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DYNAMIC CHOICE THEORY AND DYNAMIC PROGRAMMING'

By Davip M. Kreps aND EvaN L. PORTEUS

Finite horizon sequential decision problems with a “temporal von Neumann-
Maorgenstern utility” criterion are analyzed., This criterion, as developed in [7], is a
generalization of von Neumann-Morgenstern (expected) utility of the vector of rewards,
wherein an individual’s preferences concerning the timing of the resolution of uncertainty
are taken into account. The preference theory underlying this criterion is reviewed and
then extended in natural fashion to yield preferences far strategies in sequential decision
prablems. The main result is that value functions for sequential decision problems can be
defined by a dynamic programming recursion using the functions which represent the
original preferences, and these value functions represent the preferences defined an
strategies. This permits citation of standard results from the dynamic programming
literature, concerning the existence of (memoryless) strategies which are aptimal with
respect to the given preference relation.

1. INTRODUCTION AND SUMMARY

CONSIDER A FINITE HORIZON sequential decision problem, where at each time
t=0,1,..., T, an individual must choose an action 4. The actions available are
determined by the state at time ¢, x,. Some random event takes place, determining
an immediate payoff z, and the next state x,.,. The probability distribution of the
pair (z,, x.+1) is determined by the action 4. The individual desires to select “best™
actions contingent on states and other information that is relevant, In a con-
ventional approach, “best” is defined through a cardinal utility function on the
vector of payoffs: Each (measurable) strategy (i.e., contingent plan for selecting
actions) induces a probability measure on the vector of payoffs, and strategies are
ranked by the expected utility they thereby induce. An advantage of this criterion
is that dynamic programming can be used to find “best” strategies, when they
exist. One flaw with this sort of eriterion, however, is that it ignores the temporal
aspect of the resolution of uncertainty. That is, two strategies may induce the same
probability distribution of payoffs, but one rmay cause the uncertainty to resolve at
an earlier time than does the other. Insofar as there is value in earlier resolution of
uncertainty, the individual may prefer the former strategy. In [7], we provided
some motivation for the consideration of preference structures that account for
this temporal resolution of uncertainty. (See also [2, 10, 16} for motivation in the
context of consumption-investment budgeting.) Furthermore, we axiomatized,
represented, and studied special cases of such preference structures. In this paper,
we seek to show how dynamic programming can be used to analyze sequential
decision problems when the individual has such a preference structure. We
frequently cite results from [7], and we assume no further motivation for
considering such preference structures is necessary. Thus, the reader may wish to
refer to [7] before proceeding.

" This research was supported in part by a grant from the Atlantic Richfield Foundation to the
Stanford Graduate School of Business.
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92 D. M. KREPS AND E. L. PORTEUS

In Section 2, we recount the relevant definitions and results from [7]. In that
paper, two approaches to dynamic choice theory were given—one descriptive and
the other normative. They were shawn to be equivalent in a natural sense. We use
only the normative approach here, as the resulting development closely parallels
the conventional “expected utility” criterion development. The crucial notion
introduced in Section 2 is a temporal lottery, which is a generalization of a lottery
(or probability distribution) on the payoff vector. The generalization is that
uncertainty is ‘‘dated” by the time of its resolution in a tempaoral lottery; in
comparison, this “dating" is not encoded by a probability distribution on the
payoff vector. This allows us to introduce preferences which can distinguish
between temporal lotteries solely because the times at which their uncertainty
resolves differ.

In Section 3, we define what we mean by a sequential decision problem and
compare this with the conventional definition of such a problem and with what was
termed a dynamic choice problem in [7]. After defining (measurable) strategies
and policies, a crucial construction is given: Each strategy, payoff history, and
state give rise to a corresponding temporal lottery, viz., the temporal lottery that
the individual faces if, given the payoff history and state, he thereafter uses that
strategy. (This parallels the usual construction of a probability measure on the
payoff vector from a strategy, history, and state.)

