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Abstract

This paper describes Pareto optimal allocations when agents have risk-sensitive preferences as formulated

by Hansen and Sargent (1995). Necessary and sufficient conditions are given for the existence of a steady state

at which Pareto weights are time-invariant. Sufficient conditions are given for steady states to be stable or

unstable. When all agents are risk-sensitive with power reward functions there is a unique interior steady state.

This steady state is stable when the power is positive and unstable when the power is negative. When there is

at least one agent with time-additive preferences eventually all risk-sensitive agents have zero Pareto weights.
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1 Introduction

In standard dynamic macroeconomic models agents are assumed to have time-additive preferences over

consumption of the form

Ei0

∞∑
t=0

βtui(cit) (1)

where cit is the consumption of agent i at time t, ui is a reward function, β is a time-discount factor

and Ei0 is a time zero expectation operator. Preferences are time-additive since they are linear in

current and future rewards. Agents are usually assumed to have the same discount factors and the

same information.

When agents have time-additive preferences, Pareto optimal allocations are given by a time-invariant

function of aggregate consumption. At time t, the consumption allocation for agent i can be written

as

cit = ci (et, θ)

where et is aggregate consumption at time t, ci is a function, and θ is a time-invariant vector of

Pareto weights. Unless the distribution of aggregate consumption varies over time, the distribution of

individual consumption allocations will not vary over time.1 For example, at any two in dates in which

aggregate consumption is identical, individual consumption must also be identical.

Evidence suggests that consumption allocations are not a time-invariant function of aggregate con-

sumption.2 Cochrane (1991) and Hayashi, Altonji, and Kotlikoff (1996) show consumption allocations

are affected by health and employment. Attanasio and Davis (1996) find changes in consumption

parallel changes in income. To account for consumption the standard model (which assumes complete

markets, full information and time-additive preferences) needs to relax some of its assumptions. Papers

by Phelan and Townsend (1991), Atkeson and Lucas (1995) and others have looked at the implications

of surrendering perfect information. Papers by Heaton and Lucas (1995), Alvarez and Jermann (2000),

and others have looked at the implications of surrendering complete markets. This paper maintains the

assumptions of complete markets and full information but surrenders the assumption of time-additive

preferences.

There are good reasons for surrendering the assumption of time-additive preferences. Time-additivity

imposes strong restrictions on preferences which require agents to be risk-neutral in future utility. Con-
1With time-additive preferences, if agents have different discount factors or different information then optimal allocations may vary

over time even if aggregate consumption does not vary. If agent’s preferences display habit persistence or if consumption goods are
durable then consumption allocations may depend on additional state variables. See Hansen (1987) and chapter 13 of Hansen and
Sargent (1997) for a description of how this can be done for quadratic preferences.

2See Browning, Hansen, and Heckman (2000) for a useful survey and arguments for including microeconomic factors and hetero-
geneity in macroeconomic models.
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sider the following two gambles which have been discussed by Duffie and Epstein (1992), Schroder and

Skiadas (1999), and others. In gamble A a coin is tossed every period in the future. In periods in

which heads obtains the lottery pays ten consumption units. In periods in which tails obtains the

lottery pays one consumption unit. In gamble B a coin is tossed only once. If heads obtains then the

lottery pays ten consumption units every period in the future. If tails obtains then the lottery pays

one consumption unit every period in the future. Assume the payoffs of the gambles represent the

final consumption of agents. If agents have time-additive preferences then they must be indifferent

between the two lotteries. Yet, it seems rational for agents to have preferences over the gambles. An

agent might prefer gamble A because he views the distribution of utilities as more favorable under

this gamble. A theory of preferences should not require agents to be indifferent between these gambles

any more than it should require agents to be indifferent between consumption today and consumption

tomorrow. The preferences described in this paper allow agents to have preferences over the gambles.

This paper studies allocations when agents have risk-sensitive preferences of the form

Uit = ui (cit) +
β

σi
log Eit exp (σiUit+1) (2)

where σi is a risk-sensitivity parameter and Uit is the lifetime utility from time t onward. Versions of

risk-sensitive preferences have been discussed in the control theory literature dating back to Jacobson

(1973). The form of risk-sensitive preferences used in this paper is due to Hansen and Sargent (1995)

and incorporates discounting in a different way than the control theory literature. Risk-sensitive

preferences have been previously studied in representative agent economies by Hansen, Sargent, and

Tallarini (1999) and Tallarini (2000).

Risk-sensitive preferences are interesting to consider for several reasons. First, risk-sensitive pref-

erences are not time-additive in future utility and allow agents to be risk averse in future utility in

addition to being risk averse in future consumption. When σi < 0, risk-sensitive agents always prefer

gamble A to gamble B. Second, risk-sensitive preferences have been argued by Hansen, Sargent, and

Tallarini (1999) to be attractive since they can be used to model preferences for robustness. Third, as

discussed by Tallarini (2000), risk-sensitive preferences can allow for a partial separation between risk

aversion and the elasticity of intertemporal substitution.3

3See Epstein and Zin (1989) for more discussion on non time-additive preferences and the separation between risk aversion and the
elasticity of intertemporal substitution.
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This paper shows the implications for individual consumption when agents are risk-sensitive but

possibly differ in their preferences and their initial wealth. Following Lucas and Stokey (1984) and

Kan (1995) we show that for any date t ≥ 0 Pareto optimal optimal allocations can be written as

cit = ci (et, θt)

where et is aggregate consumption at time t, ci is a function, and θt is a vector of time t Pareto weights.

The time t Pareto weights are history dependent. Optimal allocations at any date are determined solely

by the current period aggregate endowment and the current period Pareto weights. Typically Pareto

weights evolve over time, so even when the distribution of aggregate consumption does not evolve, the

distribution of individual consumption can evolve. For example, at any two dates in which aggregate

consumption is identical, individual consumption will differ if the Pareto weights differ.

To study the dynamics of Pareto optimal allocations it is convenient to study the dynamics of the

Pareto weights. This paper gives necessary and sufficient conditions for the existence of a steady state

at which Pareto weights are time-invariant. Steady states are particularly interesting if they are stable.

For deterministic economies with agents who have non time-additive preferences, Lucas and Stokey

(1984) showed if preferences display increasing marginal impatience then interior steady states are

stable. Increasing marginal impatience implies, when all agents have identical preferences, “wealthy”

agents discount the future more than “poor” agents. In this case the consumption allocations of wealthy

(respectively poor) agents decrease (increase) over time until all agents have identical consumption

allocations.4

In stochastic economies increasing marginal impatience is neither necessary nor sufficient for the

stability of interior steady states. Another mechanism, the extent to which agents distort probabili-

ties, in conjunction with marginal impatience determines the stability of steady states. Agents have

increasing distortions if at the Pareto optimal allocations deviations from time-additive preferences are

increasing in wealth. When all agents have the same constant impatience then increasing distortions

is sufficient to guarantee the stability of interior steady states. When agents have the same constant

impatience then decreasing distortions is sufficient to guarantee interior steady states are not stable.

The major findings of this paper are that

1. Steady states often provide bounds on the evolution of Pareto weights. When technical conditions

are satisfied the ratio of the Pareto weights of any two agents can never cross a steady state ratio

of Pareto weights. If there are a multiple steady states, then none of them can be crossed. The
4In discrete time Benhabib, Jafarey, and Nishimura (1988) and in continuous time Epstein (1987) also discuss the dynamics of

allocations in deterministic economies.
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technical conditions required a very weak and are typically only violated in degenerate economies

in which the exogenous aggregate state evolves in deterministic patterns.

2. If there is at lease one agent with time-additive preferences then the weights of all risk-sensitive

agents tend toward zero over time with probability one. Though there are histories, which occur

with probability zero, in which risk-sensitive agents see the sum of their Pareto weights converge

to one.

3. When there are two agents who are both risk-sensitive with logarithmic rewards, the weight of

the agent who has a more negative risk-sensitivity parameter converges to zero with probability

one.

4. When there are two agents who are both risk-sensitive with the same power reward function,

there is a unique interior steady state. The steady state is stable or not stable depending upon

the magnitude of the power. If the power is positive then the steady state is stable. In this case

if agents have the same risk-sensitivity parameter then the agents will eventually be equal with

probability one even if one agent is initially richer. If the power is negative then it is possible with

positive probability that one agent will end up consuming everything and have a Pareto weight

of one.

This paper is organized as follows. Section two describes resource constraints, information and pref-

erences. Section three discusses optimal allocations and describes a recursive social planning problem

for computing allocations. Sections four, five, and six characterize the dynamics of optimal alloca-

tions by looking at steady states, off steady state dynamics, and stability. Section seven interprets

the stability results in terms of distorted probabilities and decentralizes the allocations discussed in

earlier sections. Section eight studies economies in which there are agents who have both risk-sensitive

and non risk-sensitive preferences. Section nine studies economies in which agents have power reward

functions. Section 10 concludes.

2 Economic environment

This section describes resource constraints, information and preferences.

2.1 Resource constraints

Let xt be the exogenous state vector of the economy at time t. Let et = c (xt) be the aggregate

endowment at time t where c is a time-invariant function of the exogenous state. We make the

following assumptions on exogenous states and endowments:
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Assumption 1 The exogenous state vector x follows a first-order Markov process. There are a finite

number of possible values for the exogenous state vector. Let X be the set of all of the possible values.

Let m be the number of possible values.

Assumption 2 The aggregate endowment is bounded below by emin > 0 and bounded above by emax <

+∞. For all states x

emin ≤ c (x) ≤ emax. (3)

All of the results in this paper will use Assumption 1 and 2. These assumptions make the results of

this paper easier to prove but are not essential.

Resource constraints require aggregate consumption to be less than or equal to the aggregate en-

dowment. No individual is allowed to consume negative quantities. Individual consumption must

satisfy

n∑
i=1

cit ≤ c (xt) , (4a)

cit ≥ 0, 1 ≤ i ≤ n, (4b)

at all dates t ≥ 0 and in all states. Here c (xt) is the aggregate endowment at time t, cit is the

consumption of agent i at time t, and n is the number of agents.5 Storage is not permitted and

there is no production. Since later it will be assumed that agents always prefer more to less, at any

Pareto optimal allocation aggregate consumption will equal the aggregate endowment. Consequently

we sometimes will write the constraint in equation 4a as
∑n

i=1 cit = c (xt) .

2.2 Information

All agents observe the current exogenous state and remember previous values. If this period’s state is

x then let the probability next period’s state is y be π (x, y) . Let πi (x, y) be the probability that agent

i believes y will be next period’s state. The following assumptions on beliefs will be used in all of the

results of this paper

Assumption 3 For all agents i and for all states x and y, it is the case that π (x, y) > 0 if and only

if πi (x, y) > 0.

This assumption guarantees beliefs are absolutely continuous with respect to the true probabilities and

the true probabilities are absolutely continuous with respect to beliefs.
5Through out the paper we will let there be n agents. All of the results of the paper apply if there are equal numbers of n types of

agents.
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Even though all agents observe the current exogenous state and remember previous values, agents

are not allowed to learn about the true probabilities π (x, y) . When agents have inaccurate beliefs they

live in a permanent state of error.

2.3 Preferences

Agents have risk-sensitive preferences which can be written in several different ways. The first way

is informal and was used in the introduction. This section shows how to write preferences in two

additional ways. One method writes preferences in terms of current consumption and future anticipated

utility. The other method writes preferences in terms of current consumption and future anticipated

consumption. These additional ways of writing preferences will be useful in later sections.

In order to write preferences in terms of current consumption and future anticipated utility, define

qi to be a vector which gives the anticipated utility, from next period on, contingent on next period’s

state. Let qiy be the element of qi which gives the utility remaining from next period on when next

period’s state is y. Agent’s preferences over current consumption and future anticipated utility can be

written as

Wi(x, ci, qi) = ui(ci) +
β

σi
log
∑
y∈X

πi (x, y) exp (σiqiy) . (5)

The reward function ui gives the contribution of current consumption to utility and the logarithmic

term gives the contribution of future anticipated utility to current utility. This method of writing

preferences is related to the method described in the introduction, in equation two, since

Uit = Wi (xt, cit, Uit+1) (6)

when we interpret the Uit+1 on the right hand side of equation six as a vector giving the future

anticipated utility for each possible value of the time t + 1 state.

In order to write preferences in terms of current and future anticipated consumption, define a

consumption plan for agent i for all current and future dates as

Ci = (ci, ci1, ci2, . . .). (7)

Here ci is a scalar representing current period consumption and cit is a mt dimensional vector which

gives a plan for consumption t periods ahead, contingent on the states between periods one and t. To

write preferences in terms of consumption it is convenient to be able to shift forward the consumption

plans in Ci one period, after the state next period is realized. When time is shifted forward there is
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no longer any reason to keep track of consumption plans in future states which no longer can occur.

Denote a one period ahead version of Ci as

τyCi = (ci1(y), ci2(y), ci3(y), . . .)

where y is next period’s state. Here cit(y) is a mt−1 dimensional vector which gives the plan specified

in cit for consumption t periods ahead when y is next period’s state.

We can write preferences over current and future anticipated consumption as Ui(x,Ci) where Ui is

a fixed point of the functional equation

Ui(x,Ci) = ui(ci) +
β

σi
log
∑
y∈X

πi (x, y) exp [σiUi(y, τyCi)] . (8)

When the fixed point is not unique, Ui can be uniquely defined using the arguments in Ozaki and

Streufert (1996). This way of writing preferences is identical to writing preferences in terms of current

consumption and future utility when the anticipated future utility is equal to the utility received from

the consumption stream Ciy. Thus

Ui(x,Ci) = Wi(x, ci, qi)

where for all y, qiy = Ui(y, τyCi).

The following assumptions on preferences will be made:

Assumption 4 (Reward function) The reward functions ui(ci) for all agents are strictly concave,

strictly increasing, continuously differentiable (when ci > 0) and such that

ui(emax) < +∞,

ui(ci) > −∞, when ci > 0,

lim
ci→0+

u′i (ci) = +∞,

where emax is the maximum possible value of the aggregate endowment.

Assumption 5 (Discount factor and risk-sensitivity parameter) The time-discount factor β is

a constant which is greater than zero and less than one. All agents have the same time-discount factor.

The risk-sensitivity parameter σi for all agents is constant and less than or equal to zero.

A reward function is a function which maps a non-negative real number into a real number. It gives

the contribution of current consumption to current utility. Assumption four allows for the two reward
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functions that will be studied in this paper: the logarithmic reward function of the form ui(ci) = log ci

and the power reward function of the form ui(ci) = c1−γi
i /(1− γi) for γi > 0 and γi 6= 1. We require all

agents have the same discount factor to abstract from the effects of heterogeneous discounting.

The parameter σi affects agents’ attitudes towards risk in future utility. Standard time-additive

preferences allow agents to be risk-averse in future consumption, but not future utility. As σi approaches

zero from the left preferences collapse to the usual time-additive specification given in equation one.

In this case agents are risk-neutral towards future utility. When σi < 0 agents are risk-averse towards

future utility. In this case, agents will prefer gamble A (discussed in the introduction) to gamble

B. When an agent’s risk-sensitivity parameter is equal to zero we will say they have time-additive

preferences or degenerate risk-sensitive preferences. When an agent’s risk-sensitivity parameter is

negative we will say they are strictly risk-sensitive or have non-degenerate risk-sensitive preferences.

For a fixed reward function, as an agents risk-sensitivity parameter becomes smaller they become more

risk-sensitive.

