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The independence axiom and asset returns

Larry G. Epstein), Stanley E. Zin 1

Abstract

This paper integrates models of atemporal risk preference that relax the independence
axiom into a recursive intertemporal asset-pricing framework. The resulting models are
amenable to empirical analysis using market data and standard Euler equation methods. We
are thereby able to provide the first nonlaboratory-based evidence regarding the usefulness
of several new theories of risk preference for addressing standard problems in dynamic
economics. Using both stock and bond returns data, we find that a model incorporating risk
preferences that exhibit first-order risk aÕersion accounts for significantly more of the
mean and autocorrelation properties of the data than models that exhibit only second-order
risk aÕersion. Unlike the latter class of models which require parameter estimates that are
outside of the admissible parameter space, e.g., negative rates of time preference, the model
with first-order risk aversion generates point estimates that are economically meaningful.
We also examine the relationship between first-order risk aversion and models that employ
exogenous stochastic switching processes for consumption growth. q 2001 Published by
Elsevier Science B.V.
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1. Introduction

The expected utility model of decision making under risk and, particularly, its
cornerstone, the independence axiom, have come under attack recently. The
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empirical evidence upon which this criticism is based consists mostly of behav-
ioralrexperimental studies where subjects’ choices among hypothetical andror

Žsmall scale gambles are observed e.g., Kahneman and Tversky, 1979; Chew and
. Ž .Waller, 1986; Camerer, 1989a,b; Conlisk, 1989 . Machina 1982 surveys much of

the evidence and argues that violations of the independence axiom are both
systematic and widespread. A number of new theories of choice under uncertainty
have been developed in an attempt to explain the evidence which contradicts

Žexpected utility theory. Those upon which we focus here are due to Chew 1983,
. Ž .1989 and Gul 1991 .

In this paper, we use the general intertemporal asset-pricing model developed in
Ž .Epstein and Zin 1989 and aggregate monthly U.S. time-series data for consump-

tion and asset returns as the basis for an empirical examination of the generalized
theories of Chew and Gul. In common with much of the empirical literature on
aggregate consumption and asset returns, we assume the existence of a representa-
tive agent, the homotheticity of preferences and the rationality of expectations. We
inquire whether, given these assumptions, relaxing the independence axiom in the
directions defined by Chew and Gul can help account for the time-series data. To
our knowledge, this is the first evidence available regarding the usefulness of these
newly developed theories of choice for explaining market data. Of course, tests of

Ž .a theory based on behavior in the field as opposed to the laboratory are prone to
potentially serious problems such as errors in data measurement and unavoidable
joint hypotheses. Laboratory-based methods, however, also have well-known
drawbacks and the behavioral evidence is inconclusive. Some recent behavioral

Ž .studies e.g., Camerer, 1989b; Conlisk, 1989; Harrison, 1990 have cast doubt
upon the extent and systematic nature of violations of expected utility theory.
Thus, we feel that an analysis based upon market data would provide an important
complementary piece of evidence regarding the usefulness of the generalized
theories of choice. Moreover, we suspect that many economists would attach

Ž .greater importance to the question of whether these new theories do or do not
help to resolve some of the standard problems in economics, than to their
consistency with laboratory behavior. The explanation of asset returns clearly
qualifies as such a standard problem.

Representative agent models, with preferences represented by the expected
value of the discounted sum of within-period utilities, have not performed well in

Žexplaining the behavior of consumption and asset returns over time e.g., Hansen
.and Singleton, 1982, 1983; Mehra and Prescott, 1985 . This, in part, motivates the

Ž .work in Epstein and Zin 1989 , which formulates a class of intertemporal utility
functions which are recursive, but not necessarily additive or consistent with
expected utility theory. Recursive utility permits some degree of separation in the
modeling of risk aversion and intertemporal substitution. In Epstein and Zin
Ž .1991 , generalized method of moments estimation procedures are applied to the
Euler equations implied by a particular parametric member of this class of utility
functions. The results are mixed though some support is provided for the general-
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ized specification. The functional form used in that study does not conform with
intertemporal expected utility. However, it satisfies the independence axiom for
the set of so-called timeless wealth gambles—those for which all uncertainty is
resolved before further consumptionrsavings decisions are made. Since these are
precisely the sort of gambles that are considered in the experimental literature, the

Ž .specification of intertemporal utility that is estimated in Epstein and Zin 1991 is
inconsistent with the cited evidence against the independence axiom. This paper
focuses on the empirical gains from further generalizations of intertemporal utility
to specifications in which orderings of timeless wealth gambles conform with the
theories of Chew and Gul and not necessarily with the independence axiom.

The Euler equations implied by a representative agent’s consumptionrportfolio
selection problem form the basis for the empirical analysis. We first make
graphical comparisons of the meanrvariance properties of the stochastic discount
rates, i.e., the marginal rates of intertemporal substitution, that are implied by the
Euler equations for each model. In addition, these meanrvariance properties can

Ž .be used as in Hansen and Jagannathan 1991 to form an informal test of these
asset-pricing models. Second, we provide a more formal statistical analysis based
on the generalized method of moments. Finally, we explore the relationship
between the general preference-based models and standard expected utility models
in which consumption growth rates are subject to exogenous stochastic process
switching.

The paper proceeds as follows. The next two sections lay the groundwork for
the empirical analysis by summarizing and applying the most relevant material
from the two literatures on decision theory and intertemporal asset pricing. In

Ž . Ž .Section 2, the Chew 1983, 1989 and Gul 1991 utility functions are described.
Section 3 outlines their integration into a recursive model of intertemporal utility

Ž .based on Epstein and Zin 1989 and presents the implied model of asset returns.
Section 4 contains the empirical analysis. Section 5 concludes and summarizes the
paper.

2. Certainty equivalents for timeless wealth gambles

In this section, we summarize the relevant aspects of the utility functions
Ž . Ž .proposed by Chew 1983, 1989 and Gul 1991 . These functions represent

preferences over atemporal or one-shot gambles. Integration into a multiperiod
setting is described in the next section.

Ž 1 .Consider a utility function, m, defined on a subset of D R , the set ofqq
Ž .cumulative distribution functions cdf’s F, on the positive real line. If x)0, then

Ž .d represents the gamble in which the outcome, x, is certain; d y s0 if y-xx x
Ž . nand d y s1 if yGx. Similarly, FsÝ P d represents the gamble in whichx is1 i x i

the outcome, x , is realized with probability, p , is1, 2, . . . , n.i i
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Only the ordinal properties of m are relevant. Without essential loss of
generality, therefore, we can assume that:

m d sx for all x)0. 2.1Ž . Ž .x

As a result, m assigns to any cdf F its certainty equivalent, i.e., that wealth level,
x, such that receiving x with certainty is indifferent to the gamble represented by
F. Thus, we refer to m as a certainty equivalent function.

Consistent with the relevant empirical literature on intertemporal asset pricing
and consumption, we assume that m exhibits constant relative risk aversion. That
is, for any random variable, x, with cdf Fx:˜ ˜

m F slm F for all l)0. 2.2Ž .Ž . Ž .l x x˜ ˜

The functional forms for m considered in this paper are all special cases of the
following, which represents the constant-relative-risk-averse members of the fam-

Ž .ily of semiweighted utility functions studied by Chew 1989 :

f xrm F d F x s0. 2.3Ž . Ž . Ž .Ž .H SW

where f has the form:

wU x Õ x yÕ 1 , xG1Ž . Ž . Ž .Ž .
f x s 2.4Ž . Ž .

L½w x Õ x yÕ 1 , xF1.Ž . Ž . Ž .Ž .
Under suitable assumptions for the valuation function, Õ, and for the lower and

L U Ž . Ž .upper weight functions, w and w , Eq. 2.3 defines m F implicitly for each cdf
Ž .F. Note that m defined in this way satisfies the certainty equivalent condition 2.1

Ž .if f 1 s0.
Ž . Ž .Though the general form of Eq. 2.2 has an intuitive interpretation see below ,

we find it instructive to restrict our attention initially to the parametric specializa-
tions we will use in our empirical investigation. Accordingly, restrict the valuation
and weight functions to have the forms:

x ay1 ra , a/0.Ž .
Õ x sŽ . ½ log x , as0,Ž .

wL x sx d and wU x sAx d . 2.5Ž . Ž . Ž .
Consider the further parametric restrictions:

0-AF1 and aq2d-1. 2.6Ž .
Ž . Ž .In Appendix A, it is shown that the given Eqs. 2.4 – 2.6 , we can find an interval

w x Ž . Ž .a, b , depending on a and d , 0-a-1-b, such that Eq. 2.3 defines m F
w ximplicitly for all cdf’s on the positive real line which have support in a, b .

