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The Rate of Time Preference and
Dynamic Economic Analysis

Larry G. Epstein and J. Allan Hynes

Uniwversity of Taranta

L

Strong restrictions on the structure of preferences are a central fea-
ture in the received theory of intertemparal allocation. In fact, most
of the modern literature concerned with capital-theoretic problems
represents preferences by a functional in which an additve utility
function is discounted by a constant rate of time preference. This

Strong restrictions on the structure of preferences are a central feu-
ture in the received theory of intertemporal allocation. In fact, most
of the modern literature concerned with capital-theoretic problems
represents preferences by a functional in which an additive utility
function is discounted by a constant rate of time preterence. This
specification is atrractive because it is analytically tractable in dy-
namic models, and it clearly delineates how tastes and opportunities
interact to determine an economy's (hausehald's) pachs of consump-
tion and capital formation. However, its rigid structure {constancy of
time preference) severely limits the conclusians and explanatory
power of the corresponding models. This paper considers a class of
utility functionals {in continuous time) which have the appealing
feature that the rate of time preference depends systematically on an
index of aggregate future consumption. The more flexible structure
embadied in these functionals leads to important generalizations
and modifications of standard conclusions. We highlight this added
richness by examining five basic problems in dynamic ecanomic
analysis.
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specification is attractive because it is analytically tractable in dynamic
madels, and it clearly delineates how tastes and opportunities interact
to determine an economy's (household’s) paths of consumption and
capital formation. However, its rigid structure (constancy of ume
preference) severely limits the conclusions and explanatory power of
the corresponding models. This paper considers a class of utility func-
tionals (in continuous time) which have the appealing feature that the
rate of time preference depends systematically on an index of aggre-
gate future cansumption. The more flexible structure embodied in
these functionals leads to impartant generalizations and modifications
of standard conclusions. We highlight this added richness by examin-
ing five basic problems in dynamic economic analysis.

One way to understand the nature of our specification of intertem-
poral utility is as follows. Additivity implies that the marginal rate of
substitution between consumption at ¢ and ¢ is independent of con-
sumption at any { # ¢, f5. We generalize preferences to allow this
marginal rate of substitution to depend on consumption at any time ¢,
¢ = min (4, f)—it is required only that future consumption be weakly
separable from past consumption levels. We will borrow (and ab-
breviate) the terminology of Blackorby, Primont, and Russell (1978)
and refer ta the preferences and udility functionals below as recursive.

Several important features of recursive utility should be empha-
sized. First, the potential nonconstancy of time preference just noted
introduces a degree of generality that is contained in Irving Fishet’s
(1930) seminal formulation of the theory of intertemporal choice. At
the same time, the specification is not so general that it precludes
interesting predictions. Second, in common with additive utility, re-
cursive udility implies the following simplification of intertemporal
planning. Suppose the planner is free to revise his plans at sore { > 0,
his decisions at ¢ will depend on the past through accumulated assets,
but they will not depend directly on past consumption activiues. In
fact, recursive utility is the most general specification for which this is
true, since such bhehavior is merely a restatement of the weak separa-
bility of future consumption. Such preferences are closely related to
the issue of the intercemporal consistency of plans (see Blackorby et
al. 1973; Deaton and Muellbauer 1980, pp. 340-43)." Finally, stan-

' Other generalizations of additive utility are conceivable and have been considered
in the literature; but none share all of the noted features of recursive utility. For
example, general utility functions of the sort appearing in Fisher (1930) generate few
definite predictions. Wan (1970) analyzes a very general continuous-time model at the
cost of weak results and complicated mathematical procedures. In madels of habit
formation (Pollak 1974; Heal and Ryder 1973), plans at any age £ necessarily depend on
past consumption in addition to accumulated wealth.
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dard techniques (the maximum principle) can be applied to solve the
assaciated planning problem.

Same of the implications of recursive preferences have been ana-
lyzed in a discrete-time framewark.? There are far fewer instances
where preference structures that are more general than the standard
specifications have been introduced in contnuous-time models. And
there is a natural desire to formulate dynamic capital models in con-
tinuous time because of the sharp distinction between stocks and flows
that is obtained. Uzawa (1968) introduced utility functionals that are
closely related to those considered below, but the discussion does not
illuminate the essenual analytical issues. His specification has subse-
quently been applied to problems in international trade by Calvo and
Findlay (1978), Findlay (1978), and Obstfeld (1981). Our presenta-
tion clarifies the nature of Uzawa’s specification. Some, though not all,
af the implications of recursive utility for dynamic economic analysis
which we describe below are preseni—often in different models 2nd
in disguised forms—in the trade studies noted. However, due to the
different objectives of these studies, the consequences of recursive
utility are not emphasized and are likely to go unnoticed by econo-
mists working in other areas.

