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1 Introduction

Accounting for the asset values by measured physical capital and other inputs arguably
omits intangible sources of capital. This intangible or unmeasured component of the capital
stock may result because some investments from accounting flow measures are not eventually
embodied in the physical capital stock. Instead there may be scope for valuing ownership of
a technology, for productivity enhancements induced by research and development, for firm
specific human capital, or for organizational capital.
For an econometrician, intangible capital becomes a residual needed to account for values.

In contrast to measurement error, omitted information or even model approximation error,
this residual seems most fruitfully captured by an explicit economic model. It is conceived
as an input into technology whose magnitude is not directly observed. Its importance is
sometimes based on computing a residual contribution to production after all other measured
inputs are accounted for. Alternatively it is inferred by comparing asset values from security
market data to values of physical measures of firm or market capital. Asset market data is
often an important ingredient in the measurement of intangible capital. Asset returns are
used to convey information about the marginal product of capital and asset values are used
to infer magnitude of intangible capital.
In the absence of uncertainty, appropriately constructed investment returns should be

equated. With an omitted capital input, constructed investment returns across firms, sectors
or enterprizes will be heterogeneous because of mis-measurement. As argued by Telser
(1988) and many others, differences in measured physical returns may be “explained by the
omission of certain components of their ‘true’ capital.” McGrattan and Prescott (2000) and
Atkeson and Kehoe (2002) are recent macroeconomic examples of this approach. Similarly,
as emphasized by Hall (2001) and McGrattan and Prescott (2000), asset values should encode
the values of both tangible and of intangible capital. Provided that physical capital stock
can be measured there is scope for asset market data to be informative about the intangible
component of the capital stock.
Following Hall (2001) we find it fruitful to consider the impact of risk in the measurement

of intangible capital. Although not emphasized by Hall, there is well documented heterogene-
ity in the returns to equity of different types. In the presence of uncertainty, it is well known
that use of a benchmark asset return must be accompanied by a risk adjustment. Historical
averages of equity returns differ in systematic ways. Inferences about the intangible capital
stock using security market returns necessarily must confront risk considerations or some
competing interpretation for the heterogeneity in security market returns. Similarly, asset
values reflect beliefs about the future prospects for firms, but the also reflect the riskiness of
the implied cash flows.
In what follows we review the relevant investment theory (see section 2). In section

3 we review and reproduce some of the findings in the asset pricing literature by Fama
and French (1992) on return heterogeneity. Risk premia can be characterized in terms of
return risk or dividend or cash flow risk. We follow some recent literature in finance by
exploring dividend risk. Since equity ownership of securities entitles an investor to future
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claims to dividends in all subsequent time periods, quantifying dividend risk requires a time
series process. We consider measurements of dividend risk using vector autoregressive (VAR)
characterizations. Since asset valuation entails the study of a present-value relation, long run
growth components of dividends can play an important role in determining asset values. In
section 4 we reproduce the present-value approximation used in the asset pricing literature
and use it to define a long-run measure of risk as a discounted impulse response. In sections 5,
and 6 we use VAR methods to estimate the dividend-risk measures that have been advocated
in the asset-pricing literature.
The literatures on intangible capital and asset return heterogeneity to date have been

largely distinct. Our disparate discussion of these literatures will inherit some of this sepa-
ration. In section 7 we conclude with some discussion of how to understand better lessons
from asset pricing for the measurement of intangible capital.

2 Adjustment Cost Model

We begin with a discussion of adjustment costs and physical returns. Grunfeld (1960) shows
how the market value of a firm is valuable in the explanation of corporate investment. Lucas
and Prescott (1971) developed this point more fully by producing an equilibrium model of
investment under uncertainty. Hayashi (1982) emphasized the simplicity that comes with
assuming constant returns to scale. We exploit this simplicity in our development that
follows.
Consider the following setup:

2.1 Production

Let nt denote a variable input into production such as labor, and suppose there are two types
of capital, namely kt = (k

m
t , k

u
t ) where k

m
t is the measured capital and k

u
t is unmeasured or

intangible capital stock. Firm production is given by

f(kt, nt, zt)

where f displays constant returns to scale in the vector of capital stocks and the labor input
nt. The random variable zt is a technology shock at date t.
Following the adjustment cost literature, there is a nonlinear evolution for how investment

is converted into capital.
kt+1 = g(it, kt, xt) (1)

where g is a two-dimensional function displaying constant returns to scale in investment and
capital and xt is a specific shock to the investment technology. We assume that there are
two components of investment corresponding to the two types of capital. This technology
may be separable in which case the first coordinate of g depends only on imt and k

m
t while

the second coordinate depends only on iut and k
u
t .
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Example 2.1. A typical example of the first equation in system (1) is:

kmt+1 = (1− δm)k
m
t + imt − gm(i

m
t /k

m
t , xt)k

m
t

where δm is the depreciation rate and gm measures the investment lost in making new capital
productive.

In the absence of adjustment costs, the function g is linear and separable.

Example 2.2. A common specification that abstracts from adjustment costs is:

g(kt, it, xt) =

[

1− δm 0
0 1− δu

]

kt + it

2.2 Firm Value

Each time period the firm purchases investment goods and produces. Let pt denote the
vector of investment good prices and wt the wage rate. Output is the numeraire in each
date. The date-zero firm value is:

E

(

∞
∑

t=0

St,0 [f(kt, nt, zt)− pt · it − wtnt] |F0

)

(2)

The firm uses market determined stochastic discount factors to value cash flows. Thus St,0
discounts the date t cash flow back to date zero. This discount factor is stochastic and
varies depending on the realized state of the world at date t. As a consequence St,0 not
only discounts known cash flows but it adjusts for risk, see Harrison and Kreps (1979) and
Hansen and Richard (1987).1 The notation F0 denotes the information available to the firm
at date zero.
Form the Lagrangian:

E

(

∞
∑

t=0

St,0[f(kt, nt, zt)− pt · it − wtnt − λt · [kt+1 − g(it, kt, xt)] |F0

)

(3)

where k0 is a given initial condition for the capital stock. First-order conditions give rise to
empirical relations and valuation relations that have been used previously.
Consider the first-order conditions for investment:

pt =
∂g

∂i
(it, kt, xt)

′λt (4)

Special cases of this relation give rise to the so called q theory of investment. Consider for
instance the separable specification in Example 2.1. Then

∂gm
∂i
(imt /k

m
t , xt) = 1−

pmt
λmt

. (5)

1This depiction of valuation can be thought of assigning state prices, but it also permits certain forms of
market incompleteness.
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This relates the investment capital ratio to what is called Tobin’s q (qt =
λm

t

pm

t

). The Lagrange

multiplier λmt is the date t shadow value of the measured capital stock that is productive at
date t. There is an extensive empirical literature that has used (5) to study the determinants
of investment. As is well known, λmt = pmt and Tobin’s q is equal to one in the absence of
adjustment costs as in Example 2.2.
Consider next the first-order condition for capital at date t+ 1:

λt = E

(

St+1,t

[

∂f

∂k
(kt+1, nt+1, zt+1) +

∂g

∂k
(it+1, kt+1, xt+1)

′λt+1

]

|Ft

)

(6)

where St+1,t ≡ St+1,0/St,0 is the implied one-period stochastic discount factor between dates
t and t+1. This depiction of the first-order conditions is in the form of a one-period pricing
relation. As a consequence, the implied returns to investments in the capital goods are:

rmt+1 ≡
∂f

∂km (kt+1, nt+1, zt+1) +
∂g

∂km (it+1, kt+1, xt+1)
′λt+1

λmt

rut+1 ≡
∂f

∂ku (kt+1, nt+1, zt+1) +
∂g

∂ku (it+1, kt+1, xt+1)
′λt+1

λut
.