Furthermore, on this domain, m is strictly monotone in the sense of first-degree
stochastic dominance, implies risk aversion in the sense of strict aversion to mean
preserving spreads and exhibits constant relative risk aversion. Finally, under some
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auxiliary assumptions, m is well defined and well behaved in the above sense for
all cdf’s having finite mean and support in the positive real line. Those assump-
tions are:

i ds0 and a-1, orŽ .
ii d-0 and 0-aqd-1, orŽ .
iii 0-d-1 and aqd-0. 2.7Ž . Ž .

Turn to some special cases. For greater ease of interpretation, we express the
functional forms for cdf’s having finite support.

( )2.1. Expected utility ds0, As1

With these parameter restrictions, we obtain the linearly homogeneous expected
utility certainty equivalent:

1ra° an p x , a/0,Ž .Ý i i~m p d s 2.8Ž .ÝEU i x iž / ¢exp p log x , as0.Ž .1 Ž .Ý i i

The Arrow-Pratt measure of relative risk aversion equals 1ya .

( )2.2. Weighted utility As1

Ž .The constant relative risk averse from of Chew’s 1983 weighted utility theory
is given by:

1ra° dqap xÝ i i
, a/0,

dp xÝ i i~m p d s 2.9Ž .ÝŽ .WU i x i dp x log xŽ .Ý i i i
exp , as0.

d¢ p xÝ i i

Ž .Note that m is a single-parameter extension of Eq. 2.8 . The connectionWU

between expected and weighted utility is clarified by the reference to their implied
indifference curves in the probability simplex for the case of three-outcome

Ž .gambles ns3; see Fig. 1 . It is well known that the indifference curves of mEU

are parallel straight lines. For m , indifference curves remain linear; however, ifWU

d/0, they emanate from a finite point, Q, in the plane; Q recedes to infinity as
d™0.

In the triangle shown, indifference curves corresponding to higher levels of
Ž .utility are steeper. Such indifference curves are said to fan out. Machina 1982 ,

via his Hypothesis II, points out the close connection between fanning out and the
consistency with Allais-type behavior and the empirical patterns that have come to
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Fig. 1. Utility function for timeless wealth gambles.

be known as the common consequence effect and the common ratio effect.
ŽHowever, recent behavioral evidence regarding fanning out is inconclusive see

.the papers by Camerer and Conlisk . Fortunately, if d)0, weighted utility also
admits fanning in, where the point Q lies to the north–east of the triangle and
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higher indifference curves are flatter. In Section 4, we are able to exploit the
flexibility of weighted utility to investigate whether fanning in or fanning out is
indicated by financial market data.

The degree of risk aversion implicit in m is of interest. It follows fromWU
Ž .Chew 1983, p. 1083 that the risk premium for a random variable with mean x

2 2 2 Ž . Žand a small variance s x is approximately xs 1yay2d r2. Thus, 1ya

.y2d is a measure of relative risk aversion for small gambles about certainty.
Risk aversion increases as a or d falls.

( )2.3. Disappointment aÕersion ds0

Ž . Ž .If we set ds0 in Eq. 2.4 , then Eq. 2.3 implies the following functional
form, which is the contrast-relative-risk-averse specialization of the utility func-

Ž . Ž .tions axiomatized by Gul 1991 : m ÝP d is the unique solution to:DA i x i

ma ras p x araq Ay1 y1 p x ayma ra , a/0,Ž . Ž .Ý ÝDA i i i i DA
x -mi DA

log m s p log x q Ay1 y1 p log x y log m , as0.Ž . Ž .Ý ÝDA i i i i DA
x -mi DA

2.10Ž .

This functional form provides an alternative single parameter extension of
expected utility for which As1. The generalization to A-1 admits the follow-
ing psychological interpretation. Refer to an outcome x as disappointing if it is1

worse than expected in the sense of being smaller than the certainty equivalent of
Ž .the gamble according to m . In Eq. 2.10 , disappointing outcomes generateDA

negative values for the second summations on the right sides, Ay1 y1)0. Thus,
the certainty equivalent is smaller than it would be if As1, reflecting an aversion
to disappointment.2

The indifference curves for m in the two-dimensional simplex are shown inDA

Fig. 1. They are linear and emanate from two distinct points Q and QX, both of
which recede to infinity as A™1. Thus, indifference curves fan out in the lower
part of the triangle and otherwise fan in. It is interesting to note in this regard that
the behavioral evidence supporting fanning out is weaker in the upper triangle than

Ž .in the lower region see Conlisk, for example.

2 There is a similarity in spirit between the structure of m and the hypothesis of Kahneman andDA
Ž .Tversky 1979 that individuals evaluate risky prospects in terms of gains and losses relative to a

reference position. Here the reference position is the certainty equivalent of the gamble and the gains
and losses are treated differently in computing the utility of the prospect. Since the reference point is
endogenous and depends on the gamble in question, one obtains an ordering based on final wealth
positions. In the cited sources, an exogenously specified reference position is taken to apply to all
gambles under consideration and the preference ordering is defined on deviations from that position.
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Say that individual 1 is more risk aÕerse than individual 2 if any gamble that is
rejected by 2 in favor of a certain prize is also rejected by individual 1. With
greater risk aÕersion defined accordingly, Gul shows that risk aversion increases
as a or A falls. An important feature of the risk aversion embedded in m isDA

portrayed in Fig. 2, which shows the indifference curves in outcome space for
binary gambles with fixed probabilities p and p . For the expected utility1 2

functions m , the corresponding indifference curves are tangent at the certaintyEU

line to the actuarially fair market line of slope yp rp . Thus, m is risk neutral1 2 EU
Ž .to the first order Arrow 1965 and the risk premium for a small gamble is

proportional to its variance. In contrast, the tangency fails for m if A-1, inDA

which case the risk premium for a small binary gamble is proportional to the
Žstandard deviation and we say that m exhibits first-order risk aversion. SeeDA

Segal and Spivak, 1990 for a general treatment of first-order risk aversion and
.Epstein and Zin, 1990 for an application to asset pricing.

The most general specification considered in our empirical analysis is Eqs.
Ž . Ž .2.3 – 2.6 . These functional forms represent a two-parameter, d/0 and A/1,
extension of expected utility which contains both weighted utility and disappoint-

Ž .ment-averse utility. The semiweighted certainty equivalent, m ÝP d , satis-SW 1 x1

fies:

p x d x ayma raq Ay1 y1 p x d x ayma ras0,Ž .Ž . Ž .Ý Ýi i i SW i i i SW
x -mi SW

a/0, 2.11Ž .
and similarly for as0.

Fig. 2. Indifference Curves in State Space.
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It is straightforward to provide a disappointment-aversion interpretation for
A-1 and also to show that the latter implies first-order risk aversion. Risk
aversion increases as a , d or A falls. Finally, a probability simplex indifference

Ž Xmap for m is shown in Fig. 1. Other configurations for Q and Q are possibleSW
.though, in all cases, they are collinear with the vertex p s1 . All of the above2

certainty equivalents share the property that indifference curves in the three-out-
come probability simplex are straight lines and more generally are hyperplanes in
higher dimensional simplices. Thus, they satisfy the axiom of betweenness, which
is a weakening of the independence axiom proposed and studied by Fishburn
Ž . Ž . Ž .1983 , Dekel 1986 and Chew 1983, 1989 .

There exist in the literature alternative generalizations of expected utility which
can explain some of the accumulated behavioral evidence. Two such alternatives

Ž .are prospect theory Kahneman and Tversky, 1979 and rank-dependent or antici-
Ž .pated utility theory e.g., Quiggin, 1982; Yaari, 1987; Segal, 1989 . However, in

each case, there are serious difficulties associated with adopting the corresponding
functional forms in the analysis to follow. For example, prospect theory violates
first-degree stochastic dominance unless potential violations are eliminated in a
preliminary editing phase; however, a satisfactory specification of the latter is not
apparent to us. On the other hand, the central role played by the rank ordering of
outcomes in the structure of rank-dependent theory makes it computationally
intractable in our multiple asset portfolio choice context. In contrast, there are no
such difficulties associated with the betweenness-conforming utility functions
adopted here. Whether alternative generalizations of the independence axiom and
expected utility can help to explain the data we study remains a subject for future
research.

3. Intertemporal asset pricing with recursive utility

The certainty equivalent functions of the last section are now integrated into an
infinite-horizon, intertemporal setting. Then, we describe the restrictions implied
for consumption and asset returns by the optimizing behavior of a representative

Ž .agent. The reader is referred to Epstein and Zin 1989 for the details which
support the discussion in this section.

