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Is intertemporal choice theory testable?
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Abstract

Kreps–Porteus preferences constitute a widely used alternative to time separability. We show
in this paper that with these preferences utility maximization does not impose any observable
restrictions on a household’s savings decisions or on choices in good markets over time. The
additional assumption of a weakly separable aggregator is needed to ensure that the assumption of
utility maximization restricts intertemporal choices. Under this assumption, choices in spot markets
are characterized by a strong axiom of revealed preferences (SSARP).

Under uncertainty Kreps–Porteus preferences impose observable restrictions on portfolio choice
if one observes the last period of an individual’s planning horizon. Otherwise there are no
restrictions.
© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

There is a large literature on testing individual demand data for consistency with utility
maximization (see, e.g.Afriat, 1967; Varian, 1982; Chiappori and Rochet, 1987). In this
literature, it is assumed that one observes how an individual’s choices vary as prices and his
income vary. However, data of this sort can only be obtained through experiments. If one
actually records an individual’s actions in markets over time, these classical tests of demand
theory might be useless because they neglect the fact that an agent’s choices today may be
affected by his choice set tomorrow or his savings from previous periods. Tests of demand
theory which use market data must be tests of intertemporal choice models. If one assumes
that all agents maximize time-separable and time-invariant utility and if one only observes
their choices in spot markets (i.e. saving decisions or incomes are unobservable) the analysis
in Chiappori and Rochet (1987)remains valid and a strong version of the strong axiom of
revealed preferences (SSARP, seeChiappori and Rochet, 1987) is necessary and sufficient
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for data to be consistent with utility maximization. However, time separability is a very
strong restriction on preferences which holds only if one assumes that preference orderings
on consumption streams fromt = 1, . . . , s are independent of an agent’s expectations on
his consumptions for the periods froms + 1 onwards.

While it seems intuitively reasonable to argue that history independence and time con-
sistency together with some form of stationarity is enough to ensure that an agent’s choice
behavior is restricted by the assumption of utility maximization, we show that this intuition
is wrong and that the assumption of Kreps–Porteus preferences (Kreps and Porteus, 1978)
does not impose any restriction on observed choices. It follows from our analysis that such
widely used concepts as time consistency or pay-off history independence are not testable if
one does not use experimental data but is confined to data on individual behavior in markets.

Uncertainty adds an additional dimension to the agent’s choice problem. Risk aversion
will generally impose restrictions on portfolio selection when continuation utilities are
identical across all possible next period states. The question then arises to what extend
these restrictions are observable. If one observes the last period of an individual’s planning
horizon, these restrictions are reflected in the individual’s portfolio holdings coming into
this last period. However, if we assume that the last period is not observable, the assumption
of Kreps–Porteus preferences imposes no restrictions on portfolio selection even when all
off sample path choices as well as all probabilities are observable.

These negative results raise the questions under which conditions utility maximization
does impose restrictions on intertemporal choices. We derive a sufficient (additional) con-
dition on the aggregator function, which ensures that the model is testable. If the aggregator
function is weakly separable then choices on spot markets must satisfy SSARP. If asset
prices are unobservable, SSARP is also sufficient for the choices to be rationalizable by
a time-separable utility function and the two specifications are therefore observationally
equivalent.

We develop our arguments for a finite horizon choice problem.
Without stationarity assumptions, as long as the number of observed choices is finite, one

cannot refute the conjecture that the agent maximizes a Kreps–Porteus style utility function
over an infinite horizon consumption program. However, it seems natural to impose a
Markov structure on the infinite horizon problem and to confine attention to recursive
utility of the Epstein–Zin type (Epstein and Zin, 1989). An extension of these results to the
infinite horizon problem is subject to future research.

The paper is organized as follows. InSection 2we introduce the model and some notation.
Section 3proves the main result and discusses its implications for a finite horizon choice
problems, both under certainty and under uncertainty.