The denominators of these shadow returns are the marginal costs to investing an additional
unit capital at date t. The numerators are the corresponding marginal benefits reflected in
the marginal product of capital and the marginal contribution to productive capital in future
time periods. The shadow returns are model-based constructs and are not necessarily the
same as the market returns to stock or bond holders.
In the separable case (Example 2.1), the return to the measurable component of capital

is

rmt+1 =
∂f

∂km (kt+1, nt+1, zt+1)k
m
t+1 + λmt+1k

m
t+2 − pmt+1i

m
t+1

λmt k
m
t+1

An alternative depiction can be obtained by using the investment first-order conditions to
substitute for λmt and λmt+1 as in Cochrane (1991). In the absence of adjustment costs
(Example 2.2), the return to tangible capital is:

rmt+1 =
∂f

∂km (kt+1, nt+1, zt+1) + (1− δm)p
m
t+1

pmt
. (7)

The standard stochastic growth model is known to produce too little variability in phys-
ical returns relative to security market counterparts. In the one-sector version, the relative
price pmt becomes unity. As can be seen in (7), the only source of variability is the marginal
product of capital. Inducing variability in this term by through variability in the technology
shock process zt+1 generates aggregate quantities such as output and consumption that are
too variable.
The supply of capital is less elastic when adjustment costs exist, hence models with

adjustment costs can deliver larger return variability than the standard stochastic growth
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model. This motivated Cochrane (1991) and Jermann (1998) to include adjustment costs to
physical capital in their attempts to generate interesting asset market implications in models
of aggregate fluctuations. As an alternative, Boldrin, Christiano, and Fisher (2001) study a
two sector model with limited mobility of capital across technologies. In our environment,
limited mobility between physical and intangible capital could be an alternative source of
aggregate return variability.
By the restricting the technology to be constant-returns-to-scale, the time zero firm value

is:

f(k0, n0, z0)− i0 · p0 − w0n0 + k1 · λ0 = k0 ·

[

∂f

∂k
(k0, n0, zo) +

∂g

∂k
(i0, k0, x0)

′λ0

]

(8)

This relation is replicated over time. Thus the date t firm value is given by the cash flow
(profit) plus the ex-dividend price of the firm. Equivalently it is the value of the date zero
vector of capital stocks taking account of the marginal contribution of this capital to the
production of output and to capital in subsequent time periods. Thus asset market values can
be used to impute kt+1 ·λt after adjusting for firm cash flow. When the firm has unmeasured
intangible capital, this additional capital is reflected in the asset valuation of the firm.
The presence of intangible capital alters how we interpret Tobin’s q. In effect there are

now multiple components to the capital stock. Tobin’s q is typically measured as a ratio
of values and not as a simple ratio of prices. While the market value of a firm has both
contributions, a replacement value constructed by multiplying the price of new investment
goods by the measured capital stock will no longer be a simple price ratio. Instead we would
construct:

λt · kt+1

pmt k
m
t+1

.

Heterogeneity in q across firms or groups of firms reflects in part different amounts of intan-
gible capital not simply a price signal to conveying the profitability of investment.
The dynamics of the ex-dividend price of the firm are given by:

λt · kt+1 = E (st+1,t [f(kt+1, nt+1, zt+1)− pt+1 · it+1 − wt+1nt+1 + kt+2 · λt+1] |Ft) .

The composite return to the firm is thus

rct+1 =
f(kt+1, nt+1, zt+1)− pt+1 · it+1 − wt+1nt+1 + kt+2 · λt+1

λt · kt+1

=
λmt k

m
t+1r

m
t+1 + λut k

u
t+1r

u
t+1

λt · kt+1

(9)

Recall that kt+1 is determined at date t (but not its productivity) under our timing conven-
tion. The composite return is a weighted average of the returns to the two types of capital
with weights given by the relative values of the two capital stocks.
Firm ownership includes both bond and stock holders. The market counterpart to the

composite return is a weighted average of the returns to the bond holders and equity holders
with portfolio weights dictated by the amount of debt and equity of the firm.
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2.3 Imputing the Intangible Capital Stock

These valuation formulas have been used by others to make inferences about the intangi-
ble capital stock. First we consider a return-based approach. We then consider a second
approach based on asset values.
Following Atkeson and Kehoe (2002) and others, we exploit the homogeneity of the

production function and Euler’s Theorem to write:

yt+1 =
∂f

∂km
(kt+1, nt+1, zt+1)k

m
t+1 +

∂f

∂n
(kt+1, nt+1, zt+1)nt+1 +

∂f

∂ku
(kt+1, nt+1, zt+1)k

u
t+1.

where yt+1 = f(kt+1, nt+1, zt+1) is output. Thus a measure of the contribution of intangible
capital to output:

∂f

∂ku (kt+1, nt+1, zt+1)k
u
t+1

yt+1

= 1−
∂f

∂km (kt+1, nt+1, zt+1)k
m
t+1

yt+1

−
∂f

∂n
(kt+1, nt+1, zt+1)nt+1

yt+1

.

To make this operational we require a measure of the labor share of output given by com-
pensation data and a measure of the share of output attributed to measured component of
capital. Using formula (7) from Example 2.2 and knowledge of the return and the deprecia-
tion rate, we can construct

∂f

∂km (kt+1, nt+1, zt+1)

pmt
= rmt+1 − (1− δm)

pmt+1

pmt
.

Thus
∂f

∂km (kt+1, nt+1, zt+1)k
m
t+1

yt+1

=

[

rmt+1 − (1− δm)
pmt+1

pmt

]

pmt k
m
t+1

yt+1

. (10)

This formula avoids the need to directly measure rental income to measured capital, but
it instead requires measures of the physical return, physical depreciation scaled by value
appreciation, and the relative value of tangible capital to income.
The physical return to measured capital is not directly observed. Even if we observed

the firm’s, (or industry’s or aggregate) return from security markets, this would be the
composite return (9) and would include the contribution to intangible capital. As a result, a
time series of return data from security markets is not directly usable. Instead Atkeson and
Kehoe (2002) take a steady state approximation implying that returns should be equated
to measure the importance of intangible capital in manufacturing. Income shares and price
appreciation are measured using time series averages. Given the observed heterogeneity in
average returns, as elsewhere in empirical studies based on the deterministic growth model,
there is considerable ambiguity as to which average return to use. To their credit, Atkeson
and Kehoe (2002) document the sensitivity of their intangible capital measure to the assumed
magnitude of the return.2 We will have more to say about return heterogeneity subsequently.