As we noted, five problems in economic dynamics are considered.
First, the nature of optimal economic growth is investigated. If the
production function is concave, and thus the marginal productivity of
capital 1s declining, the standard result is confirmed—capital is ad-
Justed monotonically 1o a unique stationary level. New results follow,
however, if the marginal productivity of capital is constant or increas-
ing. In either case a stable steady-state capital stock may exist, and
thus the turnpike nature of optimal economic growth is relevant for
more technologies than commonly analyzed.

The next two prablems concern questions of comparative statics
and dynamics in decentralized competitive econamies. In the first, the
short-run and long-run incidence of a tax on interest income is exam-
ined, and in the second we analyze the long-run real cansequences of
government monetary policy in a model in which real money balances
enter individual utility functions (see Sidrauski 1967; Brock 1974). In
both cases new conclusions emerge. In the latter case, for example,
the long-run level of capital is positively related 1o the rate of mone-
tary expansion, and thus a rational foundation for the Tobin effect is
established.

In Section VI we model a dynamic decentralized economy with
heterogeneous households and investigate the long-run distribution

? See Koopmans (1964) and Koopmans, Diamond, and Williamson (1964). For appli-
cations, see Beals and Koopmans {1969}, Iwai (1972), and Boyer {1975).
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of capital. Recently, Becker (1980) has confirmed a conjecture of
Ramsey (1928). He analyzes an economy in which househaolds have
additive utility functionals but possess different constant rates of time
preference. In the long-run steady state, all capital is owned by the
househaold with the lowest rate of time preference; if several house-
holds share this lowest rate, the distribution of capiral across these
households is indeterminate. This extreme consequence follows be-
cause constancy of individual rates of time preference 1s imposed on
the problem. The recursive utility functionals described below gener-
ate a more appealing model of long-run distribution.

Finally, we consider individual consumer behavior in a muliicom-
modity framework. Consumer choice theory has traditionally dealt
with short-run demand functions where income or wealth appears as
an argument of the demand funcnons. Buc in the long-run steady
state of an intertemporal plan, income and wealth are endogenous
and consumption depends only on commodity prices and the rate of
interest. There exists a steady state for the consumer if and only if the
rate of discount is variable. Thus our specification of utility permits us
to determine the testable implications of utility maximization for
long-run consumer behavior. This we do in Section VII where the
exhaustive comparative statics properties of long-run demand func-
tions are derived. A notable result is that only the substitution effects
of price changes prevail in the long run.

The paper proceeds as follows: Section II formulates and discusses
the recursive utility functionals. The next five sections address the
problems mentioned. Section VIII concludes, and technical details
are collected in an Appendix,

II. A Class of Utility Functionals

A consumption path is represented by a function € which maps each ¢
in [0, @) into ¢(t), consumption at time £. We wish to specify a utility
functional & which assigns utilicy U(C}) to each consumption path C.
The following specification for U is adopted:

B8

UC) = —J

|

]

exp {— f u(c)dfr}d.t, {1)
3

where « > 0, &' > (, and " < 0.

This specification has several desirable features. First, U is mono-
tonic; if a consumption path C' lies everywhere above the path C, then
U(C"y » U(C). Second, UJ has convex indifference curves; if UJ(C) =
U(C"), then U{(4C + 1AC") = U{C). In fac, U{RC + Vol = AU{(C)
+ Y“lU(C') for any two paths C anc C'.

The recursive structure of {J is evident. Denote by Cr and 7C those
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portions of the consumption path € corresponding to times before
and beyond T, respectively. Then U(C) may be expressed in the form

U(C’) = G[Tv CTs U(TC)]v (2)

where

G(T, Cry b} = — LT exp {— Eu(c)d?}d! + & -exp {— LT u(c)d!}.
(3)

Because G is increasing in ¢ (= U[C]) the relative ranking of two
consumption paths € and C', which differ only beyond some tme T, is
independent of their common history Cr = Cf. This gives precise
meaning to the statement that future consumption is weakly separa-
ble from past consumption levels. (In an additive utility functional it is
also true that past consumption is weakly separable from future con-
sumption levels. This is not true for U.)