The extent to which agents are risk-sensitive is jointly determined by their reward function and their

risk-sensitivity factor. To see this, we discuss an equivalence result between preference orderings. Let z

be a positive constant. The preference ordering induced by the reward function ui, the risk-sensitivity

parameter σi, and the discount factor β is equivalent to the preference ordering induced by the reward

function (
1
z

)
ui, (9)

the risk-sensitivity parameter zσi, and the discount factor β. So, if the risk-sensitivity factor of an

agent is scaled upward by a factor of z then preference orderings can be maintained if their reward

function is scaled downward by a factor of z. Unlike with time-additive preferences, scaling reward

functions will change preference orderings unless σi is altered appropriately.6 We also see one does not

want to only use the magnitude of σi to measure the degree an agent is risk-sensitive since both the

reward function and the risk-sensitivity parameter matter. If the reward function is held fixed then

as σi decreases agents are more risk-sensitive. But as the reward function is increased in magnitude,

holding everything else fixed, the agent also becomes more risk-sensitive.
6To see this divide both sides of equation eight by z and multiply the terms inside the exponential by z/z to obtain

Ui(x,Ci)

z
=
ui(ci)

z
+

β

zσi
log
∑
y∈X

πi (x, y) exp

[
zσi

Ui(y, τyCi)

z

]
. (10)

If Ui is a fixed point of equation eight then Ui/z is a fixed point of equation 10. The preference ordering given by Ui/z is equivalent
to the preference ordering given by Ui.
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3 Optimal allocations

Following Lucas and Stokey (1984) and Kan (1995), this section describes a recursive social planning

problem for computing Pareto optimal allocations.7 The social planning problem is a non standard

dynamic programming problem in which Pareto weights evolve over time and are endogenous state

variables. Current period Pareto weights summarize the effect of the history of aggregate consumption

and the initial Pareto weights on current and future consumption allocations.

After some preliminary definitions in Section 3.1 and discussion in Section 3.2, Section 3.3 describes

a dynamic programming problem for computing optimal allocations. Section 3.4 describes solutions to

the dynamic programming problem.

3.1 Definitions

This section defines feasible allocations, Pareto optimal allocations, and Pareto weights. Consider

the environment described in Section two with n agents. Let C = {Ci}n
i=1 and D = {Di}n

i=1 be

consumption plans for all the agents which prescribe values for the consumption in all current and

future possible states of the world.

Definition 1 A feasible allocation is an allocation which satisfies equations (4a) and (4b) for all dates

and states.

Definition 2 A feasible allocation C is a Pareto optimal allocation if there is no other feasible allo-

cation D such that Ui(x,Di) ≥ Ui(x,Ci) for all i and Ui(x,Di) > Ui(x,Ci) for some i.

Definition 3 A Pareto weight vector is an n dimensional vector whose elements are non-negative and

sum to one. An interior Pareto weights vector is a Pareto weight vector whose elements are all strictly

positive.

3.2 Discussion

A Pareto optimal allocation can be computed by maximizing a weighted sum of utilities by choice of

feasible consumption allocations. Let θ be a Pareto weight vector and x0 be the initial (time zero)

state. A Pareto optimum can be computed by maximizing

n∑
i=1

θiUi(x0,Ci) (11)

7In continuous time, Duffie, Geoffard, and Skiadas (1994) and Dumas, Uppal, and Wang (2000) discuss methods for computing
optimal allocations with recursive utility.
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by choice of a feasible consumption plan for all agents, C. Here θi is the Pareto weight on agent i. Call

this problem the social planning problem. By varying the Pareto weight vector all Pareto optima can

be computed.

Given the assumptions on preferences made in Section 2.3, a Pareto optimal allocation can be

computed from the first-order conditions of the social planning problem. The first-order conditions

dictate equating the ratios of the time zero marginal values of current and future consumption for any

two agents across states. Let the history of states between time zero and time t be

xt = {x0, x1 . . . xt} . (12)

Let

Uit

(
xt
)

= Ui

(
xt,
[
τxtτxt−1 · · · τx1

]
Ci

)
(13)

be the utility remaining from time t, state xt onward when consumption from time zero onward is

specified in Ci. The time zero marginal value of time t, state xt consumption is

∂Ui0

(
x0
)

∂cit (xt)
=

∂Ui0

(
x0
)

∂Uit (xt)
∂Uit

(
xt
)

∂cit (xt)
(14)

= Mit

(
xt
)
u′i
[
cit

(
xt
)]

(15)

where

Mit

(
xt
)

=
∂Ui0

(
x0
)

∂Uit (xt)
(16)

is the marginal contribution of time t, history xt utility to time zero utility. First-order conditions for

the social planning problem are
u′i
[
cit

(
xt
)]
Mit

(
xt
)

u′j [cjt (xt)]Mjt (xt)
=

θj

θi
(17)

for all dates, for all states and for all agents i and j.

When agents have time-additive preferences (with the same beliefs and the same discount factors)

the marginal contributions of future utility are constant across agents. So Mit/Mjt is equal to one.

Thus the first-order conditions of the social planning problem dictate setting

u′i
[
cit

(
xt
)]

u′j [cjt (xt)]
=

θj

θi
(18)
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at all dates and states. In this case, optimal allocations are easy to compute since the left hand side

of equation 18 depends only upon time t consumption.

When agents have risk-sensitive preferences optimal allocations are typically difficult to compute

since the marginal value of time t utility at time zero depends non-trivially on future anticipated utility.

The marginal contribution of time zero utility to time zero utility is one. The marginal contribution

of time t ≥ 1, history xt utility to time zero utility is

Mit

(
xt
)

= Πt
s=1

βπi(xs−1, xs) exp [σiUis (xs)]∑
y∈X πi(xs−1, y) exp [σiUis ({xs−1; y})]

(19)

where
{
xs−1; y

}
denotes a hypothetical history of states at time t which includes the history in xt−1 for

dates zero to t− 1 and the state y at time t. Uis (xs) is the anticipated utility from time s, history xs

onward. Computing Mit is not easy since it depends upon agent’s anticipated utilities which in turn

depend upon all future anticipated consumption. The next section describes a dynamic programming

problem which makes the computation of Pareto optima tractable.

The dynamic programming problem makes the planning problem recursive by defining time t, history

xt, Pareto weights for agent i as

θit

(
xt
)

=
θiMit

(
xt
)∑n

k=1 θkMkt (xt)
(20)

where θi is the initial, time zero, Pareto weight used in equation 11. With this definition the first-order

conditions for time t consumption can be written as

u′i
[
cit

(
xt
)]

u′j [cjt (xt)]
=

θjt

(
xt
)

θit (xt)
. (21)

If we know the time t Pareto weights we can compute the time t consumption allocations by solving

a one period social planning problem with weights θit. The Pareto weights index inequality at time t

and summarize the effects of the history of the exogenous state on consumption allocations. The time

t Pareto weights are also the weights that a social planner could use at date t to recompute allocations

from time t onward. Viewed from time zero, there is in a sense only one vector of Pareto weights,

θ, that applies at all dates. In future dates its effect on consumption allocations depends upon the

marginal value of future utility thru Mit. However, by interpreting the Pareto weights as evolving over

time, we can conveniently index time-varying consumption allocation rules by a vector of parameters

and, as the next section discusses, time-varying Pareto weights allow the Pareto optimal problem to

be written recursively.
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3.3 A dynamic programming problem

Define the social planner’s value function to be

Q (x, θ) = sup
C∈C(x)

n∑
i=1

θiUi(x,Ci) (22)

where C(x) is the set of all feasible consumption allocations. The social planner’s value function is

the maximum value that can be achieved for the weighted sum of individual utilities. Under the

assumptions on preferences given in Section 2.3 the supremum is obtained and the sup in equation 22

can be replaced with a max.

This section shows how to compute the social planner’s value function recursively. To do this we

need to know the minimum amount of utility that an agent could receive. Let

q
i
= (1− β)−1 ui(0) (23)

be the extended real number which gives the lifetime utility obtained from a consumption plan which

entails consuming zero at all dates. Depending upon the agent i’s reward function, q
i

may be minus

infinity or finite. This is the lowest utility agent i could receive at any Pareto optimum since agents

are not allowed to consume negative quantities.

By virtue of the properties of risk-sensitive preferences one can show that the social planner’s value

function Q, defined in equation (22), satisfies the following functional equation proposed by Lucas and

Stokey (1984) and Kan (1995):

Q (x, θ) = max
{ci≥0,qi≥q

i
}n

i=1

n∑
i=1

θiWi(x, ci, qi) (24a)

where
n∑

i=1

ci = c(x) (24b)

and for each possible value, y, of next period’s state

0 ≤ min
φy∈Γn

[
Q (y, φy)−

n∑
i=1

φiyqiy

]
. (24c)

Recall Wi was defined in Section 2.3. The set Γn is the set of all Pareto weight vectors which sum to one.

In equation (24c) qiy is the continuation value for agent i when next period’s state is y. φy = {φiy}n
i=1 is
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the Pareto weight vector next period when next period’s state is y. The weight on agent i next period

is φiy.

This is a non standard dynamic programming in which the social planner chooses current consump-

tion allocations, continuation values for next period and Pareto weights for next period. The choice of

consumption allocations is subject to the feasibility constraint (24b). The choice of continuation values

is also subject to the m feasibility constraints in equation (24c). Kan (1995) shows that the equations

in (24c) are equivalent to the requirement that the continuation values, qi for all i, are feasible. The

Pareto weights that obtain the minimum in constraint (24c) for y ∈ X will be the optimal choice of

next period’s Pareto weights when next period’s state is y.

This formulation has been previously justified in a general deterministic setting by Lucas and Stokey

(1984) and in a stochastic setting by Kan (1995). In virtue of the properties of risk-sensitive preferences

all of the assumptions that Kan (1995) uses to justify the dynamic program, except for one, are met.

The assumption that the reward functions are bounded from below is not met and some of our examples

will have reward functions that are unbounded from below. However since aggregate consumption is

bounded below, the social planner’s value function is also bounded from below. Using this fact it is

possible to extend the results of Lucas and Stokey and Kan to the setting in this paper.

The dynamic problem can be used for computation. One can iterate on an initial guess of the social

planner’s value function Q to compute the the social planner’s value function. See the appendix for

details. We will exploit this in later sections to compute numerical approximations to the solution of

the social planning problem.

3.4 Solution to the dynamic programming problem

This section gives the first-order conditions for the dynamic programming problem. These conditions

are used in later section to analyze dynamics. The first-order conditions will be written in terms of

the value functions for individual agents and the marginal values of future utilities.

Let Qi (x, θ) give the value remaining in the optimal allocation for agent i from this period on if

current state is x and the Pareto weights are θ. Qi will be referred to as the value function for agent

i. The value function for an individual agent can be written in terms of the social planner’s value

function. To see this, begin by writing the social planner’s value function in terms of the individual

value functions

Q (x, θ) =
n∑

j=1

θjQj (x, θ) .
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Differentiating the social planner’s value function with respect to the Pareto weight for agent i yields

∂Q (x, θ)
∂θi

= Qi (x, θ) +
n∑

j=1

θj
dQj (x, θ)

dθi
(25)

= Qi (x, θ) . (26)

The summation in equation 25 is zero because of optimality.8 These derivatives must exist when

θi is interior. When θi is zero, the solution to the social planner’s problem entails allocating zero

consumption to agent i at all dates and states. So in this case the value remaining for agent i is q
i
.

When θi = 1 the solution to the social planner’s problem entails allocating all aggregate consumption

to agent i. So, in this case the value remaining for agent i is identical to the social planner’s value

function. In summary the individual value functions are

Qi (x, θ) =


Q (x, θ) θi = 1

∂Q(x,θ)
∂θi

1 > θi > 0

q
i

θi = 0.

(27)

We now write the first-order conditions of the social planning problem in terms of the marginal

value of future utility. Let

Mi (x, y, qi) =
βπi (x, y) exp (σiqiy)∑
z∈X π (x, z) exp (σiqiz)

. (28)

be the marginal value of utility next period if this period’s state is x, next period’s state is y, and the

vector qi gives the anticipated utility for all possible values of next period’s state. This marginal value

depends upon the anticipated utility in all states that could have occurred next period, not only the

anticipated utility when y is the state.

When θ is an interior Pareto weight vector first-order conditions for the dynamic programming

problem include for all agents i and j

θiu
′
i (ci) = θju

′
j (cj) (29a)

8If it wasn’t zero then Q (x, θ) could not be the social planner’s value function. For example, if the sum were positive then there
would be some Pareto weight vector ψ such that

∑n
j=1 θjQj(x, ψ) >

∑n
j=1 θjQj (x, θ) .
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for current period consumption, and for each possible value, y, of next period’s state

(
φiy

φjy

)
Mj

(
x, y, qj

)
=
(

θi

θj

)
Mi (x, y, qi) , (29b)

qiy = Qi (y, φy) . (29c)

For each y, φy = {φi}n
i=1 is normalized so that its elements sum to one. φiy is next period’s Pareto

weight on agent i when next period’s state is y. The social planner’s value function is embedded in

equation 29b since Qi is defined in terms of the social planner’s value function.

The first-order conditions require that the ratio of the marginal values of consumption this period (in

equation 29a) and next period (in equation 29b) be equal across agents. To find the optimal allocations

for consumption this period one only has to compute the solution to the first-order equation 29a and

the resource constraint 24b. This equivalent to solving the one-period social planning problem:

max
{ci≥0}n

i=1

n∑
i=1

θiui(ci)

subject to
n∑

i=1

ci = c(x).

The solution to the one-period problem entails that the optimal consumption allocations are given by

a function of x and θ. Denote this function as ci (e, θ) where e = c(x). For example if all agents have

logarithmic functions of the form ui(c) = log(c) then the one-period consumption allocation rules are

ci (e, θ) = θie. (30)

The one-period consumption allocation rules are often called risk-sharing rules.

Finally, we note that it is possible to extend the proofs in Lucas and Stokey, given our assumptions

in Section two, to guarantee that the social planner’s value function is strictly convex in the Pareto

weight vector. The optimal choice of next period’s Pareto vector, for a given value of this period’s

exogenous state, will be continuous in this period’s Pareto weight vector. It also can be shown that

there is a unique solution to the social planner’s first-order conditions, equations 29a thru 29c.

4 Steady states

The next three sections characterize the dynamics of allocations by studying the dynamics of Pareto

weights. Pareto weights are convenient for studying dynamics since they summarize the effects of
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the history of states on current allocations since current allocations are completely determined by the

current Pareto weights and the current exogenous state. We will show that in many economies Pareto

weights converge over time to steady states in which they are constant over time.

Let x be the current state, θ the current Pareto weight vector, and y next period’s state. The

solution to the social planner’s dynamic programming problem implies that the optimal choice of next

period’s Pareto weight vector can be written as φy(x, θ). Given a realization for the state {xt}∞t=0 for

all time periods and an initial Pareto weight vector, θ0, the solution to the social planner’s problem

implies that the Pareto weight vector evolves as

θt = φxt (xt−1, θt−1) .

The next three sections study how they evolve. Given the Pareto weights at time t, current consumption

allocations can be computed by solving the one-period social planning problem described in Section

3.4. Current period consumption allocations can be written as cit = ci [c(xt), θt] .

In order to characterize dynamics it is convenient to make additional assumptions:

Assumption 6 For all x, y ∈ X ; and all agents i and j, πi (x, y) = πj (x, y) = π (x, y) .

Assumption 7 X is an ergodic set.

Assumption 8 For all x, y ∈ X , π (x, y) > 0.

Assumption 9 There exists states x ∈ X and y ∈ X such that c(x) 6= c(y).