2Atkeson and Kehoe (2002) are more ambitious that what we describe. They consider some tax implica-
tions and two forms of measured capital: equipment and structures. Primarily they develop and apply an
interesting and tractable model of organizational capital.
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To infer the value of the intangible capital relative to output using return data, we
combine equation (10) with its counterpart for intangible capital to deduce that:

1 −
∂f

∂n
(kt+1, nt+1, zt+1)nt+1

yt+1

=

rct+1

pt · kt+1

yt+1

− (1− δm)

(

pmt+1

pmt

)(

pmt k
m
t+1

yt+1

)

− (1− δu)

(

put+1

put

)(

put k
u
t+1

yt+1

)

. (11)

To use this relation we must not only use the return rct+1 but also the growth rate in the
investment prices for the two forms of capital and the depreciation rates. From this we

may produce a measure of
pu

t
ku

t+1

yt+1
using (11). McGrattan and Prescott (2000) use a similar

method along with steady state calculations and a model in which put = pmt = 1 to infer the
intangible capital stock.3 Instead of using security market returns or historical averages of
these returns, they construct physical returns presuming that the noncorporate sector does
not use intangible capital in production.4 Rather than making this seemingly hard to defend
restriction, the return rct+1 could be linked directly to asset returns as in Atkeson and Kehoe
(2002). Although the practical question of which security market return to use would still
be present.5

In contrast to Atkeson and Kehoe (2002), McGrattan and Prescott (2000) and McGrattan
and Prescott (2003), uncertainty is central in the analysis of Hall (2001). For simplicity Hall
considers the case in which there is effect a single capital stock and a single investment good,
but only part of capital is measured. Equivalently, the capital stocks kmt and k

u
t are perfect

substitutes. Thus the production function is given by:

yt = fa(kat , nt, zt)

where kat = kmt + kut . Capital evolves according to:

kat+1 = ga(kat , i
a
t ) (12)

with xt excluded. The first-order conditions for investment are now given by:

∂ga

∂i
(kat , i

a
t ) =

pat
λat
, (13)

and

vt =
λat k

a
t+1

pat
(14)

3McGrattan and Prescott (2000) also introduce tax distortions and a noncorporate sector. They also
consider uncertainty, but with little gain. They use a minor variant of the standard stochastic growth
model, and that model is known to produce physical returns with little variability.

4McGrattan and Prescott (2003) use an a priori restriction on preferences instead of the explicit link to
returns in the noncorporate sector, but this requires independent information on the preference parameters.

5The measurement problem is made simpler by the fact that it is the composite return that needs to
be computed and not the individual return on measured capital. The implied one-period returns to equity
and bond-holders can be combined as in Hall (2001), but computing the appropriate one-period returns for
bond-holders can be problematic.
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is measured from the security markets using the firm value relation (8) and taking investment
to be numeraire. For a given kat , relations (12), (13) and (14) are three equations in the three

unknowns
λa

t

pa

t

, kat+1, i
a
t . In effect they provide a recursion that can be iterated over time with

the input of firm market value vt. Instead of returns, Hall (2001) uses asset values to deduce
a time series for the aggregate capital stock and the corresponding shadow valuation of that
stock.6

While Hall (2001) applies this method to estimate a time series of aggregate capital stocks,
we will consider some evidence from empirical finance on return heterogeneity that indicates
important differences between returns to the tangible and intangible components of the
capital stocks. This suggests the consideration of models in which intangible capital differs
from tangible capital in ways that might have important consequences for measurement.
This includes models that outside the adjustment cost models described here.

3 Evidence for Return Heterogeneity

We now revisit and reconstruct results from the asset pricing literature. Since the work of
Fama and French (1992) and others, average returns to portfolios formed on the basis of
the ratio of book value to market value are constructed. While the book to market value
is reminiscent of the q measure of the ratio of the market value of a firm vis. a. vis. the
replacement cost of its capital, here the book to market value is computed using only the
equity-holders stake in the firm. Capital held by bond holdings is omitted from the analysis.
Recall from section 2 that intangible capital is reflected in only the market measure of

assets but is omitted from the book measure. We are identifying firms with high intangible
capital based on high book equity-to-market equity (BE/ME). It is difficult to check this
identification directly because the market value of debt at the firm level is not easily observed.
As a check on our interpretation of the portfolios as reflecting different levels of intangible
capital we examined whether our portfolio construction would be different if we included
debt. We used the book value of debt as an approximation to the market value and considered
rankings of firms based on book assets-to-market assets. This resulted in essentially the
same rankings of firms. In fact the rank correlation between book assets-to-market assets
and BE/ME averaged 0.97 over the 53 years of our sample. This gives us confidence in
identifying the high BE/ME portfolio as containing firms with low levels of intangible and
the low BE/ME portfolio as containing firms with high levels of intangibles.
Fama and French form portfolios based on the ratio of book equity-to-market equity

(BE/ME), and estimate the mean return of these groups. They find that low BE/ME have
low average returns. Fama and French (1992) view a low BE/ME as signaling sustained high
earnings and/or low risk. While we follow Fama and French (1992) in constructing portfolios
ranked by BE/ME ratios, we use a coarser sort than they do. We focus on five portfolios
instead of ten, but this does not change the overall nature of their findings. Each year listed

6Hall (2001) establishes the stability of this mapping for some adjustment cost specifications, guaranteeing
that impact initializing ka

0
of the recursion the recursion at some arbitrary ka

0
decays over time.
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firms are ranked by their BE/ME using information from COMPUSTAT. Firms are then
allocated into five portfolios and this allocation is held fixed over the following year. The
weight placed on a firm in a portfolio is proportional to its market value each month.7

Firms may change groups over time and the value weights are adjusted accordingly. In
effect the BE/ME categories are used to form five portfolio dividends, returns and values
each time period. This grouping is of course different in nature than the grouping of firms
by industry SEC codes, an approach commonly used in the Industrial Organization (IO)
literature. For instance firms in the low BE/ME category may come from different industries
and the composition may change through time. On the other hand this portfolio formation
does successfully identify interesting payout heterogeneity at the firm level as we demonstrate
below.
Figure 1 plots the market value relative to book value of 5 portfolios of US stocks over

the period 1947 to 2001. Notice that there is substantial heterogeneity in the market value
relative to book value of these portfolios. This potentially reflects substantial differences in
intangible capital held by the firms that make up the portfolios. Further the value of market
equity to book equity fluctuates dramatically over time.
These fluctuations can reflect changes in the relative composition of the capital stock be-

tween tangible and intangible capital. They may also reflect changes in the relative valuation
of the two types of capital. Changes in valuation reflect changes in conjectured productivity
of the different types of capital but may also reflect changes in how the riskiness is perceived
and valued by investors.
Table 1 presents sample statistics for these portfolios of stocks. For comparison, the

column labelled “Market” gives statistics for the CRSP value weighted portfolio. Consistent
with Figure 1 there are substantial differences in the average value of BE/ME for these
portfolios. Notice that the portfolios with lower BE/ME (high market value relative to book
value of equity) are also the ones with the highest level of R&D relative to sales. This is
consistent with the idea that large R&D expenditures will ultimately generate high cash
flows in the future thus justifying high current market values. Also the high level of R&D by
firms with high market valuation relative to book value may reflect substantial investment
in intangibles.
While the five BE/ME portfolios are likely to have different compositions of capital,

these portfolios also imply different risk-return tradeoffs. As in Fama and French (1992),
the low BE/ME portfolios have lower mean returns but not substantially different volatility
than high BE/ME portfolios. The mean returns differ and the means of implied excess
returns scaled by volatility (Sharpe ratios) also differ. High BE/ME portfolios have higher
Sharpe ratios. In particular, the highest BE/ME portfolio has a Sharpe ratio that is higher
than that of the overall equity market. A portfolio with an even larger Sharpe ratio can
be constructed by taking a long position in the high BE/ME portfolio and offsetting this
with a short position in the low BE/ME portfolios. This occurs because there is substantial
positive correlation across the portfolios. The spectacular Sharpe ratios that are possible
have been noted by many authors. See MacKinlay (1995), for example.

