in-hand with delineating the set of
distributions Q. In robust control theory, the set Q is by delineating
through perturbations to the underlying objective reference model.
The benchmark problem examined by HSTW specifies a continuous-

time diffusion for the state evolution governed by {Zt : t ≥ 0}, a
d-dimensional Brownian motion on an underlying probability space
(Ω,F , P ). The control problem of the decision maker is:

sup
c∈C

E

[∫ ∞

0
e−δtU(ct, xt)dt

]
(3)

subject to state evolution

dxt = µ(ct, xt)dt+ σ(ct, xt)dZt, (4)

with given initial condition. HSTW specify the set Q as the set of ab-
solutely continuous models with respect to the reference distribution.

7See Gilboa and Schmeidler (1989) for specific details.
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This assumption is made for two reasons: (1) to ensure that pertur-
bations are difficult to detect with finite amounts of data and (2)
to employ information-based measures of distance, such as entropy.
Absolute continuity requires that measures agree on zero-probability
events, and in the context of a continuous-time diffusion, Girsanov’s
Theorem implies that absolute continuity reduces to altering the
drift of the underlying model. In other words, the perturbations
specify that outside a set of Q-measure zero, the distribution Q has
the same form as (4) with the Brownian increment dZt replaced by
gtdt+ dẐt, where gt is a progressively measurable stochastic process
with the same dimension as Zt and dẐt is a Brownian increment un-
der Q. The set of alternative measures Q on (Ω,F) refers to different
specifications of the stochastic process {gt : t ≥ 0}. For a particular
Q ∈ Q, the distorted system can be expressed as:

dxt = µ(ct, xt)dt+ σ(ct, xt)(gtdt + dẐt).

The set of admissable distributions is governed by a constraint on
the relative entropy or the Kullback-Leibler information divergence
between a candidate distribution Q ∈ Q and the reference distribu-
tion P . Informally, this measure is similar to a log likelihood ratio,
though it is not a true metric because it is not symmetric and does
not satisfy the triangle inequality. There is no firm foundation for
the choice of the entropy discrepancy; other alternatives for measur-
ing discrepancy exist, but will likely lead to the same implications.
In the context of our continuous-time diffusion model, HSTW have
defined relative entropy as:

R(Q ‖ P ) ≡ δ

∫ ∞

0
e−δtEQ[log qt]dt,

where qt = E[q|Ft] and dQ
dP = q is the Radon-Nikodym derivative.

We emphasize that the relative entropy is calculated with respect to
reference distribution P . HSTW show that the relative entropy of
measure Q with respect to measure P is:

R(Q ‖ P ) =
∫ ∞

0
e−δtEQ

[
g2
t

2

]
dt. (5)
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Given the class of distributions in Q and a measure of their dis-
tance to the true model, HSTW present two classes of preferences
which are implicitly defined through control problems. The first
class, known as the constraint preferences, is specified through the
control problem:

J∗(η) = sup
c∈C

inf
Q∈Q(η)

EQ

[∫ ∞

0
e−δtU(ct, xt)dt

]
(6)

subject to

dxt = µ(ct, xt)dt + σ(ct, xt)(gtdt+ dẐt) (7)

and where
Q(η) = {Q ∈ Q : R(Q ‖ P ) ≤ η}. (8)

The constraint problem appears to be a natural way to study an
intertemporal version of Gilboa-Schmeidler. HSTW also introduce
a second class of control problems which define the multiplier pref-
erences. HSTW are interested in this second class of preferences
because they have a natural recursive structure where dynamic pro-
gramming tools can be employed. Furthermore, HSTW are able to
weakly relate the multiplier preferences to the constraint preferences
and, hence, weakly relate the multiplier preferences to the under-
lying theory of choice in Gilboa-Schmeidler. The following control
problem implicitly defines the multiplier preferences:

J̃(θ) = sup
c∈C

inf
Q∈Q

EQ

[∫ ∞

0
e−δtU(ct, xt)dt

]
+ θR(Q ‖ P ) (9)

subject to equation (7). Seeing how the preferences are recursive will
be useful for our future discussion. A recursive version in discrete
time is:

Vt = U(ct) + β inf
qt

{
θRt(Q ‖ P ) + E

qt
t [Vt+1]

}
,

where Vt is the value function at date t, Rt(Q ‖ P ) is the instan-
taneous relative entropy, defined as EQ[log(qt)] and β is the corre-
sponding subjective discount factor. Wang (2001) has axiomatized
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a class of recursive preferences based on certainty equivalents which
look like:

Vt = U(ct) + βCE(Vt+1),

where CE is the certainty equivalent. One valid certainty equiva-
lent is “multi-prior entropy expected utility preferences” presented
in Wang (2002). If these static preferences are substituted as the
CE, then we obtain the multiplier preferences. Therefore, we can
construct an axiomatized version of the multiplier preferences.
In both preference relations, the constants η and θ measure how

severely the decision maker penalizes the entropy between the dis-
torted and approximating model and therefore regulates the set of
alternative models over which the decision maker wants a robust rule.
In HSTW, both η and θ are scalars. The two preference relations
are also weakly related: the robustness parameter θ can be thought
of as a Lagrange multiplier on the entropy constraint R(Q ‖ P ) ≤ η.
However, there is no global connection between the two preferences:
HSTW argue that given an η, there exists no θ that makes the two
preference orderings agree. The Lagrange multiplier theorem allows
for a weak relation between the local preferences at the optimum.
This relation can be summarized by the following claim established
in HSTW: suppose that η = η∗, c∗, and Q∗ solve the constraint con-
trol problem, then there exists a θ∗ such that the multiplier and
constraint robust control problems have the same solution. This lo-
cal result says nothing about preferences orderings off the optimal
path.
HSTW give two main reasons for why we should be interested in

the multiplier preferences. The first is based on the weak relation
that it has to the constraint problem through the Lagrange mul-
tiplier theorem. Since the constraint problem appears like Gilboa-
Schmeidler, we can utilize the recursive structure of the multiplier
preferences to find the optima, and cite the Lagrange multiplier the-
orem to claim that the optima from the constraint problem would
be the same. Therefore the multiplier preferences, through the con-
straint preferences, are linked to Gilboa-Schmeidler. HSTW give
another reason for why the multiplier preferences are interesting:
they have been axiomatized by Wang (2002). Wang has also showed
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that his multi-prior entropy expected utility preferences are consis-
tent with Ellsberg, so if this forms the certainty equivalent, we are
analyzing a theory of choice that is consistent with Ellsberg behavior.
The dynamic programming tools given by HSTW to analyze the

control problem are a special case of the two-player stochastic differ-
ential game analyzed by Fleming and Souganidis (1989). Although
the problem is simply a one-person decision problem, it may be fruit-
ful to analyze it as a two-player game. One player of the game is the
maximizing agent who chooses an optimal control, while the other
player is a minimizing agent choosing the worst model. Thus, HSTW
give the following algorithm for computing the optimal policies in the
multiplier problem:

0 = max
c∈C

min
g

{
U(c, x) − δV +

θ

2
g2 + [µ(c, x) + σg] · Vx (10)

+
1
2
trace[σ(c, x)′Vxxσ(c, x)]

}
0 = min

g
max
c∈C

{
U(c, x) − δV +

θ

2
g2 + [µ(c, x) + σg] · Vx (11)

+
1
2
trace[σ(c, x)′Vxxσ(c, x)]

}
.

where HSTW assume the regularity condition needed to reverse the
order of operations. At this level of generality, we can solve this
program for the worst-case drift distortion to the underlying state.
Doing this yields:

g∗t = −1
θ
σ(c, x)′Vx,

and therefore the distorted state evolves as:

dxt =
[
µ(ct, xt)− 1

θ
σ(ct, xt)σ(ct, xt)′Vx

]
dt + σ(ct, xt)dẐt.