2. The model

We consider an individual’s choice problem overT̄ + 1 periods,t = 0, . . . , T̄ with
uncertainty resolving each period. We take as given an event treeΞ with nodesξ ∈ Ξ. Let
ξ0 be the root node, i.e. the unique node without a predecessor. For all other nodes, letξ− be
the unique predecessor of nodeξ. For all nodesξ ∈ Ξ, let I(ξ) be the set of its immediate
successors. Nodes without successors, i.e.I(ξ) is empty, are called terminal nodes. Finally,
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we collect all nodes which are possible at some periodt in a setNt and we denote byM
the total number of nodes in the event tree. We assume thatM is finite. For simplicity, we
assume that there are no terminal nodes in anyNt for t < T .

At each nodeξ there areJ short-lived assets with assetj payingdj(ζ) ∈ R at all nodes
ζ ∈ I(ξ), its price being denoted byqj(ξ).

At each nodeξ ∈ Ξ, the individual receives an exogenous incomeI(ξ) ∈ R+ (either
from selling endowments or from transfers) and he is active in spot and asset markets. He
faces pricesp(ξ) ∈ R

L++ and chooses a consumption bundlec(ξ) ∈ R
L+.

The agent’s consumption decisions must be supported by portfolio choices(θ(ξ))ξ∈Ξ, θ(ξ)
∈ R

J . All consumptions and portfolio choices(c(ξ), θ(ξ))ξ∈Ξ must lie in the individual’s
budget set which we define as

B((p(ξ), q(ξ), d(ξ), I(ξ))ξ∈Ξ) = {(c(ξ), θ(ξ))ξ∈Ξ : p(ξ)c(ξ) + q(ξ)θ(ξ) ≤ I(ξ)

+ θ(ξ−)d(ξ), c(ξ) ≥ 0 for all ξ ∈ Ξ}

where we normalizeθ(ξ0−) := 0.
The agent attaches a positive probability to each node. Given a nodeζ ∈ Ξ and a direct

successorξ ∈ I(ξ), we denote byµ(ξ) the (unconditional) probability of nodeξ and by
µ(ξ|ζ) the conditional probability ofξ givenζ.

We say that an agent’s utility functionu : R
LM+ → R is of the Kreps–Porteus type if

u((c(ξ))ξ∈�) = vξ0, wherevξ, utility at node isξ recursively defined by

vξ(c(ξ)) = W(c(ξ), µ(ξ))

with

µ(ξ) =
∑

ζ∈I(ξ)
π(ζ|ξ)vζ(c(ζ)) for all non-terminalξ

We will assume throughout that the aggregatorW : R
L+×R+ → R+ is twice continuously

differentiable, strictly increasing and strictly concave. We normalizeW(0,0) = 0 and hence
imposeµ(ξ) = 0 for terminal nodesξ.

We also impose two regularity conditions on the aggregator which are often needed to
extend the preference specification to infinite horizon problems (see, e.g.Koopmans (1960)
or Epstein and Zin (1989)).

LS1: The functionW(·, ·) is bounded, i.e.

sup
x∈RL+,y≥0

W(x, y) < ∞

LS2: The second partial derivative ofW(·, ·) is bounded above by one, i.e.

∂yW(x, y) < 1 for all x ∈ R
L
+, y ≥ 0

In a slight abuse of notation we will refer to utility functions which satisfy all of the above
assumptions as ‘Kreps–Porteus utility’.
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2.1. Observations

In order to make our main argument, we assume that we observe choices, prices and
incomes at periodst = 0, . . . , T ≤ T̄ . Under uncertainty, we assume that we observe
these variables and all dividends all nodesξ ∈ Nt , t = 0, . . . , T as well as all relevant
probabilities (which might be known when we assume objective laws of motion). In order to
present our main argument as strong as possible, we assume that all last period continuation
utilitiesµ(ξ) for all ξ ∈ NT are known (which might justified because they are all zero and
it is the last period of the individual’s planning horizon, i.e.T = T̄ ). When we discuss our
result below, we will assess how realistic these assumptions are. We defineΩ = ∪T

t=0Nt to
be the set of all observable nodes in the event tree. An extended observation is then given
by

O = ((c(ξ), θ(ξ), d(ξ), q(ξ), p(ξ), π(ξ))ξ∈Ω, (µ(ξ))ξ∈NT )

The question is whether there are restrictions on this observations imposed by the as-
sumption of Kreps–Porteus utility. It is important to note that if one does not observe an
agent’s choices over his entire planning horizon (i.e. ifT̄ > T ) one is free to choose choices
as well as prices, dividends and incomes at all nodes which are not inΩ. We therefore have
the following definition.

