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1. INTRODUCTION

In recent years, following Koopman’s work (Koopmans, 1960}, there
have been several studies of the dynamics of Pareto allocations for agents
with recursive preferences. Among these are Lucas and Stokey [ 9], Epstein
[5], and Dana and Le Van [2]. In particular, using the fact that Pareto
optima maximize a weighted sum of the utilities of the different agents,
it has been shown that a Pareto optimal allocation can be viewed as a
function of a trajectory of a dynamic system of capital stock and the utility
“weights.” This function can be determined recursively.

All the above studies considered only the case of certainty. The purpose
of this work is to generalize the above characterizations of Pareto optima
to a setting with Markov uncertainty, where agents have recursive
preferences as introduced by Epstein and Zin [6].

Ma [10] has considered an economy simifar to ours and proved the
existence of equilibrium in such an economy. In this paper, we do not
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discuss the issue of existence of equilibrium; rather, we focus on the
characterization of Pareto optima by means of a “representative agent.”
For a continuous-time analogue, see Duffie e al. [4].

2. UtiLity

We use the standard setup of a probability space (2, F, Q) and the
filtration F={%,: # =0a(X,, X;, .., X,), t€{0,1,..}} of sub-sigma fields
generated by a time-homogeneous Markov chain (X, X, ..) which takes
values in a finite set F={1, .., S}.

There is one commodity in our economy. A consumption process is
bounded { % }-adapted process. For a consumption process ¢, we denote
the consumption at period ¢ by ¢(¢). Since S is finite, we can view ¢(f) as
in element in R, =0, 1, ... Hence we can view the consumption space as
the sequence space /™ by viewing a consumption process ¢ as an element
in /" =RxRSxRx ... Individual agents consume from the non-
negative cone /%. We adopt the usual norm || given by |cf, =
sup, |¢;] < oc.

We define, for any consumption process ce/%, a new consumption
process Z;c by F;: 4% —¢7 as follows: If ¢ ={(cy, ¢\, 3, ...), then

77,
FiC={Ci» Cig 113 Ciss 51 CisTa 5413 Cis?r 50450 Cish 4 ST 45415 -
Cisd 4 §3 ¢ 824 5 )

That is, if ¢ i3 a consumption process starting today, then 7,c is the con-
tinuation of ¢ starting in the next period given that the state at that period
is 4.

Now, we turn to consumers’ preferences. Following Epstein and Zin [6]
and Ma [10], we adopt a preference described by recursive utility. Recur-
sive utility, roughly speaking, consists of two components: an aggregator
W(-,-) and a certainty equivalent u(-). Formally, we have the following
definition:

DerFiNiTioN 2.1, A function W: R, xR, —- R, is an aggregator if it
satisfies:

WI1. W is continuous, strictly concave, and strictly increasing;
W2. There exists M such that |W(c,, 0)] <M, coe R, ;
W3. There exists 8> 0 such that

[Wi(cy, x)— Wiy, X)) < |1x—x'|, coeR,, xeR,, xX'eR,;

W4, W(0,0)=0.
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A function f: /7% — R® is defined to be in B if f(-) is bounded and
continuous. We define a norm on B by

| fllg=sup | f()s,
ce /1
where | x|l ¢=sup;|x;|, x€ R®. Under this norm, B is a complete metric
space. Under assumptions given below, a consumer’s utility function u is in
B, treating the ith component of u, u;, as the utility when the initial state
is i.

DErFINITION 2.2. A function x: R® — RS is a certainty equivalent if:
“ + + yeq

Cl. g is continuous, strictly increasing, and strictly concave.

C2. There exists f,€(0, 1/8) such that {u(u)—pu(v)ls <p, Nu—vls
for all u, ve B.

C3. u(0)=0.

C4. If u=(ai, u,..u), then u(u)=u.

Condition C4 is nowhere used in this paper, but since it is commonly
assumed in the literature, we keep it in our definition. It merely says that
if there is no uncertainty for tomorrow’s utility, its certainty equivalent is
equal to itself.

The ith component of u(u), u,(u), is the certainty equivalent of the next
period utility u, given that the state in the current period is 7.

For additional notation, given c,e R, and x e RS, we let

H (o, x)=(W(cg, x1), Wlcg, X3), s Wicg, X5)),

and for ue B we let (T ¢) = (u (T, ¢), uy(F50), ..., ug(TsC)).
We have the following lemma, which gives the definition of the recursive
utility function u corresponding to (W, u).