When the parameter θ approaches +∞, we revert to the ordinary
problem because it is too costly for the agent who is minimizing to
consider a nonzero perturbation. For small values of θ, there is very
little cost to considering a larger set of perturbations. The worst-
case distribution also depends on the value function because it is the
worst-case calculated at each instant.
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We wish to make a few more points about the multiplier prefer-
ences. The first is that the multiplier preferences are not homothetic.
Homotheticity is a very useful property often required for analytical
solutions to portfolio choice problems. Recall that V is homothetic
if for all λ > 0, V (c) ≥ V (c′)⇔ V (λc) ≥ V (λc′) and this condition is
clearly not satisfied by the multiplier preferences. Maenhout’s trans-
formation is motivated by a desire for homotheticity, so this point is
important for the discussion to follow.
Another point has to do with the interpretation of the entropy

constraint in HSTW. HSTW are interested in a lifetime entropy con-
straint, so that the total amount of entropy or discrepancy between
the reference model and the worst-case model is less than some num-
ber. In the dynamic programming formulation above, the worst-case
is calculated at each instant of time, and is a function of the un-
derlying state and value function. Therefore, the HSTW model is
considering a different set of perturbations each period and assum-
ing the worst, with the constraint that the cumulative discrepancy
is less than some tolerance level.
Since HSTW is largely expressed in terms of control problems, we

may gain some intuition for seeing what this means for their inter-
pretation of Gilboa-Schmeidler by thinking of a canonical control
problem: a pilot flying a plane. Many applications in the robust
control literature are specified as time-zero problems, but thinking
of the time t problem of the pilot may be useful. Assume that the
pilot’s control variable {ct} is the position of his steering wheel and
the state of the world {xt} represents the weather and altitude con-
ditions. Let the pilot’s goal be to minimize some objective function
such as the amount of fuel he uses during the flight.8 At each in-
stant of time, the pilot does not know what the weather and altitude
is outside the cockpit; instead, his sensory equipment is imprecise
and only returns a range of values for measuring the state. Suppose
that at time t, the plane’s equipment registers a reading that it will
rain with probability between 50 − 70% and the altitude outside is
between 10, 000 and 12, 500 feet. Now, assume that the plane re-

8With the additively separable utility specification in HSTW, the agent is
interested in minimizing some additively separable function of the fuel used up
each instant along the flight.
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quires less fuel when there is a lower chance of rain outside and the
altitude is higher. Since the pilot’s instantaneous objective is to min-
imize fuel but he is worried that his model is incorrect, the plane’s
sensor will tell the pilot that the actual environment outside has the
probability of rain at 70% and the altitude at 10, 000 feet. At this
point, the pilot must make an optimal decision as to where he should
move the steering wheel in this worst-case environment. Since the
pilot has a lifetime entropy constraint, the next step is to determine
how much entropy was just used up at time t. To do so, the plane’s
entropy monitor will take the worst-case given by the entropy sensor
and determine the relative entropy between it and a reference model.
The entropy monitor then gives the pilot a reading of the amount
of continuation entropy he has left to use as he explores the future
misspecifications of his weather and altitude monitors. As the pilot
travels throughout time, he must keep track of the amount of con-
tinuation entropy he has left to use so that the cumulative entropy
used up is less than his lifetime constraint.
The point of this exceedingly heuristic exercise is to emphasize

some important assumptions. The first is that when the set of dis-
tributions is specified by a measure of discrepancy such as the rela-
tive entropy, it is relative to the reference model. Therefore, while
Gilboa-Schmeidler provide a theory of choice for when the decision
maker does not know the exact model, delineating the class of distri-
butions with respect to the reference model requires that the decision
maker knows the reference model, but still choses to optimize over
the worst-case in a set Q. Without knowing the reference model, the
pilot above would not be able to calculate the relative entropy. But,
if the decision maker knows that the reference model is P , why does
he act as if the model is some worst-case Q? The second important
point is that with this lifetime entropy constraint, the worst-case is
calculated during each instant of time and can depend on the utility
process and various measures of how the utility process changes with
the underlying state. In this way, the constraint is like the instan-
taneous constraint used in the recursive multiple priors model. The
third point is that with a lifetime constraint on entropy, the agent
must follow the amount of continuation entropy he has left to use. In
a sense, he is watching a hidden state variable to ensure that he has
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used up all of his entropy budget as time progresses. Finally, this
framework does not allow the agent to learn about how imprecise
the measurement equipment is as time progresses. For instance, it
might be natural to suppose that the pilot starts to understand how
his devices are imprecise as time progresses and as more observations
from these devices become part of his information set.9

3. PORTFOLIO CHOICE

The framework of HSTW naturally lends itself to examining Mer-
ton’s (1969) optimal portfolio choice problem. Maenhout (2001) first
used the related framework of Anderson, Hansen, and Sargent (2002)
to study the allocation decision between a single risky and riskless
asset. We begin by reformulating his discussion in terms of HSTW.10

3.1. Maenhout (2001)

An agent seeks to maximize his lifetime utility by optimally se-
lecting the share of his wealth to hold in either a risky asset (αt) or
riskless bond (1−αt). The agent has CRRA preferences of the form:∫ T

0
e−δt

C1−γ
t

1− γ
dt, (12)

where γ > 1 is the coefficient of risk aversion and δ is the discount
factor.11 Fix a probability space (Ω,F , P ) with filtration F and let
{Zt : t ≥ 0} be a one-dimensional adapted Brownian motion. The
data generating processes for the riskless asset and the risky asset,
respectively, are:

dBt

Bt
= rdt, (13)

dPt
Pt

= µdt+ σdZt. (14)

9Many other authors have emphasized this drawback of robust control.
10The related Anderson, Hansen, and Sargent (2002) framework focuses on mis-

specification and statistical detection rather than decision theory, while HSTW
aims to provide a link to Gilboa and Schmeidler. Adopting this framework is
essential to our exercise.

11All of our results hold trivially as γ → 1. With the appropriate regularity
condition, likewise as T → ∞.



ROBUST PORTFOLIO CHOICE 13

The agent’s wealth evolves as:

dWt = [Wt(r + αt(µ− r))− Ct]dt + αtσWtdZt. (15)

The two control variables of the agent are αt and Ct and they sat-
isfy the usual conditions. Merton (1969) showed that the optimal
portfolio allocation is α∗ = 1

γ
µ−r
σ2 , a time and wealth-independent

rule.
Adopting the perurbations in HSTW, under measure Q, absolute-

continuity implies that a perturbed state equation can be expressed
with an added drift term gt. Such a specification for the set Q is
particularly palatable because Merton (1980) emphasized that an
econometrician with access to high-frequency data can estimate a
constant variance arbitrarily accurately, so drift distortions will be
hard to detect compared with volatility distortions provided that the
volatility is constant. Therefore, the perturbed risky asset process
is:

dPt
Pt

= µdt+ σ(gtdt+ dẐt) (16)

and, as a result, the wealth evolves according to:

dWt = [Wt(r + αt(µ− r))− Ct]dt +Wtαtσ(gtdt+ dẐt). (17)

Employing the HSTW algorithm to find the optimal policy, we have:

0 = sup
αt,Ct

inf
gt

{C1−γ
t

1− γ
+ [(Wt(r + αt(µ− r))− Ct) + αtσWtgt] · Vw

− δV +
1
2
α2
tW

2
t σ

2Vww +
θ

2
g2
t

}
. (18)

Solving for the worst-case gt, we obtain:

g∗t = −1
θ
α∗
tσW

∗
t V

∗
w . (19)

Note this is a transparent adaptation of finding the worst-case pro-
gram in the abstract presented in the last section. For very large θ,
the worst-case model reduces to the benchmark model since nature
is significantly penalized for perturbations. The worst-case g∗t is a
function of Wt and the derivative of the value function Vw.