Definition 1. An extended observation

O = ((c(ξ), θ(ξ), d(ξ), q(ξ), p(ξ), π(ξ))ξ∈Ω, (µ(ξ))ξ∈NT )

is said to be rationalizable by Kreps–Porteus utility if there existc(ξ), θ(ξ), p(ξ), q(ξ),
I(ξ), d(ξ) for all ξ ∈ Ξ, ξ /∈ Ω and if there exists a Kreps–Porteus utility functionu(·)
which is consistent with the probabilities(π(ξ))ξ∈Ω and the last period continuation utilities
µ(ξ), ξ ∈ NT such that

(c(ξ), θ(ξ))ξ∈Ξ ∈ arg max
c∈RLM+ ,θ∈RJM

u(c)

such that

(c(ξ), θ(ξ))ξ∈Ξ ∈ B((p(ξ), (q(ξ), (d(ξ), (I(ξ))ξ∈Ξ)

It is well known that the absence of arbitrage is a necessary condition for the agent’s
choice problem to have a finite solution

Definition 2. Prices and dividends(p(ξ), q(ξ), d(ξ))ξ∈Ξ preclude arbitrage if there is no
trading strategy(θ(ξ))ξ∈Ξ with θ0− = 0 such that if we define

Dθ(ξ) = θ(ξ−)d(ξ) − θ(ξ)q(ξ)

Dθ(ξ) ≥ 0 for all ξ ∈ Ξ andDθ �= 0

We will assume throughout that the observed prices preclude arbitrage and that the ob-
served choices lie in the agent’s budget set. We also assume that we never observe zero
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consumption, i.e. thatc(ξ) �= 0 for all ξ ∈ Ω (although consumption of a given com-
modity might sometimes be zero, it cannot be the case that the agent chooses to consume
nothing at all) and that the agent does not trade assets in the last period of his planning
horizon,θ(ξ) = 0 for all ξ ∈ NT̄ . Finally, we assume thatµ(ξ) = 0 for terminal nodes
ξ ∈ NT̄ . These restrictions on observed choices are trivial restrictions and follow directly
from monotonicity.

3. Observable restrictions

For our non-parametric analysis we need to derive Afriat inequalities (Afriat, 1967).
These non-linear inequalities completely characterize choices which are consistent with the
maximization of a Kreps–Porteus utility function.

Lemma 1. An extended observation

O = ((c(ξ), θ(ξ), d(ξ), q(ξ), p(ξ), π(ξ))ξ∈Ω, (µ(ξ))ξ∈NT )

with all c(ξ) ∈ R
L++ is rationalizable by a Kreps–Porteus utility function if and only if

there exist positive numbersλ(ξ), η(ξ), γ(ξ),W(ξ))ξ∈Ω with γ(ξ) < 1 for all ξ ∈ Ω, with
η(ξ) = µ(ξ) for all ξ ∈ NT and with

η(ξ) =
∑

ζ∈I(ξ)
π(ζ|ξ)W(ζ)

for all ξ ∈ Nt , t < T , such that

• for all ξ ∈ Nt , t < T ,

λ(ξ)qj(ξ) = γ(ξ)
∑

ζ∈I(ξ)
π(ζ|ξ)λ(ζ)dj(ζ) for j = 1, . . . , J (U1)

• for all ξ, ζ ∈ Ω,

W(ξ) − W(ζ) ≤ λ(ζ)p(ζ)(c(ξ) − c(ζ)) + γ(ζ)(η(ξ) − η(ζ)) (U2)

the inequality holds strict ifc(ξ) �= c(ζ) or if η(ξ) �= η(ζ).