7See Fama and French (1992) for a more complete description of portfolio construction.
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Figure 1: Market-to-Book Value of Equity for Five Portfolios of Stocks
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Table 1: Properties of Portfolios Sorted by Book-to-Market

Portfolio

1 2 3 4 5 Market

Avg. Return (%) 6.48 6.88 8.90 9.32 11.02 7.23

Std. Return % 37.60 32.76 29.64 31.66 35.50 32.94

Avg. B/M 0.32 0.62 0.84 1.12 2.00 0.79

Avg. R&D/Sales 0.12 0.06 0.04 0.03 0.03 0.08

Sharpe Ratio 0.18 0.20 0.28 0.28 0.30 0.21

Correlation with Consumption 0.20 0.18 0.20 0.20 0.21 0.20

Portfolios formed by sorting portfolios into 5 portfolios using NYSE breakpoints from Fama
and French (1993). Portfolios are ordered from lowest to highest average book-to-market
value. Data from 1947 Q1 to 2001 Q4 for returns and B/M ratios. R&D/Sales ratio is from
1950 to 2001. Returns are converted to real units using the implicit price deflator for non-
durable and services consumption. Average returns and standard deviations are calculated
using the natural logarithm of quarterly gross returns multiplied by 4 to put the results in
annual units. Average book-to-market are averaged portfolio book-to-market or the period
computed from COMPUSTAT. Average R&D/Sales also computed from COMPUSTAT. The
Sharpe Ratio is based on quarterly observations. Correlation with consumption is measured
as the contemporaneous correlation between log returns and log consumption growth.

The consumption-based capital asset pricing model predicts that differences in average
returns across the five portfolio are due to differences in the covariances between returns and
consumption. That is, portfolios may have low returns because they offer some form of con-
sumption insurance. The last row of table 1 displays the correlation between each quarterly
portfolio return and the quarterly growth rate of aggregate real expenditures on nondurables
and services. Because there is little difference in the volatility across portfolios, there is little
difference in the implied covariance between returns and consumption growth. This measure
of risk therefore implies little differences in required returns across the portfolios. The high
Sharpe ratios and small covariances with consumption is known to make the consumption
insurance explanation problematic. See Hansen and Jagannathan (1991) and Cochrane and
Hansen (1992) for example. We will revisit this explanation, but in the context of dividend
risk instead of return risk.
Differences in BE/ME are partially reflected in differences in future cash flows. Table 2

presents some basic properties of the dividend cash flows from the portfolios. These dividends
are imputed from the Center for Research in Securities Prices (CRSP) return files. Each
month and for each stock, CRSP reports a return without dividends, denoted Rwo

t+1 ≡ Pt+1/Pt

12



Table 2: Cash Flow Properties of Portfolios Sorted by Book-to-Market Value

Portfolio

1 2 3 4 5 Market

Avg. (log) Div. Growth % 1.78 1.68 3.13 3.54 4.48 3.09

Std. (log) Div. Growth % 13.50 17.09 11.71 12.05 17.76 23.99

Avg. log(D/P) -3.78 -3.41 -3.23 -3.11 -3.15 n/a

Avg. P/D 49.12 33.01 27.00 23.96 24.82 n/a

and a total return that includes dividends, denoted Rw
t+1 ≡ (Pt+1 +Dt+1)/Pt. The dividend

yield Dt+1/Pt is then imputed as:

Dt+1/Pt = Rw
t+1 −Rwo

t+1 .

Changes in this yield along with the capital gain in the portfolio are used to impute the
growth in portfolio dividends. This construction has the interpretation of following an ini-
tial investment of $1 in the portfolio and extracting the dividends while reinvesting the
capital gains. From the monthly dividend series we compute quarterly averages. Real divi-
dends are constructed by normalizing nominal dividends on a quarterly basis by the implicit
price deflator for nondurable and service consumption taken from the National Income and
Product accounts. Finally some adjustment must be done to quarterly dividends because of
the pronounced seasonal patterns in corporate dividend payout. Our measure of quarterly
dividends is constructed by taking an average of the logarithm of dividends in a particular
quarter and over the previous three quarters. We average the logarithm of dividends because
our empirical modelling will be linear in logs. Table 2 reports statistics for this constructed
proxy of log dividends.
Notice from Table 2 that the low BE/ME portfolios also have low dividend growth. Just

as there is considerable heterogeneity in the measures of average returns, there is also con-
siderably heterogeneity in growth rates. An important measurement question that we will
explore is whether these ex post sample differences in dividend growth is something that is
fully perceived ex ante, or whether some of this heterogeneity is the outcome of dividend
processes with low frequency components. We suspect that much of the observed hetero-
geneity in dividend growth was known a priori by investors and hence this heterogeneity
will reflect potential differences in risk. Some of our calculations that follow will treat this
heterogeneity as reflecting in part differences in long-run risk. In the section 4, we turn to a
discussion of risk measurement for these cash flows.
A potential concern in evaluating dividends at the portfolio level is that portfolio for-

mation could lead to artificial differences in the long-run risk properties of portfolio cash
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flows that are not easily interpretable. For example it may appear that portfolios biased
towards investing in stocks with low dividend growth will necessarily have low growth rates
in cash flows and therefore little long run exposure to economic growth. Notice, however,
that the implied dividend growth rates in the constructed portfolios depend in part on the
relative prices of stocks bought and sold as the composition of the portfolios change over
time. Stocks with temporarily low dividend growth rates will have relatively high price
appreciation, which can offset the low growth rates. Thus the portfolio formation might
actually result in a more stable dividend or cash flow.

4 Dividend Risk

In asset pricing it is common to explore risk premia by characterizing how returns co-vary
with a benchmark return as in the CAPM or more generally how returns co-vary with a
candidate stochastic discount factor. The focus of the resulting empirical investigations are
on return risk, in contrast to dividend or cash-flow risk.
Recently there has been an interest in understanding cash-flow risk using linear time series

methods. Examples include the work of Bansal, Dittmar, and Lundblad (2002a), Bansal,
Dittmar, and Lundblad (2002b), and Cohen, Polk, and Vuoteenaho (2002). We follow this
literature by using linear time series methods to motivate and construct a measure of dividend
risk.
To use linear time series methods requires a log-approximation for present-discounted

value formulas as developed by Campbell and Shiller (1988a, 1988b).8 Write the one-period
return in an equity as:

Rt+1 =
Pt+1 +Dt+1

Pt
=
(1 + Pt+1/Dt+1)Dt+1/Dt

Pt/Dt

where Pt is the price and Dt is the dividend. Take logarithms and write

rt+1 = log(1 + Pt+1/Dt+1) + (dt+1 − dt)− (pt − dt)

where lower case letters denote the corresponding logarithms. Next approximate:

log(1 + Pt+1/Dt+1) ≈ log[1 + exp(p− d)] +
1

1 + exp(d− p)
(pt+1 − dt+1 − p− d)

where p− d is the average logarithm of the price dividend ratio. Use this approximation to
write:

rt+1 − (dt+1 − dt) = χ+ ρ(pt+1 − dt+1)− (pt − dt) (15)

where

ρ ≡
1

1 + exp(d− p)
.

8Santos and Veronesi (2001) suggest a models for studying cash flow risk that avoids linear approximation
by instead adopting a nonlinear model of income shares.
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As shown by Campbell and Shiller (1988a), this approximation is reasonably accurate in
practice.
Treat (15) as a difference equation in the log price dividend ratio and solve this equation

forward:

pt − dt =
∞
∑

j=0

ρj(rt+1+j − dt+1+j + dt+j)−
χ

1− ρ
.

This relation says that a time t+ 1 shock to current and future dividends must be offset by
the same shock to returns in the sense of a present-discounted value. The discount factor
ρ will differ depending on the average logarithm of the dividend/price ratio for the security
or portfolio. The present discounted value restriction is mathematically the same as that
developed by Hansen, Roberds, and Sargent (1991) in their examination of the implications
of present-value budget balance.
To understand this restriction, posit a moving-average representation for the dividend

growth process and the return process:

dt − dt−1 = η(L)wt + µd
rt = κ(L)wt + µr.