Assumption six guarantees that all agents have the same, correct, beliefs and implies Assumption

three. Assumption seven entails that there is no proper subset of X which is ergodic. It also entails that

all states in X will be realized with strictly positive probability sometime in the future. Assumption

eight implies Assumption seven and guarantees that all values of the exogenous state vector can occur

at every date t ≥ 1 with strictly positive probability regardless of the history of the exogenous state

vector. Assumption nine guarantees that there is uncertainty. For any value of the state this period,

at least two distinct values of the aggregate endowment can occur next period with strictly positive

probability. Many of our results will not require Assumptions seven thru nine.

4.1 Definition and characterization of steady states

This section will provide necessary and sufficient conditions for the existence of steady states. Several

examples are provided in Section 4.4.
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Although ultimately we are interested in how Pareto weights evolve, it is convenient to first char-

acterize steady states in which Pareto weights are constant.

Definition 4 A steady state for all agents is a Pareto weight vector θ̄ such that if θt = θ̄ at some date

t then it is Pareto optimal to set θs = θ̄ for all dates s > t, in all future states of the world.

Even though the world is uncertain and the exogenous state may be always varying over time, at a

steady state the Pareto weights are constant. If the state space X was not an ergodic set then whether

or not θ̄ is a steady state can depend upon the current value of the exogenous state.

Recall that the first-order conditions for the Pareto optimal problem described in Section three

require the ratio of the marginal contributions of future consumption to current utility for two agents

to be constant across time:
Mit

(
xt
)
u′i
[
cit

(
xt
)]

Mjt (xt) u′j [cjt (xt)]
=

θj

θi
.

The left hand side can be broken into two components. The first component is the ratio of the marginal

contributions of future utility to current utility Mit/Mjt. The second component is the ratio of the

marginal contributions of future consumption to future utility, u′(cit)/u′(cjt). At an optimal allocation

the ratio of the products of these components must be constant across time, but the ratio of the

individual components can differ across time. The difference in the ratios of the components is what

drives the evolution of allocations. When the ratio of the components, in addition to the ratio of the

product of the components, are equal across time (for all pairs of agents in all possible states of the

world) the economy is in a steady state. In particular, if the ratio Mit/Mjt equals one in all future

dates and states then i and j agents will be in a steady state in which

u′i
[
cit

(
xt
)]

u′j [cjt (xt)]
=

θj

θi

is satisfied at all dates and states.9 In other words at a steady state agents have the same marginal

value of future utility.

To formalize this notion and provide conditions which guarantee that a Pareto weight vector is a

steady state, we define the following two weighted differences

∆ij (y, θ) = σiQi (y, θ)− σjQj (y, θ) , (31)

δij (y, θ) = σiui (ci [c(y), θ])− σjuj (cj [c(y), θ]) (32)

9The ratio can not equal a constant other than one in a steady state since at time zero Mi0 = Mj0 = 1.

19



of utility allocations. The weights are the individual’s risk-sensitivity parameters. ∆ij is the weighted

difference of agents i and j’s lifetime utility allocation. δij is the weighted difference of agents i and

j’s one-period utility allocation.

Also define

Ωij(x, θ) = {d ∈ R : d = ∆ij (y, θ) for y ∈ X and π (x, y) > 0} , (33)

ωij(x, θ) = {d ∈ R : d = δij (y, θ) for y ∈ X and π (x, y) > 0} . (34)

The set Ωij(x, θ) is the smallest set which contains all possible values of the weighted differences of

lifetime utility allocations for agents i and j from next period on, when this period’s states is x and the

Pareto weight vector next period is θ. Likewise ωij(x, θ) is the smallest set which contains all possible

values of the weighted differences of next period utility allocations for agents i and j when this period’s

states is x and next period’s Pareto weight vector is θ. In defining Ω and ω we are fixing the value of

next period’s Pareto weight vector.

We now provide conditions for steady states. The conditions are stated in terms of weighted

differences of individual value functions in Theorem one and in terms of weighted differences of reward

functions in Corollary one.

Theorem 1 Let θ̄ be a Pareto weight vector.

1. Let Assumptions one thru six hold. If for each pair of agents i and j who have strictly positive

Pareto weights, Ωij(x, θ̄) is a singleton for all states x then θ̄ is a steady state.

2. Let Assumptions one thru seven hold. If θ̄ is a steady state then for each pair of agents i and j

who have strictly positive Pareto weights, Ωij(x, θ̄) is a singleton for all states x.

Corollary 1 Let θ̄ be a Pareto weight vector.

1. Let Assumptions one thru six hold. If for each pair of agents i and j who have strictly positive

Pareto weights, ωij(x, θ̄) is a singleton for all states x then θ̄ is a steady state.

2. Let Assumptions one thru eight hold. If θ̄ is a steady state then for each pair of agents i and j

who have strictly positive Pareto weights, ωij(x, θ̄) is a singleton for all states x.

See the appendix for proofs. The proofs show the equivalence between these conditions and a situation

in which the ratio of the marginal contributions of future utility to current utility is constant across

agents. If it was assumed that the state space was not ergodic then Ω and ω would only have to be

singletons for states that can occur at future dates.
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Theorem one and Corollary one are easier to think about if Assumption eight happens to hold. If

this assumption holds then θ̄ is a steady state if and only if the weighted individual value functions are

equal up to a constant for all values of the exogenous state. In other words, for each pair of agents i

and j who have a strictly positive weight

σiQi

(
x, θ̄
)
− σjQj

(
x, θ̄
)

does not vary with the state x, though it may vary with i and j. In terms of reward functions, θ̄ is

a steady state if and only if the weighted individual reward functions are equal to a constant for all

states x. In other words for each pair of agents i and j who have a strictly positive weight

σiui

(
ci

[
c (x) , θ̄

])
− σjuj

(
cj

[
c (x) , θ̄

])
(35)

does not vary with the state x, though it may vary with i and j.

When Assumption eight does not hold then the theorem tells us that it is possible to have steady

states in which the weighted differences equal different values at different dates. However, this will only

happen in degenerate economies in which the state moves around over time in deterministic patterns

and there is very little uncertainty. See Section 4.4.5 for an example.

The corollary is easy to apply in practice and can be conveniently used to classify steady states

even when an analytical solution to the social planner’s dynamic programming problem is not available

since the corollary requires only that the one-period optimal allocations are known. These are easy to

compute (see Section 3.4 and the examples in Section 4.4.)

There also are steady states in which some agents have zero Pareto weights. The conditions in

Theorem one and Corollary one only have to hold for agents who have strictly positive Pareto weights.

Agents who have zero Pareto weights today will always have zero Pareto weights in every future date

and state.

4.2 Regular steady states

Regular steady states are a refinement of steady states. Regular steady states are a stronger notion

of invariance that is useful for analyzing dynamics when there are more than two agents. Regular

steady states are defined independently of the state space whereas steady states depend upon the

exact specification of the exogenous environment. All regular steady states are steady states, but there

can exist steady states which are not regular.
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Definition 5 A regular steady state for all agents is a Pareto weight vector, θ̄, which is a steady

state regardless of the specification of the exogenous state space X , aggregate consumption c(x), and

transition probabilities π (x, y) .

Regular steady states have the appealing property that the set of Pareto weight vectors which are

regular steady states is invariant to the specification of the state space, endowments, and probabilities.

A steady state which is not regular may cease to be a steady state when the state space is expanded

or when additional uncertainty is introduced. When the state space is contracted or when uncertainty

is removed more Pareto weights can be steady states.

The following theorem shows that regular steady states depend only on the reward functions and

the risk-sensitivity parameters.

Theorem 2 Let Assumptions one thru six hold. Let θ̄ be a Pareto weight vector. θ̄ is a regular steady

state for all agents if and only if for each pair of agents i and j who have strictly positive weights

σiui

(
ci

(
e, θ̄
))
− σjuj

(
cj

(
e, θ̄
))

(36)

does not vary with e for all positive real numbers e, though it may vary with i and j.

We have seen that at a steady state it always is the case that equation 36 does not vary with the

possible values of aggregate consumption at a steady state for all agents. At a regular steady state it

will not vary with aggregate consumption even if we consider values of aggregate consumption which

can not occur at a steady state for all agents. Theorem two also tells us that all regular steady states

are steady states since if equation 36 does not vary with e, ωij(x, θ̄) must be a singleton for all x.

The notion of a regular steady state will be convenient for analyzing dynamics when there are more

than two (types of) agents and the one-period consumption allocation rules are nonlinear. Section

5.1 will describe why regular states are useful when there are more than two (types) of agents. We

conclude this section by showing that if there is uncertainty (so that Assumption nine is satisfied)

and the one-period consumption allocation rules are linear then all steady states are regular. The

one-period consumption allocation rules are linear if they can be written as

ci(e, θ) = si(θ)e (37)

where si is a function which can depend upon the Pareto weights, but not the aggregate endowment.

Corollary 2 Let Assumptions one thru six and Assumptions eight thru nine hold. Then if the one-

period consumption allocations rules are linear in aggregate consumption, all steady states are regular.
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See Section 4.4.5 for an example of a steady state which is not regular.

4.3 Steady states for a subset of agents

There can exists situations in which the ratio of Pareto weights for two agents is time-invariant even

though the Pareto weights for these agents are time-varying. These agents can be viewed as being in

their own private steady state. The marginal values of future utility for these two agents will be equal

over time, as will the ratios of the marginal contributions of future consumption to future utility for

these agents.

Definition 6 A steady state Pareto ratio for agents i and j is a non-negative number λ̄ij such that if

ratio of Pareto weights for agents i and j is equal to λ̄ij

θit

θjt
= λ̄ij (38)

at some date t then it is Pareto optimal to set the ratio of Pareto weights for these agents equal to λ̄ij

θis

θjs
= λ̄ij (39)

for all dates s > t, in all future states of the world.

At a private steady state for agents i and j the ratio of the Pareto weights for i and j agents is

constant over time even though their Pareto weights may be varying over time. The weights may be

varying over time since i and j agents may not be in a steady state with other agents. If they are in a

steady state with all agents then the Pareto weights for agents i and j will also be constant over time.

We provide two results on steady states for a subset of agents. Theorem three provides sufficient

conditions which guarantee that a Pareto ratio is not a steady state Pareto ratio. Theorem four provides

sufficient conditions which guarantee that a Pareto ratio is a steady state.

Theorem 3 Let Assumptions one thru eight hold. Let the one-period consumption allocation rules be

linear in the aggregate endowment. If for each Pareto weight vector θ such that

θi

θj
= λ̄ij (40)

there exists x ∈ X and y ∈ X such that

σiui (ci [c(x), θ])− σjuj (cj [c(x), θ]) 6= σiui (ci [c(y), θ])− σjuj (cj [c(y), θ]) (41)
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then λ̄ij is not a steady state Pareto ratio for agents i and j.

Theorem 4 Let Assumptions one thru six hold. If θ̄ is a regular steady state then for each pair of

agents i and j

λ̄ij =
θ̄i

θ̄j
(42)

is a steady state Pareto ratio for agents i and j.

See the appendix for proofs.

Theorem four tells that a regular steady state, θ̄, has the appealing property that any two agents

whose have the Pareto ratio, θ̄i/θ̄j will be in a private steady state regardless of the Pareto weights of

other agents.

4.4 Examples

This section concludes by looking at steady states in several example economies. The examples will

require, unless stated otherwise, Assumptions one thru nine. In examples that discuss specific reward

functions, the properties listed in Assumption four will be satisfied. Additional examples are discussed

in Sections eight and nine.

4.4.1 Time-additive preferences

Let all agents have time-additive preferences. For any Pareto weight vector θ, δij (y, θ) is equal to

zero for all states x since σi = σj = 0. Hence by Corollary one all Pareto weight vectors are steady

states. Since equation 36 is always satisfied all of the steady states are regular. We already knew with

time-additive preferences all Pareto weight vectors are steady states from much simpler arguments,

but it is interesting to see how the machinery developed in this paper can show the same result.

4.4.2 Identical preferences

If all agents have identical preferences (ui = uj and σi = σj for all i and j) then the Pareto weight

vector θ̄ which assigns equal Pareto weights to all individuals is a regular steady state. To see this,

note that if θ̄i = 1/n for all i then agents have identical consumption and

σiui

(
ci

(
e, θ̄
))

= σjuj

(
cj

(
e, θ̄
))

(43)
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for all e > 0. Hence θ̄ is a regular steady state. So if all agents have identical preferences there

always exists at least one interior steady state in which agents have identical Pareto weights, identical

consumption, and identical utility.

4.4.3 Log risk-sensitivity

Consider an economy in which all agents have logarithmic reward functions of the form ui(c) = log(c).

Preferences of this form have been previously studied by Tallarini (2000) in representative agent models.

The optimal allocation rules for current period consumption are

ci(e, θ) = θie

when the current period aggregate consumption is e and the current period Pareto weight vector is θ.

In this example

σiui (ci [e, θ])− σjuj (cj [e, θ]) = σi log(θie)− σj log(θje)

= σi log(θi)− σj log(θj) + (σi − σj) log(e).

This varies with e if and only if (σi − σj) log(e) varies with e. Hence by Theorem two when all agents

have the same risk-sensitivity parameter every Pareto weight vector is a regular steady state since

equation 36 can not vary with e.

When agents have heterogeneous risk-sensitivity parameters there are no interior regular steady

states since (σi − σj) log(e) varies with e for any two agents with different risk-sensitivity parameters.

In virtue of Assumptions eight and nine there also are no interior steady states. Any two agents with

the same risk-sensitivity parameter will always be in a private steady state in which their Pareto ratios

are constant.

4.4.4 Steady states where a single agent has a weight of one

Regardless of agents’ reward functions and risk-sensitivity parameters, there always exists a steady

state in which one agent has a Pareto weight of one and all other agents have a Pareto weight of zero.

ω is a singleton for all pairs of agents who have strictly positive weights since there are not two distinct

agents with strictly positive weights and ωii is always a singleton.
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4.4.5 Steady states which are not regular

Examples of non-regular steady states are abundant in a deterministic economy which violates Assump-

tions eight or nine. Consider an economy in which there is only one possible value of the aggregate

endowment at each date. Let there be two agents with logarithmic rewards. Let the risk-sensitivity

parameter for the first agent be -1 and for the second agent be -2. For all x in X , let there exist a y

such that π (x, y) = 1. Then since ω will always be a singleton, all Pareto weight vectors are steady

states. Most of these steady states will not be regular since if uncertainty is introduced there will not

be any interior steady states. (See Section 4.4.3.)

4.5 A representative agent

At a steady state consumption is shared just as in a time-additive economy since the Pareto weights

are constant over time. Moreover at a regular state equation 36 tell us there is a tight link between the

preferences of agents. This opens up the possibility of the existence of a useful representative agent. In

this section we explore this idea and show that at an interior regular steady state there always exists

a representative agent. The representative agent is unique but can be described using the preferences

of any of the agents. For any agent, a representative agent can be constructed with a similar reward

function, the same risk-sensitivity parameter, and the same discount factor.

For there to exist an interior regular steady state either all agents have time-additive preferences

or all agents have risk-sensitive preferences with strictly negative risk-sensitivity parameters. If they

all have time-additive preferences then standard results are available for when a representative agent

exists. In this section we focus on economies in which all agents have risk-sensitive preferences.

The following theorem is the main result of this section and shows that there exists a representative

agent with preferences over aggregate consumption e = c(x).

Theorem 5 Let Assumptions one thru six hold. Assume all agents have risk-sensitive preferences with

strictly negative risk-sensitivity parameters. Let θ̄ be an interior regular steady state. For any agent i

a representative agent can be defined with the reward function

fi(e) = ui

(
ci

(
e, θ̄
))

,

the risk-sensitivity parameter σi, and the discount factor β. The representative is unique but can be

described using the preferences and risk-sensitivity parameters of any of the agents.