This construction allows us in Section 4 to extend in a natural fashion the
(assumed) preference relation on temporal lotteries to a preference relation on
strategies. Given a representation of the preferences on temporal lotteries (as
described in Section 2), we give a dynamic programming recursion which defines
value functions for strategies, and show that these value functions represent the
preferences on strategies. Optimality of strategies is defined and optimality
criteria are given. Finally, we adapt our results to the general operator approach to
sequential decision problems as developed in {12], which permits us to cite further
results and to investigate the optimality of strategies which have special structure.
As examples, we give conditions under which there exists an optimal (measurable)
strategy and under which there exists an optimal “memoryless’ strategy. (These
results are only sketched, as the mathematics employed are quite standard. Our
objective in this paper is primarily to provide the connection between the dynamic
choice theory of [7] and the standard theory of sequential decision prob-
lems/dynamic programming,.)

Throughout, we deal only with finite horizon problems (that is, prablems with
only a finite number of times at which actions must be taken). A treatment of
countable stage decision problems must await development of a theory of
preferences for countable stage temporal lotteries. Also, we do not consider
“almost-optimal” criteria, although the details of a treatment of such criteria will
become apparent.

Mitten [9] and Sobel [15] have dealt with general ordinal criteria for sequential
decision prablems. In particular, Section 5 of Sobel formally subsumes the
preference structures we deal with here. But by dealing only with the special
preference structures axiomatized in [7], we are able to give sharper results. A
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special case of the sequential decision problems treated in this paper was
considered in [12]. It was given as an example of a problem that could not be
modelled using a conventional affine aperator or even extrema of affine operators.
However, it was not axiomatized and there was no recognition of the phenomenon
of temporal resolution of uncertainty. Finally, preferences which have identical
mathematical representations as those considered here, but which are motivated
somewhat differently, are developed by Selden [14].

2, DYNAMIC CHOICE THEORY

Let T be a positive integer and, for each (time) t=0,1,..., T, let Z, be a
compact Polish (i.e., complete separable metric) space. The set Z, is the set of
possible payoffs at time t, with generic element z,. Define Y, = Zyand, recursively,
Yi=Y_uxZ_fort=2,..., T+1.Theset Y, is the set of payoft histories up to
(but not including) the time ¢ payoff, with genericelement y, = (2o, . . ., 2,1} Note
that Yr,, is the-set of complete payoft vectors. For-notational convenience, we
will sometimes write ¥, or y, when t =; Y, can be taken to be any convenient
singleton set.

The objects on which the individual is assumed to have primitive preferences
are called tamporal lotteries. There is uncertainty concerning the payoffs that will
be received, and we assume that this uncertainty resolves at times t=0,..., 7T
and that all uncertainty concerning z, must resolve on or before time ¢. However,
the uncertainty concerning z, may partially or completely resolve befare time ¢,
and the individual may prefer earlier or later resolution of this uncertainty. The
concept of a temporal lottery is a formal way of “dating’ uncertainty by the time
of its resolution. This is accomplished by the following definitions.

Let D% be the space of Borel probability measures on Zy, endowed with the
Prohorov metric (i.e., the metric of weak convergence). Recursively, let D¥
be the space of all Borel probability measures on Z, X D . (This construction is
possible because each D¥, metrized with the Prohorov metric, is compact and
Polish, cf, [11}.) Generic elements of DF are denoted by d,. Note that each D¥ isa
mixture space: If d,, d| € D and @ €[0, 1], let ad, + (1 —a)d; denote the element
of D¥ which, for A a Borel measurable subset of Z, x D¥ ,, assigns measure
a - d,(A)+{(1—a)- d.(A)to A. Elements of D¥ can be depicted as probability (or
event) trees with chance nodesfortimes ¢, r+ 1, ..., T, as described in [7]. (In that
paper, degenerate ““choice nodes’ were included in the depiction of elements of
D¥. Here, it is convenient to delete them.)