If for some nodeξ ∈ Ω, the observed consumption, c(ξ), lies on the boundary ofRL+ the
conditions remain sufficient but are no longer necessary.

Proof. For the necessity part, consider the agent’s first-order condition (which are necessary
and sufficient for optimality of interior choices):

At any nodeξ ∈ Ξ,

∂cW(c(ξ), µ(ξ)) − λ(ξ)p(ξ) = 0

and

η(ξ)qj(ξ) =
∑

ζ∈I(ξ)
η(ζ)dj(ζ) for j = 1, . . . , J and for all non-terminalξ ∈ Ξ
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whereλ(ξ0) = η(ξ0) and where for allξ �= ξ0 ∈ Ξ,

λ(ξ) = λ(ξ−)
η(ξ)

π(ξ|ξ−)η(ξ−)∂µW(c(ξ−), µ(ξ−))

Defining γ(ξ) = ∂µW(c(ξ), µ(ξ)), these first-order condition, together with the
assumption thatW(·, ·) is concave and the usual characterization of concave functions
proves necessity: (U1) stems from the second set of first-order conditions and inequal-
ity (U2) characterizes strict concavity ofW(·), where the first optimality condition is
used to substitute for∂cW . The assumption thatγ(ξ) < 1 for all ξ ∈ Ω follows from
condition LS2.

For the sufficiency part, assume that the unknown numbers exist and satisfy the in-
equalities. We can then construct a piecewise linear aggregator function followingVarian
(1982):

Define

W(c,µ) = min
ξ∈Ω

{
U(ξ) +

(
λ(ξ)

γ(ξ)

)[(
p(ξ)c

µ

)
−
(
p(ξ)c(ξ)

η(ξ)

)]}

The resulting function is clearly concave and strictly increasing and the function rational-
izes the observationO. Furthermore, the approach inChiappori and Rochet (1987)can be
used to construct a strictly concave and smooth aggregator function. Their argument goes
through without any modification.

Sinceγ(ξ) < 1 for all ξ it follows immediately that LS2 must hold. LS1 follows from
the fact that all constructed numbers are finite.

WhenT < T̄ , we can construct future dividends, prices and consumptions such that they
are consistent with periodT portfolio holdings and periodT continuation utilities. The key
is to observe that for all possible observed continuation utilitiesµ(ξ), ξ ∈ NT and for all
last period portfoliosθ(ξ), ξ ∈ NT there will exist unobserved next period dividends to
rationalize them. �

We now use this characterization to show that the assumption of Kreps–Porteus utility
is in general not testable using only market data since it imposes very few restrictions on
observed choices.

Theorem 1. Any possible extended observationO for whichµ(ξ) �= µ(ζ) for all nodes
ξ �= ζ ∈ NT can be rationalized by a Kreps–Porteus utility function.

The following lemma is crucial for the proof of the theorem. While the lemma appears
simple its proof turns out to be quite tedious.

Lemma 2. For any finite event treeΩ, probabilities(π(ξ))ξ∈Ω and positive numbersη(ξ)
for all terminal ξ ∈ Ω with η(ξ) �= η(ζ) for all ξ �= ζ there exist āγ > 0, (W(ξ), γ(ξ))ξ∈Ω,
1 > γ(ξ) ≥ γ̄ andW(ξ) > 0 for all ξ ∈ Ω as well as a numberδ > 0 such that

W(ζ) − W(ξ) + γ(ζ)(η(ξ) − η(ζ)) > δ for all ζ, ξ ∈ Ω (1)
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with

η(ξ) =
∑

ζ∈I(ξ)
π(ζ|ξ)W(ξ) for all non-terminalξ ∈ Ω

Proof. We construct these number recursively. LetT denote the number of periods inΩ,
let m denote the number of nodes inΩ and fix someε < 1/(m + 2). Fix δ to ensure that
0 < δ < ε.