There is a single consumption good in each period. In period t, current
consumption, c , is known with certainty; however, future consumption levels aret

generally uncertain. Thus, intertemporal utility is defined over random consump-
tion sequences. It is assumed that the intertemporal utility function is recursive in
the sense that the utility, U , derived from consumption in period t and beyond,t

satisfies the recursive relation:

U sW c , m , tG0, 3.1Ž . Ž .t t t
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˜ ˜Ž .where m sm U is the certainty equivalent of random future utility, U ,t tq1 tq1

conditional upon period t information.3 The function W is called an aggregator
since it aggregates current consumption, c , with a certainty-equivalent index oft

the future in order to determine current utility.
We restrict W to have the CES form:

1rrr r1yb c qb y , 0/r-1,Ž .
W c, y s 3.2Ž . Ž .½exp 1yb log c qb log y , rs0,Ž . Ž . Ž .

where 0-b-1. The utility of deterministic consumption paths is given by the
CES intertemporal utility function:

1rp`

t rU s 1yb b c ,Ž . Ý0 t
ts0

Ž .y1with the elasticity of intertemporal substitution given by ss 1yr and the
Ž .constant rate of time preference given by gs 1rb y1. We, therefore, interpret

r as an intertemporal substitution parameter.
For the certainty equivalent function, m, we take the semiweighted form m .SW

In our earlier work, we show that m represents the implied preference ordering
over timeless wealth gambles, i.e., gambles in which all uncertainty is resolved
before further consumption takes place. Moreover, we have already noted that all
of the behavioral evidence referred to above regarding individual choice under
uncertainty is based on choices among timeless gambles. Thus, the preceding
discussion of m is pertinent. In particular, risk aversion with respect to timelessSW

wealth gambles is inversely related to each of the parameters a , A and d .
The specializations of m discussed above imply corresponding subclasses ofSW

recursive intertemporal utility functions shown in Fig. 3. Note that the expected
Ž Ž ..utility certainty equivalent specification, m see Eq. 2.8 , does not imply theEU

standard intertemporal utility specification:

1ra`°
t a1yb E b c , a/0,Ž . Ý0 t~U s 3.3Ž .ts00

t¢exp 1yb E b log c , as0.Ž . Ž .Ý0 t

Rather, m leads to the infinite-horizon generalization of the intertemporal utilityEU
Ž .function of Kreps and Porteus 1978 , explored empirically in Epstein and Zin

Ž . Ž .1991 . The specification Eq. 3.3 corresponds to the added restriction that asr,
leaving only a single parameter to model both intertemporal substitution and risk
aversion. Our earlier work examined the empirical gains from relaxing this

3 ˜ ˜ ˜ ˜Ž . Ž .Here, we write m U as shorthand for m FU , where FU is the cdf for U conditionaltq1 tq1 tq1 tq1

upon period t information.
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Fig. 3. Classes of recursive intertemporal utility functions.

constraint. This paper is concerned with the further gains from relaxing the
parameter restrictions ds0 and As1.

From the perspective of the latter objective, it is interesting to note the
Ž .following result due to Duffie and Epstein 1990 . When recursive utility is

suitably formulated in a continuous time setting with a Brownian information
environment, weighted utility and expected utility certainty equivalents are obser-
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Žvationally equivalent to one another, whereas and this is strongly suggested,
.though not proven by their analysis they are distinguishable from m . Moreover,DA

the essential reason for this difference between m and m seems to be that theDA WU

former alone satisfies first-order risk aversion. Since in the present paper we are
not assuming a Brownian-information, continuous time setting, we cannot rule out

Ž .the potential empirical importance of the generalization from m ds0, As1 ,EU
Ž .to m As1 . On the other hand, this result suggests that an empirical analysis,WU

such as ours, should include consideration of certainty equivalents like m thatDA

exhibit first-order risk aversion.
We now describe the implications for asset returns and consumption of a

representative agent having recursive intertemporal utility. The agent is assumed to
operate in a standard competitive environment. There are N assets and the ith

� 4asset has positive gross real return, r when held over the interval t, tq1 .˜1, tq1
˜Denote by M the return to the market portfolio over the same interval.tq1

In Appendix A, we derive the following Euler equations which represent
first-order conditions for the representative agent’s consumptionrportfolio choice
problem:

r yr˜ ˜i , tq1 j , tq1
E h z I z s0, i/ js1, . . . , N , 3.4Ž .Ž . Ž .˜ ˜t tq1 A tq1 ž /M̃tq1

and

E f z s0, 3.5Ž .Ž .˜t tq1

Ž . Ž .where f is defined by Eqs. 2.4 and 2.5 :
Ž . 1r r
ry1 rM1r r tq1z sb c rc , r/0, 3.6Ž . Ž .tq1 tq1 t

and

x d x a 1qdra ydra , a/0� 4Ž .
h x s 3.7Ž . Ž .

d½ x 1qd log x , as0.Ž .
Above, E is the expected value operator conditional on period t information andt

I is the indicator function:A

1, x-1,I x sŽ .A ½A , xG1.

For these Euler equations to be valid in the general case where A/1, we must
restrict the probability distribution of consumption growth and asset returns as
described in Appendix A. Sufficient conditions are that for each information set at
t:

Ž . w xa the conditional distribution of r , . . . , r has compact support in1, tq1 N, tq1

the positive orthant; and
Ž . Ž .Ž ry1.rM tq1

1r r

b the conditional distribution of the random variable c rc hastq1 t

a bounded density function.

Stanley E. Zin
. 1r r y1 rM tq1 ,

Stanley E. Zin

Stanley E. Zin
Typo:  M should be in the denominator, not the exponent.

Stanley E. Zin
Typo: M should be in the 
denominator, not the 
exponent.
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Ž .According to the model of asset returns represented by Eq. 3.4 , mean excess
returns are determined by covariances of returns with a function of consumption
growth and the return to the market. Of course, if As1 and ds0, then one

Ž .obtains the model of asset returns studied in Epstein and Zin 1991 , which has as
special cases both the static CAPM when as0, and the consumption CAPM
when asr. These latter restrictions correspond to the standard expected utility

Ž .model studied by Hansen and Singleton 1982, 1983 .
To obtain a set of restrictions that apply directly to the levels of individual asset

Ž .returns, multiply Eq. 3.4 by the portfolio weights and sum over all N securities
to get:

r̃i , tq1
E I z h z sE I z h z , is1, . . . , N.Ž . Ž . Ž . Ž .˜ ˜ ˜ ˜t A tq1 tq1 t A tq1 tq1ž /M̃tq1

3.8Ž .
Ž . Ž .Now use Eq. 3.5 to rewrite Eq. 3.8 in the form:

r̃i , tq1 dE I z h z sE I z z , 3.9Ž .Ž . Ž . Ž .˜ ˜ ˜ ˜t A tq1 tq1 t A tq1 tq1ž /M̃tq1

which is an equation restricting the level of each return, is1, . . . ; N.

4. Empirical analysis

4.1. The marginal rate of intertemporal substitution

The asset-pricing model derived in the previous sections has the geometric
Ž .structure studied by Hansen and Richard 1987 . That is, the model predicts that

equilibrium asset prices are determined by a marginal rate of intertemporal
substitution, which discounts future asset payoffs before they are averaged across
states. For example, we can rewrite our model’s asset-pricing equation for excess

Ž .returns given in Eq. 3.4 as:

E MRS r yr s0, 4.1Ž .˜ ˜Ž .t tq1, t i , tq1 j , tq1

where the marginal rate of intertemporal substitution of c for c is:tq1 t

˜y1MRS sM h z I z , 4.2Ž .Ž . Ž .˜ ˜tq1, t tq1 tq1 A tq1

Ž .for z defined in Eq. 3.6 . The marginal rate of intertemporal substitution for antq1
Ž .individual asset return, rather than an excess return, is defined in Eq. 3.9 as:

˜y1h z I z MŽ . Ž .˜ ˜tq1 A tq1 tq1
)MRS s .tq1, t dE I z zŽ .˜ ˜t A tq1 tq1
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Fig. 4. Hansen-Jagannathan Statistic as RRA varies: s s0.01 and ds0.