Here {wt} is a vector, iid standard normal process and

η(z) =
∞
∑

j=0

ηjz
j, κ(z) =

∞
∑

j=0

κjz
j

where ηj and κj are row vectors.
Since pt − dt depends only on date t information, future shocks must be present-value

neutral:
κ(ρ)− η(ρ) = 0. (16)

For instance if returns are close to being iid, but not dividends then

κ(0) ≈ η(ρ)

The discounted dividend response should equal the return response to a shock. Whereas
Hansen and Singleton (1983) looked at return risk, Bansal, Dittmar, and Lundblad (2002a)
and Bansal, Dittmar, and Lundblad (2002b) look at the discounted dividend risk. We follow
Bansal, Dittmar, and Lundblad (2002a) and treat η(ρ) as a measure of risk in dividend
growth. We refer to this measure as discounted dividend risk. As ρ tends to 1, we refer to
the limit η(1) as long run risk.
To evaluate the riskiness of each portfolio’s exposure to the shocks wt, we also measure

the impact of the shocks on consumption growth:

ct − ct−1 = γ(L)wt + µc (17)
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where ct is the logarithm of aggregate consumption. The economic magnitude of the dis-
counted dividend responses can then be assessed based on the Euler equation from the
familiar representative agent model with CRRA utility:

E

[

(

Ct+1

Ct

)

−θ

Rj
t+1|Ft

]

= 1 , (18)

where θ is the coefficient of relative risk aversion.
Under the (counterfactual) approximation that the return to each portfolio is iid, (16)

implies that the return to portfolio j satisfies:

rjt+1 = η(ρj)wt+1 + µjr .

Euler equation (18) then implies that µjr satisfies:

E[rjt+1|Ft]− rft+1 = µjr − rft+1 = −
σ2
t,j

2
+ θγ(0) · ηj(ρj) (19)

where σ2
t,j is the variance of return of portfolio j.

We will not include returns in our vector autoregressions for the reasons explained by
Hansen, Roberds, and Sargent (1991).9 We will sometimes include dividend/price ratios in
the vector autoregressive systems. These ratios are known to be informative about future
dividends. Write implied moving-average representation as:

pt − dt = ξ(L)wt + µp.

We may then back out a return process (approximately) as:

rt = κ(L)wt + µr

where
κ(z) = (ρ− z)ξ(z) + η(z).

It follows from this formula for κ that the present-value-budget balance restriction (16) is
satisfied by construction and is not testable.
To summarize, we use η(ρ) as our measure of discounted dividend risk. When dividend-

prices ratios are also included in the VAR system, the present-value-budget-balance restric-
tion (16) is automatically satisfied. By construction, discounted return risk and discounted
dividend risk coincide.

9Hansen, Roberds, and Sargent (1991) show that when returns are included in a VAR, restrictions (16)
cannot be satisfied for the shocks identified by the VAR unless the VAR system is stochastically singular.
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5 Measuring Dividend Risk Empirically

In this section we evaluate the riskiness of the five BE/ME portfolios using the framework
of section 4. Riskiness is measured by the sensitivity of portfolio cash flows and prices to
different assumptions made to identify aggregate shocks. Since we are interested in the long-
run impact of aggregate shocks we consider several VAR specifications that make different
assumptions above the long-run relationships between consumption, portfolio cash flows and
prices. In particular we examine the effects of moving from the assumption of little long-run
relationship between aggregates and portfolio cash flows to the assumption that there is a
cointegrated relationship between aggregate consumption and cash flows.

5.1 Empirical Model of Consumption and Dividends

To measure dividend risk we require estimates of γ and η. We describe how to obtain
these using vector autoregressive (VAR) methods for consumption and dividends. The least
restrictive specification we consider is:

A0xt + A1xt−1 + A2xt−2 + ...+ A`xt−` +B0 = wt

where consumption is the first entry of xt and the dividend level is the second entry. The
vectors B0 and B1 are two dimensional, and similarly the square matrices Aj, j = 1, 2, ..., `
are two by two. The shock vector wt has mean zero and covariance matrix I. We normalize
A0 to be lower triangular with positive entries on the diagonals. Form:

A(z)
.
= A0 + A1z + A2z

2 + ...+ A`z
`.

We are interested in specification in which A(z) is nonsingular for |z| < 1.
We identify the first shock as the consumption innovation, and our aim is to measure the

discounted average responses:

γ(β) = (1− β)
[

1 0
]

A(β)−1

η(ρ) = (1− ρ)
[

0 1
]

A(ρ)−1.

We use these formulas for to produce long-run risk measures for each B/M portfolio.
We also compute the limiting responses as ρ tends to unity. While we want to allow for

A(z) to be singular at unity, we presume that (1 − z)A(z)−1 has a convergent power series
for a region containing |z| ≤ 1. This is equivalent to assuming that both consumption and
dividends are (at least asymptotically) stationary in differences. The limiting responses are
thus contained in the matrix

(1− z)A(z)−1|z=1.

When A(1) is nonsingular, the limiting response matrix is identically zero, but it will be
nonzero when A(1) is singular. The matrix A(1) is nonsingular when the VAR does not
have stochastic growth components. When it is singular, the vector time series will be
cointegrated in the sense of Engle and Granger (1987). We will explore specifications singular
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specifications of A(1) in which difference between log consumption and log dividends is
presumed to be stationary.

5.2 Data Construction

For our measure of aggregate consumption we use aggregate consumption of nondurables and
services taken from the National Income and Product Accounts. This measure is quarterly
from 1947 Q1 to 2002 Q4, is in real terms and is seasonally adjusted. Portfolio dividends
were constructed as discussed in section 3. For portfolio prices in each quarter we use end
of quarter prices.
Motivated by the work of Lettau and Ludvigson (2001) and Santos and Veronesi (2001),

in several of our specifications we allow for a second source of aggregate risk that captures
aggregate exposure to stock market cash flows. This is measured as the share of corporate
cash flows in aggregate consumption and is measured as the ratio of corporate earnings to
aggregate consumption. Corporate earnings are taken from NIPA.
In all of the specifications reported below the VAR models were fit using five quarters of

lags.10 See appendix A for more details of the data construction.

5.3 Bivariate Model of Consumption and Dividends

First we follow Bansal, Dittmar, and Lundblad (2002b) and consider bivariate regressions
that include aggregate consumption and the dividends for each portfolio separately. Table
3 reports for the case where the state variable xt is given by:

11

xt =

[

ct
djt

]

. (20)

For notational convenience we do not display the dependence of xt on j.
To simplify the interpretation of the shock vector wt, we initially restrict the matrix A(z)

to be lower triangular. Under this restriction, consumption depends only on the first shock
while dividends depend on both shocks. This recursive structure presumes that consumption
is not “caused” by dividends in the sense of Granger (1969) and Sims (1972). 12

The first row of panel A shows that according to the discounted measure of dividend risk,
the high book-to-market returns have a larger measure of dividend vis-a-vis the low book-
to-market returns. The differences are quite striking in that the response to a consumption
shock increases almost ten times in comparing portfolio 1 and portfolio 5. This ordering
was noted by Bansal, Dittmar, and Lundblad (2002a), using a different set of restrictions on

10We also conducted some runs with eight lags. With the exception of the results for portfolio 1 when
using aggregate earnings, the results where not greatly effected.

11Notice that we consider separate specifications of the state variable for each portfolio. Ideally estimation
with all of the portfolio cash flows would be interesting but because of data limitations this is not possible.