If nt = *Nt denotes the number of nodes at periodt, we can define a functionξt(i) by
η(ξt(1)) < η(ξt(2)) < · · · < η(ξt(nt)). Since by assumptionη(ξ) �= η(ζ) for all ξ, ζ ∈ NT ,
this function exists fort = T .

For T we can choose the associatedγ(ξ) such that

1 − ε = γ(ξT (1)) = γ(ξT (2)) + ε = · · · = γ(ξT (nT )) + (nT − 1)ε

Now chooseW(ξT (l)) > η(ξT (nT )) and define fori = 2, . . . , nT

W(ξT (i)) = W(ξT (i − 1)) + γ(ξT (i − 1))(η(ξT (i)) − η(ξT (i − 1))) − δ

Given(W(ξ), γ(ξ))ξ∈Nt we can construct(η(ξ),W(ξ), γ(ξ)) for ξ ∈ Nt−1 as follows: For
all ξ ∈ Nt−1, compute the newη(ξ) = ∑

ζ∈I(ξ)π(ζ|ξ)W(ζ). One can chooseδ to ensure that
η(ξ) �= η(ζ) for all ξ, ζ ∈ Nt−1 and that the functionξt−1 is well defined. Then define

γ(ξt−1(1)) = γ(ξt(nt)) − ε

and

γ(ξt−1(i)) = γ(ξt−1(i − 1)) − ε for i = 2, . . . , nt−1

Also define

W(ξt−1(1)) = W(ξt(nt)) + γ(ξt(nt))(η(ξt−1(1)) − η(ξt(nt))) − δ

and

W(ξt−1(i)) = W(ξt−1(i − 1)) + γ(ξt−1(i − 1))

× (η(ξt−1(i)) − η(ξt−1(i − 1))) − δ for i = 2, . . . , nt−1

We can repeat the construction up toW(ξ0), γ(ξ0). Since there are finitely many nodes
sufficiently smallδ, ε can be found to ensure that for allt and all ξ, ζ ∈ Nt , ηξ �= ηζ.
Furthermore, sinceW(·) is constructed as a piecewise linear increasing and concave function
inequalities (1) must hold. �

With this lemma, the proof of the theorem is very short.

Proof of Theorem 1. For anyε>0 andγ̄ > 0, if for all ξ ∈ Ω, γ(ξ) ≥ γ̄, one can find
(λ(ξ))ξ∈Ω which solve (U1) and which satisfy 0< λ(ξ) < ε. This follows from the absence
of arbitrage and the fact that we can chooseλ(ξ0) without any restrictions. Therefore, for
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anyδ > 0 and any observation on spot prices and consumptions one can findλ(ξ) which
satisfy (U1) and for which

sup
ξ,ζ∈Ω

|λ(ξ)p(ξ)(c(ξ) − c(ζ))| < δ

But now,Lemma 2implies that inequalities (U2) must hold as well since inequalities (1)
hold. �

3.1. Interpretation of the main theorem

We want to argue thatTheorem 1implies that the assumption of Kreps–Porteus utility
imposes no restriction on individual choice behavior.

The point is easiest to illustrate in a model with no uncertainty. In this case, we can
assume that one observes the behavior of an individual throughout his lifetime and that
there is a unique terminal node. There is a uniqueζ ∈ I(ξ) for all non-terminalξ ∈ Ξ,
π(ξ) = 1 andµ(ξ) = v(ζ). The assumption thatµ(ξ) is observable is justified if we assume
that this terminal node denotes the last period of the individual’s planning horizon. In this
case, we know thatµ(ξ) = 0 andTheorem 1immediately implies that the assumption of
Kreps–Porteus utility imposes no restrictions on individual choices in markets.

3.1.1. Time consistency
FollowingStrotz (1956), there have been various attempts to formalize ‘dynamic incon-

sistency of preferences’, the human tendency to prefer immediate rewards to later rewards
in a way that our ‘long-run selves’ do not appreciate (see e.g.Gul and Pesendorfer (2001)
and the references therein).