See the appendix for a proof. It is possible to use the preferences of any agent to describe the

representative agent because at a regular steady state we know from Theorem two that the agent’s
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reward functions are equal up to a constant. Hence all agents can be viewed as having the same

preferences over the aggregate endowment at an interior regular steady state. The requirement that

agents be strictly risk-sensitive is important. If all agents have time-additive preferences then reward

functions typically will not be equal up unto a constant at a steady state. Away from steady states it

is unlikely that there will exist a representative agent with preferences similar to any particular agent.

5 Off steady state dynamics

What do optimal allocations look like away from a steady state? Unfortunately for most specifications

of preferences analytic solutions are not available away from steady states. We instead have to rely

on qualitative theorems and numerical solutions. This sections presents two qualitative theorems and

a numerical illustration of risk-sharing in the short run. Section 5.1 shows that Pareto weights can

never cross a steady state Pareto ratio. Section 5.2 qualitatively and numerically studies dynamic

risk-sharing in the short run. Subsequent sections will build on the qualitative theorems in this section

and provide additional illustrative numerical solutions.

5.1 The no-crossing property

Steady states are especially interesting if they are stable. Section six will study stability. This section

shows that steady states are interesting even when they are not stable because they provide bounds

on the evolution of ratios of Pareto weights. This result is interesting in itself and will be a crucial

ingredient of our stability proofs in Section six.

Theorem 6 (No-crossing property) Let Assumptions one thru six hold. Let θt be the Pareto weight

vector at time t and let θ̄ be a regular steady state. If

θit

θjt
>

θ̄i

θ̄j
(44)

then
θis

θjs
>

θ̄i

θ̄j
(45)

for all s > t.

See the appendix for a proof.

This theorem tells us that the Pareto ratios can never cross a regular steady state Pareto ratio.

If the Pareto ratio, for two agents, is initially greater than a regular steady state ratio then it will

always be greater than that regular steady state ratio in the future. By inversion, it follows that if a
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Pareto ratio, for two agents, is initially less than a regular steady state then it will always be less than

that regular state in the future. Thus regular steady states provide bounds on the evolution of Pareto

weights. If the economy consists of only two agents (or two types of agents) then this result can be

strengthened to show that it is never possible to cross a steady state Pareto ratio even if the Pareto

ratio does not correspond to a regular steady state.10

Consider an example in which all agents have the same preferences. We know from previous sections

there is a regular steady state in which all agents have identical weights. Assume agent one is initially

richer than the subset ξp of other agents, initially poorer than the subset ξr of other agents, and initially

equal to the subset ξe of other agents. Here “richer” means has a larger Pareto weight, “poorer” means

has a smaller Pareto weight, and “equal” means has the same Pareto weight. The no-crossing property

tells us that agents in set ξp will never be richer than agent one and agents in set ξr will never be poorer

than agent one. Since in this example equality is a steady state Pareto ratio between any two agents,

the agents in ξe will always be equal to agent one. So, in this sense the rich stay rich and the poor

stay poor. There is no possibility for an agent who is initially poor to become rich. It is possible that

agents in ξp will become essentially equal to the agents in ξr and equal to agent one. (Exact equality

can only happen in the limit as time goes to infinity. At any finite date in the future agent one will be

strictly richer than all agents in set ξp and strictly poorer than all agents in set ξr )

When there are many regular steady states the no-crossing property tells us that all of the regular

steady states provide bounds. When there are no interior steady states then it is possible for an agent

who is initially very poor to become very rich, and vice-versa. Consider the example in Section 4.4.3

in which agents have logarithmic rewards but different risk-sensitivity parameters. In that example

there are no interior steady states. It is possible that eventually any agent, can be very poor or very

rich regardless of their initial wealth (as long as their initial Pareto weight is not zero or one.)

5.2 Dynamic risk-sharing in the short run

How is risk shared between risk-sensitive agents? At any date agents can be viewed as sharing two

things: current consumption and future utility. Given the current Pareto weights current consumption

is shared subject to a linear resource constraint, equation 24b. Future utility is shared subject to

the nonlinear feasibility constraint, equation 24c. When some agents have risk-sensitive preferences

optimal sharing of future utility often entails that Pareto weights move over time to provide some

agents with smoother allocations than other agents.
10The proof of this is very similar to the proof of Theorem six. See Anderson (1998) for the details.
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In many cases risk-sharing is determined by how the weighted differences of rewards [as measured

by δij (y, θ) which was defined in equation 32] varies with the aggregate state and the current Pareto

weights. To show this we let the state be equal to aggregate consumption each period, assume that

the state is i.i.d. over time, and limit the analysis to two agents. Our main result is stated in Theorem

seven.

Assumption 10 Assume the exogenous state xt at any date t is a scalar and is equal to aggregate

consumption: xt = c(xt). For any a, b, y ∈ X it is the case that

π(a, y) = π(b, y). (46)

Theorem 7 Let there be two agents who are denoted by i = 1, 2. Let Assumptions one thru eight and

Assumption 10 hold. Let Φ be set of the possible values for next period’s Pareto weight vector.

1. If for any given φ ∈ Φ, δ21 (y, φ) is a strictly increasing function of y then the optimal choice of

next period’s Pareto weight for agent two is a strictly increasing function of next period’s state y.

2. If for any given φ ∈ Φ, δ21 (y, φ) is a strictly decreasing function of y then the optimal choice of

next period’s Pareto weight for agent two is a strictly decreasing function of next period’s state y.

See the appendix for a proof. The result also applies if there are equal numbers of two types of

agents. Because of the no-crossing property, the set Φ in Theorem seven need not be the set of all

Pareto weight vectors since, in some economies, many Pareto weight vectors for next period never will

be selected.

Theorem seven can readily be applied to an example in which all agents have logarithmic utility.

Consider the environment described in Section 4.4.3 when there are only two agents and the assumptions

required for Theorem seven hold. For this environment

δ21 (y, φ) = σ2 log(φ2)− σ1 log(φ1) + (σ2 − σ1) log(y)

is strictly increasing in y when σ2 > σ1 and strictly decreasing in y when σ2 < σ1. Hence by Theorem

seven the optimal choice of next period’s Pareto weight for agent two is a strictly increasing function

of next period’s state y when σ2 > σ1 and a strictly decreasing function of y when σ2 < σ1. When

σ2 = σ1, δ21 is constant and, as we have previously shown, agent one and agent two will be in a steady

state. If agent two’s risk-sensitivity parameter is lower than agent one’s, σ2 < σ1, then when the

aggregate endowment is low, agent two’s Pareto weight will be relatively large, and when the aggregate

endowment is high, agent two’s Pareto weight will be relatively small.
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State πA πB

0.10 0 1 x 10−11

0.30 0 1 x 10−9

0.50 0 1 x 10−7

0.70 0 1 x 10−5

0.90 0 1 x 10−3

0.95 0.01 0.01
0.96 0.02 0.02
0.97 0.04 0.04
0.98 0.06 0.06
0.99 0.20 0.20
1.00 0.34 0.33797979798
1.01 0.20 0.20
1.02 0.06 0.06
1.03 0.04 0.04
1.04 0.02 0.02
1.05 0.01 0.01
1.10 0 1 x 10−3

1.30 0 1 x 10−5

1.50 0 1 x 10−7

1.70 0 1 x 10−9

1.90 0 1 x 10−11

Table 1: This table lists the values of the state and their corresponding probabilities in the numerical examples.
Two different specifications for the probabilities are considered which we label specification A and specification B.

We now describe some numerical examples. In the examples the state is i.i.d. over time and equal to

the aggregate endowment. We will consider two different specifications for the probabilities of states,

labeled A and B, which are listed in Table 1. In setting A there are 11 possible values, between 0.95

and 1.05, of the state. In setting B there are 21 possible values of the state. Setting B assigns small

probabilities to extreme values of the state. In setting B there is about a 0.101% probability that the

state will be less than 0.95 and about a 0.101% probability that the state will be greater than 1.05. The

probabilities of states near one were designed to roughly be in the same ballpark as the probabilities

for detrended aggregate real annual consumption per-person in the United States between 1950 and

2002 (discretized and scaled so that its mean is one), assuming that aggregate consumption is i.i.d. Of

course aggregate consumption is not i.i.d. and this specification may overstate the one-period ahead

uncertainty in aggregate consumption and understate the many-period ahead uncertainty in aggregate

consumption. The probabilities for extreme events were arbitrarily chosen. In all of our numerical

examples β is set at 0.95 so that the natural interpretation of the length of a period is one year.

Figure one graphs the decision rules for next period’s Pareto weight on agent two when there are

two agents who have logarithmic reward functions and heterogeneous risk-sensitivity parameters. In
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Figure 1: The decision rules for next period’s Pareto weight on agent two when there are two agents who have
logarithmic reward functions and heterogeneous risk-sensitivity parameters. In all of the figures agent two has
time-additive preferences so that σ2 = 0. The discount factor for both agents is β = 0.95. This period’s Pareto
weight on agent two is 0.50. In the two left most figures agent one have a risk-sensitivity parameter of σ1 = −1.
In the right most figure agent one has a risk-sensitivity parameter of −0.1. In the left most figure the probabilities
are given by specification A and in the two right most figures the probabilities are given by specification B.

all of the graphs agent two has time-additive preferences and agent one is strictly risk-sensitive. The

graphs vary the magnitude of agent one’s risk-sensitivity parameter and use probability specifications

A and B. The qualitative properties of the graphs are known from Theorem seven: agent two’s Pareto

weight is increasing in next period’s state. We also see that the Pareto weights only move substantially

when extreme values of the aggregate endowment occur. For moderate values of the endowment the

Pareto weights do not move very much. In particular for specification A of the probabilities in the left

most graph we see the maximum fall/rise in the Pareto weights over one period is about 0.0011. In the

center graph, we see that for probability specification B the Pareto weights can move substantially but

only when a catastrophic event or miraculous windfall occurs. The presence of the extreme possibilities

does change the decision rules for highly probable realizations of the endowment. The movements, for

highly probable realizations of the state, in the Pareto weights are still small but not as small as in the

previous economy. This suggests that in order to get the decision rule for the Pareto weights correct

for moderate values of the endowment it is important to have the correct specification of states and

probabilities for extreme possibilities. In the right most figure we see that the weights move even less

when agent one’s risk-sensitivity parameter is closer to zero.

In Section nine we apply Theorem seven to an example in which all agents have power reward

functions. In Section eight when risk-sharing between risk-sensitive and non-risk-sensitive agents is

discussed, we will be able to show a stronger result which does not require Assumption 10 and allows

the economy to have many agents.

31



6 Stability

This section describes the long-run behavior of Pareto weights and characterizes the stability of steady

states. The proofs of stability presented in this section rely on Doob’s Martingale Convergence The-

orem. The probabilities under which we consider convergence are the true probabilities π. We begin

be defining a stable Pareto weight vector, a martingale and a supermartingale. To make the paper

self-contained we then state Doob’s Theorem, and a related result.

Definition 7 A Pareto weight vector, θ∗, is stable if {θt}∞t=0 converges with probability one to θ∗

starting from any initial interior Pareto weight vector θ0 at time zero.

Definition 8 The stochastic process {λt}∞t=0 is a supermartingale (resp. martingale) if Etλt+1 ≤ λt

(resp. Etλt+1 = λt ) for all t.

Theorem 8 (Martingale Convergence Theorem (Doob (1953))) If the stochastic process {λt}∞t=0

is a supermartingale and λt ≥ b for all t where b is finite then λt converges with probability one to a

finite random variable.

Theorem 9 If for a stochastic process {λt}∞t=0

1. There is a probability π such that for any λt > 0 there exists a d > 0 such that

probt (|λt+1 − λt| ≥ d) ≥ π > 0. (47)

For any constants λ and λ, if λt satisfies +∞ > λ ≥ λt ≥ λ > 0 the constant d can be chosen

independent of λt.

2. Etλt+1 ≤ λt and λt ≥ 0.

then {λt}∞t=0 converges with probability one to zero.

See the appendix for a proof of Theorem nine. Doob’s Martingale Convergence Theorem states that

supermartingales (and martingales) bounded from below converge to a random variable. Theorem nine

strengthens the Martingale Convergence Theorem and provides sufficient conditions for a martingale

to converge to zero with probability one. Our proofs of stability will apply the Martingale Convergence

Theorem and Theorem nine to the first-order conditions of the social planner’s dynamic programming

problem.

The following result allows us to apply the theorems.
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Lemma 1 The expected value of next period’s Pareto ratio is

Et

[
θit+1

θjt+1

]
=

θit

θjt
−

covt

(
eσjQj(xt+1,θt+1), θit+1

θjt+1

)
Et

[
eσjQj(xt+1,θt+1)

] . (48)

The proof of Lemma one is in the appendix and involves taking expected values of the first-order

conditions of the social planning problem and rearranging terms. The proofs of stability which follow

will work by generating conditions under which the covariance term in equation (48) can be shown to

be greater than or equal to zero. When it can the Pareto ratios are a supermartingale. Sometimes it

is very easy to sign the covariance term. For example if σj = 0 then the covariance term is always

zero. Section eight uses this insight to analyze stability when there are economies with some agents

who have risk-sensitive preferences and some who have time-additive preferences. We now show that

even when all agents are strictly risk-sensitive the covariance term can sometimes be signed.

The following theorem gives sufficient conditions for a steady state Pareto weight vector to be

stable or not stable in terms of δ21 which was defined in equation 34. The proof of the theorem signs

the covariance term in Lemma one and verifies that the hypotheses of Theorem nine are satisfied.

The conditions are primarily useful when all agents have risk-sensitive preferences. They also apply

when some agents have time-additive preferences but in this case Section eight will show that stronger

results are available. The conditions of the theorem require the state to be i.i.d. over time and limit

the analysis to two agents.

Theorem 10 Let there be two agents who are denoted by i = 1, 2. Let Assumptions one thru 10 hold.

Let θ̄ be a regular steady state Pareto weight vector.

1. If

(a) for any fixed Pareto weight vector φ such that 1 > φ2 > θ̄2 it is the case that δ21 (y, φ) is a

strictly decreasing function of y and

(b) for any fixed Pareto weight vector φ such that 0 < φ2 < θ̄2 it is the case that δ21 (y, φ) is a

strictly increasing function of y

then θ̄ is stable.

2. If

(a) for any fixed Pareto weight vector φ such that 1 > φ2 > θ̄2 it is the case that δ21 (y, φ) is a

strictly increasing function of y and

(b) for any fixed Pareto weight vector φ such that 0 < φ2 < θ̄2 it is the case that δ21 (y, φ) is a

strictly decreasing function of y
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then θ̄ is not stable.

See the appendix for a proof. The result also applies if there are equal numbers of two types of

agents. Since there are only two agents (or two types of agents) it is possible to generalize the result

so that it applies when θ̄ is any steady state Pareto weight vector, not necessarily a regular steady

state (Anderson 1998). Theorem 10 can readily be applied to an example in which all agents have

logarithmic utility. Consider the example described in Section 4.4.3 and Section 5.2 in which agents

have logarithmic reward functions. Let there be two agents and assume agent two has a lower risk-

sensitivity parameter. Recall that δ21 (y, φ) is strictly decreasing in y when σ2 < σ1. Hence by Theorem

10 the regular state Pareto weight vector which sets θ̄1 = 1 and θ̄2 = 0 is stable since the condition in

(1a) is satisfied. The condition in (1b) does not apply since φ2 cannot be less than zero. The weight

of the agent who has a lower risk-sensitivity parameter converges to zero with probability one.