The space DF is the space of temporal lotteries. Contained within D§ are
temporal lotteries where no uncertainty resolves until time ¢ or after. Clearly, in
these temporal lotteries the payoffs at times 0, ..., t— 1 must be deterministic,
given by some y, € Y; and the “beyond time ¢£** structure is given by some 4, € DY,
So we can write Y, X D¥ (with generic element (y,, 4,)) to denote the set of these
special temporal lotteries. Note that in this notation, ¥, x D¥ 2 ¥,,, x D¥,.

A further piece of notation: For d, € D¥ and f a bounded measurable function
on Z, X D}.q, the expectation of f with respect to 4, is denoted by E, [ f].
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We assume, as in [7], that the individual expresses a preference ardering on
elements of DE, denoted by =, with ~ and > denoting indifference and strict
preference, respectively, which satisfies the following axiom:

AxtoM N: (a} The relation = is complete and transitive. (b) The relation = is
continuous. (¢) If d,d, e DF and y.€ Y, are such that (v, d,) > (y, d;), then
(v, ad.+(1—a)d!) > (yo ad: +(1—a)d) for all a € (0, 1] and d! € D,

Parts (a) and {b) of the axiom should be clear. Part (¢} is a “'tempaoral substitution™
property which allows us to apply the machinery of cardinal utility theory (cf. (4])
and obtain the following representation theorem.

THEOREM 1: A relation = on DY satisfies Axiom N if and only if there exist
continuous functions ut Y, X Z,XR >R for t=0,1,...,T—1, and u*:Yrx
Zr > R such that (a) for t=1,...,T—1, uf is strictly increasing in irs third
argument, and (b) if we define U%:YrxD%¥s>R by Uk(yrdr)=
Eu [uf(yr Zr) and UF : Y XxD¥ >R (1=0,...,T—1) by

U:k (}’u dr) = J“E':dg[ﬂgri= (_V:: 2‘-:, U?‘+1 ((}’n E‘)s J:+1)]s
then (y, d. )z (y. d;) if and only if U:k (y, d}= U:k (o d, )

(Here, R denotes the real line. Tildes denote random variables.) The proof of this
result may be found in [7]. The functions {u ¥ } are called basic utilities representing
z. This preference structure is not representable by the expectation of a single
cardinal utility function on the vector of payoffs. Here, the individual may
distinguish between temporal lotteries when the only difference between them is
in the timing of the resolution of uncertainty. Only when the individual is
indifferent to the timing of resolution of uncertainty can his preferences be
represented by a single utility function. (The formal conditions for this are Axiom
N and a(y, d)+ ({1 —a){y, d;)~ (v, ad. + {1 —a)d;) for all &, y,, d,, and d.) The
nature of the individual’s preferences for earlier or later resolution of uncertainty
are given by the shape of the ] as a function of their third argument. See [7} for
further details.

A special case of particular interest in the context of Markov decision prob-
lems is when the preference relation is temporally separable. By this we mean: If
(v d)=(y, d;) for some y, e Y, then (y., d)=(y:, d}:) for all y, e Y, Verbally,
preferences concerning what happens beyond time ¢ are independent of previous
payoffs. If this assumption holds, the representation simplifies as follows. The
function ¥ can be assumed to be a function of zr only and, for ¢ < T, u¥ can be
taken to be a function on Z, X R. (In the case where preferences can be represen-
ted by a single cardinal utility function on the vector of payofts, this implies that
the utility function is separable, a special case being the additive utility function
which dominates the literature of Markov decision problems.)
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One point concerning this dynamic choice theory should be carefully noted. We
are implicitly assuming that the individual’s preferences are temporally consistent
in the following sense. His preferences for “time ¢’ temporal lotteries (elements of
D¥) at time t depend on the payoff history y, and are given by = restricted to
{y.}x D¥. (This is not an assumption of “stationarity”’ of preferences or what
Sobel [15] calls “temporal persistence of preferences.” Such an assumption would
only make sense in our context in an infinite horizon model {ours has a finite
horizon) and would entail requiring that preferences be stationary over time
rather than that they be consistent.) This assumption does rule out consideration
of “changing preferences’ in the sense of Hamrmond [§} (among others).