14 PARAG A. PATHAK

When we substitute g∗t into (18) and derive the optimality condi-
tions, we find:

∂αt : α∗
t =

−Vw

[Vww − 1
θV

2
w ]W

· µ− r

σ2
(20)

∂Ct : C∗
t = (Vw)

− 1
γ . (21)

The only difference from Merton’s original optimality condition is
the term involving 1

θV
2
w . For large θ, α

∗ approaches Merton’s rule.
When we substitute α∗

t and C∗
t to our original problem, we obtain

a nonlinear second-order partial differential equation in the value
function. This PDE has no well-known solution in general, a fact
that is not surprising given that the multiplier preferences are not
homothetic.12 When γ = 1, there is a closed form solution, but it is
well-known that log utility is a very special case in portfolio choice
problems.
Maenhout (2001) presents a heuristic argument that the portfolio

rule should be homothetic. He specifies that θ be time-dependent
and proportional to the value function:

θt ≡ (1− γ)Vt
λ

, (22)

where λ is a scalar constant and (1 − γ) is a transformation of this
scalar for cosmetic purposes. Recall that in HSTW, θ was a scalar
which heuristically represented the Lagrangian constraint on the set
of alternate models. Under Maenhout’s transformation, θ is rede-
fined to be a time-dependent function of the value function.
The central criticism of this paper lies with this transformation.

Homotheticity is a crucial element of many economic situations and
has played a particularly important role in obtaining analytical solu-
tions in theory of portfolio choice. However, homotheticity is a prop-
erty of the underlying preferences and therefore should be achieved
by modifying this primitive rather than modifying optimality condi-
tions. By changing the interpretation of θ from a scalar to a state-
dependent function, we are clearly no longer in the world of Gilboa

12If one tries to use the fact that a constant consumption-wealth ratio in the
limit requires that the value function take the form V (W ) = κW 1−γ for some
constant κ, then there is no closed-form solution.
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and Schmeidler. HSTW suggested that θ should be interpreted as a
multiplier on the constraint R(Q ‖ P ) ≤ τ . The theorem relating
the multiplier and constraint preferences at the optima were based
on a constant multiplier. In fact, aside from the axiomatization of
Wang, the main reason we were interested in the multiplier prefer-
ences was because of its connection to the constraint preferences, and
by extension Gilboa-Schmeidler. With a new θt, we cannot simply
cite these results in order to motivate the preferences.
When Maenhout transforms θt, the worst case perturbation at the

optimum is:

g∗t = − λ

V ∗
t (1− γ)

α∗
tσW

∗
t V

∗
w = − λ

γ + λ

µ− r

σ

so Maenhout’s transformation simply yields a lower drift in the asset
price. The worst-case local mean is simply µ+ σg∗t . HSTW insisted
on a lifetime entropy constraint so that the set of models changes
across time according to endogenous state variables. The point of
a lifetime entropy constraint was to ensure that the decision maker
was not considering the same set of perturbations each period. But,
since the worst case is now independent of time, we have essentially
defeated the purpose of a lifetime constraint. With a lower drift,
Maenhout’s portfolio rule is simply Merton’s formula with a lower
drift:

α∗
t =

1
γ

[µ+ σg∗t ]− r

σ2
=

1
γ + λ

· µ− r

σ2
.

Maenhout, however, interprets robustness as effectively increasing
the risk aversion. If we reduced the mean by some constant amount,
there would exist a value of λ such that the portfolio rules are iden-
tical, so thinking of robustness as an increase in the risk aversion is
sensitive to the fact that we are only considering one risky asset.
What happens to the statement of the multiplier problem if we

simply substitute the new θt to our robust control problem? The
problem is not well-defined:

J̃(λ) = sup
c∈C

inf
Q

EQ

[∫ ∞

0
e−δtU(ct, xt)dt

]
+
(1− γ)

λ
Vt·R(Q ‖ P ) (23)

yet Maenhout still obtains a solution, so the preferences must be de-
fined. We can obtain a better understanding of how they are defined,
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but not necessarily motivated by Gilboa-Schmeidler, by referring to
two other papers utilizing Maenhout’s transformation.

3.2. Two other papers

Uppal and Wang (2003) generalize Maenhout (2001) to study port-
folio choice over N risky assets and allow for varying degrees of
robustness for different components of the multi-dimensional asset
price process. The simplest case of preferences are:

Vt = u(ct) + β inf
ξ

[
ψ(Vt)φL(ξ) + E

ξ
t [Vt+1]

]
,

where Vt is the value function, L is the relative entropy index, φ
is the weight placed on this index, and ξ is the perturbed density
corresponding to q in our discussion above. Uppal and Wang (2003)
state that (on page 8): “ψ(Vt) is a normalization factor that is intro-
duced to convert the penalty to units of utility so that it is consistent
with the units of E

ξ[Vt+1]; the particular functional form of ψ(·) is
often chosen for analytical convenience.”13 Later in the paper, the
normalization factor is set as ψ(Vt) = 1−γ

γ Vt following Maenhout
(2001). The reader is referred to Uppal and Wang (2003) for more
details.
In another paper, Liu, Pan, and Wang (2002) study portfolio de-

cisions when an investor is concerned with rare events. They extend
Maenhout’s model by adding a Poisson jump term to the endowment
process. Perturbations then take place over the jump term. Pref-
erences are specified recursively, yet still rely on Maenhout’s (2001)
homothetic transformation to obtain closed-form solutions. In par-
ticular, they express preferences recursively and in discrete-time as:

Ut =
c1−γt

1− γ
∆+e−ρ∆ inf

P (ξ)∈P

{
1
φ
ψ(Ut)E

ξ
t

[
h

(
ln

ξt+∆

ξt

)]
+ E

ξ
t (Ut+∆)

}

where ξ is the perturbed density and h(·) is the analog of relative
entropy for their environment. They state that (page 7): “follow-
ing Maenhout (2001), we introduce a normalization factor ψ(U) for
analytical tractability. To keep the penalty term positive, we let
ψ(U) = (1− γ)U for γ �= 1 and ψ(U) = 1 for the log-utility case.”14

13Emphasis added.
14Emphasis added.
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We apologize for the brief summaries of Uppal and Wang (2003)
and Liu, Pan, and Wang (2002), and encourage the reader to refer
to both papers. However, since both papers make use of Maenhout’s
(2001) homothetic transformation which, as we argued in the last
section, breaks the link to Gilboa and Schmeidler, these preference
specifications are also no longer tied to Gilboa and Schmeidler. We
are hesistant to use the terminology adopted by both of these au-
thors that Maenhout’s transformation is a normalization, because
this implies that it is a simple rescaling. Instead, the homothetic
transformation dramatically alters the original decision problem. As
with Maenhout (2001), it is difficult to specify exactly how prob-
lem that both papers solve can be expressed in terms of Gilboa and
Schmeidler (1989).

3.3. What problem does Maenhout solve?

Both Uppal andWang (2003) and Liu, Pan, and Wang (2002) spec-
ify preferences recursively and show how preferences may exist even
after modified with Maenhout’s transformation. Anderson, Hansen,
and Sargent (2002), HSTW, Maenhout (2001) and Skiadas (2002) all
emphasize the connection between robust control and stochastic dif-
ferential utility. Anderson, Hansen, and Sargent (2002) showed that
the Bellman equation that appears in robust control problem after
calculating the worst-case distribution is the same as the Bellman
equation with stochastic differential utility. The aggregator (using
the terminology of Duffie and Epstein (1992)) is f(c, V ) = U(c)−δV

while the variance multiplier corresponds to θ, a constant in the
Anderson, Hansen, and Sargent (2002) framework. In Maenhout
(2001), θ ∝ Vt, so the variance multiplier is proportional to the
value function, a common formulation in stochastic differential util-
ity. Therefore, Maenhout (2001) is able to show that the portfolio
rule he derives is observationally equivalent to a Duffie-Epstein in-
vestor with elasticity of intertemporal substitution 1

γ and coefficient
of risk aversion γ + θ. Skiadas (2002) shows that the equivalence
is not only in terms of the Bellman equation, but it is more direct.
The multiplier preference relation can be expressed as the solution
to the following:
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dVt = −
(
Ut − δVt − 1

2θ
σ′
tσt

)
dt+ σ′

tdBt.

When θ is modified as in Maenhout, this preference relation becomes:

dVt = −
(
Ut − δVt − 1

2κVt
σ′
tσt

)
dt+ σ′

tdBt

for some constant κ.
Skiadas (2002) has called such a rescaling a natural generalization.