Many papers studying time-inconsistent preferences have also searched for empirical
proof that people have such preferences. It follows fromTheorem 1that it is impossi-
ble to find such empirical proof from observing individuals’ choices in markets.1 Since
Kreps–Porteus utility is time consistent by construction, this immediately implies that the
assumption of time consistency imposes no restriction on choices in markets. For any
present-biased preference specification and any resulting observation of choices there ex-
ists a Kreps–Porteus utility function which yields exactly the same choices.

3.1.2. Uncertainty
In a model with uncertainty,Lemma 1imposes a non-trivial restriction on an extended

observation.Theorem 1is not applicable to all situation since it requires that at different
terminal nodes the continuation utilities are different. If the last period of the model is
interpreted as the end of an agent’s planning horizon, it makes sense to assume thatµ(ξ) =
µ(ζ) = 0 for all terminal nodesξ andζ. An example now shows that under this assumption
portfolio choices are restricted by the assumption of Kreps–Porteus utility.

Example 1. Consider a two-period model with two possible states in the second period.
The states are numbered 0 (today), 1, 2 and the probabilities areπ1 = π2 = 1/2. Assume

1 The existence of external commitment devices and experimental evidence might offer a different perspective.



F. Kubler / Journal of Mathematical Economics 40 (2004) 177–189 185

for simplicity that there is only one good and that the price of this good is one at each node.
Assume that there are two arrow securities, one paying one unit in state 1, the other paying
one unit in state 2 and thatq1 > q2. Suppose thatc1 > c2 and that the portfolio choice
satisfiesθl > θ2.

The observed portfolio choice is inconsistent withLemma 1. Sincec1 > c2, by (U2),
λ2 > λ1. However, by (U1) this implies thatq1 < q2—a contradiction.

While the example only shows that there are restrictions on portfolio choices at time
T − 1, there might also exist restrictions at other nodes. Consider for example an economy
with identical consumptions at all last period nodes. This implies thatµξ has to be identical
for all ξ ∈ NT−1, i.e. in the second to last period andExample 1can be extended to this
case.

However, in general, observed consumption will be different at all terminal nodes, leading
to different continuation utilities at different nodes atT − 1. Theorem 1then implies that
Kreps–Porteus utility only imposes restrictions on consumptions atT and portfolio choices
atT − 1 but on no other variables.

Moreover, it is clear that when periodT is not the last period in the individual’s planning
horizon and it is impossible to observeµ(ξ) for ξ ∈ NT there are no restrictions whatsoever
on behavior.

Apart from the special case where last period’s choices are restricted, the assumption
of Kreps–Porteus utility therefore imposes no restrictions on intertemporal choice under
uncertainty.

3.1.3. Observability
If one observes a household’s choices throughout time it is unlikely that the weak restric-

tions on last period choices are actually observable. While under certainty it is conceivable
that choices and prices are observable at every period, under uncertainty, one can only
observe one sample path of an underlying stochastic process. One has to make stationar-
ity assumptions on the underlying stochastic processes for prices and incomes to imbue
the model with empirical content. Under a stationarity assumption, one can estimate the
processes and one therefore knows prices, dividends and incomes at all nodes of the event
tree. However, while prices, dividends and incomes might be stationary, the life cycle as-
pect of the agent’s finite horizon maximization problem implies that choices are in general
not stationary. Although given a finite data set, it is always possible to construct an event
tree and a stationary process for prices, dividends and endowments such that the observed
variables form a sample path and the assumption of stationarity of the exogenous variables
cannot be refuted, it is implausible that all variables jointly follow a first-order Markov
chain. Kreps–Porteus utility only imposes restrictions on last period choices under these
additional stationarity assumptions.