3. SEQUENTIAL DECISION PROBLEMS, POLICIES, AND $TRATEGIES

DEFINITION: A sequential decision problem over payoft spaces {Z;:t=
0,..., T}is a collection {X,, D, A,(x,);t=0,..., T} of (a) state spaces X, with
generic element x, which are Polish spaces, (b) action spaces D, with generic d,,
where D3, is the space of Borel probability measures on Z, X X,,(, metrized
throughout by the Prohorov metric, and (c) for each x, € X,, sets A,(x,) of feasible
actions from state x,, which are subsets of I,

As in Section 2, we write E;[f] for the expectation of a bounded Borel
measurable function f on Z, % X, taken with respect to d,. Also, X7, is taken for
notational convenience to be some singleton set. Note that [J, as metrized is Polish
and is compact if X, is.

This differences between our definition and the standard definitions of a
sequential decision problem found in the literature (see Blackwell [1], Hinderer
[6], Strauch [17], etc.) are as follows. The notion of a state is just as in the
literature—the state is a statistic which tells the individual which actions are
feasible. An action here, however, is identified as the probability distribution on
pairs of immediate payoft and next state. In-comparison, the literature typically
has transition probabilities as functions of states and actions. This difference is
purely semantic. In [7}, we used the terminology dynamic choice problem rather
than sequential decision problem. There, x, was used to denote the (necessarily
closed) set of feasible actions itself, rather than a statistic indexing that set. That is,
A, {x,) would simply be x,. The definition used here allows for greater generality—
A - ) needn’t be a continuous correspondence in the X, topology. Note that we
do not (yet) wish to assume that A,{ - ) has any structural properties, such as being
a measurable correspondence.

DeriNITIONS: Given payoff spaces {Z,} and a sequential decision problem
{X., D, Alx,)}, an admissible policy for time ¢ is any Borel measurable function
8. Y, x X, > D, such that §,(y, x,)€ A,(x,) for all y,€ Y, and x,€ X,. The set of
{admissible) policies for time ¢ is denoted by 4,. An (admissible) strategy is a vector
of policies 7w = (84, 8, ...,87)€dgX .. . XAy =1L
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A palicy for time ¢ specifies a feasible action for each pair of payoff history and
state. Note that we do not formally allow the selection of an action ta depend on
previous states and/or actions but only on previous payoffs, (Of course, one can
technically incarporate the state history into the payoff history in applications
(after compactifying X,) and then use the machinery of Section 4 to show that the
state history can be considered to be irrelevant if it is irrelevant to the individual’s
preferences.) Since nothing has been assumed about the measurability of A.(-),
the requirement that policies are measurable makes it possible that some A, (and
thus If) is empty.

For each strategy m, time ¢ payoff history y, and state x, there exists a
corresponding tempaoral lottery—the temporal lottery which arises if at time ¢ with
history y, and state x, the individual uses strategy . The formal definition of this
temporal lottery follows.

Fix 7={(8,81,...,8r) and define d7:YrxXr->D% by di(ypxr)=
Sr(ynx7). Fort=T—1,...,0, recursively define d7: ¥, x X, » D¥ by

1) d7 (o x)=8:(yq x:)o (1, dii (e )7 )

where 1 here denaotes the identity map on Z,. Equation (1) can be interpreted as
follows. Suppose (inductively) that d7\y (Y1, Xee1) is the D%, “part” of the
temporal lottery associated with 7, y,.1 and x,.,. That is, dpi(yiey, Xesy) is a
measure on Z. X D4, Fix y, x, policy 8, (from strategy ), and a measurable
subset A of Z, x D¥, . From (y,, X;) and using 8, the decision maker will be “in” A
if the ensuing (z,, x,.:) are such that (z,, d/\ 1 {(y. 2.), x.~1))€ A. That is, he will be
“in” A if (2, xee1)€ (L, @7y ((va + ), - )7 A. The probability of this is of course
Se(¥n x)o (1, d71{(yn ), W "A. (An implication of this construction is that if
fi¥Y . xD¥E| - R is bounded and measurable and g: Y1 X X1 » R is defined
by  g(¥er1s Xewt) = F Vo1, div1 (Ves1o Xeeq )}, then Earey,z f1= Esgy.rlgl) Of
course, the temporal lottery corresponding to i, y, and x, is (y., 47 (y, x:)).