There is a very close connection between risk-sharing in the short run and long run. The conditions

in Theorem seven on δ21 to guarantee that the optimal choice of next period’s Pareto weight is a strictly

increasing (respectively decreasing) function of next period’s state are identical to the conditions in

Theorem 10 to guarantee that a Pareto weight vector is not stable (resp. stable). This suggests that

agents face a long run penalty for smoothing future utility when the smoothness is achieved by varying

Pareto weights.

Figure two graphs the evolution of the Pareto weight on agent two when there are two agents who

have logarithmic reward functions. Agent two has time-additive preferences and agent one has risk-

sensitive preferences with σ1 = −1. The probabilities of the state are given by specification B. The

graph is for one draw of values for the exogenous state.

In Section nine we apply Theorem 10 to an example in which all agents have power reward functions.

In Section eight when risk-sharing between risk-sensitive and non risk-sensitive agents is discussed, we

will be able to show a stronger result which does not require Assumption 10 and allows the economy

to have many agents.

7 Distorted beliefs and equilibria

Prior to considering more examples we discuss two notions that will help us understand the mechanisms

behind dynamic risk-sharing. Section 7.1 discusses an equivalent formulation of the social planning

problem where agents have distorted beliefs and Section 7.2 decentralizes Pareto optimal allocations.
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Figure 2: Evolution with logarithmic rewards
An example of the evolution of the Pareto weight on agent two when there are two agents who have logarithmic
reward functions. The discount factor for both agents is β = 0.95. Agent two has time-additive preferences so

that σ2 = 0 and agent one has risk-sensitive preferences with σ1 = −1. The probabilities of the state are given by
specification B. The initial Pareto weight on agent two is 0.50. The Pareto weight is graphed for 1x107 time

periods. (On the graph one point is plotted for every 10,000 periods so that 1000 points are plotted. This masks
the local variability in the Pareto weights. )
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7.1 Distorted beliefs

This section shows that the social planning problem described in previous sections is equivalent to a

social planning problem in which agents have time-additive preferences with distorted beliefs.

Assume we have a risk-sensitive heterogeneous agent economy and its solution, as described in

previous sections. We have individual value functions for all agents and the lifetime utility for agent i

from time t onward is

Uit

(
xt
)

= Qi

[
xt, θt

(
xt
)]

. (49)

Here θt

(
xt
)

is the Pareto weight vector at time t and the history of states is xt at time t.

Consider an economy in which agents have distorted beliefs and time-additive preferences. Let

agent i believe that the time zero probability that the history xt will be realized at time t is

Mit

(
xt
)

βt
. (50)

These are well formed beliefs since Mit ≥ 0 and for any t

∑
xt

(
Mit

(
xt
)

βt

)
= 1. (51)

The summation over xt indicates summation over all histories that can be realized at time t. We assume

the agent takes these probabilities as being exogenous, even though they will depend upon the Pareto

optimal allocation. Let agent i’s lifetime utility function be

∞∑
t=0

∑
xt

βt

(
Mit

(
xt
)

βt

)
ui

[
cit

(
xt
)]

. (52)

where Mit is treated as exogenous.

A Pareto optimal allocation can be computed by maximizing

n∑
i=1

∞∑
t=0

∑
xt

θiβ
t

(
Mit

(
xt
)

βt

)
ui

[
cit

(
xt
)]

(53)

by choice of a feasible consumption allocation where θi is the Pareto weight of agent i. Since Mit for

all i are exogenous and taken as given the first-order conditions are

θiMit

(
xt
)
u′i
[
cit

(
xt
)]

= θjMjt

(
xt
)
u′j
[
cjt

(
xt
)]

(54)
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for all dates, all histories xt, and all pairs of agents i and j. These are identical to the first-order

conditions for the social planner’s problem given in equation 17. So, a risk-sensitive heterogeneous

agent problem is identical to a problem in which agents have heterogeneous beliefs.

Our results about steady states have a nice interpretation in this equivalent economy with distorted

beliefs. When agents are at an interior steady state in a risk-sensitive economy then in the equivalent

economy agents have the same beliefs. Later sections will interpret our stability results in the context

of the equivalent economy.

7.2 Equilibrium

This section decentralizes a Pareto optimal allocation.11

Let wi ≥ 0 be the initial wealth for agent i. Let pt

(
xt
)

be the time zero price of time t, history xt

consumption. The agent’s problem is to maximize their lifetime utility function (which is given either

by Ui0 or equation 52) subject to the lifetime budget constraint:

∞∑
t=0

∑
xt

pt

(
xt
)
cit

(
xt
)

= wi (55)

where the prices pt are taken as given. First-order conditions for the agent’s problem are

u′i
[
cit

(
xt
)]
Mit

(
xt
)

= µipt

(
xt
)

(56)

for all dates and states where µi is a Lagrange multiplier on constraint (55). If we define

µit

(
xt
)

=
µi

Mit (xt)
(57)

then the first-order conditions for the agent’s problem can be written as

u′i
[
cit

(
xt
)]

= µit

(
xt
)
pt

(
xt
)
. (58)

µit can be thought of as a Lagrange multiplier for a problem in which at date t agent i maximizes Uit

by choice of consumption allocations from date t on, using information available at time t, such that

his lifetime budget constraint from date t on is satisfied.

An equilibrium is prices for all dates and states, initial wealth for all agents and consumption

allocations for all agents such that
11Ma (1993) has studied the existence of equilibria for a wide range of recursive preferences.
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1. Given prices, the Pareto optimal allocation for each agent is the solution to their problem.

2. The aggregate resource constraints are satisfied at all dates and states.

Given a Pareto optimal allocation it is always possible to decentralize the allocation by finding

prices that satisfy our definition of an equilibrium. For some fixed agent i, prices can be taken as

pt

(
xt
)

=
u′i
[
cit

(
xt
)]
Mit

(
xt
)

u′i [ci0 (x0)]
(59)

where cit is the Pareto optimal consumption allocation for agent i. The initial wealth of any agent can

be defined as the value of their Pareto optimal consumption allocations using the prices pt and can be

computed to satisfy equation 55. The ratio of the Lagrange multipliers for any two agents is equal to

the inverse of the ratio of their Pareto weights

µit

(
xt
)

µjt (xt)
=

θjt

(
xt
)

θit (xt)
(60)

for all histories.

In this paper we often talk about the wealth distribution and often say some agents are richer than

others even though we primarily deal with Pareto weights. This is justified (at least when agents have

the same preferences) because of the connection between Pareto weights and the Lagrange multipliers

on the agent’s budget constraints described in this section. When reading this paper, it is also important

to remember that at time zero all that matters to agents is their lifetime utility. Agent can be viewed as

choosing their current and future consumption. When the consumption for some agents tends toward

zero over time, that is optimal for the agent at the equilibrium prices. Agents do not directly care if

their Pareto weights are converging to zero or not.

Although it is always possible to decentralize a Pareto optimal allocation, the decentralization may

have some unappealing features for reasons outside of the model. For example, let the aggregate

state be i.i.d. over time and equal to aggregate consumption. Consider a decentralization in which

individuals are endowed with units of the consumption good that are i.i.d. over time. If an agent sees

their Pareto weight converging to zero it must be that eventually a date is reached in which this agent

has sold all of his future endowments to other agents. This is troubling for reasons outside of the model.

First, it is not very plausible that someone is allowed to sell all their future endowments. Second, if a

large fraction of the population falls into this situation the equilibrium may not be sustainable in the

sense that agents would likely start a revolution and cancel past contracts.
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8 Risk-sensitive and time-additive agents

In this section we consider economies in which there are both risk-sensitive and time-additive agents.

We begin by showing that the mixture of time-additive and risk-sensitive agents precludes the existence

of interior steady states. We then show how risk is shared in the short run and in the long run. We

show that an exterior steady state in which all risk-sensitive agents receive a weight of zero is stable.

Consider an economy in which there is at least one agent who has time-additive preferences and at

least one agent who has non-degenerate risk-sensitive preferences. Let agent j be any agent who has

time-additive preferences so that σj = 0. Let agent i be any agent who has non-degenerate risk-sensitive

preferences so that σi < 0. There may be other agents in the economy that have either time-additive

or risk-sensitive preferences. Let Assumptions one thru six hold.

In this economy there can be no interior regular steady states since

σiui

(
ci

(
e, θ̄
))
− σjuj

(
cj

(
e, θ̄
))

= σiui

(
ci

(
e, θ̄
))

varies with e. This follow from Theorem two.12 As long as Assumptions eight and nine hold there

also are no interior steady states, since ωij will not be a singleton if θ̄i > 0. Any two time-additive

agents will always be in a private steady state, in which their Pareto ratios are constant over time.

A risk-sensitive agent and a time-additive agent can never be in a private steady state in which they

both have positive Pareto weights.

How risk is shared away from the steady state? Recall the first-order condition from Section 3.4

when this period’s exogenous state is x and this period’s Pareto weight vector is θ :

φiy

φjy
=
(

θi

θj

)
exp (σiqiy)∑

z∈X π (x, z) exp (σiqiz)
(61)

where qiy = Qi (y, φy) . Given particular values for this period’s state x and this period’s Pareto weight

vector the term θi/
[
θj
∑

z∈X π (x, z) exp (σiqiz)
]

on the right hand side of equation 61 is fixed. The

only term that can vary with next period’s state is exp (σiqiy) . Since σi < 0, it must be that the Pareto

ratio φiy/φjy increases as qiy decreases. Since the expected value of the right hand side of equation 61

is θi/θj it must be that when agent i has sufficiently large values of lifetime utility his Pareto weight

decreases and when he has sufficiently low values his Pareto weight increases.13

12 σiui

(
ci
(
e, θ̄
))

must vary with e by Assumption four. Strict concavity of the reward functions guarantees that the consumption
of every agent varies with the aggregate endowment for a fixed interior Pareto weight vector.

13qiy can not be constant across states y because there are no steady state Pareto ratios for agents i and j.
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First-order condition 61 tell us that the Pareto weights move in order to provide the risk-sensitive

agent with a smoother lifetime utility allocation. In bad aggregate states the risk-sensitive agent will see

his Pareto weight increase over last period’s Pareto weight. In good aggregate states the risk-sensitive

agent will see his weight decrease.

In the equivalent distorted beliefs economy described in Section 7.1, a risk-sensitive agent is pes-

simistic. He places a high probability (higher than the true probability) on those states in which he

does poorly. In a decentralized economy he chooses to spend a large fraction of his wealth on states in

which he does poorly. For example a pessimistic agent might worry about the prospects of a world-wide

nuclear war. Because of this he spends a large fraction of his wealth on a bomb-shelter, canned foods,

generators, batteries, etc., so that in the event of a nuclear war his utility is relatively close to his

utility if there had been no war. If there is a war, he likely will have a high Pareto weight because

most other agents have chosen not to prepare for a war. However, if there is no war he likely will have

a low Pareto weight. A social planner who allocates consumption would want to give risk-sensitive

relatively more consumption in states in which they place high probability, since the social planner

takes an agent’s objective, equation 52, as given. Even though a risk-sensitive agent may have a large

Pareto weight when there is a nuclear war, he still has more utility when there is no war. Relative to

time-additive agents he does better when there is a nuclear way but in absolute terms he does worse.

We now turn toward the main result of this section which describes risk-sharing in the long run.

The result shows that a steady state in which all risk-sensitive agents receive zero weight is stable.

Theorem 11 Let Assumptions one thru nine hold. Consider an economy in which there is at least

one agent who has time-additive preferences and at least one agent who has risk-sensitive preferences

with a strictly negative risk-sensitivity parameter. Assume at least one of the time-additive agents has

an initial Pareto weight which is strictly positive. Consider the steady state Pareto weight vector θ̄,

which is not interior, that assigns weights of zeros to the risk-sensitive agents and weights such that

θ̄i

θ̄j
=

θi0

θj0
(62)

for any two time-additive agents i and j such that θj0 > 0. This steady state is stable.

Theorem 11 tells us that if there is at least one-agent who has time-additive preferences then

eventually the weights of all risk-sensitive agents converge to zero with probability one. In the end

with probability one, time-additive agents consume all of the aggregate endowment and risk-sensitive

agents consume nothing.
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In the theorem θi0/θj0 is the initial time zero ratio of Pareto weights for agents i and j. See the

appendix for a proof. The proof works by applying Lemma one and letting any time-additive agent

play the role of agent j. Assume agent one has time-additive preferences with θ10 > 0 and set j = 1.

For any time-additive agent i, θit/θ1t is constant over time. For any risk-sensitive agent i, the Pareto

ratios are a non-negative martingale:

Et

[
θ̄it+1

θ̄1t+1

]
=

θit

θ1t
.

This follows because the covariance term in equation 48 is zero. By the martingale convergence theorem

θit/θ1t converges to a constant (with probability one), when starting from a fixed initial Pareto weight

vector. The proof in the appendix shows that zero is the only constant that it can converge to with

positive probability.

Even though the Pareto weight of agent i converges to zero with probability one and θ̄1t converges

to a positive number, the time zero expected value of the Pareto ratio θ̄it/θ̄1t does not converge to zero

as t tends toward infinity. For any t, the time zero expected value of the time t Pareto ratio

E0

[
θ̄it

θ̄1t

]
=

θi0

θ10
(63)

is just the initial value of the Pareto ratio. Since with probability one the Pareto ratio is converging

to zero, it must be that there are states far into the future that occur with probability zero, such that

the risk-sensitive agent has a very large Pareto weight and the time-additive agent has small Pareto

weight. From the point of view of time zero, if we measure the expected future wealth distribution

between a risk-sensitive and a time-additive agent with their Pareto ratio θ̄it/θ̄1t it is the case that

the expected future wealth distribution is equal to this period’s wealth distribution even though with

probability one agent i is eventually going to consume nothing and agent one is going to consume a

positive amount.

The large variability in future Pareto weights may incorrectly be seen as introducing extra uncer-

tainty into the economy. Agents don’t know what their future Pareto weights will be: their weights

could be very large or very low. The reason it is optimal for the Pareto weights to be variable is

to ensure that risk-sensitive agents receive a relatively smooth (relative to an economy in which the

Pareto weights are constant) allocation of future utility across states. The time-additive agents receive

a relatively variable allocation across states.

Another interpretation of these results is that under the beliefs of risk-sensitive agents, in the

equivalent distorted beliefs economy their Pareto weights are not converging to zero. If agents have

distorted beliefs, as in the equivalent economy described in Section 7.1, they will, in a decentralized
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economy, purchase consumption in states they believe are likely to occur. For dates far into the future

agents with risk-sensitive preferences purchase most of their consumption in a group of states that

they think will occur with probability one. In fact this group of states may occur with probability

zero. In states that occur with high probability agents with distorted beliefs may purchase very little

consumption as a consequence with probability one their consumption tends toward zero since time-

additive agents have the correct beliefs and purchase most of their consumption in states that do occur

with probability one.

Consider again the example in which a pessimistic agent worries about the prospects of a world-wide

nuclear war. Because of this he spends a large fraction of his wealth on building a bomb-shelter, buying

canned foods, generators, batteries, etc. If there is no war he likely will have a very low Pareto weight

since he has spent so much of his wealth on items that are only useful when a war occurs. Since there

is only a small probability that there is a war, it is very likely in the long run this agent will have a

low Pareto weight.