We wish to express a different view in this paper. The rescaling
appears natural only when expressed in terms of stochastic differen-
tial utility. In fact, Schroder and Skiadas (1999) have already ana-
lyzed stochastic differential utility of this form.15 Our view is that
Maenhout’s homothetic modification is quite unnatural. One of the
aims of the robust control was to construct an intertemporal version
of Gilboa-Schmeidler. Showing that the multiplier preferences are
isomorphic to stochastic differential utility helps us understand the
underlying preferences, but does not bring us any closer to Gilboa-
Schmeidler. With Maenhout’s transformation, we are four steps from
the motivation of Gilboa-Schmeidler. From Gilboa-Schmeidler, we
have constructed the constraint preferences, which implied interest
in the multiplier preferences, and now preference relations building
on Maenhout’s transformation have modified the multiplier prefer-
ences. Preference relations based on the multiplier control problem
were naturally linked to the constraint problem through the obser-
vational equivalence result from the Lagrange Multiplier theorem.
But, when θ is no longer a constant and is instead a function of
the value function, the modified multiplier preferences are no longer
linked to the constraint preferences. As a result, they are no longer
linked to Gilboa-Schmeidler.
Without any motivating theory of choice or any relation to other

preferences, a basic question is why should we be interested in pref-
erences modified by Maenhout’s transformation? When expressed as
stochastic differential utility the preference relation certainly exists,
but what does it have to do the study of robustness or uncertainty

15Skiadas (2002) first pointed out the result in Theorem A2 of Schroder and
Skiadas (1999).
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aversion? If one insists on using Maenhout’s transformation, then
the onus is to show why Maenhout’s transformation is preferred to
the multiplier preferences and how the preferences defined by Maen-
hout’s transformation have anything to do with studying robustness
or uncertainty aversion. Classes of recursive utility are usually mo-
tivated from axiomatized theories of choice such as expected utility,
Kreps-Porteus utility, or Chew-Dekel utility. What is the motivating
theory of choice for the preferences implicitly defined by Maenhout’s
transformation? Indeed, to be persuasive, when using Maenhout’s
transformation, one would need to argue that all existing applica-
tions of robust control should be carried out with Maenhout’s trans-
formation because it is preferred to the multiplier preferences.
One might wonder if the multiplier should, in fact, be time-varying

in some fashion. A new set of preferences defined by a time-varying
multiplier may potentially be interesting. However, such a transfor-
mation would need to be motivated. With the constant multiplier
and constraint binding each period, the goal of HSTW was to allow
a different set of perturbations each period in a hands-off manner.
Maenhout’s time-varying multiplier results in a preference relation
where the set of perturbations is the same across time. If our goal
is to analyze perturbations of this form, then we can adopt an al-
ternative axiomatized framework which is clearly related to Gilboa-
Schmeidler. We describe this alternative in the next section.

4. ALTERNATIVE

Maenhout’s (2001) aim in modifying the optimality condition was
to obtain a homothetic preference relation. The consequence of his
transformation was that the asset price had a lower mean and the set
of perturbations the decision maker considered was the same across
time. These implications are very similar to the recursive multiple
priors framework.16

4.1. Recursive multiple-priors

In a special case of the recursive multiple-priors model known as
κ-ignorance, we can obtain all of the implications of Maenhout’s

16See footnote 3 for the relevant citations.



20 PARAG A. PATHAK

transformation in a portfolio choice context. One of the central dif-
ferences between the robust control framework and the recursive
multiple priors framework is that in recursive multiple priors, the
lifetime discrepancy between the reference model and perturbations
is not constrained. Instead, recursive multiple priors requires that
the set of all measures can be constructed via arbitrary selections
from primitive sets of one-step ahead densities. Therefore, recur-
sive multiple priors imposes an instantaneous constraint on the set
of conditional one-step ahead densities, while robust control has a
lifetime constraint.
There are a number of benefits to thinking of the portfolio choice

problem in terms of the recursive multiple priors framework. The
first is that it has been axiomatized by Epstein and Schneider (2002b)
so the relation to Gilboa-Schmeidler’s theory of choice is clear. The
second is that the set of priors is clearly delineated. Furthermore,
an instantaneous constraint does not require the decision maker to
follow the amount of continuation entropy he has left to use up as
time progresses. In addition, the framework allows for learning and
is not dogmatically pessimistic. Lastly, as a practical matter, the
multiplier preferences in HSTW are not homothetic and therefore we
should not expect analytical solutions. In contrast, with recursive
multiple priors, we can obtain analytical solutions without breaking
the connection to Gilboa-Schmeidler.
We can conceptualize the κ-ignorance model of recursive multiple

in terms of the robust control formulation in HSTW. Recall the
constraint formulation introduced in section 2, where the agent’s
decision problem is:

inf
Q∈Q(η)

EQ

[∫ ∞

0
e−δtU(ct, xt)dt

]
(24)

such that

dxt = µ(ct, xt)dt + σ(ct, xt)(gtdt+ dẐt) (25)

and

Q(η) = {Q ∈ Q : R(Q ‖ P ) ≤ η}. (26)
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Consider this model with a different specification of Q(η). Relative
entropy of measure Q with respect to measure P was defined as:

R(Q ‖ P ) ≡ δ

∫ ∞

0
e−δtEQ[log qt]dt =

∫ ∞

0
e−δtEQ

[
1
2
g2
t

]
dt,

where qt is the Radon-Nikodym derivative conditional on Ft. We
define the instantaneous relative entropy at time t as Rt(Q ‖ P ) =
EQ[log qt], so that:

R(Q ‖ P ) =
∫ ∞

0
e−δtRt(Q ‖ P )dt. (27)

Here, Rt(Q ‖ P ) = EQ

[
1
2g

2
t

]
. The instantaneous relative entropy is

simply the relative entropy of the stochastic process at a particular
instant of time.17

In the κ-ignorance model, the constraint on the entropy simply
restricts the set of models the decision maker explores at each instant
of time. Using the language of robust control, the modified constraint
problem is:

inf
Q∈Q(τ)

EQ

[∫ ∞

0
e−δtU(ct, xt)dt

]
(28)

such that
dxt = µ(ct, xt)dt + σ(ct, xt)(gtdt+ dẐt) (29)

and
Q(τ) = {Q ∈ Q : Rt(Q ‖ P ) ≤ τ ∀t}. (30)

Since Rt(Q ‖ P ) = EQ[12g
2
t ], it is trivial to see that the worst-case

perturbation is:
g∗t = −

√
2τ . (31)

17Williams has directed us to two other papers employing the instantaneous
constraint in the context of robust control: Lei (2001) and Trojani and Vanini
(2002). The aims of our paper and these other papers are quite different, however.
In addition to drawing attention to Maenhout’s transformation, we also aim to
conceptualize recursive multiple priors in terms of robust control. Furthermore,
the other two papers are expressed in terms of Anderson, Hansen, and Sargent
(2002) and therefore no attempt is made to be explicit about the set of priors
or the connection to Gilboa-Schmeidler. Both of these facts are crucial to the
discussion here.
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For each state of the world, the worst case is implied by the con-
straint. Furthermore, the worst case g∗t is independent of time be-
cause the constraint is a constant, although nothing prevents us from
letting the constant vary with time. The worst case is also indepen-
dent of the underlying state variables, which is the property that
Maenhout (2001) was aiming for with his homothetic transformation.
Likewise, the consequence is simply a lower drift on the worst-case
asset price:

dPt
Pt

= µdt+ σ(gtdt + dẐt) = (µ− σ
√
2τ )dt + σdẐt. (32)

With these asset price dynamics, the investor simply behaves as
a Merton investor facing a lower mean return. Chen and Epstein
(2002) first solved the portfolio choice problem for an recursive mul-
tiple prior investor. In the next proposition, we present another
derivation when the problem is conceptualized as robust control:

Proposition 4.1. The solution to Merton’s optimal portfolio choice
problem under the modified constraint formulation given by (28) sub-
ject to (29) and (30) is:

α∗
t =

1
γ
· µ− r

σ2
− 1

γ
·
√
2τ
σ

(33)

C∗
t = κWt (34)

where κ = κ(τ) defined in the appendix.