12When this restriction on A(z) is relaxed the measured discounted responses that we report below to a
consumption shock are essentially the same.
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Table 3: Discounted Responses of Portfolio Dividends in a Log-Level VAR

Portfolio

1 2 3 4 5

Discount Factor 0.9943 0.9918 0.9902 0.9889 0.9894

Panel A: Consumption Shock

OLS Estimator 0.14 0.34 0.22 0.53 1.32

10 percentile -0.05 0.06 0.01 0.38 0.98

30 percentile 0.07 0.20 0.15 0.47 1.16

median 0.14 0.30 0.22 0.53 1.33

70 percentile 0.21 0.43 0.30 0.61 1.53

90 percentile 0.34 0.72 0.41 0.75 1.92

Panel B: Discounted Responses, Dividend Shock

OLS Estimator 0.68 1.23 0.75 0.58 1.19

10 percentile 0.45 0.66 0.56 0.42 0.78

30 percentile 0.56 0.87 0.65 0.50 0.98

median 0.67 1.09 0.74 0.58 1.18

70 percentile 0.85 1.45 0.86 0.69 1.48

90 percentile 1.32 2.23 1.12 0.96 2.29
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Figure 2: Impulse Response to a Consumption Shock. This figure reports the impulse
response functions for each of the portfolios and for consumption obtained by estimating the
log-level version of the VAR in which xt has entries ct and dt. The matrix A(z) is restricted
to lower triangular.

20



20 40 60 80
0.4

0.6

0.8

1

20 40 60 80
−2

0

2

4

6
1

20 40 60 80
−2

0

2

4

6
2

20 40 60 80
−2

0

2

4

6
3

20 40 60 80
−2

0

2

4

6
4

20 40 60 80
−2

0

2

4

6
5

consumption

Figure 3: Bayesian Percentile for Impulse Responses to a Shock to Consumption. This figure
gives he 10 percent, 50 percent and 90 percent percentile for the impulse response function
depicted in Figure 2. The upper left panel depicts the consumption response and the other
five panels depict the responses for each of the five portfolio cash flows.
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the VAR.13 To illustrate the portfolio differences more fully consider Figure 2. This figure
displays the implied responses of log dividends to a consumption shock. The discounted
measure of risk reported in Table 3 is a weighted average of the responses depicted in Figure
2. Notice in particular that portfolio 5 has a substantially different response to a consumption
shock with a pronounced peak response at about the ten quarter horizon. The half-lives of
the discount factors range between 15.6 years for portfolio 4 to 30.4 years for portfolio 1. As
result, the discounted average responses weight heavily tail responses.
Table 3 also reports Bayesian posterior percentile for the discounted consumption risk

computed using the method described in B. These percentile provide a measure of accuracy.
Figure 3 gives plots the 10%, 50% and 90% percentile for the individual impulse responses.
Notice that these measures of accuracy imply substantial sampling error in the estimated
discounted responses. For example consider the results for portfolios 1 and 5 as displayed in
figure 3. Although the estimated short-run response to a consumption shock is quite different
across these two portfolios, the confidence intervals narrow this difference substantially.
Next we explore specifications singular specifications of A(1) in which difference between

log consumption and log dividends is presumed to be stationary. Again we use VAR methods
but now the first variable is the first-difference in logarithms of consumption and the second
is difference between log consumption and log dividends. This specification is in effect a
restriction on A(z). We continue to assume that A(z) is lower triangular. Thus the long-run
response of dividends to a consumption shock is the same for all portfolios by construction.
This discounted response can still differ, however. It is only when ρ is one that the response
heterogeneity vanishes.
As Table 4 demonstrates, when dividends and consumption are restricted to respond

the same way to permanent shocks, the discounted risk measures increase relative to those
computed without restricting the rank of A(z). The limiting response is about .82 for all
portfolios. The discounted responses of portfolios 1, 2 and 3 to a consumption shock are
all pulled towards this value. The discounted risk measures for portfolios 4 and 5 are also
increased by imposing this limiting value on the impulse response. In Figure 4 we depict the
impulse responses when cointegration is imposed and consumption is restricted. Comparing
the impulse responses to a consumption shock in this figure to those in Figure 2, we see that
while tail properties of the impulse responses have been altered, portfolio 5 continues to have
a peak response at about ten quarters.14

For the cointegrated systems, we consider an alternative identification scheme. We do not
restrict A(z) to be lower triangular, but we instead identify a permanent and transitory shock
following an approach suggested by Blanchard and Quah (1989). The long-run response to
consumption is given by the first row of A(1)−1. We now transform the shocks so that A(1)−1

13Bansal, Dittmar, and Lundblad (2002a) consider two types of regressions. In the first, dividend growth
is regressed on an eight quarter moving average of past consumption growth. In the second, detrended
dividends are regressed on contemporaneous detrended consumption and four leads and lags of consumption
growth.

14Given the data transformation, the Bayesian posterior percentile for the VAR are based on a different
specification of the prior coefficient distribution over comparable coefficients.
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Table 4: Discounted Responses of Portfolio Dividends in a Cointegrated VAR

Portfolio

1 2 3 4 5

Discount Factor 0.9943 0.9918 0.9902 0.9889 0.9894

Panel A: Discounted Responses, Consumption and Permanent Shock

OLS Estimator 0.75 0.89 0.75 1.11 2.03

10 percentile 0.13 0.40 0.27 0.80 1.24

30 percentile 0.59 0.71 0.60 0.97 1.62

median 0.82 0.91 0.80 1.12 1.97

70 percentile 1.04 1.11 0.99 1.28 2.43

90 percentile 1.39 1.44 1.31 1.61 3.41

Panel B: Discounted Responses, Dividend and Transitory Shock

OLS Estimator 2.60 2.06 2.18 1.14 2.43

10 percentile 1.31 1.40 1.24 0.72 1.49

30 percentile 1.72 1.68 1.59 0.91 1.90

median 2.19 1.96 1.92 1.10 2.30

70 percentile 2.86 2.30 2.36 1.40 2.89

90 percentile 4.15 2.91 3.13 2.09 4.21

23



10 20 30 40 50 60 70 80
−1

0

1

2

3

4

5
dividends

10 20 30 40 50 60 70 80
0.4

0.5

0.6

0.7

0.8

0.9

1
consumption

1
2
3
4
5

Figure 4: Impulse Response to a Consumption Shock for the Cointegrated Specification.
The impulse response are identified by a VAR estimated with ct − ct−1 and ct − dt as the
components of xt. The matrix A(z) is restricted to be lower triangular.
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is lower triangular while preserving the restriction that the shocks continue to uncorrelated
with each other and have unit variances. Thus we find an orthogonal matrix Q such that
A(1)−1Q is lower triangular. The shocks of interest are now constructed as Q′wt and the
impulse responses are responses to these transformed shocks. We also normalize the shocks
so that positive movements in both shocks induce positive movements in consumption. By
construction, only the first shock has a permanent impact on consumption and dividends.
The impact of the second shock is transitory. Since both shocks influence consumption, both
shocks are pertinent in assessing the riskiness of the implied cash flows.
The results are reported in Table 5 and the impulse responses are depicted in Figure 5.