Corresponding to the weak separability of 7C is the fact that the
latter may be aggregated. We will refer to U(+C) as aggregate future
(beyond T) consumption or as the (sub-) utility derived from that
consumption. That U itself can be used to aggregate future consump-
tion reflects the stationarity of the preference order represented by
(1), in the sense made precise in Kaopmans (1960).

An essential feature of U is the rate of time preference implicic in its
structure. To analyze this issue we must define marginal utilities and
marginal rates of substitution between consumption at various dates.
In continuous-time analysis this may be accomplished hy making use
of the concept of a Volterra derivative. A precise definition and alcer-
native applications of the concept may be found in Wan (1970) and
Heal and Ryder (1973). The Volterra derivative gives precise mean-
ing to the rate ar which utility changes with respect to a small incre-
ment in consumption near time 7. For the present study, it suffices
for the reader to accept both this fact and the inwitive nature of its
calculation. The marginal utility of U with respect to a small incre-
ment in consumption near T is denoted Ur. Given the specification
(1), Ur s given by

Ur(Cy = u'[e(T)] - f: exp { — E u(c)d*r}dL (4}

The rare of time preference implicit in U can now be defined. It is
helpful to proceed from a discrete-time approximation to our model.
Let A > @ be a small interval of time and Uy _ 5(CYU7(C) the marginal
rate of substitution between consumption at T and at T — A. It is con-
sistent with common practice to define the lacal rate of time prefer-
ence to be [Ur_s(CYUHC)] — 1 an the vectar where «(T) = (T — A).
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This definition is auractive because it leads to predictions about
the local equilibrium path of consumption based on a comparison of
the rate of time preference (a taste variable) with the real rate of
interest (an opportunity variable). When we pass to a continuous-time
framewark, the definition abave becomes the negative of the logarith-
mic rate of change of marginal utility along a locally constant path.
Because Uris given by {4) we immediately derive the following rate of
time preference p:

= — —d_log Ur(C
p AT g Ur(C)

HTY=0

= U:ﬁ exp{— Li u(c)d'r}dc]_l = —~[UC)] L

T

3)

Thus U embadies positive discounting of future consurmption, and
p > 0. But the rate of time preference is not constant as in the additive
model. Rather the rate is a function of aggregate future consumption
U(7CY and is summarized by the function

p(d) = — 1, (6)

where ¢ represents aggregate future consumption. Note that if the
consumption path is globally constant, as would be the case in a sta-
tionary stace, ¢(f) = 0 for all ¢ and ¢(¢) = Z. In this situation U{(+L) =
— l/u(Z) and the definition of time preference becomes

p = u(@) (7)

given our specification of utility.

Figure 1 provides further clarification in the context of the discrete-
time approximation to the model. Indifference curves between ¢(T —
A) and ¢(T) are portrayed in the figure. In the additive model such
indifference cutrves are unaffected by consumption in periods other
than T — A and 7. Given recursive utility, consumption beyond T may
shift the indifference curves via a change in U(+C), the subutility from
consumption in future periods. Thus indifference curves must be
labeled according to the underlying values of future utility, and p > 0
requires that indifference curves have slopes at least equal to unity in
absolute value along the ray ¢(T — A) = «(T) = ¢. Since p is indepen-
dent of the common consumption level ¢, indifference curves con-
structed for the same future utility value have the same slopes at A
and B. Finally, that p increases with future utility impases the relation-
ship between the slopes of the wo indifference curves passing
through paint A. Since an increment in future utility shifts prefer-
ences from ¢(T) to c(T — A), at least locally around the line of equal
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1 ¢ =U(;C},i=1, 2
¢°> 9’
¢(T)

¢‘|.

B {(c{T-A)=c({T)=c")

A (e(T-A)=c(T)=¢')

45

c(T-4A)
Fie. 1

consumption, one may interpret the monotonicity of p as reflecting a
form of complementarity between (T — A) and aggregate consump-
tion in periods after T.

Some brief comments are in order regarding the links between the
formulation above and both standard practice and the existing litera-
ture employing more general udlity structures. It is obvious that for
the conventonal additive utility functional, the local and global
definitions of time preference are equal. The previous contributions
that introduce recursive forms (see Koopmans et al. {1964] and
Uzawa [1968] and the applied studies they spawned) define an agent’s
time preference to equal the marginal rates of substutution minus
unity on globally constant—e(¢) = 0 for all t—consumption paths.
This focus reveals interesting properties of the steady state. However,
the introduction of the precise definition of local time preference
contained in (5) makes possible an elegant formulation of non-steady-
state behavior in terms of a simple comparison between local time
preference and the instantaneous marginal rate of transformation—
the real interest rate. This feature will be illuminated in the analyses
of the five problems. In addition, an important advantage of the
definition in (5} is thac it clearly reveals, via the monotonicity of p, the
nature of the intertemporal complementarity implicit in U.