Proof. See appendix.18

We stress that our contribution in this proposition is to simply
highlight the connection to robust control. The portfolio rule can
be thought of as Merton’s rule with an uncertainty-aversion correc-
tion factor: 1

γ

√
2τ
σ . The stronger constraint formulation implied by

this model does not allow the worst-case perturbation to depend on
underlying state variables. However, Maenhout’s homothetic trans-
formation removes this feature as well. Recall that for the single

18All proofs are in the appendix.
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asset case Maenhout’s portfolio rule was observationally equivalent
to an effective increase in risk aversion, while here the portfolio rule
is observationally equivalent to an effective decrease in the mean of
the risky asset. Clearly, in the one risky asset case, there exists
values of τ and θ which imply the same portfolio rule.

4.2. N Risky Assets

In this section, we generalize the robust portfolio problem to n as-
sets. Uppal and Wang (2003) first examined this type of generaliza-
tion for Maenhout’s problem using the homothetic transformation.
We present another method of generalizing the problem by changing
the set of perturbations. The key fact is that the relative entropy of
a product measure is the sum of the relative entropy of each com-
ponent measure. We can get intuition for this fact by recalling that
relative entropy is similar to a log-likelihood ratio. Suppose now that
the decision maker can choose among n risky assets specified as:

dPit
Pit

= µidt+ ΓidZt, i = 1..n. (35)

where Γi is the ith row of an n×n matrix Γ and Z = [Z1, Z2, ..., Zn]′

is a vector of independent Brownian processes. We maintain the
restriction that perturbations are absolutely continuous changes of
measure. In the n-risky asset case, Girsanov’s theorem requires that
we simply shift the drift term so that outside a set of Q-measure
zero, Zit defined by:

Zit = Ẑit +
∫ t

0
gisds, i = 1..n (36)

are Brownian motions under Q. The corresponding stock prices fol-
low:

dPi
Pi

= µidt+ Γi(gtdt+ dẐt), i = 1..n. (37)

where g = [g1, g2, ..., gn]′. The stochastic process {Zt : t ≥ 0} is
defined on a space (Ω,F) with measure P = P1 ⊗ P2 ⊗ ... ⊗ Pn.
Under the perturbed model, a representative probabilty measure is
Q = Q1 ⊗Q2 ⊗ ...⊗Qn ∈ Q.
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Proposition 4.2.1: The relative entropy of the change of measure
from P to Q is:

R(Q ‖ P ) =
n∑
i=1

R(Qi ‖ Pi)

=
n∑
i=1

∫ ∞

0
e−δtEQ

[
1
2
g2
it

]
dt.

The proposition above allows us to place n separate penalty terms
on each of the perturbations as the decision maker guards against n
independent perturbations. This exercise makes the connection to
Chen and Epstein (2002) most transparent. Formulated as a robust
control problem, the decision problem is:

inf
Q∈Q(τ1,...,τn)

E

[∫ ∞

0
e−δtU(ct, xt)dt

]
(38)

subject to

dWt = [Wt(r + αt(µ− r))− Ct]dt + α′Γ(gtdt + dẐt) (39)

and

Q(τ1, ..., τn) = {Q ∈ Q : Rt(Qi ‖ Pi) ≤ τi, i = 1..n,∀t}. (40)

Proposition 4.2.2 The portfolio rule that optimizes the objective
(38) subject to (39) and the constraints is:

α∗
t =

1
γ
(ΓΓ′)−1(µ− rι− ΓΥ), (41)

Ct = κWt, (42)

where Υ = (
√
2τ1,

√
2τ2, ...,

√
2τn)′ and κ ≡ κ(Υ) defined in the ap-

pendix.

Again, Chen and Epstein (2002) first presented the solution for N
risky assets and our contribution is simply a robust control deriva-
tion. Here, we see that the decision maker acts as if each asset’s mean
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is lower than the approximating model. With the multi-asset gen-
eralization, however, the amount that the mean is reduced depends
on the matrix Γ and can differ between assets. This weighting dif-
ferentiates our result from Maenhout (2001) where robustness leads
to a higher level of risk aversion.
If Γij = 0 for all i �= j, then the portfolio rule is:

αi =
1
γ
· µi − r − Γii

√
2τi

Γ2
ii

for i = 1...n. (43)

In the case where the assets are independently distributed, the port-
folio rule corresponds to the portfolio rule for each individual asset
with a lower mean. While Uppal and Wang (2003) consider different
subsets of the risky assets and have penalty terms for each subset,
our framework also accomodates this approach.
Uppal and Wang, with Maenhout’s adjustment, use the multi-

asset generalization to argue that uncertainty aversion may explain
the home-bias puzzle and other instances of limited diversification.
Their argument harkens back to a (in)famous Keynesian insight:

I am in favor of having as large a unit as market conditions will allow...
to suppose that safety-first conditions of having a small gamble in a large
number of different [companies] where I have no information to reach a
good judgement, as compared to a substantial stake in a company where
one’s information is adequate, strikes me as a travesty of investment
policy.19

but has been revisited many times including recent contributions by
French and Poterba (1991) and Camerer (1995). It is straightforward
to see how the formalized model of uncertainty aversion can generate
limited diversification. Consider a two-asset portfolio choice prob-
lem, where one asset is the “home” asset and the other asset is the
foreign asset. The portfolio rule is:[

α1

α2

]
=
1
γ
· 1
σ2

1σ
2
2 − (σ12)2

·
[
σ2

2µ̃1 − σ12µ̃2

σ2
1µ̃2 − σ12µ̃1

]
,

where µ̃i = µi − r −√
2τi. Clearly,

∂αi
∂τi

< 0

19Quoted from Bernstein (1992).
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and for i �= j,

∂αi
∂τj

> 0, if σ12 > 0, and
∂αi
∂τj

< 0, if σ12 < 0.

In words, greater uncertainty aversion with respect to one asset will
reduce the corresponding portfolio allocation to that asset. When
assets are positively correlated, greater uncertainty aversion with
respect to one asset will increase the holdings of the other asset. Ep-
stein (2001) introduces an exchange economy with multi-prior pref-
erences which also rationalizes consumption home bias.
The benefit of this approach is that we are working with a trans-

parent and axiomatized formulation of dynamic Gilboa-Schmeidler.
The intuition for both results is similar as uncertainty aversion leads
an investor to downweight his portfolio holding in the more uncer-
tain asset. Our aim in showcasing this example is to convince the
reader that nothing is lost by using recursive multiple priors over
Maenhout’s modification of the multiplier preferences.

4.3. Stochastic Differential Utility

Skiadas (2002) emphasizes that stochastic differential utility may
lead to a unified perspective on models involving robust control. We
find it instructive to write all three preference relations as forms of
stochastic differential utility. Chen and Epstein (2002) κ-ignorance
is the utility process solving:

dVt = −
(
U(ct)− δVt − κ · |σt|

)
dt+ σt · dZt,

the HSTW multiplier utility process is defined by:

dVt = −
(
U(ct)− δVt − 1

2θ
σ′
tσt

)
dt+ σt · dZt,

while the preferences in Maenhout are defined by:

dVt = −
(
U(ct)− δVt − 1

2κVt
σ′
tσt

)
dt+ σt · dZt.

If we are free to transform the value of the multiplier in the Hansen-
Sargent, we can see that it is trivial to also construct the κ-ignorance
preferences.
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Although all three preference relations appear similar when ex-
pressed as stochastic differential utility, relying solely on stochastic
differential utility to motivate the preferences obfuscates the point of
constructing an intertemporal version of Gilboa and Schmeidler pref-
erences. Indeed, Maenhout’s modified preferences only make sense
after we have calculated the worst-case and expressed it as stochastic
differential utility.20

5. OTHER APPLICATIONS

To continue showing that nothing is lost by using recursive mul-
tiple priors, we follow Maenhout (2001) to examine the effect of
uncertainty aversion when the investor faces stochastic investment
opportunities. We first consider a mean-reverting risk premium as
in Kim and Omberg (1996). Then we examine the investment op-
portunity set with jumps in Liu, Pan, and Wang (2002).

5.1. Mean-reverting risk premium

Kim and Omberg (1996) abstract away from a consumption-savings
decision to study optimal portfolio choice over terminal wealth. An
investor must choose an allocation over a risky asset and a riskfree
asset specified, respectively, as:

dPt
Pt

= µtdt+ σdZ1t,

dBt

Bt
= rdt.