The discounted responses to the permanent consumption shock differ from the response to
the previously identified consumption shocks. For instance, portfolio five now has an initial
negative response to permanent consumption shock and this persists for many periods. The
discounted response remains negative for this portfolio even though the limiting response
is by construction positive. Thus holding portfolio five appears to provide some insurance
against consumption risk, which makes the large mean return appear puzzling. The other
portfolios dividends respond positively to this consumption shock. The portfolio five re-
sponse to transitory shock is always positive, however. This is in contrast to the other four
portfolios, which have negative responses to this shock. The transitory shock contributes to
the discounted riskiness of the dividends.
A defect of this identification scheme is that the identified shocks differ depending upon

which portfolio we use in the empirical investigation. To address this concern the final panel
of table 5 reports values of the term γ(0)′η(ρ) for each portfolio. This gives the conditional
covariance between consumption growth and the discounted dividends. This accumulation
of the effects of the two shocks mirrors our previous results. Risk increases from portfolio 1
to portfolio 5, although the largest increase is from portfolio 3 to 4 and then from portfolio
4 to 5.
While the dividend risk measures suggest that the high book-to-market returns have mean

returns that are larger and more longer run covariation with consumption. As emphasized
by Bansal, Dittmar, and Lundblad (2002a) this provides an qualitative explanation for the
heterogeneity in mean returns. The discounted dividend riskiness of the high book-to-market
returns must be compensated for by a higher mean return. We now examine the more
ambitious quantitative question of how much risk aversion is required for this explanation
to work.
Using (19) we can compute an implied value of θ from the difference in the risk premia

between any two portfolios. In what follows we use the risk premium of each portfolio relative
to that of portfolio 5 to calculate θ. This calculation clearly ignores the restriction that the
same value of θ should be used in explaining the entire cross-section of average returns. Our
goal is merely to provide a convenient metric to evaluate the quantitative significance of
observed differences in discounted dividend responses. The results are reported in table 6
based on the risk measures of table 3. The discounted dividend responses do imply higher
returns for the higher book-to-market portfolios but the magnitude of the risks are small. As
a result, we calculate high implied coefficients of relative risk aversion. Similar observations
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Table 5: Discounted Responses of Portfolio Dividends to Permanent and Tran-
sitory Shocks

Portfolio

1 2 3 4 5

Discount Factor 0.9943 0.9918 0.9902 0.9889 0.9894

Panel A: Discounted Responses, Permanent Shock

OLS Estimator 3.62 2.86 2.76 1.50 -0.14

10 percentile 1.61 1.62 1.16 0.45 -1.41

30 percentile 2.36 2.20 0.60 0.98 -0.47

median 3.08 2.67 0.80 1.35 -0.05

70 percentile 4.07 3.22 0.99 1.89 0.30

90 percentile 5.88 4.07 1.31 3.09 0.86

Panel B: Discounted Responses, Transitory Shock

OLS Estimator -0.63 -0.56 -0.66 -1.01 1.68

10 percentile -1.36 -1.26 -1.49 -1.45 1.13

30 percentile -0.92 -0.87 -0.97 -1.03 1.34

median -0.68 -0.62 -0.70 -0.83 1.52

70 percentile -0.45 -0.33 -0.42 -0.64 1.76

90 percentile 0.02 0.15 0.08 -0.38 2.25

Panel C: Covariance Between Consumption and Discounted Response

OLS Estimator 0.29 0.36 0.32 0.58 0.63
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Figure 5: Impulse Response to a Permanent and Transitory Shock. The impulse response
are identified by a VAR estimated with ct − ct−1 and ct − dt as the two components of xt.
The permanent shock is identified as the shock that alters consumption permanently but is
exactly offset in the long run by a movement dividends. The transitory shock is uncorrelated
with the permanent shock and has a transitory impact on both consumption and dividends.
A solid line is used to depict the portfolio one response, a dashed line −−− for portfolio
two, a dotted line · · · for portfolio three, a dashed/dotted line − ·− for portfolio four and a
line of asterisks ∗ ∗ ∗ for portfolio five.
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Table 6: Implied Value of Risk Aversion Coefficient θ

Portfolio

1 2 3 4

θ 199 217 101 113

These values of θ are computed using the discounted risk measures reported in table 3 to a
consumption shock.

have been made using the equity premium.15

6 Results with Additional Aggregate Shock

In our final VAR specification we consider what happens when an additional aggregate shock
is added. In this specification xt is given by:

xt =









ct
et
pt
dt









, (21)

where et is corporate profits at time t. To avoid parameter proliferation, we restrict the
dynamics of the aggregate variables ct and et to not be Granger-caused by the individual
portfolio dividends and ratios of price to dividends. That is we restriction A(z) to block
lower triangular.
We consider the discounted response to a shock to consumption and to a shock to the

share of corporate profits in aggregate consumption. We are led to consider this latter vari-
able by the empirical investigations of Lettau and Ludvigson (2001) and Santos and Veronesi
(2001). These authors argue for the addition of an aggregate share variable to help account
for asset values. For example Santos and Veronesi (2001) argue that exposure to stock mar-
ket risk is affected by the contribution of corporate payouts to aggregate consumption. We
restrict A(0) to be lower-triangular matrix with positive entries on the diagonal. We refer
the first shock as the consumption shock and the second one as the aggregate profits shock.
The implied responses from this four-variable system are reported in table 7. The impulse

response of prices and portfolio dividends to a consumption shock and to an aggregate
earnings shock are displayed in figure 6. We no longer find that the high book-to-market
portfolios have larger discounted responses to a consumption shock.

15See, for example, Mehra and Prescott (1985).
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The discounted dividend responses to a consumption shock are very similar to those we
reported in 3. Consistent with this we see from 6 that the the new earnings shock has
very little impact on consumption. While portfolio three has the largest discounted earn-
ings response, the earnings innovation may be of little consequence for measuring aggregate
risk since this innovation accounts for very little of the consumption variation. A robust
finding across all of the runs is the distinctive response of dividends from portfolio five to a
consumption shock in the first ten time periods.

7 Conclusions

In this paper we reviewed two findings pertinent for using asset market data to make infer-
ences about the intangible capital stock. We presented evidence familiar from the empirical
finance literature that returns are heterogeneous when firms are grouped according to their
ratio of market equity to book equity. This evidence suggests that there are important dif-
ferences in the riskiness of investment in measured capital vis a vis intangible capital. This
has potentially important ramifications for how to build explicit economic models to use in
constructing measurements of the intangible capital stock.
A risk-based interpretation of return heterogeneity requires more than just a model with

heterogeneous capital. It also requires a justification for the implied risk premia. There has
been much interest recently in the finance literature on using vector autoregressive (VAR)
methods to understand riskiness of serially correlated cash flows or dividends. The discounted
dividend risk-measures using VAR methods find that high-book-to-market portfolio returns
have more economically relevant risk. The discounted responses are larger for these returns.
Moreover, the dividend response to a consumption shock for portfolio five, a portfolio of the
highest book-to-market returns, stands out relative to other dividend responses. The impulse
response for this portfolio has a pronounced peak at around ten quarters. This peak is present
in three of our four VAR specifications of shocks, including a bivariate, log-level specification,
a bivariate cointegrated specification and a four variate log-level specification. The shock
responses differ very different when we identify a permanent-transitory decomposition of
shocks to consumption and dividends, but portfolio five still stands out relative to the other
portfolios.
The empirical evidence we report follows the finance literature by focusing on the claims

of equity-holders. As emphasized by Hall (2001), what is pertinent for measurement purposes
is the combined claims of bond-holders and equity-holders. It is the overall value of the firm
or enterprize that is pertinent. Similarly, this analysis focuses on dividends as the underlying
claims of equity-holders and not on overall cash flows of the firms. The risk associated with
broader-based cash flow measures are of considerable interest for future research.
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Table 7: Discounted Responses in Four Variate VAR with Aggregate Profit Share