We focus on the properties of MRS rather than on MRS) since the latter involves
a conditional expectation which is difficult to compute.4

Figs. 4–11 plot the ratio of the estimated standard deviation of MRS to its
mean for various parameter values. Consumption is measured as monthly per
capita expenditure in nondurables and services and the monthly NYSE value-
weighted return is used to measure the return on the aggregate wealth portfolio5

for the time period 1959:3 to 1986:12. Each figure has five graphs, one for each of
the five choices for the first-order risk aversion parameter, A. These values range
from first-order risk neutrality, As1, to first-order risk aversion corresponding to

Ž .y1As0.3. The elasticity to intertemporal sustitution, ss 1yr , varies across
� 4the figures and takes on the values 0.01, 0.1, 0.5, 10 to reflect varying degrees of

substitutability. For Figs. 4–7, the additional risk-aversion parameter for the
weighted utility specification, d , is held fixed at zero. Therefore, these figures
pertain to the special case of disappointment aversion. The parameter a is varied

Ž .between y29 and 1 so that second-order relative risk aversion varies from 0 to
30. In Figs. 8–11, a is fixed at y1 and d is allowed to vary so that the measure

Ž .of local second-order risk aversion, 1yay2d , still varies from 0 to 30. In all
of the figures, the discount factor, b , is fixed at 0.9975 corresponding to a 3%
annual constant rate of time preference.

4 Ž . )The methods of Gallant et al. 1991 could be used to evaluate MRS by first fitting a
semi-nonparametric estimator for the joint distribution of consumption growth and asset returns.

5 Ž .The counsumption data and corresponding implicit price deflator are from Citibase and the
value-weighted return is from CRSP.
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Fig. 5. Hansen-Jagannathan Statistic as RRA varies: s s0.1 and ds0.

Ž .Hansen and Jagannathan 1991 show that the restrictions on the covariances
Ž .between MRS and asset returns, implied by equations such as Eq. 4.1 , generate

an inequality restriction for the ratio of the standard deviation to the mean of
MRS. They estimate this bond using various stock and bond return data including
two cases that correspond to that data we use in Figs. 4–11. Using the value-
weighted return on the New York Stock Exchange and the return on one-month

Fig. 6. Hansen-Jagannathan Statistic as RRA varies: s s0.5 and ds0.
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Fig. 7. Hansen-Jagannathan Statistic as RRA varies: s s10 and ds0.

Treasury bills,6 they estimate a bound of 0.14. Using one-month holding period
returns for Treasury bills with one-to-six-month maturities yield a substantially
larger lower estimated bound for the standard deviation–mean ratio of 0.79. It is
clear from the sizable difference in these numbers that term-structure evidence
typically provides more of a challenge for asset-pricing models, e.g., Backus et al.
Ž .1989 .

The first four figures allow us to identify some special cases as well as see
some patterns in the behavior of the first two moments of MRS as the preference
parameters change. The expected utility hypothesis is depicted by the point on
each As1 graph where 1y1rssa , i.e., the point where RRAs10 in Fig. 5,
RRAs2 in Fig. 6, and RRAs0.1 in Fig. 7.7 None of these points satisfies the
Hansen–Jagannathan bound which is consistent with existing empirical rejections

Ž .of this theory. The Kreps–Porteus model examined in Epstein and Zin 1991 is
Ž .the remainder of the As1 graph. Increasing second-order relative risk aversion

has a small effect on the standard deviation relative to the mean when determinis-
Ž .tic consumption is highly complementary Figs. 4 and 5 and the Hansen–Jagan-

nathan bounds are violated for even the most extreme cases of risk aversion. When
complementarity is smaller or when deterministic consumption is substitutable
Ž .Figs. 6 and 7 , increasing relative risk aversion has a much larger effect and the

6 Real returns are computed using the implicit deflator for monthly consumption of nondurables and
services.

7 In Fig. 4, the expected utility model corresponds to a relative risk aversion parameter of 100 on the
As1 graph and is not shown.
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Fig. 8. Hansen-Jagannathan Statistic as RRA varies: s s0.01 and asy1.0.

Hansen–Jagannathan bounds are satisfied for a range of relatively large values for
RRA. Another important pattern to emerge from these figures is the impact of
smaller values of A on the behavior of MRS. The standard deviation always gets
larger relative to the mean as this parameter decreases. That is, the MRS gets more
volatile relative to its mean and, hence, closer to the predictions of assets returns
data, as A gets smaller. The Hansen–Jagganathan bounds are satisfied for a large

Fig. 9. Hansen-Jagannathan Statistic as RRA varies: s s0.1 and asy1.0.
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Fig. 10. Hansen-Jagannathan Statistic as RRA varies: s s0.5 and asy1.0.

set of values for the parameters when A-1. First-order risk aversion, therefore,
helps move the theory closer to observed behavior. In addition, unlike second-order
risk aversion, increases in first-order risk aversion continue to have a large effect
on the ratio of the standard deviation to the mean as intertemporal complementar-
ity increases.

Fig. 11. Hansen-Jagannathan Statistic as RRA varies: s s10 and asy1.0.
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The next four figures correspond to weighted and semiweighted utility general-
izations in the d dimension. Recall that in these figures, the parameter a is

Žconstrained to equal y1 and the parameter d varies so that 1yay2d the local
.measure or second-order relative risk aversion when As1 varies from 0 to 30.

Values along the horizontal axis greater than 2, therefore, imply fanning out, while
values less than 2 imply fanning in. The most striking feature of these figures is
the way they closely mimic the previous four figures in which ds0. This
provides some confirmation of the theoretical prediction of Duffie and Epstein
Ž .1990 regarding the observational equivalence of weighted utility and Kreps–
Porteus utility.

4.2. GMM estimation

Ž . Ž .Eqs. 3.5 and 3.9 form the basis of our statistical analysis of the models
discussed above. We concentrate on two assets, the value-weighted return on
stocks traded on the NYSE, and the return on a one-month Treasury bill.8 The
existing body of empirical works suggests that the joint behavior of these two
securities provides a challenge for any asset-pricing model. We treat the value-
weighted return as a measure of the return on the aggregate wealth portfolio and

Ž . Ž .use Eq. 3.5 to model its behavior. We restrict the T-bill return with Eq. 3.9 .
Rewrite ex post versions of these equations as:

I z z d z a y1 ra s´ M , 4.4Ž .Ž . Ž .˜ ˜ ˜ ˜Ž .A tq1 tq1 tq1 tq1

and
Br̃tq1d a d BI z z z 1qdra ydra yz s´ , 4.5Ž . Ž .Ž . Ž .˜ ˜ ˜ ˜ ˜A tq1 tq1 tq1 tq1 tq1ž /M̃tq1

Ž .where z is defined in Eq. 3.6 . These equations define the vector of forecast˜ tq1
w M B xTerrors, ´ s ´ , ´ , which as discussed in Section 4.1, has the property˜ ˜tq1 tq1 tq1

that:
E ´ s0. 4.6Ž .˜t tq1

Therefore, any variable that is in the agent’s information set in period t is
orthogonal to the forecast error and can be used to construct an unconditional
moment restriction. These unconditional moment restrictions can then be used to
form a GMM estimator for the preference parameters.

Ž .We use a subset of the conditional moment restrictions implied by Eq. 4.6
summarized by:

E ´ N1, ´ , ´ s0, 4.7Ž .˜tq1 t ty1

i.e., we impose restrictions on the dynamic behavior of the forecast error process.
Ž .The linear restrictions implied by Eq. 4.7 can be summarized by ten uncondi-

8 The data span the 1959:3–1986:12 time period. A complete description of the data set can be
Ž .found in Epstein and Zin 1991 .
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tional moments, the means, the first- and second-order autocovariances, and the
first and second-order cross-covariances, which must all be zero. The use of
lagged forecast errors as instruments is, in part, motivated by the diagnostic testing

Ž .of Euler equation residuals advocated by Singleton 1990 . In addition, the fact
that these restrictions retain their precise meaning for all model specifications
permits a more straightforward comparison across models than does the more
common practice of using arbitrary functions of ex ante information as instru-
ments.9 Tables 1–4 contain GMM parameter estimates and diagnostic tests for a

Ž . Ž .variety of special cases of the general specifications in Eqs. 4.4 and 4.5 . In
each case, we use two different measures of consumption. Consistent estimates are
obtained in a first round by minimizing the unweighted sum of squared errors
from the ten estimating equations. These estimates are used to construct a
consistent estimate of a weighting matrix which is used to obtain the consistent

Ž . Ž .and relatively efficient estimates and their standard errors presented in the
tables.10 We turn now to a discussion of these results.

4.2.1. Expected utility
Our starting point for GMM estimation and tests of the over-identifying

Ž .restrictions implied by Eq. 4.7 is the standard time-additive expected utility
model. Table 1 contains estimates and asymptotic standard errors for the rate of
time preference parameter, gsby1 y1, the elasticity of substitutionrrelative risk
aversion parameter, s , and Hansen’s x 2 test of the eight over-identifying

Ž .restrictions ten equations less two estimated parameters . This model corresponds
Ž . Ž . Žto Eqs. 4.4 and 4.5 with the additional restrictions of As1 first-order risk
. Ž . Žneutrality , ds0 no fanning in or out and asrs1y1rs substitution and

.risk aversion tied together .
The results are not favorable to the model. The over-identifying restrictions test

indicates that this model can be rejected at almost any significance level. In

9 Instrument choice also determines the relative efficiency of GMM estimators. Optimal instrument
choice requires knowledge of the conditional expectation of the derivatives of the forecast errors with
respect to the model’s parameters. Without explicit distributional assumptions, this choice is typically
infeasible. A casual argument for our choice of instruments along these lines can be made given the
exponential functional forms that we are using. However, as with almost any instrument choice, this
type of argument is necessarily very informal.