The results of this section are related to results in Sandroni (2000). Sandroni (2000) shows in the

context of heterogeneous belief economies, when all agents have the same discount factor, agents who

eventually have accurate beliefs survive. If there is some agent who has accurate beliefs then all agents

who have inaccurate beliefs eventually vanish from the economy. As we know from Section 7.1, a social

planning problem with risk-sensitive agents is equivalent to a social planning problem problem with

agents who have heterogeneous beliefs. In this equivalent economy time-additive agents always have

accurate beliefs and strictly risk-sensitive agents never will have accurate beliefs.14 Hence time-additive

agents survive and risk-sensitive agents vanish.

9 Power reward functions

In this section we discuss examples in which all agents are risk-sensitive and have power reward functions

of the form

ui(c) =
c1−γi

1− γi
(64)

where γ > 0 and γ 6= 1. Since power reward functions are often studied in macroeconomics when agents

have time-additive preferences, it is interesting to see what happens to risk-sharing when power reward

functions are combined with risk-sensitive preferences. Unlike examples in previous sections, it will

not always be the case that agents who have a lower risk-sensitivity factor necessarily see their Pareto

weights going to zero. Instead the initial Pareto weights (wealth), in addition to the risk-sensitivity
14Risk-sensitive agents would have accurate beliefs if there was no uncertainty in their future consumption. However, as long there

is uncertainty in the aggregate endowment it is not optimal to allocate risk-sensitive agents a deterministic consumption sequence.
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parameters, determine long run consumption. Section 9.1 shows that when all agents have identical

power reward functions there exists a unique interior regular state. This steady state is stable when

γi < 1 and unstable when γi > 1. In Section 9.2 we show that when agents have heterogeneous power

reward functions there are no interior regular states.

9.1 Identical power rewards

We begin by characterizing the unique interior regular steady state.

Theorem 12 Let all agents have identical power reward functions of the form ui(c) = c1−γ

1−γ with γ > 0

and γ 6= 1. Let all agents be strictly risk-sensitive with σi < 0. Let Assumptions one thru three and

Assumptions five thru six hold. In this economy there is a unique interior regular steady state Pareto

weight vector, θ̄, which sets

θ̄i =

(
− 1

σi

) γ
1−γ

∑n
j=1

(
− 1

σj

) γ
1−γ

for all i.

See the appendix for a proof. The result also applies if there are equal numbers of two types of

agents. As long as Assumptions eight and nine hold this is also the unique steady state since the

one-period risk-sharing rules are linear in aggregate consumption. The steady state Pareto ratios can

be written as
θ̄i

θ̄j
=
(

σj

σi

) γ
1−γ

where
∑n

j=1 θ̄j = 1. This will be a steady state Pareto ratio for agents i and j regardless of the

preferences of other agents since θ̄ is a regular steady state. Notice that there exists a unique interior

steady state even if the agents have different risk-sensitivity parameters. The unique interior steady

state Pareto weight vector will be such that θ̄i = 1/n for all i only if σi is constant across agents.

It is interesting to compare the steady state consumption of two agents with different risk-sensitivity

parameters. Let the agents be denoted by one and two and let agent two’s risk-sensitivity parameter

be lower (more negative) than agent one’s. In a steady state, agent one receives more consumption (in

every date-state) when 0 < γ < 1 and less when γ > 1. As γ approaches one from the left the steady

state ratio of Pareto weights, θ̄2/θ̄1, approaches 0. As γ approaches one from the right the steady state

ratio of Pareto weights tends towards +∞. Figure three graphs the steady state Pareto weight of agent

two as function of γ when σ1 = −1 and σ2 = −2.

We now characterize how risk is shared away from the steady state and the stability of steady states

when there are two agents and the aggregate endowment is i.i.d.
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Figure 3: The interior steady state and stability when agents have the same reward functions
Let there be two agents. The sold line graphs the unique interior steady state Pareto weight for agent two as a
function of γ when σ2 = −2 and σ1 = −1. When γ = 1 (which I take to correspond to log rewards) there are no
interior steady states. The arrows indicate the stability of the interior steady state. For example, when γ = 2 the
interior steady state is unstable and when γ = 0.5 the interior steady state is stable.

Theorem 13 Let there be two agents who are denoted by i = 1, 2. Let Assumptions one thru three and

Assumptions five thru 10 hold. Let both agents have power reward functions with the same γ. Let θ̄ be

the unique interior regular steady state Pareto weight vector.

1. Positive powers. If 0 < γ < 1 then

(a) For any fixed Pareto weight vector θ such that 1 > θ2 > θ̄2 (respectively 0 < θ2 < θ̄2) it

is the case that the optimal choice of next period’s Pareto weight for agent two is a strictly

decreasing (increasing) function of next period’s state y.

(b) The Pareto weight vector θ̄ is stable.

2. Negative powers. If γ > 1 then

(a) For any fixed Pareto weight vector θ such that 1 > θ2 > θ̄2 (respectively 0 < θ2 < θ̄2) it

is the case that the optimal choice of next period’s Pareto weight for agent two is a strictly

increasing (decreasing) function of next period’s state y.

(b) The Pareto weight vector θ̄ is not stable.

For positive powers we have a very strong result. With probability one the Pareto weight vector is

going to end up at an interior steady state. For negative powers our theoretical result is weaker. All

that we have proved is that the unique interior steady state is unstable which means there is positive

probability that when starting from an interior Pareto weight vector (that is not equal to the interior
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steady state) that we end up away from the interior steady state. Since it can be shown the Pareto

weights are a supermartingale in this case they still must be converge to some constant with probability

one, for a fixed initial Pareto weight vector. (See the proof of Theorem 13 for a discussion.) The only

constants that it could converge to are an interior steady state or an exterior steady state in which

one agent has a Pareto weight of one. By the no-crossing property there is only one agent who could

receive a Pareto weight of one in the long run. Substantial numerical explorations suggest that with

probability one the Pareto weights converge to an exterior steady state with one agent receiving a

weight of one. However, since only a finite number of simulations were run this result can not be

unquestionably verified.

The dynamics depend on the relationship between the current period Pareto weight vector, the

unique interior regular state Pareto weight vector θ̄, and the power γ in the agent’s reward functions.

Following Theorem seven and Theorem 10 the effect of these variables is summarized by whether or not

δ21 (y, φ) is increasing, decreasing or constant in y. For example let there be two agents, as in Figure

three, with σ2 = −2 and σ1 = −1. If γ = 2 for both agents then if the initial weight on the more

risk-sensitive agent, agent two, is 0.9 then eventually (based on numerical explorations) agent two will

consume all of the aggregate endowment. But, if the initial weight on the more risk-sensitive agent is

0.5 then eventually (again based on numerical explorations) agent two will consume nothing.

Figure 4 graphs the evolution of Pareto weights for two examples. In the right graph we verify the

result in Theorem 13 that for positive powers interior steady states are stable. In the left graph we

investigate what happens for a negative power. We see that agent two eventually receives a Pareto

weight of one.

When agents have identical power rewards, we do not have analytic results when there are more

than two (types of) agents or when the state is not i.i.d. Such results should be feasible but the proofs

are very involved. Neither assumption is essential for the results. From numerical explorations we

find that the same results hold if the aggregate endowment follows an AR(1) process and is positively

serially correlated. Numerically, we find when there are more than two agents, if all agents have the

same positive power then interior steady states will be stable. Numerically, if all agents have the same

negative power then, provided no two agents are initially in a private steady state, a single agent will

eventually have a Pareto weight of one and all other agents will have a weight of zero. If some agents

are in a private steady state then it is possible that multiple agents will have positive weights in the

long-run.

Some of the results in this section have the same flavor as results in Dumas (1989) but there are

important differences. Dumas (1989) considers a continuous time heterogeneous agent economy with
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two agents who have heterogeneous power reward functions. The economy is more general than the

economies considered in this paper in that it includes production. It is less general in that its analysis

is restricted to time-additive utility. With time-additive utility the wealth distribution only varies over

time in interesting ways if there is growth. In Dumas (1989) there can be (endogenous) growth. The

interesting aspect of the results in this paper is that the long run results in risk-sensitive economies

happen when there is no growth. If there was growth then there would be an additional mechanism that

could cause consumption distributions to vary over time, independent of changes in Pareto weights.

Like some of the results of earlier sections, the results of this section are related to results in

Sandroni (2000). Sandroni (2000) shows in the context of heterogeneous belief economies that agents

who have the most accurate beliefs (as measured by entropy) survive and all other agents vanish.15 As

we know from Section 7.1, a social planning problem with risk-sensitive agents is equivalent to a social

planning problem problem with agents who have heterogeneous beliefs. In this equivalent economy

when all agents have positive powers, all agents eventually have the same beliefs and thus survive. In

this equivalent economy when all agents have negative powers, agents do not eventually have the same

beliefs and some agents do not survive.

The mechanism driving the results in the equivalent distorted beliefs economy is as follows. For

positive powers, the beliefs of richer agents are farther from the true probabilities than the beliefs of

poorer agents. Richer agents pay short and long run penalties for this: their Pareto weights tend to

decrease over time. Over time the gap between the rich and poor decreases so that eventually all agents

have the same beliefs and we are at an interior steady state. For negative powers, the beliefs of richer

agents are closer to the true probabilities than the beliefs of poorer agents. Now poorer agents agents

pay short and long run penalties for this: their Pareto weights tend to decrease over time. Hence the

gap between rich and poor agents widens over time until eventually some agents consume nothing.

9.2 Heterogeneous power rewards

In this subsection we let agents have heterogeneous power reward functions of the form ui(c) = c1−γi

1−γi

with γi > 0 and γi 6= 1 and let all agents be strictly risk-sensitive with σi < 0. Assume for some pair of

agents i and j it is the case that γi 6= γj . The power reward function satisfies the properties listed in

Assumption four. We will assume throughout that Assumptions one thru three and Assumptions five

thru six hold.
15Anderson (1998) also explored the use of entropy in determining the long run behavior of allocations when agents have recursive

utility and/or heterogeneous beliefs. Also see Blume and Easley (1992) for a discussion of entropy.
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Figure 4: Evolution with identical power preferences
Evolution of the Pareto weight on agent of two when β = 0.95, σ = −1 and agents have the same γ. In the left
graph γ is 2.0 for both agents and in the right graph γ is 0.5 for both agents. The probabilities are given by
specification B. The initial Pareto weight on agent two in the left graph is 0.51 and in the right graph 0.99. The
Pareto weight is graphed for 1x106 time periods. (On the graph one point is plotted for every 1000 periods so that
1000 points are plotted. )

We show there does not exist any interior regular steady states. If θ is an interior regular steady

state then we must have16

(
θi

θj

) 1−γi
γi σi [cj (e, θ)]

γj
γi

(1−γi)

1− γi
− σjcj (e, θ)1−γj

1− γj
= d (66)

for some constant d and all possible e. Differentiating this equation with respect to e yieldsγj

γi

(
θi

θj

) 1−γi
γi

σi [cj (e, θ)]
γj
γi

(1−γi)−1 − σjcj (e, θ)−γj

 ∂cj (e, θ)
∂e

= 0. (67)

Dividing by c
−γj

j ∂cj/∂e and rearranging terms yields the requirement that

γj

γi

(
θi

θj

) 1−γi
γi

σi [cj (e, θ)]
γj
γi
−1 = σj . (68)

16This follows because the optimal one-period consumption allocation rules satisfy the first-order condition

θi [ci (e, θ)]−γi = θj [cj (e, θ)]−γj . (65)

Solving this equation for ci (e, θ) and placing the result in σiui [ci (e, θ)]− σjuj [cj (e, θ)] yields the left hand side of equation 66.
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This equation can only be satisfied if γi = γj or if cj (e, θ) does not vary with e. We have assumed

γi 6= γj and cj (e, θ) varies with the aggregate endowment because of the reasons given in footnote 12.

By Theorem two there are no interior regular steady states. If Assumptions eight and nine hold then

Corollary one guarantees that there also are no interior steady states.

What do the dynamics of allocations look like in this case? The no-crossing property does not apply

so there are no interior bounds on the evolution of Pareto weights. One can numerically show that

if γ for all agents is between zero and one then there exists a non-degenerate invariant distribution

among agents. If γ for all agents is greater than one then with positive probability, one agent will have

a Pareto weight of one. Which agent, if any, receives a weight of one in the limit depends upon the

realizations of the endowment.

10 Conclusions

Although the allocation rules discussed in this paper were derived in an endowment economy they

apply more generally when the optimal law of motion for a state vector follows a Markov process.

Given the optimal law of motion and the optimal choice of aggregate consumption, the results of this

paper can be used to show how consumption will be shared if optimal aggregate consumption satisfies

the assumptions placed on the exogenous aggregate endowment in this paper.17

17A number of papers that were written at about the same time as this paper discuss related issues. Liu (2002) discusses heterogeneous
agent economies with Knightian uncertainty. Hansen and Sargent (2003) discuss an environment with multiple agents who have a
preference for robustness. Epstein (2001) and Epstein and Miao (2003) discuss sharing ambiguity.

48



Appendix

Value function iteration

This part of the appendix follows up on an observation made in Section 3.3. Following Lucas and Stokey (1984) and
Kan (1995) we describe how one can iterate on an initial guess of the social planner’s value function Q to compute the the
social planner’s value function. Given a guess at the social planner’s value function Qk, consider the following problem:

Qk+1 (x, θ) = max
{ci≥0,qi≥q

i
}n

i=1

n∑
i=1

θiWi(x, ci, qi) (69a)

where
n∑

i=1

ci = c(x) (69b)

and for each possible value, y, of next period’s state

0 ≤ min
φy∈Γn

[
Qk (y, φy)−

n∑
i=1

φiyqiy

]
. (69c)

To compute the fixed point one can choose an arbitrary function Q0 (x, θ) which is continuous; increasing and concave in
x; convex in θ; and finite. Then the social planner’s value function can be computed by iteration. It will be the case that

Q (x, θ) = lim
k→∞

Qk (x, θ) (70)

where Q is the social planner’s value function defined in equation 22 and Qk is the kth iteration on the dynamic program.

Proof of Theorem one

I will first prove part one and then prove part two. Throughout we only discuss agents who have strictly positive
Pareto weight. If θ̄i = 0 for some agent i then his weight next period will always be zero. Let

qiy = Qi

(
y, θ̄
)

(71)

be the utility remaining for agent i when the current period state is y and the current period Pareto weight vector is θ̄.
Throughout y is an arbitrary value of the state and θ̄ is a fixed particular value for the Pareto weight vector.

Let the Pareto weight vector be θ̄ this period. If Ωij(x, θ̄) is a singleton for agents i and j then there exists a real
number gij such that

σiqiy = gij + σjqjy

for all possible values of the exogenous state y that can occur next period. gij can vary with i and j but cannot vary
with y. If this condition is met for agents i and j then agents i and j will have the same marginal value of utility next
period. More formally agent i’s marginal value of utility next period when next period’s state is y, is equal to agent j’s:

Mi (x, y, qi) =
βπi (x, y) exp (σiqiy)∑
z∈X π (x, z) exp (σiqiz)

=
βπj (x, y) exp (σjqjy + gij)∑
z∈X π (x, z) exp (σjqiz + gij)

= Mj

(
x, y, qj

)
.

If qiy is given by equation 71 and
φiy

φjy
=
θ̄i

θ̄j

for all i and j the first-order conditions 29b and 29c are satisfied. Since there is a unique solution to the first-order
conditions, next period’s Pareto weight vector is θ̄. Since Ωij(x, θ̄) is a singleton for all x this argument applies at every
date in the future (with possibly a different value of gij ). Hence the Pareto weight vector remains at θ̄ every date and
state in the future.