We suspect that it is the general recursive structure reflected in (2),
rather than the specific functional form (1), which is responsible for
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many of the results that follow. However, to our knowledge, there
exists only one further class of funcuonal forms for intertemporal
utility consistent with (2). The following generalization of (1) also
provides additional understanding of the relation of our specification
to that of Uzawa (1968).* Consider

o) = J

il

v(c) exp {— L u(c)d'r}dz. (8)
I

If w(c) is set equal to — 1, (8) is transformed into (1). If u(¢) is set equal
to 8[v{c)] for an increasing function §, Uzawa's utility structure 1s
obtained. Along a globally constant consumption path the rate of time
preference is a constant, 8[z(¢)], and is the analogue of (7). On the
other hand, the formulation of local time preference implicit in (8)
with & = 8(v) is more complex than (5). And this fact results in added
technical complications and ambiguities without yielding more inter-
esting results.* Thus, the specification (1) is maintained. Indeed, a
contribution of this section is that the essential feacures of weakly
separable intertemporal preferences are exposed. The analysis of the
five problems that follow is therefore able to illustrate most of the
important implications in a clear and simple fashion and at a
minimum cost in terms of technical machinery.

HI. Optimal Economic Growth

The literature concerned with optimal capital accumulation is domi-
nated by the assumption of diminishing marginal returns. This may
incorporate a view about reality. But it also reflects capital theorists’
interest in steady states coupled with the almost universal application
of the additive utihty functional. To the extent chat steady states have
intrinsic interest, recursive preferences greatly expand the range of
technologies consistent with such positions. To examine this issue
consider the following generalization of the optimal growth problem:

max {U(C): k = g(h) — ¢, c 2 0, k(1) Z 0V 4, k(0) = kb (9)

* Epstein (19836) provides an axiomatic basis for this functional in the context of
choice under uncertainty. Note chat in finite harizon models, Epstein (1982) formulaces
and analyzes a much more general class of recursive functionals in continuous time.
Also, a referee has noted that Nairay (1981} has studied Uzawa functionals in a con-
tinuous-time madel with uncertainty.

* The added complexity is due to the fact that given {J the rate of time preference
depends also on current cansumption; in fig. 1 slopes at A and B would generally
differ. For a constant consumption stream at the level g it is still true that the rate of
time preference equals w(z). Thus steady-state analysis is not altered substantially; but
analysis of behavior out of steady state 1s more complex. Note that Uzawa’s non-steady-
state analysis contains an error. The phase diagram fig. 2 and the first two camplete
sentences on p. 434 do not follow from his eq. (35) as claimed.
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The functional [J{€) is as defined in (1), and the constraints are stan-
dard; k£ denates capital; population growth is ignored, or all variables
can be interpreted in per capita terms; and g is the production func-
tian net of depreciation. We assume chat g(0) = 0, g" = ()0 for k <
() ki, g > (<) 0 for b < (>) ke, ky > k). This specification allows
increasing marginal productivity at an early stage of economic devel-
opment and diminishing marginal productivity at later stages. If k; =
0, the common neoclassical specification of a concave production
function is obtained; and if &y = = and g' = 0, constant returns to
scale are present. This latter specification plays a central role in Frank
Knight’s writings on capital theory. A final assumption is that 2(Q) <
g'(®). In light of (7), this requires that the rate of time preference
along the path with everywhere zero consumption is less than the
marginal product of capital given zero capital.

The optimization prablem may be solved by standard techniques
after applying the transformation in Uzawa (1968, p. 491} or that
sketched in the Appendix to the present paper. We will not under-
take an exhaustive analysis of the nacture of salutions. Rather, we
focus on behavior that can be optimal given recursive preferences but
can never be optimal if the rate of time preference is constant.