Portfolio

1 2 3 4 5

Discount Factor 0.9943 0.9918 0.9902 0.9889 0.9894

Panel A: Dividends to Consumption Shock

OLS Estimator 0.05 0.17 0.42 0.57 1.11

10 percentile -0.34 -0.08 0.25 0.38 0.75

30 percentile -0.04 0.09 0.34 0.48 0.95

median 0.07 0.18 0.41 0.57 1.12

70 percentile 0.16 0.26 0.50 0.68 1.33

90 percentile 0.29 0.42 0.64 0.90 1.81

Panel B: Dividends to Earning Shock

OLS Estimator 0.02 0.08 0.32 0.00 0.04

10 percentile -0.43 -0.26 0.10 -0.26 -0.47

30 percentile -0.09 -0.03 0.23 -0.11 -0.17

median 0.05 0.09 0.33 0.00 0.05

70 percentile 0.15 0.19 0.44 0.12 0.31

90 percentile 0.30 0.37 0.64 0.38 0.85

Panel C: Prices to Consumption Shock

OLS Estimator 0.37 0.59 1.07 0.83 1.48

10 percentile -0.30 0.04 0.66 0.35 1.12

30 percentile 0.20 0.40 0.90 0.67 1.32

median 0.39 0.60 1.07 0.83 1.48

70 percentile 0.56 0.81 1.27 1.01 1.68

90 percentile 0.83 1.17 1.64 1.30 2.07

Panel D: Prices to Earning Shock

OLS Estimator 0.05 0.18 0.29 0.38 0.57

10 percentile -0.71 -0.58 -0.38 -0.21 0.10

30 percentile -0.15 -0.07 0.04 0.17 0.38

median 0.08 0.19 0.28 0.38 0.59

70 percentile 0.29 0.43 0.52 0.59 0.83

90 percentile 0.61 0.85 0.93 0.99 1.31
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Figure 6: Impulse Response to a Consumption and Earnings Shock. These estimates were
constructed from a VAR with entries ct, et, pt and dt. The matrix A(z) is restricted to be
lower triangular in blocks of two and A(0) is lower triangular. A solid line is used to
depict the portfolio one response, a dashed line − − − for portfolio two, a dotted line · · ·
for portfolio three, a dashed/dotted line − · − for for portfolio five.
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A Data Appendix

CONSUMPTION
We use aggregate consumption of nondurables and services taken from the National In-

come and Product Account16 (NIPA Table 2.2). The quarterly data are seasonally adjusted
at annual rates, deflated by the implicit price deflator for nondurable and services consump-
tion.
CORPORATE EARNINGS
Corporate earnings is measured as corporate profits with inventory valuation and capital

consumption adjustments from NIPA (Table 1.14), the quarterly data are deflated by the
implicit price deflator for nondurable and services consumption.
BE/ME PORTFOLIOS17

We follow Fama and French (1992) in constructing portfolios ranked by book-to-market
ratios. Five BE/ME portfolios are formed at the end of each June using NYSE breakpoints.
The BE used in June of year t is the book equity for the last fiscal year end in t− 1. ME is
price times shares outstanding at the end of December of t− 1. We use all NYSE, AMEX,
and NASDAQ stocks for which we have ME for December of t − 1 and June of t, and BE
for t− 1. For each stock, monthly returns with and without dividends and monthly market
values are taken from CRSP monthly stock dataset. We take annual BE data from 1950
to 2001 from CRSP/COMPUSTAT merged industrial dataset18. We thank Kenneth French
for providing us with the annual BE data from 1926 to 1950. The two datasets are merged
together with the CRSP dataset using CRSP Permanent Company Number (PERMNO).
For each portfolio, the monthly returns with and without dividends from July of year t to
June of year t− 1 are weighted average of the stock returns with and without dividends in
the same period, using use the ME in June of year t as the weights. Portfolio book-to-market
ratios in year t is the weighted average of the stock book-to-market ratios in year t. R&D and
sales data are taken from COMPUSTAT, available from 1950 to 2001. In year t, portfolio
R&D/Sales ratios is the weighted average of the R&D/Sales of each firms in year t.
DIVIDENDS19

The dividends yield Dt+1/Pt is imputed from portfolio returns with dividend Rw
t+1 ≡

(Pt+1 +Dt+1)/Pt and returns without dividend R
wo
t+1 ≡ (Pt+1 +Dt+1)/Pt as following

Dt+1

Pt
= Rw

t+1 −Rwo
t+1

Change in this yield along with the capital gain in the portfolio are used to impute the

16Our source is the U.S. Department of Commerce, Bureau of Economic Analysis
17The SAS codes used to construct the portfolio monthly returns, BE/ME and R&D/Sale are available

upon request.
18CRSP monthly stock dataset and CRSP/COMPUSTAT merged dataset are from Wharton Research

Data Services, University of Pennsylvania
19Portfolio dividends, prices and returns series used in this paper are available upon request.
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growth in portfolio dividends

Dt+1

Dt

=
Dt+1/Pt
Dt/Pt−1

·
Pt
Pt−1

=
Rw
t+1 −Rwo

t+1

Rw
t −Rwo

t

Rwo
t

From the dividend growth we impute the dividend level except for the initial value,

Dt+1

P0

=
t
∏

s=1

Ds+1

Ds

·
D1

P0

From monthly dividend series we compute the quarterly average. We initialize the dividends
in 1947Q1 such that the dividend for market portfolio in 1947Q1 is same as the corporate
earning in 1947Q1, and the BE/ME portfolio dividends are proportional to the market port-
folio with respect to the market value. We then take 12 months trailing average because of
the pronounced seasonal pattern in the corporate dividend payout. Our measure of quarterly
dividends in quarter t is constructed by taking an average of the logarithm of dividends in
quarter t and over the previous three quarters t− 3, t− 2, t− 1. We average the logarithm
of dividends instead of levels because our empirical modelling will be linear in logs. This
construction has the interpretation of following an initial investment of $1 in the portfolio
and extracting the dividends while reinvesting the capital gains.
Returns and dividends are converted to real units using the implicit price deflator for

nondurable and services consumption.
PRICE DEFLATOR
The nominal consumption, corporate earning, portfolio returns and portfolio dividends

are deflated by the implicit price deflator for nondurable and services consumption, which
is the weighted average of the personal nondurable consumption implicit price deflator P CN

t

(1996=100) and personal services consumption implicit price deflator P S
t (1996=100), taken

from NIPA Table 7.1. The weights are determined by the relative importance of nominal
nondurable consumption (CNt) and service consumption (CSt), that is

PC
t =

PCN
t CNt + PCS

t CSt
CNt + CSt

B Bayesian Confidence Intervals

Consider the VAR:
A(L)yt + C0 = wt

where yt is d-dimensional. The matrix A(0) is lower triangular. We base inferences on
systems that can be estimated equation-by-equation. The wt is normal random vector with
mean zero and covariance matrix I. We follow Sims and Zha (1999) and Zha (1999) by
considering a uniform prior on the coefficients. Given the recursive nature of our model, we
may follow Zha (1999) by building the joint posterior for all parameters across all equations
as a corresponding product. This requires that we include the appropriate contemporary
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Table 8: Unstable Fraction of Simulation

Portfolio

1 2 3 4 5

Log-Level VAR 2% 14% 1% 1% 3%

Cointegrated VAR 22% 11% 21% 6% 10%

Cointegrated Unrestricted VAR 20% 14% 19% 8% 2%

Four Variate VAR 11% 9% 2% 7% 5%

variables on the right-hand side of the equation to ensure that wt+1 has the identity as the
covariance matrix. In effect we have divided the coefficients of the VAR into blocks that
have independent posteriors given the data. We construct posterior confidence intervals for
the objects that interest us a nonlinear functions of the VAR coefficients.20

We computed the posterior confidence intervals using Monte Carlo methods using charac-
terizations in Zha (1999) and Box and Tiao (1973). Confidence intervals are centered around
the posterior median computed in our simulation, the error bands are computed using the
10th and 90th percentile. Our numbers are based on 100,000 simulations, taking out the
unstable systems. The unstable fractions of the simulated systems for different models we
used are reported in Table 8.

20In making the prior uniform over all coefficients, we follow a suggestion by but not the actual practice
in Sims and Zha (1999). There is a minor difference evident in the discussion in Sims and Zha (1999). See
page ?.
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