Now, we allow the local mean of the risky asset to vary with time.
The risk premium is defined as:

Xt =
µt − r

σ

which follows a mean-reverting Ornstein-Uhlenbeck process:

dXt = −λ(Xt − X̄)dt + σxdZxt.

20As Uppal andWang (2003) point out the connection to Stochastic Differential
Utility breaks down when there are varying degrees of uncertainty over the state
vector.
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We assume that λ, σx, and X̄ are all positive constants. The Brow-
nian processes are correlated:

E[dZ1tdZxt] = ρdt, ρ ∈ [−1, 1].

The investor allocates a fraction αt of his wealth to the risky asset.
Therefore, his wealth follows:

dWt = [Wt(r + αt(µt − r))]dt + αtσWtdZ1t

or
dWt = [Wt(r + αtσXt)]dt + αtσWtdZ1t.

A formal statement of the problem of a terminal-wealth investor fac-
ing these dynamics is in the appendix. We can establish that:

Proposition 5.1. The optimal portfolio allocation of the investor
is:

α∗
t =

1
γ

[
X̃t

σ
+ (B(t) + C(t)X̃t) · ρσx

σ

]
.

where the decision-maker believes in a distorted price of risk:

X̃t =
µt − r − σ

√
2τ1

σ

which solves

dX̃t = −λ(X̃t − ˜̄X)dt + σxdZxt

with distorted mean

˜̄X = X̄ − σx
λ

(
ρ
√
2τ1 +

√
1− ρ2

√
2τ2
)
.

B(t) and C(t) form a system of differential equations defined in the
appendix.
Notice that the decision maker believes that the price of risk is

lower at each instant of time. The decision maker also believes that
the long run mean of the risk premium is ˜̄X < X̄ . The comparative
statics of the solutions to the differential equation now simply follow
from Kim and Omberg (1996). In particular, when the correlation is
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negative, the multi-prior investor holds greater amounts of the risky
asset, while when the correlation is postive, the investor places less
in the risky asset at long horizons than at short horizons. These are
the same exact comparative statics as in Maenhout (2001).

5.2. Jumps

The innovation in Liu, Pan, and Wang (2002) (hereafter, LPW)
is to add a Poisson jump term to the endowment and hence stock
price process. Uncertainty aversion is only specified over the jump
process and they analyze the investor’s portfolio choice problem and
its equilibrium implications. To avoid belaboring the point, we give
a concise version of the problem in terms of recursive multiple priors
framework to show that Maenhout’s transformation is not needed
if we employ an instantaenous constraint. Suppose that the endow-
ment follows:

dYt = µYtdt+ σYtdZt + (eZt − 1)Yt−dNt (44)

where N is a Poisson-jump process with intensity λ, and Zt is a nor-
mal random variable with mean µJ and variance σ2

J which controls
the jump amplitude. k ≡ E[eZ − 1] is the mean percentage jump
conditional on a jump.
Consider a stock price which is a deterministic claim on the en-

dowment:
Pt = A(t)Yt,

with A(T ) = 0, so that Ito’s Lemma implies:

dPt =
(
µ+

A′(t)
A(t)

)
Ptdt+ σPtdZt + (eZt − 1)Pt−dNt.

We embrace the perturbations examined in LPW, but place an in-
stantaneous constraint on the discrepancy. The alternate measures
Q are such that Q(A) = E[1AqT ] where the Radon-Nikodym deriva-
tive is

dqt =
(
ea+bZt−bµJ− 1

2
b2σ2

J − 1
)
qt−dNt − (ea − 1)λqtdt.

LPW show that this perturbation implies that Poisson intensity
is λq ≡ λea with mean percentage jump kq ≡ (1 + k)ebσ

2
J − 1. We
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saw earlier that the relative entropy was an arbitrary measure of
discrepancy. In fact, all that is necessary is a convex function to
measure discrepancy. To keep things simple, consider a measure of
discrepancy of the form:

D(Q||P ) =
[
(λq − λ)2

(kq − k)2

]
, (45)

so our instantaneous constraint is simply that D1(Q||P ) ≤ τ1 and
D2(Q||P ) ≤ τ2. The investor must choose consumption and an allo-
cation to the risky stock as before. All other relevant details are in
the appendix.

Proposition 5.3 With an instantaneous constraint, the investor’s
optimal rule solves:(
µ− r +

1 +A′(t)
A(t)

)
−γα∗σ2+λea

∗
E
Z(b∗)

[
(1 + (eZ − 1)α∗)−γ(eZ − 1)] = 0.

(46)
where (C∗, a∗, b∗) are defined in the appendix.
Clearly, we can set equilibrium conditions Ct = Yt and αt = 1 and

derive the equilibrium as in LPW. This exercise will generate the
same intuitions as LPW.

6. FURTHER COMMENTS

In this section, we take a step back from both the robust control
and recursive multiple priors frameworks to focus on some larger
economic questions. We believe that it is an interesting exercise to
examine the implications of a non-expected utility theory of choice on
portfolio behavior, but we wonder if Gilboa-Schmeidler uncertainty
aversion is a convincing alternative. Our discussion will focus on
three areas: (1) specifying the set of distributions, (2) using multi-
prior decision theory, and (3) empirical relevance.
The applications presented above make clear that the fundamental

question with Gilboa and Schmeidler’s theory is how to specify the
set of alternative distributions Q. This distinction is one of the
core differences between robust control and recursive multiple priors.
Gilboa and Schmeidler’s representation theorem only requires that
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Q is closed and convex, so we suffer from an embarrassment of the
riches. By tinkering with this set, we can justify a wide range of
behavior. Aware of this potential pitfall, HSTW have emphasized a
lifetime constraint on the discrepancy to allow the set of distributions
to vary endogenously as the state evolves.
Yet, robust control still allows for a free parameter θ to govern the

size of perturbations in the multiplier preferences. We have an anal-
ogous situation in Chen and Epstein’s (2002) special case, where κ is
the free parameter. We saw that moving this parameter around can
yield practically any decision rule in a portfolio choice application.21

Perhaps a boundedly rational model necessitates more parameters,
but if we heed Lucas’s famous warning to “beware of theorists bear-
ing free parameters” we must ask how we should determine what
values of this parameter are reasonable.22 By “free” parameter, we
mean a parameter that is not familiar to us like another parameter of
preference. One consistency check is offered by Good (1952). Good
argued that min-max rules may be appropriate if the implied worst-
case is reasonable. Performing this consistency check will be neces-
sary for every exercise we conduct with these preferences. Perhaps
careful experimental methods will also lead to a better understanding
of this question. Lastly, one other criteria could be the scope of the
model: does it simply explain one fact or does it have more general
predictions? Preferences based on Gilboa-Schmeidler have been used
to study many of the outstanding puzzles in finance including the
equity premium puzzle, limited diversification, limited participation,
volatility, and liquidity. Do the free parameters have the same value
across these applications? Is it possible to calibrate this parameter
without turning the calibration into ex-post rationalization?
In specifying Q, robust control’s absolute-continuity formulation

requires that the set Q be “hard to detect” with finite amounts of
data. The special case of κ-ignorance in recursive multiple priors
implies a similar requirement. With a framework that is based on
hard-to-detect perturbations, it must be hard to detect from some
reference model. One of our motivations was to examine Knight’s

21We should also note that this criticism applies to rational Bayesian models
of subjective beliefs.