With constant time preference, the solutions possess the following
features: (i) if ¢" << 0 throughout and if g'(=} < 0, there exists a unique
and globally scable sceady-state capital stack; (1) if g i1s inear, g(k) =
rk, there does not exist a steady state unless the rate of discount equals
7, in which case every stock is a steady state; (iii} finally, if &) > 0, it is
optumal either, depending possibly on the starting point, to drive the
stack to zero ot to converge to a steady state in the region of declining
marginal productivity. It can nrever be opumal for an economy to
converge to a stock kin the region 0 < & <k, where marginal produc-
tivity is increasing (Skiba 1978). Such an economy is presumably
“underdeveloped.”

When the rate of time preference varies as in (5) and (6) the follow-
ing results are obtained: In case i the result above is confirmed. In
case ii there exists a unique and globally stable steady state if v < u(o0);
a steady state is possible in a world of Knightian constant recurns. In
case il it may be aptimal to converge to a stock in the region where
marginal productivity is increasing—that is, it is conceivable that
there exists a locally or even globally stable steady state k, with g"(k) >
0.

These assertions are proven below and in the Appendix, but the
underlying intuition is conveyed by figure 2. To establish the appro-
priate interpretation of the latter, proceed as follows. First, recall that
in the additive utility model along an optimal path, the logarithmic
time derivative of the undiscounted shadow price of capital equals the
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(a)
£ {H(k)

{b} PH{k)

Fig. 2

rate of time preference minus the marginal product of capital. An
analogous relation holds for the recursive utility specification, and
this analytical convenience is made possible by our formulation of
Jocal time preference in (5). Let H(kg) be the maximum value of
lifetime ucility in (9). We will measure the shadow price in udlity
terms, but in terms of V rather than U, where V and U are ordinally
equivalent and related by U = —e™". Let J be the corresponding
lifetime utility, H = ~¢~/. Then ' is the shadow price of capital in
terms of utility V, and if [ is twice differentiable, the logarithmic
derivative of [’ is

L log J'K@] = J k) () = plHK) — gk (10)

Note that the rate of time preference in (10) is defined along an

optimal path, p[H (k)] = —[H®&)] ™" = /™ and is indirectly a func-
tion of the stock size .°

5 Let € be the optimal consumption path and let &(¢) be the optimal stock at time ¢ in
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Equacion {10} describes the dynamics of the capital stock and may
be applied to the analysis of the stability of steady states. Suppose that
J' < 0—the shadow price of capital is a decreasing funcuon of the
stack size.® (This is necessarily the case if ¢ < 0 but may be violated in
some regions if g is convex for small stocks.) Then & has the sign of
g'th) — p[H{K)]. In paruculdr kisa steady state if and only if g'(k) =

p[H{k)], in which case it is necessarily globally stable as long as f* < 0,
for example, if g" = 0.

Turn to hgure 2 and assume J* < 0. The marginal product sched-
ule can be viewed as a demand schedule for praductive capital, while
the time preference schedule can be viewed as a supply schedule of
capital on the part of househalds. Long-run equilibrium in the capital
market occurs at steady-state levels of capital and the rate of interest.
Moreaover, the stability of the steady state in the planning problem (9)
corresponds precisely to the stability of market equilibrium in the
Marshallian sense. Thus stability of £ requires that the curve p[H (k)]
cut the marginal product curve from below. As figure 24 shows, this is
possible even if ¢ 2 0.7 In the standard additive utility model, similar
diagrams apply with the rate of time preference curve perfectly hori-
zontal. Tt is evident that stability requires g* < 0.

Though figure 25 is suggestive, it does not prave that the behavior
described is indeed optimal for some specification of » and g. We

therefore present a concrete example that is consistent with figure 2.
Take

B(l + BYc + )PP
(Bﬁ)ﬁf(l‘i'ﬁ] ’

gy = (8 + B — B(A + RPFY! — g

ufec) =

where B> 0,8 > LB ={{A + 2P L (/BB + V- D < A< (2
B(B + 1), and a = A* — BAP*! > 0. Then g(0) = 0 and the

(9). Then H[k(5)] = (L) because of the recursive structure of preferences or the
mLcrtcmporal consistency of plans. Then apply (5).

& The assumption that [” exists and is negative is especially restrictive when g” > (¢ in
some regions, as it rules out some forms of hehavior described by Skiba (1978). We
adopt these assumptions because it is our purpose to focus on hehavior that is conceiv-
ably optimal given recursive but nonadditive utility. An exhaustive analysis of optimal
growth with recursive utility and a convex-concave technology would require a sepa-
rate paper.

T Multiple steady states are possible where both the marginal product and rate of
tirme prefercnce curves are upward sloping. Note that bath figures are cousistent with
our assumption that p[H(0)] = u(0)} < g'(0).