We also assume throughout that the agent evaluates uncertain income streams according
to the true (known) probabilities. While this might seem like a very strong assumption, it
is standard in the applied literature and it is clear that without any assumption an agent’s
beliefs,Theorem 1will become trivial. In this case the agent could put zero probability on
all but one sample path. If this happens to be the observed sample path, the model is the
same as under certainty.
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3.2. Assumptions on the aggregator

In order to obtain restrictions one has to make additional assumptions on the aggregator
functionW(·, ·). One possibility is to require that the agents’ indifference curves over current
consumption are identical at all nodes. For this, we assume thatW(x, z) can be written as
F(w(x), z), whereF : R+ × R+ → R is assumed to be increasing and concave and where
w : R

L+ → R+ is the concave and increasing utility function for spot consumption. We call
this aggregator function weakly separable. The assumption of weak separability ensures
that marginal rates of substitution between different spot commodities are not affected by
different future utilities. If there is only one good, i.e.L = 1 this assumption does not
guarantee refutability. The assumption imbues the model with empirical content forL >

1 because it restricts possible choices on spot markets. There are many utility functions
satisfying this assumption—for example, any nesting of concave CES-utility functions will
give rise to a weakly separable aggregator.

The model is now testable. In fact, choices on spot markets together with prices for
commodities(p(ξ), c(ξ))ξ∈Ξ must satisfy the strong version of the strong axiom of revealed
preferences.

Definition 3 (Chiappori and Rochet, 1987). (p(ξ), c(ξ))ξ∈Ω satisfies SSARP if for all se-
quences{i1, . . . , in} ⊂ Ω

pi1ci1 ≥ pi1ci2, pi2ci2 ≥ pi2ci3, . . . , pin−1cin−1 ≥ pin−1cin

implies

cin = ci1, or pin(ci1 − cin) > 0

and if for all ξ, ζ ∈ Ωp(ξ) �= p(ζ) impliesc(ξ) �= c(ζ).

Chiappori and Rochet (1987)show that in the context of static choice SSARP is necessary
and sufficient for the data to be rationalizable by a smooth, strictly concave and strictly
increasing utility function. In the intertemporal context, SSARP implies that choices are
rationalizable by a separable (time invariant) expected utility function if asset prices or
portfolio choices are unobservable.

We say that a utility functionu(·) is time separable if it is Kreps–Porteus and if there
exists aβ ∈ [0,1] such that the aggregator can be written as

W(x, y) = w(x) + βy

The following theorem is the main result of this section.

Theorem 2. The following statements are equivalent.

(a) An extended observation

O = ((c(ξ), θ(ξ), d(ξ), q(ξ), p(ξ), π(ξ))ξ∈Ω, (µ(ξ))ξ∈NT )

which satisfiesµ(ξ) �= µ(ζ) for all nodesξ �= ζ ∈ NT andc(ξ) ∈ R
L++ for all ξ ∈ Ω is

rationalizable by a Kreps–Porteus utility function with weakly separable aggregator.
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(b) There are V(ξ), U(ξ) ∈ R+, λ(ξ) ∈ R++ andγ(ξ) ∈ R
2++ for all ξ ∈ Ω such that,

(1) For all ξ ∈ Ω, ξ /∈ NT ,

q(ξ)λ(ξ) = γ2(ξ)
∑

ζ∈I(ξ)
d(ζ)π(ζ|ξ)λ(ζ) (2)

µ(ξ) =
∑

ζ∈I(ξ)
π(ζ|ξ)U(ζ)

(2) For all ξ �= ζ ∈ Ω,

U(ξ) ≤ U(ζ) +
(
γ1

γ2

)[(
V(ξ)

µ(ξ)

)
−
(
V(ζ)

µ(ζ)

)]
(3)

as well as

V(ξ) ≤ V(ζ) + λ(ζ)

γ1(ζ)
p(ζ) · (c(ξ) − c(ζ)) (4)

The inequality holds strict wheneverc(ξ) �= c(ζ).
(c) The prices and spot market choices(p(ξ), c(ξ))ξ∈Ω satisfy SSARP.
(d) There exist asset prices(q̄(ξ))ξ∈Ω, incomes(Ī(ξ))ξ∈Ω and portfolio holdings(θ̄(ξ))ξ∈Ω

such that the observation(c(ξ), θ̄(ξ), d(ξ), Ī(ξ), q̄(ξ), p(ξ), π(ξ))ξ∈Ω can be rational-
ized by a time-separable utility function.