49



Now for part two. If the Pareto weight vector equals θ̄ this period and in every state which can occur next period it
must be the case, by first-order condition 29b, that Mi (x, y, qi) = Mj

(
x, y, qj

)
. Now,

Mi (x, y, qi) = Mj

(
x, y, qj

)
(72a)

βπi (x, y) exp (σiqiy)∑
z∈X π (x, z) exp (σiqiz)

=
βπj (x, y) exp (σjqjy)∑
z∈X π (x, z) exp (σjqjz)

(72b)

exp (σiqiy − σjqjy) =

∑
z∈X π (x, z) exp (σiqiz)∑
z∈X π (x, z) exp (σjqjz)

(72c)

σiqiy − σjqjy = log

[∑
z∈X π (x, z) exp (σiqiz)∑
z∈X π (x, z) exp (σjqjz)

]
. (72d)

Equation 72b follows from the definition of M. Equation 72c follows by rearranging terms using the assumption that
agents have the same beliefs. Equation 72d follows by taking logarithms.

We have that equation 72d must hold for all states y that can occur next period with strictly positive probability.
However the right hand side cannot vary with y, so the left hand side must not vary with y. It follows that Ωij(x, θ̄) is
a singleton at all states that can occur next period. Since X is an ergodic set, all states, x, will be the current state at
some future date with strictly positive probability. So Ωij(x, θ̄) is a singleton for all states x.

Proof of corollary one

I will first prove part two and then prove part one. Throughout we only discuss agents who have strictly positive
Pareto weight. If θ̄i = 0 for some agent i then his weight next period will always be zero. Let

qix = Qi

(
x, θ̄
)

(73)

rix = ui

(
ci
[
c(x), θ̄

])
(74)

be shorthand for the lifetime and one-period utility remaining respectively for agent i when the current state is x and
the current period Pareto weight vector is θ̄. Throughout x is an arbitrarily value of the state and θ̄ is a fixed particular
value for the Pareto weight vector.

If θ̄ is a steady state then by Theorem one and Assumption eight there exists a real number gij such that

σiqiy = gij + σjqjy (75)

for all states y. Since qi satisfies the recursion

qix = rix +
β

σi
log
∑
z∈X

π (x, z) exp (σiqiz) (76)

it follows that (after multiplying both sides by σi)

σiqix = σirix + β log
∑
z∈X

π (x, z) exp (σiqiz) (77a)

= σirix + β log
∑
z∈X

π (x, z) exp (σjqjz + gij) (77b)

= σirix + β

[
gij + log

∑
z∈X

π (x, z) exp (σjqjz)

]
(77c)

where equation 77b uses equation 75, with y = z, to write qiz in terms of qjz. Multiplying the recursion 76 for agent j by
σj yields

σjqjx = σjrjx + β log
∑
z∈X

π (x, z) exp (σjqjz) . (78)

Subtracting 78 from 77c yields

σiqix − σjqjx = σirix − σjrjx + βgij (79)

gij = σirix − σjrjx + βgij (80)

(1− β)gij = σirix − σjrjx. (81)

Equation 80 uses equation 75, with y = x. The right hand side of equation 81 can not vary with x since the left hand side
does not depend upon x.

Now for part one. If ωij(x, θ̄) is a singleton for all agents i and j and for all states x then there exists a real number
dij such that

σirix = σjrjx + dij (82)
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for all possible values of the exogenous state x that can occur next period. The real numbers dij can vary with i and j
but can not vary with x. Again, we assume all agents have strictly positive weights. If any agent has a weight of zero,
they can be ignored since they will consume nothing and contribute nothing to the social planner’s value function.

Consider the following guess at the social planner’s value function

Q0 (x, θ) =

n∑
i=1

θiui (ci (x, θ)) . (83)

We will iterate, starting from Q0, to obtain a sequence of value functions which converge to Q, the solution of the dynamic
programming problem described in Section 3.3. On iteration k, let Qk be the social planner’s value function and let Qk

i

be the value function for agent i. We have (using arguments similar to the ones which justified equation 27 in the text)

Qk
i (x, θ) =


Qk (x, θ) θi = 1
∂Qk(x,θ)

∂θi
1 > θi > 0

q
i

θi = 0.

(84)

Define
qk

ix = Qk
i

(
x, θ̄
)
. (85)

On each iteration we will show that
σiq

k
ix − σjq

k
jx = gk

ij (86)

where gk
ij is a constant which does not vary with x but may vary with i, j and k. Equation 86 holds when k = 0 since

q0ix =
∂Q0 (x, θ)

∂θi
|θ=θ̄ = ui

(
ci
(
x, θ̄
))
. (87)

and
σiq

0
ix − σjq

0
jx = σirix − σjrjx = dij . (88)

The last equation follows from equation 82. Set g0
ij = dij .

On iteration k + 1, if equation 86 holds on iteration k then the optimal choice of next period’s Pareto weights are
φy = θ̄ for all y when this period’s Pareto weights are θ̄. To see this note that the first-order conditions on iteration k+ 1
include (

φiy

φjy

)
Mj

(
x, y, qk

j

)
=

(
θi

θj

)
Mi

(
x, y, qk

i

)
for all y where qk

i is given by equation 85. These are the analogs to the first-order conditions 29b and 29c when the value
function is Qk from next period on. If next period’s Pareto weights are θ̄ then equation 86 guarantees that the first-order
condition is satisfied with Mi = Mj .

Now, we show that if equation 86 holds on iteration k then it must hold on iteration k + 1. We have at θ̄

Qk+1 (x, θ̄) =

n∑
i=1

θ̄i

(
rix +

β

σi
log
∑
z∈X

π (x, z) exp
(
σiq

k
iz

))

=

n∑
i=1

θ̄i

(
rix +

β

σi
log
∑
z∈X

π (x, z) exp
(
σjq

k
jz + gk

ij

))

=

n∑
i=1

θ̄i

(
rix +

β

σi

[
gk

ij + log
∑
z∈X

π (x, z) exp
(
σjq

k
jz

)])
.

It follows that

qk+1
ix = rix +

β

σi

[
gk

ij + log
∑
z∈X

π (x, z) exp
(
σjq

k
jz

)]
and

σiq
k+1
ix − σjq

k+1
jx = σirix − σjrjx + βgk

ij (89)

= dij + βgk
ij . (90)

The right hand side of equation 90 does not vary with x so neither does the left hand side. We can set

gk+1
ij = dij + βgk

ij . (91)
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In the limit

σiQi

(
x, θ̄
)
− σjQj

(
x, θ̄
)

= lim
k→∞

[
σiq

k
ix − σjq

k
jx

]
(92)

= lim
k→∞

gk
ij (93)

=
dij

1− β
. (94)

Since the right hand side of equation 94 does not vary x it must be that

σiQi

(
x, θ̄
)
− σjQj

(
x, θ̄
)

(95)

does not vary with x. Hence by Theorem one, since Ωij(x, θ̄) is a singleton for all states x, θ̄ is a steady state.

Proof of Theorem two

First we show that if θ̄ is a regular steady state for all agents then for each pair of agents i and j who have strictly
positive weights

σiui

(
ci
(
e, θ̄
))
− σjuj

(
cj
(
e, θ̄
))

(96)

does not vary with e for all positive real numbers e, though it may vary with i and j. Then we show the converse.
We show the first part by contradiction. Assume the Pareto weight vector θ̄ assigns positive weights to agents i and

j. Assume there exist hypothetical non-negative values of the aggregate endowment ea and eb such that

σiui

(
ci
(
ea, θ̄

))
− σjuj

(
cj
(
ea, θ̄

))
6= σiui

(
ci
(
eb, θ̄

))
− σjuj

(
cj
(
eb, θ̄

))
. (97)

Construct an economy in which the state space is X = {ea, eb} where ea and eb are the possible values for the state
vector. Specify aggregate consumption to be the identity function of the current state so that c(ea) = ea and c(eb) = eb.
Let

π(ea, ea) = π(ea, eb) = π(eb, ea) = π(eb, eb) = 0.5. (98)

It follows by Corollary one that θ̄ is not a steady state in this economy. Hence θ̄ cannot be a regular state because there
exists a specification of the aggregate state space, aggregate consumption and transition probabilities in which θ̄ is not a
steady state.

Now for the converse. If equation 96 does not vary with e then it follows that, regardless of the specification of the
state space,

σiui

(
ci
[
c (x) , θ̄

])
− σjuj

(
cj
[
c (x) , θ̄

])
does not vary with the state x, since c(x) is a positive real number by Assumption Assumption two. Hence ωij(x, θ̄)
is a singleton for all states x and Corollary one guarantees that θ̄ is a steady state, no matter what the state space X ,
transition probabilities, and consumption are.

Proof of corollary two

Let θ̄ be a steady state Pareto weight vector and assume the one-period consumption allocation rules are linear in the
aggregate endowment. Write the one-period consumption allocation rules as

ci(e, θ) = si(θ)e (99)

where si is a function which can depend upon the Pareto weights, but not the aggregate endowment.
By Corollary one, given the current value of the state x, for all values of the state y that can occur next period with

strictly positive probability
σiui

(
ci
(
e, θ̄
))
− σjuj

(
cj
(
e, θ̄
))

(100)

does not vary with e = c(y) for any pair of agents i and j who have strictly positive weight. The derivative of line 100
with respect to e is

σiu
′
i

[
si

(
θ̄
)
e
]
si(θ̄)− σju

′
j

[
sj

(
θ̄
)
e
]
sj(θ̄). (101)

Now the first-order condition for current consumption allocations

θ̄iu
′
i

[
si

(
θ̄
)
e
]

= θ̄ju
′
j

[
sj

(
θ̄
)
e
]

(102)

implies that line 101 can be written as
θ̄jα(θ̄)u′j

[
sj

(
θ̄
)
e
]

(103)

where we define

α(θ̄) =
σisi(θ̄)

θ̄i

− σjsj(θ̄)

θ̄j

. (104)
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Since θ̄jα is a constant for a fixed θ̄ and u′j is strictly greater than zero then either the expression in line 103 (and
hence also line 101) is always exactly zero, always strictly negative, or always strictly positive. It can not be always
strictly negative or always strictly positive since if it was equation 100 would have to vary with y since e = c(y) because
Assumption nine guarantees that there are at least two distinct values of e(y) occur with strictly positive probability. So
α must always be exactly zero and equation 100 must be equal to a constant for all values of the aggregate endowment e
such that e > 0. Hence θ̄ is a regular steady state.

Proof of Theorem three

We will prove the result by showing that if λ̄ij is a steady state Pareto ratio for agents i and j then for all Pareto
weight vectors θ, such that

θi

θj
= λ̄ij (105)

it is the case that for all x ∈ X and all y ∈ X :

σiui (ci [c(x), θ])− σjuj (cj [c(x), θ]) = σiui (ci [c(y), θ])− σjuj (cj [c(y), θ]) . (106)

Let λ̄ij be a steady state Pareto ratio for agents i and j. Define

ξij(x, θ) = ci [c(x), θ] + cj [c(x), θ] (107)

to be the sum of the optimal consumption of agents i and j. Consider an auxiliary economy in which only agents i and j
participate. Let the exogenous state in this economy comprise of the vectors x and θ. The law of motion for x is the same
as in the original economy. The law of motion for θ is given by the optimal law of motion for the Pareto weights in the
original economy. In the auxiliary economy the evolution of θ is treated as exogenous. Denote the state in the auxiliary
economy as

x̂ =

[
x
θ

]
. (108)

The auxiliary economy is itself a risk-sensitive heterogeneous agent economy. In the auxiliary economy let the two
dimensional Pareto weight vector be θ̂ and set aggregate consumption, ĉ, so that

ĉ (x̂) = ξij(x, θ). (109)

In the auxiliary economy agents i and j will receive the same utility and the same consumption as in the original economy.
The Pareto weights will be constant and such that

θ̂i

θ̂j

= λ̄ij (110)

θ̂i + θ̂j = 1. (111)

We will be in a steady state for all agents in the auxiliary economy. Since the one-period consumption allocation rules are
linear, by Corollary two this steady state is regular. It follows that the weighted difference of one-period utility allocations
is constant for all values of the state that can occur with positive probability in the future. This guarantees that for all
x ∈ X and y ∈ X equation 106 holds.

Proof of Theorem four

Let θ̄ be a regular steady state. For any i and j let θ be a Pareto weight vector such that

θi

θj
=
θ̄i

θ̄j

. (112)

The solution to the social planner’s problem gives us formulas for the optimal choice of consumption for agents i and j
which we denote as ci [c(x), θ] and cj [c(x), θ] . Assume θ̄i > 0. If it is not then the proof is obvious.

Now construct a value for the aggregate endowment e, such that if the Pareto weights were θ̄, not θ, agents i and j
would still consume ci [c(x), θ] and cj [c(x), θ] . For agent k, let the function âk (x, θ) solve the equation

θ̄ku
′
k [âk (x, θ)] = θ̄iu

′
i (ci [c(x), θ]) (113)

if θ̄k > 0. If θ̄k = 0 then set âk (x, θ) = 0. âk is the amount that agent k would consume at the steady state θ̄, if agent i
consumes ci [c(x), θ] . Let

e(x, θ) =

n∑
k=1

âk (x, θ) . (114)
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Now it follows that

ci
[
e(x, θ), θ̄

]
= ci [c(x), θ] (115)

cj
[
e(x, θ), θ̄

]
= cj [c(x), θ] . (116)

Since θ̄ is a regular steady state
σiui

(
ci
[
e(x, θ), θ̄

])
− σjuj

(
cj
[
e(x, θ), θ̄

])
(117)

does not vary with x and θ. It follows that

σiui (ci [c(x), θ])− σjuj (cj [c(x), θ]) (118)

does not vary with x and θ.
Now the proof of Corollary one can be imitated to show that if equation 118 holds for all x and θ then the Pareto

ratios for agents i and j remain constant over time. The key step is to show that if we start from the guess in equation
83 then on iteration k

σiQ
k
i (x, θ)− σjQ

k
j (x, θ) = gk

ij (119)

is satisfied whenever θ satisfies equation 112. The constant gk
ij does not vary with x and θ but may vary with i and j,

The previous paragraph shows that this holds when k = 0. It is easy to show that it holds for all k.

Proof of Theorem five

Let E be values of the aggregate endowment at all dates and states. Let Fi (E) be the optimal consumption for agent
i at all dates and states if the Pareto weight vector remains at θ̄ in all dates and states. At the steady state θ̄ the social
planner’s preferences over the aggregate endowment can be written as

n∑
i=1

θ̄iUi [x0, Fi (E)] (120)

where Ui is defined in equation eight. Since the steady state is regular for any agents i and j who have positive weight

Ui [x0, Fi (E)] =

(
−σj

σi

)
Uj [x0, Fj (E)] +

gij

σi
(121)

where gij is a constant (see the proof of Theorem one for more discussion) and the social planner’s preferences can be
written as

ΛjUj [x0, Fj (E)] + Φj (122)

where

Λj =

[
n∑

i=1

θ̄i

(
−σj

σi

)]
(123)

Φj =

[
n∑

i=1

θ̄i
gij

σi

]
. (124)

The constant Φj does not affect the social planner’s preferences and can be disregarded.
Consider the case where all agents have the same risk-sensitivity factors. In this case Λj = 1 and the social planner’s

preferences at the steady state can be captured by

Uj [x0, Fj (E)] . (125)

Since j is arbitrary this argument works for any j. When agents have different risk-sensitivity factors it is always possible
to normalize the risk-sensitivity factors, to say σj for some particular j, by scaling the agent’s reward functions (see the
discussion in Section 2.3). To maintain the same steady state Pareto optimum the Pareto weights will have to be adjusted
also. After they are adjusted the argument at the beginning of this paragraph can be invoked to show that the social
planner’s preferences at the steady can be captured by equation 125 with j arbitrary.