22Quoted in Sargent (1993).
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uncertainty, when probabilities are unknown, yet we still require the
decision maker to know the reference model. Recursive multiple
priors does not place as strenuous an assumption on this knowledge
as robust control. In recursive multiple priors, the reference model
is simply a guide in constructing the set of distributions. In robust
control, on the other hand, the decision maker knows the reference
model and trusts it enough to calculate the discrepancy relative to it
at each step. If a decision maker places so much faith in the reference
model, then why is he acting as if his environment is described by the
worst-case model? Even though we do not know the number of balls
in Ellsberg’s ambiguous urn, we must form a reference distribution
and calculate entropy with respect to it. This step, in turn, implies
that we are priviledging the reference distribution over others or
else we would not calculate discrepancy with respect to it. If we
have placed this much faith in the reference distribution, why are we
unwilling to make it our single prior?
When is it advisable to use a multi-prior decision theory? Some

may argue that if it is difficult for the decision maker to specify one
subjective prior, it should be no easier for him to specify a set of
priors. For Ellsberg’s ambiguous urn, however, it may be reasonable
to assume a symmetric prior for the ambiguous urn and, thereby,
consider a set of distributions. Yet, in this case, a symmetric prior
implies indifference and Gilboa-Schmeidler’s axioms do not justify
Ellsberg’s paradox. On the other hand, some may argue that a set of
distributions dominates a single distribution because a set gives more
flexibility. However, by adopting Gilboa and Schmeidler’s theory of
choice, our decision is really between a single prior and the worst of
a set of priors. A decision maker who is uncomfortable specifying
the weights needed to turn a set of priors into a single prior may feel
just as uncomfortable relying on the worst distribution among a set.
Another related question is whether a theory of choice based on

Gilboa and Schmeidler is normative. This question is particularly
relevant for portfolio choice applications where economists usually
take on the role of advisors.23 One may think that uncertainty aver-
sion in Ellsberg’s experiment is normative. Likewise, if an agent is

23See Campbell and Viceira’s (2002) analogy to the Keynesian dentist.
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worried about misspecification, it might be logical for him to act
as if he had a set of models. But if an agent worried about mis-
specification adopts the worst-case model, was it really necessary to
begin with a set of distributions? Can we study misspecification by
simply taking this worst-case and having it serve as our subjective
prior? If we believe that this theory is normative, then one implica-
tion is that under-diversification in portfolios is normative. Would
we recommend that an investor should hold large amounts of com-
pany stock in their 401(k) plan? Moreover, a normative intertem-
poral Gilboa-Schmeidler must accomodate learning given that these
models imply extreme pessimism. In this regard, recursive multiple
priors has made more progress than robust control. Finally, if we
eschew a normative notion and adopt only a positive one, then as
mentioned earlier, we have a theory that both explains everything
and explains nothing.
Sims (2001) has criticized models of robust decision theory in mon-

etary policy settings because he argues that it is not normative for
a decision maker to make himself subject to a dutch book or money
pump since the independence axiom is weakened. What happens in
the long run to these traders with incorrect beliefs? Kogan, Ross,
Wang, and Westefield (2002) have the examined the long run exis-
tence and price impact of traders with wrong beliefs, where a wrong
belief is simply disagreement over the drift of the stock price process
exactly as in the frameworks discussed above. When an agent with
wrong beliefs has a portfolio and intermediate consumption decision,
they have shown that in the long run these traders do not survive:
their relative share of aggregate consumption eventually diminishes.
If our Gilboa-Schmeidler agents eventually vanish and have no im-
pact on prices, are they important to study?
Finally, the question of empirical validation is important when ex-

amining alternative theories of choice. Limited diversification could
be symptomatic of Gilboa-Schmeidler behavior. It could also, how-
ever, be symptomatic of a pessimistic subjective prior. While we
have formalized the familiarity bias, this formalization does not make
it more reasonable as an explanation without a discriminating empir-
ical test. The robust control model allows for a Bayesian interpreta-
tion. This feature of their model is distinct from Gilboa-Schmeidler
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because in Ellsberg’s experiment, no single probability measure jus-
tifies the paradoxical behavior. If a single pessimistic Bayesian prior
can justify behavior, how do we empirically separate it from an agent
acting with a set of priors? In the applications we have discussed
here, uncertainty simply leads to a lower drift in the asset price. If
this is the case, is it possible to separate risk from uncertainty in
market environments?
We welcome attempts to build on non-expected utility models, but

think that there are number of important questions to think about
when using models based on the Gilboa and Schmeidler framework.
Similar questions have undoubtedly been asked about other research
which studies the implications of weakening or altering the classical
expected utility paradigm.

7. CONCLUSION

In this paper we have tried to accomplish three things. First, we
studied papers employing Maenhout’s transformation and argued
that they were poorly motivated from Gilboa-Schmeidler. While the
underlying preference relations do exist, we saw that Maenhout’s
transformation simply makes the worst-case perturbation indepen-
dent of time and defeats the purpose of the robust control lifetime
entropy constraint. In the context of portfolio choice, the transfor-
mation simply lead to a lower drift on the asset price. Next, we
offered an alternative based on the recursive multiple priors models.
In this framework, the set of priors is clearly delineated by an instan-
taneous constraint and in the special case of κ-ignorance leads to a
lower drift on the asset price. We argued that since this framework
is axiomatized, transparent, consistent with learning, and yet still
leads to analytical solutions, it is the desired framework for study-
ing portfolio choice. We showed how to frame existing applications
involving Maenhout’s transformation in terms of this model and de-
rive analytical solutions. Finally, we presented some general remarks
about this literature and discussed whether Gilboa and Schmeidler
is an appropriate non-expected utility model for portfolio choice.
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APPENDIX: PROOFS
Proof of 4.1:
At each time t, we have the constraint:

1
2

EQ[g2
t ] ≤ τ. (A.1)

To determine the value of g, the value function must satisfy:

0 = sup
αt,Ct

inf
gt

{C1−γ
t

1− γ
− δV + [Wt(r + αt(µ− r)) − Ct] · Vw (A.2)

+
1
2
α2

tW
2
t σ

2Vww + λ(
1
2
g2

t − τ)
}

with slackness condition:

λ(
1
2
g2

t − τ) = 0, λ ≥ 0. (A.3)

Solving this program for the worst-case gt, we obtain:

g∗t = −
√
2τ. (A.4)

Substituting g∗t into our value function yields:

0 = sup
αt,Ct

{C1−γ
t

1− γ
− δV + [Wt(r + αt(µ− r − σ

√
2τ ))− Ct] · Vw (A.5)

+
1
2
α2

tW
2
t σ

2Vww

}
with well-known solution:

α∗
t =

1
γ
· µ− r − σ

√
2τ

σ2
(A.6)

C∗
t = κWt (A.7)

where κ = κ(τ) is given by substituting α∗
t and C∗

t into (A.5). After this
substitution, we find

κ(τ) =
1
γ


δ − (1− γ)r − (1 − γ)

2γ

(
µ− r − σ

√
2τ

σ

)2

 .

�

Proof of 4.2.1:
The first part of the proof follows HSTW, which we repeat for clarity. Con-
sider a probability space (Ω,F , P ) with standard filtration F and Brownian
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motion {Zt : t ≥ 0} adapted to this filtration. Let L be the set of one-
dimensional adapted processes. Define the set L2 by:

L2 =

{
X ∈ L :

∫ T

0

X2
t dt < ∞ a.s.

}
. (A.8)

A process g ∈ L2 satisfies Novikov’s condition iff:

E

[
exp

(
1
2

∫ T

0

g2
t dt

)]
< ∞ (A.9)

If the process g ∈ L2 satisfies Novikov’s condition, then the process qt

defined by:

qt = exp
(
−
∫ t

0

gτ · dZτ − 1
2

∫ t

0

g2
τdτ

)
(A.10)

is a martingale. Ito’s lemma implies that qt is an Ito process:

dqt = −qtgtdZt (A.11)

or

d(log qt) = −gt · dZt − 1
2
g2

t dt. (A.12)

We define probability measure Q by:

Q(A) = E[1AqT ] (A.13)

or
dQ

dP
= qT . (A.14)

Girsanov’s theorem states that for a process g ∈ L2 such that q is a mar-
tingale, the process:

Ẑt = Zt +
∫ t

0

gsds (A.15)

is a Brownian motion under Q. Under Q, we can express the log-likelihood
evolution of qt as:

d(log qt) = −gt · dẐt +
1
2
g2

t dt (A.16)

In exponential-integral form, we have:

qt = exp
[
−
∫ t

0

gτ · dẐτ +
1
2

∫ t

0

g2
τdτ

]
. (A.17)
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The relative entropy of a stochastic process qt is:

R(Q ‖ P ) = δ

∫ ∞

0

e−δt
EQ[log qt]dt (A.18)