10 The regularity conditions sufficient to yield consistent and asymptotically normal GMM estimators
Ž . Ž .based on Eq. 4.7 when As1 are covered by Hansen 1982 . The fact that the instruments depend on

unknown parameters is of no consequence for these properties. When A/1, the functions defining the
forecast errors are not differentiable; hence, the standard results do not necessarily apply. We can,
however, appeal to arguments from the empirical process literature that hold for nondifferentiable
functions to establish asymptotic normality of the GMM estimators based on the model with A/1.
These arguments are outlined in Appendix A3.
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Table 1
Expected utility

Parameter Nondurables Nondurables and services

Ž . Ž .g y0.0043 0.0022 y0.0132 0.0022
Ž . Ž .s 0.2073 0.0094 0.1217 0.0093

� 4 � 4a 1y1rs 1y1rs
� 4 � 4d 0 0
� 4 � 4A 1 1

2Ž .x 8 35.91 28.08
w x w x0.00002 0.0005

Ž 7 . Ž 7 .Moment Fitted value Weight =10 Fitted value Weight =10
MŽ . Ž . Ž .E ´ y0.1355 0.0554 0.0012 y0.0697 0.0297 0.0038
BŽ . Ž . Ž .E ´ 0.1285 0.0702 0.0001 0.1224 0.0710 0.0001
M MŽ . Ž . Ž .E ´ ´ y0.0047 0.0011 12.530 y0.0011 0.0003 125.71y1
B BŽ . Ž . Ž .E ´ ´ y0.0483 0.0089 0.1595 y0.0292 0.0062 0.1909y1
M BŽ . Ž . Ž .E ´ ´ 0.0180 0.0035 1.4398 0.0077 0.0017 4.8541y1
B MŽ . Ž . Ž .E ´ ´ 0.0145 0.0031 1.3587 0.0055 0.0014 5.0839y1
M MŽ . Ž . Ž .E ´ ´ y0.0003 0.0010 10.464 y0.0001 0.0003 101.83y2
B BŽ . Ž . Ž .E ´ ´ 0.0022 0.0096 0.1413 0.0043 0.0079 0.1501y2
M BŽ . Ž . Ž .E ´ ´ y0.0027 0.0029 1.3898 y0.0004 0.0014 4.4613y2
B MŽ . Ž . Ž .E ´ ´ 0.0026 0.0030 1.3898 y0.0001 0.0015 4.2351y2

Ž .Asymptotic standard errors, asymptotic p-values, and constrained parameter values are denoted by P ,
w x � 4 M BP , and P , respectively. ´ and ´ denote the Euler equation errors for the stock and bond returns.
Estimated moments and their standard errors are multiplied by 100. AWeightB is the diagonal element
of the weighting matrix used to compute the estimator.

addition, the estimated rate of time preference is negative and significantly so for
one of the consumption measures.

ŽThe lower part of the table contains the estimated moments and their asymp-
.totic standard errors and the diagonal elements of the weighting matrix. The

former give us an additional set of tests of the restrictions of the model and the
latter provide some information about how each equation is weighted in the
computation of the GMM estimator. These help to identify the directions in which
the model is rejected. The forecast errors exhibit significant first-order autocorrela-
tion for both the stock and the bond return equations. Note that the moments
involving the bond equation error have a corresponding diagonal element of the
weighting matrix that is much smaller than do those for the market equation error.
The GMM estimator, therefore, attaches relatively greater weight to the moments
for the market equation which accounts for the fact that their fitted values are
typically closer to zero than the others.

4.2.2. Kreps–Porteus utility
By dropping the constraint that asr, but retaining the restrictions As1 and

Ž .ds0, we obtain the Kreps–Porteus model from Epstein and Zin 1991 . The
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results in Table 2 differ numerically from our previous study given the different
moment restrictions imposed on the estimation problem; however, they exhibit the
same patterns. The substitution elasticity is small as is the coefficient of relative
risk aversion. The rate of time preference is again large and negative. For
nondurable consumption, the x 2 test of the seven over-identifying restrictions has
a p-value of approximately 13%, so it would not be rejected at, say, the 10%
level. The nondurables and services measure provides a stronger rejection with a
p-value of 1.2%.

The estimated moments for this model have substantially larger standard errors
than for the expected utility model. As a result, marginal t-tests of the hypothesis
that the moments are individually equal to zero do not reject. The relatively large
values of the joint test statistic, therefore, come from the correlations across these
moment equations. Even though these moments are not estimated very precisely,
there are a number of changes in the point estimates from those obtained for the
preceding model. The large negative autocorrelation in the bond equation error in
the expected utility model is now a small positive correlation. In fact, almost all of
the moments involving the bond error have changed sign. The positive average
error for the bond equation in the expected utility model is now a large negative
average error. However, the pattern of attaching relatively more weight to the

Table 2
Kreps–porteus utility

Parameter Nondurables Nondurables and services

Ž . Ž .g y0.0077 0.0012 y0.0110 0.0022
Ž . Ž .s 0.1550 0.0736 0.1416 0.0632
Ž . Ž .a 0.4117 0.2407 1.7113 0.6518

� 4 � 4d 0 0
� 4 � 4A 1 1

2Ž . w x w xx 7 11.25 0.128 18.08 0.012

Ž 8. Ž 8.Moment Fitted value Weight =10 Fitted value Weight =10
MŽ . Ž . Ž .E ´ y0.0949 0.1643 0.0003 y0.0474 0.0704 0.0013
BŽ . Ž . Ž .E ´ y0.2316 0.4584 0.00004 y0.2386 0.4319 0.00004
M MŽ . Ž . Ž .E ´ ´ y0.0038 0.0074 5.7739 y0.0012 0.0016 17.674y1
B BŽ . Ž . Ž .E ´ ´ 0.0083 0.0544 0.1310 0.0041 0.0538 0.1650y1
M BŽ . Ž . Ž .E ´ ´ y0.0018 0.0203 0.8460 y0.0021 0.0094 5.0732y1
B MŽ . Ž . Ž .E ´ ´ y0.0049 0.0198 0.9062 y0.0039 0.0090 5.7790y1
M MŽ . Ž . Ž .E ´ ´ y0.0002 0.0072 6.7000 y0.0001 0.0014 17.525y2
B BŽ . Ž . Ž .E ´ ´ y0.0039 0.0526 0.1334 y0.0063 0.0504 0.1477y2
M BŽ . Ž . Ž .E ´ ´ y0.0039 0.0195 0.9603 y0.0014 0.0086 5.2289y2
B MŽ . Ž . Ž .E ´ ´ 0.0013 0.0195 0.9324 y0.0010 0.0085 4.9152y2

See Table 1.
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moments involving the stock return equation and, hence, providing a better fit for
these moments, is still present.

4.2.3. Weighted utility
Table 3 presents results for a model with risk preferences that exhibit first-order

Ž . Ž . Ž .risk neutrality As1 , but are allowed to fan out d-0 or fan in d)0 . As
one might anticipate, given the similarities of the weighted utility model and the
Kreps–Porteus model found in Section 4.1, the additional parameter introduced by
this specification is not well identified. The value of the objective function
typically changes very little with substantial changes in the values of a and d .
The large standard errors for the estimates of these parameters id further evidence
of this weak identification. The point estimates indicate fanning out for both data
sets, however, the large standard errors do not allow fanning in to be rejected.
Further, the Kreps–Porteus model cannot be rejected using either a t-test of ds0
or a likelihood-ratio-type comparison of x 2 values. The estimate of the rate of
time preference is positive; however, the estimate of the elasticity of substitution is
significantly negative indicating convex utility of deterministic paths. Given these
results, it is difficult to consider this parameterization to be much of an improve-

Table 3
Weighted utility

Parameter Nondurables Nondurables and services

Ž . Ž .g 0.0072 0.0055 0.0067 0.0038
Ž . Ž .s y0.3169 0.0450 y0.3656 0.0680

Ž . Ž .a 2.4105 9.7503 8.1409 8.0639
Ž . Ž .d y0.6480 9.4916 y4.0372 7.1304

� 4 � 4A 1 1
Ž . Ž .1yay2d y0.1145 9.2563 0.9335 6.3145

2Ž . w x w xx 6 11.78 0.067 7.28 0.296
2 2Ž . Ž . w x w xx 7 – x 6 0.0272 0.869 0.7953 0.373