4, DYNAMIC PROGRAMMING

Taken as primitive is a binary relation z on the set of temporal lotteries which
satisfies Axiom N. Let {u¥} be basic utilities which represent = in the sense of
Theorem 1.

We begin by using = to induce preference relations on strategies. For each pair
(¥, x:), it is natural to say that strategy o is (y, x,)-preferred to. =’ if the temporal
lottery which arises from wr, y, and x, is preferred to that arising from 7', y,, and x..
Formally,

T E(}"hxx} 17: if ()’r, d:r(yls xt)) Z ()’r, d:rl (}’t’ Il’))-

Obviously, each z, ., is complete and transitive. Furthermore, o is said to be
optimal if w3z, .y7' for all y, x,, and 7',

The connection with dynamic programming is that we shall use the basic utilities
which represent z to represent the relations x, 5. For m=(80,8,,...,87),
define wvalue functions for strategy w by the following recursion. Let
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o7(m; yr. ¥1) = Esptyran (45 (yr, £r)  and, for t=T-1,...,0, define
vlm,-,-) Y, xX,»R by

(2) v, (r; yr, %)= By, x,)[ut* (e Zo 0o (s (00 22), %ee )]
Also, define optimal value functions by
fe(yo x) = sup a,(m; y, x,),
rell

where the suprema are taken pointwise. (The terminology used will be justified
shortly.)

LemMMma: Formell, y.e Y, and x.€ X, 03 yo x)= U (o d7 (5, X))
PrOOF: We proceed by backward induction in ¢. For ¢=T, vr{z; yr, X7)=

Esrtyr e ttT] = UT (v, 87 (yp Xr)) = UT (v dT(y7, x1)). Assume the result is
true for t+1. Then

U?‘ ()’:, d:r(yg xr)) = Ed’,'(v,. x,][uf: ()’r, Z, U?H ((}‘n f,), Jt+l))]

= Es . rx)[u:k (Ve 2oy Uikﬂ (s 20), div1 ((ye 20), Ty 9))

(by (1))
= Esyoxal#f (vo 20 0175 (¥4 20, %:41))] (by induetion)
=u,(m; ¥y, x;) (by definjtion), Q.E.D.

Immediate from the lemma and the definitions is the following.

THEOREM 2: For all n, 7', y,, and x, w2z, o7’ if and only if v,(7; y, X)) =
v (7'; yo, x.). Strategy m is optimal if and only if v(7w; y, x.)= [ (Y. X.) for all y. and
X,

With this result and the recursive definition of {p,} given by equation (2), we can
call upon the extant theories of finite horizon dynamic programming to investigate
issues such as the existence and possible structure of optimal strategies. The
general operator approach of [12} can be utilized as follows.

Let V, denote the set of bounded Borel measurable real valued functions
definedon ¥; x X, fort=0,...,T+1. For €4, ve V.., and t < T, define the
operator H; on Vi by [Hisol(ys xt}zEﬁtv(,x;)[u? (¥ Zo 0((yn £.), %es1))]. For
t =T, define Hrs on Vr. by [Hrsv(y1, X7) = Esy, 23 [4 5y, Z7)]. The continuity
of u¥ insures that Hg: Vi~ V.. Also, for ve Vi, define Ao =supgses Hist,
where the supremum is taken pointwise. Standard examples {see, for example
[17]) show that At need not be in V,,

Suppose ane can define a distinguished subset of V,, denoted V¥ and called the
set of structured value functions, and distinguished subsets of each A, denoted 4 ¥
and called the sets of structured policies, such that the following condition is met.
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CoNDITION PA (Preservation and Attainment): If v e Vi, (for t= T), then
Aue VF and there exists € A¥ such that Hav = A,

Then the standard procedure of dynamic programming can be utilized.