= δ

∫ ∞

0

e−δt
EQ

[
−
∫ t

0

gτ · dẐτ +
1
2

∫ t

0

g2
τdτ

]
dt (A.19)

= δ

∫ ∞

0

EQ

[
e−δt

∫ t

0

g2
τ

2
dτ

]
dt (A.20)

= δ

∫ ∞

0

EQ

[
g2

τ

2

]∫ ∞

τ

e−δtdtdτ (A.21)

=
∫ ∞

0

e−δt
EQ

[
g2

t

2

]
dt. (A.22)

Corollary C.3.3 of Dupuis and Ellis (1997) states that if (Ω,F) is a proba-
bility space, and Q = Q1 ⊗Q2 and P = P1 ⊗ P2 are probability measures
on this space, then

R(Q ‖ P ) = R(Q1 ⊗Q2 ‖ P1 ⊗ P2) = R(Q1 ‖ P1) +R(Q2 ‖ P2). (A.23)

Since our underlying Brownian motions {Z1t, Z2t, ..., Znt : t ≥ 0} are inde-
pendent, we can perturb each one separately. That is, the Radon-Nikodym
theorem states that for each measure Qi there exists a qit such that:

log qit = −
∫ t

0

giτ · dZiτ − 1
2

∫ t

0

g2
iτdτ (A.24)

where Zit for i = 1...n are Brownian motions under P and Ẑit = Zit +∫ t

0
giτdτ for i = 1...n are Brownian motions under Q. Since

R(Qi ‖ Pi) =
∫ ∞

0

e−δt
EQi

[
g2

it

2

]
dt, for i = 1...n. (A.25)

Therefore,

R(Q ‖ P ) =
n∑

i=1

R(Qi ‖ Pi) =
n∑

i=1

∫ ∞

0

e−δt
EQi

[
g2

it

2

]
dt. (A.26)

�

Proof of 4.2.2:
Following the argument of Proposition 4.1, we know that:

git = −√
2τi, for i = 1...n. (A.27)
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Define Υ = (
√
2τ1,

√
2τ2, ...,

√
2τn)′. The perturbed wealth dynamics are:

dWt = [Wt(r + α′
t(µ− rι − ΓΥ))− Ct]dt+ α′

tΓdZt. (A.28)

The value function must satisfy:

0 = sup
αt,Ct

{C1−γ
t

1− γ
− δV + [Wt(r + α′

t(µ− rι − ΓΥ))− Ct] · Vw (A.29)

+
1
2
VwwW

2
t α

′
tΓΓ

′αt

}
.

The first-order conditions are:

∂α : α∗
t = (ΓΓ

′)−1(µ− rι− ΓΥ) · −Vw

WVww
(A.30)

∂C : C∗
t = V

− 1
γ

w . (A.31)

Setting V = κ−γ W 1−γ

1−γ , we obtain:

α∗
t =

1
γ
(ΓΓ′)−1(µ− rι− ΓΥ) (A.32)

C∗
t = κWt (A.33)

where κ = κ(Υ) is given by substituting α∗
t and C∗

t into (A.29).

�

Proof of 5.1.
To perturb the assets and obtain a measure of the perturbation, we find it
convenient to work with independent Brownian motions. Define {Z2t : t ≥
0} to be a Brownian motion independent of {Z1t : t ≥ 0} so that

dZxt = ρdZ1t +
√
1− ρ2dZ2t. (A.34)

As before, we can perturb each of these Brownian motions separately to
obtain:

dZ1t = g1tdt+ dẐ1t, (A.35)

dZ2t = g2tdt+ dẐ2t, (A.36)

and therefore

dZxt =
[
ρg1t + g2t

√
1− ρ2

]
dt+ ρdẐ1t +

√
1− ρ2dẐ2t. (A.37)

The investor’s decision problem is:
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sup
α

inf
Q∈Q(τ1,τ2)

EQ

[∫ ∞

0

e−δtU(Wt)dt
]

such that

dWt = [Wt(r + αtσXt)]dt+ σWt(g1tdt+ dẐ1t),

dXt = −λ(Xt − X̄)dt+ σx[(ρg1t + g2t

√
1− ρ2)dt+ ρdẐ1t +

√
1− ρ2dẐ2t],

and

Q(τ1, τ2) = {Q ∈ Q : Rt(Q1 ‖ P1) ≤ τ1,Rt(Q2 ‖ P2) ≤ τ2 ∀t}
As we know from previous example, the worst case will simply be g1t =

−√
2τ1 and g2t = −√

2τ2. The most intuitive way to solve this problem is
to define a distorted price of risk:

X̃t ≡ µt − r − σ
√
2τ1

σ
= Xt −

√
2τ1, (A.38)

with distorted long-term mean:

˜̄X = X̄ − σx

λ

(
ρ
√
2τ1 +

√
1− ρ2

√
2τ2
)
. (A.39)

Therefore, we can phrase the state-evolution in terms of the distorted
risk premium:

dX̃t = −λ(X̃t − ˜̄X)dt+ σxdẐxt

and
dWt = [Wt(r + αtσX̃t)]dt+ αtσWtdẐ1t

where dẐxt = ρdẐ1t +
√
1− ρ2dẐ2t.

With this adjustment, we can simply recall Kim and Omberg’s (1996)
solution:

α∗
t =

1
γ

[
X̃t

σ
+ (B(t) + C(t)X̃t) · ρσx

σ

]
. (A.40)

where
dC

dt
= cC2(t) + bC(t) + a, (A.41)

dB

dt
= cB(t)C(t) +

b

2
B(t) + λx

˜̄XC(t), (A.42)

dA

dt
=

c

2
B2(t) +

1
2
σ2

xC(t) + λx
˜̄XB(t), (A.43)

C(0) = B(0) = C(0) (A.44)

with a = 1
γ − 1, b = 2[( 1

γ − 1)ρσx − λx], and c = σ2
x[1 +

1
γ ].
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�

Proof of 5.2.
Since D1(Q||P ) ≤ τ1 and D2(Q||P ) ≤ τ2, in the worst-case, both con-
straints bind, yielding:

a∗ = log
(
1
λ

√
τ1 + 1

)
(A.45)

and

b∗ =
1
σ2

J

log
(

τ2
(1 + k)2

+ 1
)

(A.46)

This implies the worst-case jump intensity increases to λ+λ
√
τ1 while the

mean increases to (1 + k) + τ2
1+k . As in all previous examples, we have two

free parameters (τ1, τ2) which can lead to any pessimistic twisting that we
want.
The investor’s wealth solves:

dWt =
{[

r + αt

(
µ− r +

1 +A′(t)
A(t)

)]
Wt − Ct

}
dt+ αtσWtdZt

+αt−Wt−(eZt − 1)dNt (A.47)

With the worst-case a∗ and b∗, the Bellman equation is:

0 = sup
αt,Ct

{
u(c)− ρJ + Jt +

[
r + αt

(
µ− r +

1 +A′(t)
A(t)

)]

+WJw − CJw +
σ2

2
α2W 2Jww

+λea∗ (
E

Z(b∗)[J(W (1 + α(eZ − 1)))]− J(W, t)
)}

(A.48)

where E
Z(b)[f(Z)] = E[e(bZ−bµJ− 1

2 b2σ2
J )f(Z)]. Suppose that the value

function is multiplicatively separable:

J(W, t) =
W 1−γ

1− γ
f(t)γ

The optimal consumption is then C∗
t = f(t)−1Wt and the optimal portfolio

weight solves:(
µ− r +

1 +A′(t)
A(t)

)
−γα∗σ2+λea∗

E
Z(b∗)

[
(1 + (eZ − 1)α∗)−γ(eZ − 1)] = 0.

(A.49)
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Finally, f(t) is the solution to:

γ

1− γ

1 + f ′(t)
f(t)

− ρ

1− γ
+ r + αt

(
µ− r +

1 +A′(t)
A(t)

)
− 1
2
γσ2α2

+
1

1− γ
λea∗ (

E
Z(b∗)[(1 + (eZ − 1)α∗)1−γ ]− 1

)
= 0.(A.50)

Therefore we have solved for (C∗, α∗, a∗, b∗).

�
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