LEMMA 2.1. FEvery aggregator W and certainty equivalent p together
define an operator T, on B into B by T, u(¢)=H"[cq, (T ¢))]. There
exists a unique ue B such that u=T, u. Moreover, u is strictly increasing
and strictly concave, with u(0)=20.

Since the proof is similar to that of Lucas and Stokey [9], we omit it
here. Please also see Ma [10].

3. DYNAMIC PROGRAMMING FOR PARETO OPTIMAL ALLOCATIONS

The objective of this section is to introduce a recursive method that
generates all Pareto optimal allocations. The result given in this section are
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in paralle] to those in Lucas and Stokey [9]. Since the proofs are a
straightforward generalization of theirs, we omit them here and only state
the result.

We begin by defining our economy and the economy’s feasible utility set
and its support function. Lemma 3.1 establishes their properties. Proposi-
tion 3.1 give the major result of this section: A recursive method that
generates all Pareto optimal allocations.

In our economy, there are n infinitely lived consumers. Consumer / has
recursive utility u’ given above, corresponding to (W7 u'). We use
supercripts, as in ¢ le { 1,2, .., n}, to denote the consumptions of different
consumers.

An endowment process is an element of 7% _, the set of pointwise
strictly positive elements of £*.

First, for any endowment ee /% _, the feasible consumption set is

C(e)={ce(11 Yy C’<e}.
=1

For any ec/% | and any i€ §, the feasible utility set is

Ue)={u(c)=(ul(c"), u(c?), ., (")) : ce Cle)}.

That is, U,(e) is the set of all the utilities that can be attained given that
the state at r=0 is /. We record two properties: (1) If 0 <u'<wu and
ue U,(e), then u' € U,(e). (i1} U,(e) is compact and convex.

A Pareto optimal allocation given e and current state 7 is a consumption
process ¢ € ((¢) such that there is no &e U,{e) for which #>u,(c) and
d#uc)

We now define the support function of U, v,: /% , x4" "' —> R, by

vie,0,)= sup Y @, (3.1)
ue Uile} =1
where #,ed4” '={0,eR", :¥,0!=1}. Since U,(e) is compact, the
supremum is attained.

LemMma 3.1. (i) Foreachie§,v;is bounded and continuous. (1) ue U (e)
if and only if u=0 and v,(e,0,)— 6, -u=0 for all ;e 4"~ ".

Now, we turn to our major result: The support function v, and the
corresponding allocations satisfy the equations

v.ie, 8,)= max Y W ch, pliu)) (32)
1

o€ R';.ue(R'S; "y
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subject to
Y o <e, (33)

and subject to

Giear=! 4 J

min v,(Fe, 0,)— Y 0lu; =0, forall je@, (3.4)

L

where ¢, is the first element of e/ |,

time 0.

The idea is that given the endowment process and the weight vector 8,
in the current period, we can choose the Pareto-optimal allocation by
choosing optimally a feasible current allocation ¢, of consumptions and a
vector u of utilities from the next period on, subject to the constraint that
these utilities are feasible. The weights # that attain the minimum in (3.4)
will be the new weights used to select the next period’s allocations, and so
on, ad infinitum. This determines a path of allocations ¢(t), weight 0(1),
and utilities u(z). We refer to this path of allocations as being recursively
generated from (e, §;). Formally, we have the following central result.

that is, e, is the endowment at

ProrositioN 3.1. (1) There exists a unique bounded and continuous
solution to (3.2)-(3.4), moreover, the solution is the value function v, defined
in (3.1). (i) An allocation ¢ C(e) is Pareto optimal if and only if it is
generated recursively from (e, 8,).

Remark 1. It can be shown that for all ie §, v,(e, 6,) is strictly concave
ine z}nd strictly convex in ;. Therefore, for each (J, e, 0,), there is a unique
(¢g. 0, u) solving problem (3.2)-(3.4).

Remark 2. The functions v, are representative agent utilities in the
sense of Duffie [ 3, pp. 9-10]. Under additional regularity conditions, they
also define state price processes. To see why, note first that under suitable
differentiability assumptions for agregators and certainty equivalents, each
agent’s recursive utility has a gradient at any consumption path that is
bounded away from zero. (See Kan [ 7] for the proof.) One can then show,
by adapting the arguments in Benveniste and Scheinkman' [1], that
v,(-, 0;), 8, >>0, has a gradient at any endowment process ¢ for which
each agent’s consumption is bounded away from zero in the associated
Pareto optimal allocation. This gradient defines a state price process as in
Duffie [3]. A general expression for this gradient is given in Kan [7].

" The author thanks an anonymous referee of JET for pointing out this.
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