Proof of Theorem six

Let θ be a Pareto weight vector and θ̄ a regular steady state. We will show if

θi

θj
>
θ̄i

θ̄j

(126)
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then the optimal choice of next period’s Pareto weight vector, φy, satisfies

φiy

φjy
>
θ̄i

θ̄j

(127)

in all states y.
Define θ̂ to be a modified version of θ which assigns the same weight to all agents as θ except that the weights assigned

to agents i and j are set to the steady state Pareto ratio for agents i and j:

θ̂i

θ̂j

=
θ̄i

θ̄j

(128)

θ̂k = θk k 6= i, j. (129)

When next period’s state is y, let φy and φ̂y be the optimal choice of next period’s Pareto weights when this period’s
Pareto weights are θ and θ̂ respectively. Also define

qiy = Qi (y, φy) (130)

q̂iy = Qi

(
y, φ̂y

)
(131)

for all states y and all agents i. Let this period’s state be x.
Since θ̄ is a regular steady state and θ̄i/θ̄j = θ̂i/θ̂j is a steady state for agents i and j it must be that

exp(σiq̂iy − σj q̂jy) = exp(gij) (132)∑
z∈X π (x, z) exp (σj q̂jz)∑
z∈X π (x, z) exp (σiq̂iz)

= exp(−gij) (133)

for some constant gij . (This follows from Theorem two and arguments similar to arguments in the proof of Corollary one.)
When the current Pareto weights are θ the first-order conditions for the social planner’s problems are(

φiy

φjy

)
=

(
θi

θj

)
exp(σiqiy − σjqjy)

(∑
z∈X π (x, z) exp (σjqjz)∑
z∈X π (x, z) exp (σiqiz)

)
(134)

for all y. By optimality in the social planning problem it must be that∑
z∈X π (x, z) exp (σjqjz)∑
z∈X π (x, z) exp (σiqiz)

≥ exp(−gij). (135)

Now assume for some state y
φiy

φjy
<
θ̄i

θ̄j

. (136)

It follows that
exp(σiqiy − σjqjy) ≥ exp(gij) (137)

and hence by equation 134
φiy

φjy
≥ θi

θj
>
θ̄i

θ̄j

. (138)

This contradicts the assumption in equation 136. Conclude that equation 127 holds for all states y.

Proof of Theorem seven

I will prove part (2). The proof of part (1) is analogous. Note that

∆21 (y, φ) = δ21 (y, φ) + F (φ) (139)

where we have defined

F (φ) = β log
∑
z∈X

π(·, z) exp [σ2Q2 [z, φz(·, φ)]]− β log
∑
z∈X

π(·, z) exp [σ1Q1 [z, φz(·, φ)]] . (140)

Because the state is i.i.d., F is a function of only φ and not the exogenous state. Also the functions π(·, z) and φz(·, φ)
do not depend on their first argument. Note well that the state is a scalar in this proof and that aggregate consumption
is equal to the state.

Note the following two properties of ∆21 :
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(i) For any fixed φ ∈ Φ, ∆21 (y, φ) is strictly decreasing in y. This follows since δ21 (y, φ) is strictly decreasing in y and
F does not depend upon y.

(ii) For a fixed y, ∆21 (y, φ) is strictly decreasing in φ2 (where φ =
[
1− φ2, φ2

]′
.) This follows since, by Assumption

four and optimality in the social planning problem, Q2 (y, φ) is strictly increasing in φ2 and Q1 (y, φ) is strictly
decreasing in φ2.

Consider any two possible realizations of the state, a and b such that b > a. Let φa and φb be the optimal choices of
the next period’s Pareto weights when next period’s state are a and b respectively. Define

λa =
φ2a

φ1a
λb =

φ2b

φ1b

to be the ratio of the optimal choices of Pareto weights. The first-order conditions include equations of the form

λc = h exp [∆21(c, φc)]

for c = a and for c = b. h is a constant which is the same if c = a or c = b.
Dividing the left and right sides of the first-order condition for b by the left and right sides of the first-order condition

for a yields the necessary condition:
λb

λa
= exp [∆21 (b, φb)−∆21 (a, φa)] . (141)

By property (i) above and the fact b > a,

1 > exp [∆21 (b, φa)−∆21 (a, φa)] . (142)

Hence it could not be optimal to set λb = λa. (If it were optimal to set λb = λa then it follows from equation (141) that
equation (142) would have to be satisfied with equality.) If λb > λa then equation (141) could not be satisfied since the
left side is greater than one and the right side is less than one since by property (ii) above

1 > exp [∆21 (b, φa)−∆21 (a, φa)] > exp [∆21 (b, φb)−∆21 (a, φa)] .

[This follows since λb > λa implies φ2b > φ2a which implies ∆21 (b, φb) < ∆21 (b, φa) .] Contradiction. Conclude λb < λa

and hence φ2b < φ2a.

Proof of Theorem nine

(In this proof we recycle notation. In particular ω,Ω, δ, F, ∆t, and pt are used differently than in other sections.)
Since Etλt+1 ≤ λt and λt ≥ 0, the martingale convergence theorem guarantees that {λt}∞t=0 converges with probability

one to a finite random variable, λ∗.
Let λt(ω) denote the sample path for the Pareto ratios for a given realization of the exogenous state for all period’s

t = 0, 1, . . . (here ω indexes realizations of values for the exogenous state at all dates). Let Ω be the set of all sample paths.
By Egoroff’s theorem, see Davidson (1994) page 283, for every δ > 0 there exists a set F (δ) ⊆ Ω with prob [F (δ)] ≥ 1− δ
such that for ω ∈ F (δ)

lim
t→∞

λt(ω) = λ∗(ω)

uniformly on F (δ). For every δ > 0 and every ε > 0 there exists a T (δ, ε) such that for t > T (δ, ε)

|λt(ω)− λ∗(ω)| < ε (143)

for all ω ∈ F (δ). For given δ and ε it follows that

|λt+1(ω)− λt(ω)| < 2ε (144)

for t > T (δ, ε) , for all ω ∈ F (δ).
Choose some z > 0 and some δ > 0. Let d be the number defined in hypothesis one of this theorem corresponding to

value of λ given by z and the value of λ given by some finite upper bound for λ∗. Choose ε > 0 such that ε < d/2 and
ε < z. Define

St =
{
ω ∈ F (δ) : λ > λt(ω) > z

}
, (145a)

Nt =
{
ω ∈ Ω : λ > λt(ω) > z

}
, (145b)

∆t = {ω ∈ Ω : |λt+1 − λt| < 2ε} . (145c)

Let prob [St] = pt. By equation (144), we know that for t > T (δ, ε)

prob [Nt and ∆t] ≥ pt. (146)
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But for t > T (δ, ε) we also know
prob [Nt and ∆t] ≤ (pt + δ)(1− π). (147)

This follows since prob [Nt] ≤ pt + δ and conditioned on λt > z the probability that |λt+1 − λt| < 2ε is less than or equal
to 1− π (recall that π was defined in the statement of this theorem). Equations (146) and (147) imply that

pt ≤ δ

(
1− π

π

)
. (148)

The arguments of this paragraph can be repeated for any δ > 0. Hence equation (148) holds for all δ > 0. Egoroff’s
Theorem can again be invoked to show that {λt}∞t=0 converges with probability one to a random variable which is less
than or equal to z. Since the arguments of this paragraph can be repeated for all z > 0 it must be that {λt}∞t=0 converges
with probability one to zero.

Proof of lemma one

The first-order conditions for the social planner’s problem when agents are risk-sensitive with the same (correct)
beliefs can be written as

θit+1θjtDj (xt, θt, xt+1) = θitθjt+1Di (xt, θt, xt+1) (149)

where

Di (x, θ, y) =
exp [σiQi [y, φy (x, θ)]]∑

z∈X π (x, z) exp [σiQi (z, φz(x, θ))]

for all i. Equation (48) can be obtained by dividing both sides of equation (149) by θjtθjt+1 and taking expected values
conditioned on t of both sides of the resulting equation. Now use the identity that for any random variables y and z it is
the case that E (yz) = cov (y, z) + E (y)E (z) and rearrange terms.

Proof of Theorem 10

Lets begin with part (1a) of the theorem. Let this period’s Pareto weight vector θ be such that 1 > θ2 > θ̄2. Since θ̄
is a regular steady state next period’s Pareto weight vector φ will be such that φ2y > θ̄2 for any value of next period’s
state, y. The proof will rely on the following three facts:

(i) The optimal choice of next period’s Pareto ratio φ2y/φ1y is a strictly decreasing function of y. (This follows from
Theorem seven and the assumption that δ21 (y, φ) is a strictly decreasing function of y.)

(ii) For a fixed φ, Q1 (y, φ) is a strictly increasing function of y. Since σ1 ≤ 0 it follows that either exp [σ1Q1 (y, φ)] is a
strictly decreasing function of y (when σ1 < 0) or it is always equal to one (when σ1 = 0).

(iii) For a fixed y, Q1 (y, φ) is a strictly decreasing function of φ2. Since σ1 ≤ 0 it follows that either exp [σ1Q1 (y, φ)] is
a strictly increasing function of φ2 (when σ1 < 0) or it is always equal to one (when σ1 = 0).

It follows from (i) thru (iii) that either exp [Q1 (y, φy)] is a strictly decreasing of y (when σ1 < 0) or it is always equal
to one (when σ1 = 0). (Here Q1 (y, φy) is evaluated at the optimal choice of Pareto weights φy when next period’s state
is y.) Since part (i) showed that φ2y/φ1y is a strictly decreasing function of y it must be the case that

covt

(
eσ1Q1(xt+1,θt+1),

θ2t+1
θ1t+1

)
Et

[
eσ1Q1(xt+1,θt+1)

] ≥ 0 (150)

for all xt and all finite θ2t
θ1t

> θ̄2/θ̄1.
Now we have from Lemma one that the Pareto ratios are a non-negative martingale. Paralleling the proof of Theorem

11 we can define suitable d and π so that Theorem nine can be invoked to show that the ratio of agent two’s Pareto
weight to agent one’s Pareto weight converges to θ̄2/θ̄1. (The theorem can be used to show that θ2t/θ1t− θ̄2/θ̄1 converges
to zero.) It is possible to find a d and π since there are no other interior regular steady states.

The proof of part (1b) when 0 < θ2 < θ̄2 is analogous and can be formulated by switching the roles of the agents in
the proof of (1a) above.

I now sketch the proof of part (2b) when 0 < θ2 < θ̄2. In this case using arguments similar to the proof above for case
(1a) it can be shown that

covt

(
eσ1Q1(xt+1,θt+1),

θ2t+1
θ1t+1

)
Et

[
eσ1Q1(xt+1,θt+1)

] ≥ 0 (151)

and

Et

[
θ2t+1

θ1t+1

]
≤ θ2t

θ1t
. (152)

This suggests that the Pareto ratio (of agent two’s Pareto weight to agent one’s Pareto weight) converges to zero. However
we do not have enough to guarantee that the Pareto ratio will converge to zero with probability one. There is another
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steady state, θ̄, which is interior. That prevents us from finding a d and π which satisfy the conditions of Theorem nine,
because in any interval which includes the interior steady state d will be zero.

However, {θ2t/θ1t}∞t=0 is bounded below by zero and bounded above by θ̄2/θ̄1. Equation 151 and the martingale
convergence theorem guarantee that the Pareto ratios converge to a finite random variable λ∗ with probability one. It is
straightforward (the formal argument is similar to the argument in Theorem nine) to show that λ∗, with probability one,
can take on at most two values, zero and θ̄2/θ̄1. It must be that

probt [λ∗ = 0] ≥ 1− θ2t/θ1t

θ̄2/θ̄1
> 0.

(This follows from equation (152).) This provides a strictly positive lower bound for the probability that the Pareto ratios

converge to zero. Since the Pareto ratios could converge to θ̄2/θ̄1 with probability of at most θ2t/θ1t

θ̄2/θ̄1
(which is strictly

less than one unless this period’s Pareto ratio is θ̄2/θ̄1), the steady state Pareto weight vector θ̄ is not stable.
The proof of part (1a) when 1 > θ2 > θ̄2 is analogous and can be formulated by switching the roles of the agents in

the proof of (2b) above.

Proof of Theorem 11

We already know that any two time-additive agents are always in a private steady state in which their Pareto ratios
are constant over time. Let agent j have time-additive preferences with σj = 0 and agent i have risk-sensitive preferences
with σi < 0. Recall the first-order condition from Section 3.4 when this period’s exogenous state is x and this period’s
Pareto weight vector is θ :

φiy (x, θ)

φjy (x, θ)
=

(
θi

θj

)
exp (σiqiy)∑

z∈X π (x, z) exp (σiqiz)
(153)

where qiy = Qi [y, φy (x, θ)] . For λ and λ such that +∞ > λ > λ > 0 set

d = min
λ≤ θi

θj
≤λ

min
x∈X

max
y∈X

∣∣ θi

θj
−
(
θi

θj

)
exp (σiqiy)∑

z∈X π (x, z) exp (σiqiz)

∣∣. (154)

Because of Assumption nine and the fact that there are no interior steady state Pareto ratios for agents i and j it must
be that d > 0. The minimum is obtained since the function minimized is continuous (in θi/θj) and the constraint set is
compact.

Let
π = min

x,y∈X
π(x, y)

be the smallest transition probability between any two states. By Assumption eight this probability must be strictly
greater than zero. Thus the probability that the difference on the right hand side of equation 154 is at least d is greater
than or equal to π.

Now since, as explained in the text, the ratio of agent i’s Pareto weight to agent j’s Pareto weight is a martingale
which is bounded below by zero, Theorem nine can be invoked to show that the ratio converges to zero with probability
one.

Proof of Theorem 12

First note that the one-period consumption allocation rules are

ci (e, θ) = sie

where

si =
θ

1
γ

i∑n
j=1 θ

1
γ

j

.

For

σiui [ci (e, θ)]− σjuj [cj (e, θ)] =
(
σis

1−γ
i − σjs

1−γ
j

) e1−γ

1− γ

to be constant for any e it is necessary that the term in parenthesis on the right hand side be zero. This will only happen
if

si

sj
=

(
σj

σi

) 1
1−γ

which is equivalent to requiring that θ = θ̄. By Theorem two θ̄ is the unique interior regular steady state.

Proof of Theorem 13
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For this case

δ21 (y, φ) =
y1−γZ(φ)

1− γ
.

where

Z(φ) =

 1∑2
j=1 φ

1
γ

j

1−γ (
σ2φ

1−γ
γ

2 − σ1φ
1−γ

γ

1

)
.

First lets consider the case in which 0 < γ < 1 and let this period’s Pareto weight vector, θ, be such that θ2 > θ̄2. From
the no-crossing property next period’s Pareto weight vector φ must be such that φ2 > θ̄2 which implies Z(φ) < 0 and δ21
is strictly decreasing in y. By symmetry when θ2 < θ̄2 it must be the case that Z(φ) > 0 and δ21 is strictly increasing in
y. Now Theorem seven and Theorem 10 can be applied to the show the results in the theorem for when 0 < γ < 1.

Now lets consider the case in which γ > 1 and let this period’s Pareto weight vector, θ, be such that θ2 > θ̄2. From
the no-crossing property next period’s Pareto weight vector φ must be such that φ2 > θ̄2 which implies Z(φ) > 0 and δ21
is strictly increasing in y. By symmetry when θ2 < θ̄2 it must be the case that Z(φ) < 0 and δ21 is strictly decreasing in
y. Now Theorem seven and Theorem 10 can be applied to the show the results in the theorem for when γ > 1.
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