Ž 7 . Ž 7 .Moment Fitted value Weight =10 Fitted value Weight =10
MŽ . Ž . Ž .E ´ 0.0145 0.0085 0.0010 0.0453 0.0234 0.0011
BŽ . Ž . Ž .E ´ y0.2283 0.0711 0.0001 y0.0222 0.0535 0.0002
M MŽ . Ž . Ž .E ´ ´ 0.0005 0.0004 7.9989 0.0013 0.0006 8.5998y1
B BŽ . Ž . Ž .E ´ ´ y0.0047 0.0054 0.0720 y0.0026 0.0011 0.5406y1
M BŽ . Ž . Ž .E ´ ´ y0.0019 0.0020 0.6876 0.0022 0.0015 1.6651y1
B MŽ . Ž . Ž .E ´ ´ y0.0055 0.0015 0.8933 y0.0000 0.0009 2.4646y1
M MŽ . Ž . Ž .E ´ ´ 0.0006 0.0006 9.2146 y0.0002 0.0006 9.8977y2
B BŽ . Ž . Ž .E ´ ´ y0.0023 0.0069 0.0694 0.0019 0.0021 0.4633y2
M BŽ . Ž . Ž .E ´ ´ y0.0010 0.0021 0.8382 0.0010 0.0013 2.5605y2
B MŽ . Ž . Ž .E ´ ´ 0.0024 0.0021 0.7633 0.0010 0.0013 1.9340y2

2Ž . 2Ž .See Table 1. x 7 – x 6 is a likelihood ratio-type test of the ds0 restriction.
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ment over the Kreps–Porteus model. In addition, our market data seem to impute
little importance to the fanning pattern of indifference curves, which as noted
earlier, has received considerable attention in the experimental literature.

4.2.4. Disappointment aÕersion
We now turn to the results for a model with first-order risk aversion. We were

Ž .unable to identify the model with all five parameters g , s , a , d and A ,
unrestricted. This is not surprising given the nature of the results for the weighted
utility model. Thus, we fix ds0 and estimate the remaining four parameters for
the disappointment aversion model.

The evidence in Table 4 indicates that allowing for first-order risk aversion
greatly improves the performance of the model on many different dimensions. The
point estimates of A are roughly three standard deviations from As1, hence, are
significantly different from first-order risk neutrality. These values for A indicate
that the representative consumer attaches roughly three times more weight to
disappointing outcomes than to favorable outcomes. That is, a substantial amount
of first-order risk aversion appears to be necessary to rationalize observed con-
sumption and asset returns data. The estimates of the substitution elasticity are
very small—substantially smaller than in either the expected utility or Kreps–
Porteus models. The rate of time preference is positive even though the substitu-

Table 4
Disappointment aversion

Parameter Nondurables Nondurables and services

Ž . Ž .g 0.0036 0.0030 0.0094 0.0028
Ž . Ž .s 0.0048 0.1028 0.0032 0.1291
Ž . Ž .a y0.9763 0.5983 y6.4672 1.0657

� 4 � 4d 0 0
Ž . Ž .A 0.3800 0.1830 0.2872 0.1687

2Ž . w x w xx 7 2.19 0.902 0.15 0.999

Ž 7 . Ž 7 .Moment Fitted value Weight =10 Fitted value Weight =10
MŽ . Ž . Ž .E ´ y0.1218 0.0300 0.0004 y0.0144 0.0449 0.0004
BŽ . Ž . Ž .E ´ y0.1148 0.0760 0.0002 y0.0011 0.0381 0.0004
M MŽ . Ž . Ž .E ´ ´ y0.0008 0.0019 1.0073 y0.0001 0.0027 1.0137y1
B BŽ . Ž . Ž .E ´ ´ 0.0013 0.0051 0.2282 0.0002 0.0011 1.9470y1
M BŽ . Ž . Ž .E ´ ´ 0.0003 0.0035 0.4152 0.0003 0.0021 1.0731y1
B MŽ . Ž . Ž .E ´ ´ y0.0009 0.0035 0.5218 0.0001 0.0019 1.6679y1
M MŽ . Ž . Ž .E ´ ´ 0.0002 0.0022 1.3457 0.0000 0.0024 1.3624y2
B BŽ . Ž . Ž .E ´ ´ 0.0003 0.0057 0.2187 y0.0003 0.0017 1.8554y2
M BŽ . Ž . Ž .E ´ ´ y0.0005 0.0037 0.5823 y0.0001 0.0022 1.8445y2
B MŽ . Ž . Ž .E ´ ´ y0.0002 0.0036 0.4978 y0.0005 0.0022 2.4838y2

See Table 1.



( )L.G. Epstein, S.E. ZinrJournal of Empirical Finance 8 2001 537–572 561

tion elasticity is small. A negative rate of time preference is not needed in this
model to match the average levels of returns. In other words, the model appears to
be generating sensible results with economically meaningful values of the parame-
ters.

The over-identifying restrictions test almost never rejects this model. The
potential for singularity in a system of moment restrictions is always a concern.
However, the matrix in the quadratic form used to construct the x 2 test had a

Ž .substantially larger condition number ratio of the smallest to largest eigenvalue
in this case than for any of the other models. It is, therefore, unlikely that the risk

Ž .of a singularity is greater than for any of the other models which typically reject .
The estimated moments and their standard errors indicate that this model generates
moments that are much closer to their theoretical value than any of the other
specifications. The pattern of fitting stock restrictions more closely than bond
restrictions is no longer present. The mean of each error appears to be receiving
approximately the same weight and the same is true for the autocovariances.
Overall, the empirical performance of this model appears to be very good.

The degree of risk aversion implied by the point estimates for the disappoint-
ment aversion model cannot be summarized by a single number as in the expected
utility model. We can, however, make some risk aversion comparisons by
computing certainty for simple lotteries for different parameter values. Table 5
contains some Awillingness-to-payB calculations, i.e., the difference between the
mean and the certainty equivalent, for three expected utility certainty equivalents
Ž .asy1, y9 and y29 and two disappointment aversion certainty equivalents
Ž .corresponding to the estimates from Table 4 . The gamble considered is timeless
and has two equally likely outcomes with an expected value of 75,000; the
standard deviation of the gamble increase as one moves down any column of the

Table 5
Some Awillingness-to-payB calculations

´ Risk preferences
a a a A,a A,am m m m mEU EU EU DA DA

Ž . Ž . Ž . Ž . Ž .asy1 asy9 asy29 As0.38, asy1 As0.28, asy6.5

250 1 4 12 113 140
2500 83 410 1091 1189 1575

25,000 8333 21,009 23,791 17,017 23,028
40,000 21,333 37,198 39,153 31,707 38,602
50,000 33,333 47,999 49,395 42,937 49,001
60,000 48,000 58,799 59,637 55,139 59,401
74,000 73,013 73,920 73,976 73,624 73,953

Entries give the willingness to pay to avoid a gamble with equally likely outcomes "´ , given initial
Ž .wealth equal to 75,000. Thus, for each m and ´ , the appropriate entry is 75,000ym x , where x˜ ˜

equals 75,000"´ with probability 1r2.
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table. From these calculations, we can see that even for a small gamble, the
expected utility model does not differ much from risk neutrality, even for a ‘large’
degree of relative risk aversion, while the disappointment aversion model displays
substantial risk aversion. However, for a range of moderate to large gambles, the
disappointment aversion certainty equivalent corresponding to As0.38 and as
y1 exhibits less risk aversion than an expected utility certainty equivalent with a

Ž Ž .‘moderate’ value of relative risk aversion, asy9. See Epstein and Zin 1990
.for additional comparisons of risk aversion along these lines.

We note that what constitutes a ‘moderate’ or ‘large’ magnitude for the degree
Ž .of relative risk aversion RRA is not at all clear. While the conventional wisdom

Žhas until recently held that only values of RRA less than 10 are reasonable e.g.,
. Ž .Mehra and Prescott, 1985 , Kandel and Stambaugh 1990 have raised serious

doubts about the validity of arguments typically invoked to support this view. The
disappointment aversion model, of course, is not immune to this debate. Whether
or not one should view the degree of risk aversion embodied in the results in Table
4 to be implausibly large is equally unclear. However, it is clear that since ‘large’
second-order risk aversion alone still leads to rejections of the theory, it is the
‘large’ first-order risk aversion that improves the empirical performance of the
model. Although this property is structural in the context of the representative
agent formulation of this paper, there is some reason to believe that it may be
reflecting a feature of the market structure rather than individual preferences. For

Ž .example, Epstein 1991 presents a simple example in which an exogenously
given, suboptimal risk-sharing rule leads to community preferences that exhibit
first-order risk aversion, even though all individuals have standard expected
preferences. There is also an interesting link between the disappointment aversion
model and stochastic process switching models, to which we now turn.