THEOREM 3: If condition PA holds, then (a) f.e VI for t=0,..., T, (b)
fe=Adu fort=0,..., T, ()7 =(8q,...,87) is optimal if and only if He f11=
A.firq for each t, and (d) there exists a strategy we AF X AY X . . X A which is
optimal.

The proof of Theorem 1 in [12] can easily be modified to give this result. (Note
that H,s is isotone because u; is nondecreasing in its third argument. Also, the
proof in [12] nominally requires that the H,; be Lipschitzian, which may notbe the
case here, but is only used in [12] for g-optimality. In fact, the Lipschitzian
condition would not be necessary even if our objective was g-optimality—the
compactness of the Z, allows us to replace the Lipschitzian condition with ane of
uniform continuity.}

We conclude with a pair of lemmas and corollaries to Theorem 3. The lemmas
give conditions under which Condition PA holds (i) for A* being the set of all Borel
measurable policies and (ii) for 4¥ being the set of “memoryless™ policies. The
corollaries then harvest the results of Theorem 3 for these cases. We make use of
the selection theorem of Schil [13, Corollary 4] which slightly generalizes that of
Dubins and Savage [3].

LemmMa: If Ax,) is compact in D, and A.(-) is an upper semi-continuous
correspondence for all t, then condition PA holds for A¥ = A, and V¥ the set of
bounded u.s.c. functions on Y, X X4 1.

A special case of the lemma is the case in which all the Z, and X, are discrete and
each A(x,) is compact. Then A, is automatically u.s.c.

Proor: If ¢ is a bounded u.s.c. function on Y,y xX X, then u¥(y, 2,
v((ye, 20}, Xev1)) 18 a8 well, because uf is continuous and nondecreasing in its third
argument. Then (cf. Maitra [8, Lemma 4]) w{{(y,x), d)=
Eafu¥ (v, 2, v({(ys, ), £+1))] is bounded and u.s.c. on Y, %X X, x D, That w and
A(+) are ws.c. imply that supyeaoaw({(Va x:), d;) is bounded and u.s.c. Thus
Ape VI Finally, [13, Theorem 2] yields the existence of § e A¥ such that
Ag = Ht Q.E.D.

COROLLARY: If A/(x,) is compact in D, and A.(-) is an u.s.c. correspondence,
then there exists an optimal (measurable) strategy.

DEerFINITIONS: A policy 8 € 4, is memoaryless (it could be called Markov)if é, is
x,-measurable; that is, if 8§y, x.)= 8(y, x.)} for all x,, y, and y;. A strategy = is
memoryless if it is composed of memoryless policies.
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LemMma: If A(x,) is compact in D,, A/() is an w.s.c. correspondence, and
preferences are temporally separable (cf. Section 2), then condition PA holds with
V¥ the set of bounded w.5.c. x,-measurable functions and A¥ the set of memoryless
{time 1) policies.

The proof is apparent, following the sketch of the proof of the previous lemma.

COROLLARY: If A(x,) is compact in D,, A, (‘) is an w.s.c. correspondence, and
preferences are temporally separable, then there exists an optimal memoryless
strategy.

Note that in this case, the recursions analogous to “Bellman’s equations’ are

f(x)= sup Eulu?(Z, frr1(Xr1))],

deAx)

instead of the standard equations for separable von Neumann-Morgenstern
utilicy:

f:(xt) = p sup ] Ed[ar(fr) +B.(Z)  fir1 ()]

€ Alx

(for 8, >0).
Stanford University

Manuscript received July, 1977 revision received November, 1977,
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