Proof. The proof ofLemma 1above implies that (a) is equivalent to (b). The additional
requirement of weak separability gives rise to the set of inequalities (3) and (4).

The crucial part of the proof is to show that (b) is equivalent to (c): According to Afriat’s
Theorem (seeChiappori and Rochet (1987)) SSARP is necessary and sufficient for the
existence of numbers(V(ξ)), α(ξ)ξ∈Ω, α(ξ) > 0 which satisfy

V(ξ) − V(ζ) ≤ α(ζ)p(ζ)(c(ξ) − c(ζ)) (5)

for all ξ �= ζ ∈ Ω, with the inequality holding strict forc(ξ) �= c(ζ).
To show that (b) implies (c), we defineα(ξ) = λ(ξ)/γ1(ξ) inequality (4) then implies

inequality (5).
For sufficiency, assume that there exist numbers(V(ξ)), α(ξ)ξ∈Ω, α(ξ) > 0 which

satisfy (5).
We can then choose(γ1(ξ))ξ∈Ω small enough to ensure that inequality (3) has a solution—

this follows from the same argument as in the proof ofTheorem 1: We take theV(ξ) as given
and constructγ2(ξ) analogous to the numberγ(ξ) in the previous proof. Since we do not
impose restrictions onγ1(ξ) except bounding them from above, it is easy to ensure that
(λ(ξ))/(γ1(ξ)) = α(ξ) by choosingλ(ξ) sufficiently small. Equality (2) can be satisfied
because all these inequalities are homogeneous in(λ(ξ))ξ∈Ω and impose no lower bound
on infξ∈Ωλ(ξ).

Finally, we have to show that (c) is equivalent to (d): The Afriat inequalities for time-
separable utility are particularly easy. Inequalities (4) must hold withγ1(ξ) = 1.Eq. (2)must
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hold with γ2(ξ) = β. Therefore, the observation can be rationalized by a time-separable
utility function if and only if in addition to inequality (5) we also have

α(ξ)q(ξ) = β
∑

ζ∈I(ξ)
α(ζ)π(ζ|ξ)d(ζ)

Since we are free to choose the (q(ξ)), this can always be satisfied as long as there is no
arbitrage. Portfolio choicesθ(ξ) and incomesI(ξ) must then be chosen to ensure that the
budget constraints are satisfied. �

It is important to point out that weakly separable Kreps–Porteus utility is not observation-
ally equivalent with time-separable utility if portfolio choices are observable. In this case,
time separability puts restrictions on portfolio holdings—weakly separable Kreps–Porteus
utility does not.

4. Conclusion

Assuming the existence of utility functions to explain the behavior of consumers is
standard in economics. In order to imbue models which use utility functions with empirical
content one would hope that by watching the behavior of individuals throughout their life,
one can test the hypothesis that these individuals maximize utility. However, we show in
this paper that this is only possible under additional assumptions on the utility function.
Kreps–Porteus utility with a weakly separable aggregator is one class of utility functions
which imposes restrictions on individual behavior. These restrictions can be formulated in
a tractable way one can test a large data set for consistency with utility maximization (see
Varian (1982)for such tests). Without this additional assumption there are no restrictions
and the theory cannot be tested by observing the choices of a single individual. In this case,
one needs to use panel data and assume that similar individuals have identical preferences.

The situation is more complicated when there is no data on individual choices and when
one has examine restrictions on aggregate data.Brown and Matzkin (1996)show that there
exist observable restrictions for the case where one can observe how aggregate consump-
tion varies as prices and the income distribution vary. The criticism in this paper against
traditional tests of utility maximization which use individual data applies to the analysis
in Brown and Matzkin (which uses aggregate data) as well. InKubler (2003), we extend
their analysis to a multi-period model where the observations consist of a time series on
aggregate data.
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