4.3. Switching models for consumption and MRS

When consumption growth exhibits stochastic process switching, expected
Žutility models generates more plausible asset-pricing predictions e.g., Cecchetti et

.al., 1989; Kandel and Stambaugh, 1990 . This is similar to the inclusion of
Žso-called Adisaster statesB in the consumption growth process e.g., Reitz, 1988;

.Backus et al., 1989 . We now examine an interesting empirical similarity between
these models and the disappointment aversion model.

Fig. 12 plots the ex post realizations for the log of the MRS defined by Eq.
Ž .4.2 for the disappointment aversion model using nondurable consumption and
the point estimates of the parameters that correspond to this measure of consump-
tion from Table 4.11 Fig. 13 plots a histogram for this series. From these, we can

11 A comparable plot nondurables and services provides very similar evidence and is not shown.
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Ž .Fig. 12. Disappointment aversion log MRS .

see two obvious properties of this MRS: it exhibits substantial negative autocorre-
lation and its unconditional distribution is strongly bimodal. A simple reduced
form time-series representation with these two properties is a mixture of normal
distributions with a two-state Markov chain generating the mixture. That is a

Ž .Fig. 13. Histogram for disappointment aversion log MRS .
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Table 6
Ž .Switching models for log MRS

Parameter Nondurables Nondurables and services

Ž . Ž . Ž . Ž .log MRS log crc log MRS log crcy1 y1

Ž . Ž . Ž . Ž .P 0.4342 0.0220 1.0050 0.1134 0.3135 0.0230 0.9963 0.0619
Ž . Ž . Ž . Ž .u y0.2068 0.0532 0.1444 0.2252 y0.0959 0.0526 0.1794 0.1198
Ž . Ž . Ž . Ž .m y0.0010 0.0039 0.0011 0.0004 0.0162 0.0052 0.0017 0.00031
Ž . Ž . Ž . Ž .s 0.0467 0.0027 0.0079 0.0003 0.0532 0.0036 0.0045 0.00021
Ž . Ž . Ž . Ž .m y0.9763 0.0029 0.0014 0.0025 y1.2791 0.0029 0.0020 0.00062
Ž . Ž . Ž . Ž .s 0.0400 0.0021 0.0016 0.0050 0.0434 0.0020 0.0010 0.00032

loglik 355.4 1144.4 344.5 1332.8
Ž .switching
loglik y231.0 1142.9 y302.9 1330.7
Ž .i.i.d.

p is the unconditional probability of state 1, u is the simple persistence parameter, m , s are the1 1

mean and standard deviation in state i, is1, 2. Standard errors are in parentheses.

stochastic switching process of the form considered in the papers cited above.
Maximum likelihood estimates of such a model for the log of MRS are presented
in Table 6 for both consumption measures.12 The parameters in this switching
model are the unconditional probability of being in the high state, p, the mean and

Ž .standard deviation in the low state, m , s , the mean and standard deviation of1 1
Ž .the high state, m , s , and the autocorrelation parameter for the Markov chain,2 2

u .13 The negative autocorrelation and bimodality noted in Figs. 12 and 13 are also
present in the maximum likelihood estimates in Table 6. There is substantial
separation in the estimates of the two means. The low mean state is slightly more
probable and has a larger variance than the high state. This pattern is shared by the
log MRS for both consumption measures, though the autocorrelation is not as
strong for the nondurables and services MRS. For comparison, the log of the
likelihood function is computed for an i.i.d. normal model as well, which has four
fewer parameters.

One could construct an expected utility model that would deliver exactly this
behavior in the marginal rate of intertemporal substitution and, hence, the same
predictions for asset pricing as the disappointment aversion model. Since the log
of the expected utility MRS is a linear function of the log of consumption growth,

12 Since the discussion in this section is at a somewhat casual level, we ignore the complications for
inference that may be introduced by the fact that this series is generated using parameter estimates
computed from the entire sample.

13 ŽWithout loss of generality, the transition probabilities are parameterized as Prob state s iNt
. Ž .state s j s p 1yu qd u , where p is the unconditional probability of state 1 and d s1 whenty1 i i j i i j

is j and 0 otherwise.
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Fig. 14. Log consumption growth.

applying the inverse of this linear function to the log of the disappointment
aversion MRS produces a consumption growth process that generates an observa-
tionally equivalent expected utility MRS. For example, postulating a switching
process for the log of nondurable consumption growth with ps0.4342, us
y0.2068, m s0.0026, m s0.1110,14 s s0.0052 and s s0.0044 generates1 2 1 2

an expected utility marginal rate of substitution process with bs0.9975 and
asy9, which exhibits exactly the same behavior as the disappointment aversion
marginal rate of substitution process in the first column of Table 6.

For comparison, Figs. 14 and 15 plot the log of observed monthly nondurable
consumption growth and its histogram. The log of any expected utility MRS is a
linear function of this process. The second and fourth columns of Table 6 estimate
the parameters of the switching model that fits observed consumption growth.
From the figures and the parameter estimates, it is clear that observed consumption
growth does not exhibit the persistence and bimodality properties that could
generate an expected utility MRS that is similar to the disappointment aversion
MRS. The evidence from these data for the type of stochastic switching process
for consumption growth used in previous expected utility studies, e.g., Cecchetti et

Ž .al. 1989 , is quite weak. However, we have shown that the marginal rate of
intertemporal substitution can exhibit switching-type behavior even if consumption

14 Note that the low state for MRS translates into the high state for consumption growth.
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Fig. 15. Histogram for log consumption growth.

growth rates do not. The requisite persistence and bimodality of the MRS can be
generated instead by the specification of disappointment averse utility.

5. Conclusion

We have shown that some recent developments in the theory of choice under
Ž . Ž .uncertainty due to Chew 1983, 1989 and Gul 1991 , which relax the indepen-

dence axiom of expected utility, can be incorporated into a recursive asset-pricing
model without sacrificing either theoretical or empirical tractability. We are able to
provide the first tests of these new theories using actual market data rather than
laboratory experiments. Our evidence indicates that the generalization to weighted
utility does not enhance the explanatory power of our asset-pricing model for the
data we consider. On the other hand, we find that using preferences that exhibit
first-order risk aversion provides a substantial improvement in the empirical
performance of a representative agent, intertemporal asset-pricing model relative
to models that maintain only second-order risk aversion. A model in which the
representative agent’s preferences exhibit positive time preference, low substi-
tutability in deterministic consumption and nonnegligible eversion to small risks,
is very difficult to reject. Future research will examine the robustness of these
results by considering other securities such as individual stock returns and
multiperiod bond returns.
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Appendix A

A.1. Properties of mSW

Ž . Ž .Recall the definition Eq. 2.3 of m where f is given by Eqs. 2.4 andSW
Ž . XŽ . YŽ .2.5 . Note that f 1 )0 and f 1 -0. Thus, f is strictly increasing and

w x Ž . Žconcave on an interval a, b containing 1. Note also that f 1 s0. Under Eq.
Ž . .2.7 , the preceding is true for any positive numbers a and b.

w xLet F have support in a, ` . Then:

f xra d F x G f 1 d F x s0.Ž . Ž . Ž . Ž .H H
On the other hand, if F has finite mean m, then by Jensen’s inequality:

f xrm d F x Ff 1 s0.Ž . Ž . Ž .H
Ž . Ž . Ž . Ž .Thus, there exists a unique l such that Hf xrl d F x s0. We define m FSW

sl.
Ž . Ž .Properties 2.1 and 2.2 are immediate. Consistency with first-degree stochas-

tic dominance and risk aversion follows from the monotonicity and concavity of
f. For example, if G is a mean preserving spread of F, then:

f xrm F d F xŽ . Ž .Ž .H SW

s0s f xrm G dG x F f xrm G d F xŽ . Ž . Ž . Ž .Ž . Ž .H HSW SW

´m F Gm G .Ž . Ž .SW SW

A.2. DeriÕation of the Euler equations

Ž . Ž .Turn to the derivation of the Euler Eq. 3.4 . It follows from Eq. 2.3 and
Ž . )Epstein and Zin 1989, pp. 957–958 that the optimal portfolio share vector v t

solves:
ry1 rrŽ .1rr 1yr rr TŽ .˜max E f b M c rc v r , A.1Ž .Ž .˜ ˜v t tq1 tq1 t tq1
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˜ )Twhere r is the vector of gross real returns, M sv r , the return to the˜ ˜tq1 tq1 t tq1
Ž . �market porfolio, and where vs v , . . . , v varies over the simplex v: v G01 N i

4for all i and Ýv s1 . We will show that, under additional assumptions, thei
Ž . )objective function in Eq. A.1 is differentiable at v and the associatedt

Ž .first-order conditions are given by Eq. 3.4 . The existence of an interior optimum
is assumed.

Ž .Recall the definition Eq. 3.6 of z and define:tq1

x d x ay1 ra , a/0,Ž .
g x sŽ .

d½ x log x , as0.Ž .

Ž Ž ..The optimization problem Eq. A.1 can be written:

max g z My1 vTr d FŽ .Hv tq1 tq1 tq1 t

q Ay1 g z My1 vTr d F ,Ž . Ž .H tq1 tq1 tq1 t
y1 Tz M v r G1� 4tq1 tq1 tq1

where F is the appropriate conditional cdf. Since g is differentiable, the onlyt

potential difficulty arises because the domain of the second integral depends upon
v and because A/1, in general.

Define:

c v s g z d F . A.2Ž . Ž . Ž .H tq1 t
y1 Tz M v r G1� 4tq1 tq1 tq1

When there is positive probability associated with z s1, c can fail to betq1

differentiable at vsv ). However, under Assumptions 1 and 2, c is differen-t

tiable there and:

c v ) yc v ) s0, i , js1, . . . , N. A.3Ž .Ž . Ž .i t j t

Ž . Ž .It then follows that Eq. 3.4 represents the first-order conditions for Eq. A.1 .

Assumption 1. For each information set at time t, the conditional distribution of
r has compact support in the positive orthant.tq1

Assumption 2. For each information set at t, there exists an ´)0 such that:

y1sup ´ Prob z : 1y´-z -1q´ -`.� 4˜ ˜Ž .0- ´- ´ t tq1 tq1

A necessary condition for Assumption 2 is that the conditional probability that
z s1 be zero. A sufficient condition is that z have bounded conditional˜ ˜tq1 tq1

density function.
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Ž .One can apply elementary arguments and the fact that g 1 s0 to the differ-
Ž .ence quotient corresponding to Eq. A.3 to prove the latter. Details are omitted.

A.3. Asymptotic properties of the GMM estimator

Turn now to the asymptotic properties of the GMM estimator when A/1. In
this case, the objective function is not differentiable. We, therefore, employ the

Ž . Ž .results in Andrews 1989a,b to show how the arguments in Hansen 1982 can be
modified to deal with this nonstandard situation. The application of these results to
our problem is straightforward so we simply outline the steps involved in deriving

Ž .asymptotic properties for the GMM estimator. Note that unlike Andrews 1989a,b ,
we do not have the added complication of infinite dimensional nuisance parameter
estimation; all of the parameters in our model are finite dimensional.

Ž . y1 T ŽFor simplicity, consider first the just-identified case. Let fT b 'T Ý f x ,ts1 t
. Ž .b be the sample analogue for a sample of size T of the population orthogonality

Ž .restrictions based on Eq. 4.7 , where x is the vector of variables and b is thet
Ž .vector of parameters. The GMM estimator, b , is defined such that f b s0T T T

Ž .and the true value of the parameter vector, b , is such that Ef b s0. If a0 T 0
Ž .uniform law of large numbers holds for f b and if b is identified, then aT 0

Ž ..standard proof e.g., Hansen, 1982; or Andrews, 1989a, Theorem 1.1 of the
Ž .consistency of b can be constructed when Ef b is continuous. The continuityT T

of this expectation follows from the discussion in Appendix A2 and will be
assumed from here on.

Ž . Ž .Since the functions defined in Eqs. 4.4 and 4.5 are not differentiable in the
Ž .parameters of the model, the mean value expansion of f b at b , which isT T 0

typically used to establish asymptotic normality for the GMM estimator, does not
Ž .necessarily exist. We can, however, expand Ef b at b since this function isT 0 T

differentiable. This expansion has the form:

EEf bŽ .T T
Ef b sEf b y b yb .Ž . Ž . Ž .T 0 T T T 0

Eb

1r2 Ž .where b is between b and b . This implies that T b yb is asymptoti-T T 0 T 0
1r2 Ž . Ž .cally normal distributed if T Ef b has this property, since Ef b equals 0T T T 0

by definition. Note the difference in this result from the standard argument which
1r2 Ž . 1r2 Ž .says that T b yb is asymptotically normally distributed if T f b hasT 0 T 0

this property.
Ž . 1r2 w Ž . Ž .xDefine the empirical process, Õ b 'T f b yEf b . If this processT T T

Ž .has the property of stochastic equicontinuity as defined in Andrews, 1989b at
Ž .the b , and if b is consistent for b , then Õ b is asymptotically equivalent to0 T 0 T T

Ž . 1r2 Ž .Õ b . This in turn implies that T Ef b is asymptotically equivalent toT 0 T T
1r2 Ž . Ž . Ž .yT f b , since both Ef b and f b are zero by definition. When aT 0 T 0 T T
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1r2 Ž .central limit theorem holds for T f b as in the standard case, it follows thatT 0
1r2 Ž .T f b yb is asymptotically normally distributed with covariance matrix:T T 0

y1 y1
EEf b EEf bŽ . Ž .T 0 T 01r2Var T f b .Ž .T 0

Eb Eb

An estimator of the matrix of derivatives in this expression can be constructed
Ž .using a finite difference of the sample average as in Pakes and Pollard, 1989

evaluated at a consistent estimator for b , provided the finite difference converges0

to zero at an appropriate rate as the sample size gets large. The variance of the
orthogonality conditions in the middle of this expression can be consistently

Ž . Ž .Testimated in the standard way by using the sample average of f x , b f x , b ,t t

evaluated at a consistent estimator for b .0

When the model is over-identified, b is defined as the minimizer of theT
Ž .T Ž .quadratic form f b W f b , where W is a positive definite matrix that canT T T T

depend on the sample size and has a probability limit of W. As in the just-identi-
Ž .fied case, asymptotic normality follows from an expansion of Ef b around b .T 0 T

wŽ Ž .. xTPremultiply both sides of this expansion by EEf b rEb W. It follows thatT 0
wŽ Ž .. xT 1r2 Ž . Ž .when EEf b rEb WT f b is o 1 and the stochastic equicontinuityT 0 T T p

1r2Ž .condition holds, T b yb is asymptotically normally distributed with covari-T 0

ance matrix:

y1 y1T T 1r2 TD WD D W Var T f b WD D WD ,Ž .Ž . Ž .Ž .0 0 0 T 0 0 0 0

wŽ Ž .. x y1where D s EEf b rEb . When W s V where V is equal to0 T 0
w 1r2 xy1Var T f b , the asymptotic covariance matrix of the GMM estimator isT 0

Ž T y1 .y1D V D . This defines an efficient estimator in the sense that this covariance0 0

matrix differs from the covariance matrix of an estimator defined for an arbitrary
choice of weighting matrix, W , by a positive semidefinite matrix. Further, forT

Ž .T y1 Ž . 2this efficient estimator, Tf b V f b has a limiting x distribution withT T T T

degrees of freedom equal to the number of restrictions less the number of
estimated parameters. Note that this result differs from the just-identified case by

wŽ Ž .. xT 1r2 Ž .requiring that EEf b rEb WT f b converge to zero in probability asT 0 T T

the sample size gets arbitrarily large. When the objective function is differentiable,
the analogous condition to this follows from the necessary conditions for the
optimization problem that defines the estimator. Alternatively, one can think of the

Žover-identified model as corresponding to a particular just-identified model as in
. Ž .Hansen, 1982 , by defining it as the solution to a f b s0, where a hasT T T T

column dimension equal to the number of orthogonality restrictions and row
dimension equal to the number of parameters, i.e., the estimator sets a particular
linear combination of the orthogonality restrictions equal to zero. In the differen-
tiable case, a can be thought of as defining the first-order conditions. In theT

wŽ Ž .. xTnondifferentiable case, when a converges to EEf b rEb W, the asymptoticT T 0

results discussed above will hold without any additional assumptions. Therefore,
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constructing a just-identified GMM estimator for the linear combinations of the
wŽ Ž .. xTorthogonality restrictions given by a consistent estimator of EEf b rEb WT 0

results in an estimator that is asymptotically equivalent to the estimator based on
wŽ Ž ..the minimization of the quadratic form and the requirement that EEf b rT 0

xT 1r2 Ž . Ž .Eb WT f b so 1 .T T p

The results discussed above rely on the stochastic equicontinuity of the
empirical process. Sufficient conditions for this in a time-series context that can be

Ž .applied to our model are given in Andrews 1989b . Note that the functions that
Žwe deal with involve his type I and type III functions indicator functions and

.power functions .
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