® The example is an application of the general pracedure described in the Appendix
far constructing examples. It is readily adapted to the case of a constant rate of time
preference. Because even then concrete examples of solutions with convex-concave
producticn functions are not available in the literature, our procedure may he of
independent interest.
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marginal product curve for g has the appearance depicted in figure 2
with &k, = [2/8(R + DBIYE"Y — Aand &y = [2/B(B + 1}]'® — A. For
such utility and production functions, the problem (9} possesses a
solution for any ky > 0 and yields lifetime utility H (kg) = — (kg + A}~ L
Given optimizing behavior, the rate of time preference varies with
stock size according to the linear rule p[H (k)] = & + A. Thus from
(10} capital evolves according to the differential equation

E=1—-BF+ XA+ kP (11)
If &y > @ capital converges to the steady-state stock h= (BB +
JYe- — A 0. IfB > 2, then & > ky, g'(k) < 0, and we have the

situzation depicted in figure 24. On the other hand, if B < 2, then &, >
# 2nd figure 26 applies.

IV. Shost-Run and Long-Run Tax Incidence

Recent contributions to taxation theory have focused an the differ-
ence between the short-run and long-run incidence of a factor tax.
The long-run shifting of factor taxes has been analyzed in a growth-
theoretic framework, and the intertemporal welfare costs of such
taxes have been computed.? In this section we investigate the impact
of a tax on capital income in an intertemporal general equilibrium
madel in which a representative household with infinite life max-
imizes an intertemporal utliey function and possesses perfect fore-
sight with respect to future factor prices and government transfer
payments. The latter correspond to the government's rebate of tax
revenues. Thus we follow common practice in analyzing the differen-
tial impact of an interest tax versus a lump sum tax.

Suppose the household has a constant rate of time preference 8 (as
in Chamley 1980). Then while capital bears the entire burden of the
tax in the short run, it shifts the burden completely in the long run
because the long-run after-tax rate of return to capital must equal the
constant 3. Steady-state capital, consumption, and hence welfare
undergo “large” reductions.

These extreme results are imposed a priori by the maintained hy-
pothesis of a perfectly elastic supply curve in the market for capital
(fg. 2a). If the rate of time preference is not constant and the supply
curve is upward sloping, the model is more flexible and is capable of
generating a broader range of quantitative outcomes depending on

* See Diamond (1970}, Feldstein (1974], and Kotlikoff and Summers (1979) for anal-
yses of shifting and Chamiey (1930} for the computation of welfare costs. The madel in
the latter study resembles ours except for the specification of the utility function,
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Y We now

the particular nature of preferences and the technology.
show this in a more formal analysis.
The representative household has the utility functon U of (1). It

accumulates capital £ at the rate
k() = r(BA(8) + w(t) + R() — ¢(t), MO) = by > 0. (12)

Here r{t) and w(t) represent expectations of future returns to capital
and labor, respectively. (We assume that one unit of labor 1s supplied
inelastically.) The expected lump sum rebate from the government is
R(t).

The househald maximizes U subject ta (12) and its expectations,
and it accumulates capital according to the profile {##(t)}5. A perfect
foresight intertemporal equilibrium occurs when expectations are
consistent with equilibrium in all future factor markets, thac is,

r(t) = (1 — a)g'[k*@)], w() = glk*(0)) — £*(0g'[A*(8)], (13)

and
R() = ag'{h*()1k*(1), forall s

Here o is the rate of taxaton of capital income and g is a neoclassical
production function, g’ > 0, " < 0.

We focus on steady-state equilibria. In a steady state the household
equates its rate of time preference to the after-tax return on saving.
Because of (7) this amounts to u(¢) = F. {A bar over a variable indi-
cates a steady-state value.) Perfect foresight requires that ¢ = 7& + @
+R = glhyand7 = (1 — cr)g’(f:). Thus the steady-state k is the unigue
solution to

ulg(k)] = (1 ~ a)g'(h). (14)

A solution always exists If g satisfies the Inada conditions g'(0) = oo,
g'(®) = 0. The solution 1s unique since u[g{4)] is increasing and g'(k)
is decreasing in k.
Comparative statics analysis of (14) yields
dh —g
= — — < () 15
o~ g -~ o] )

and

' Strictly speaking, the demand-supply analogy is not valid because a tax change nat
anly shifts the net marginal product curve but also causes the rate of time preference
curve to shift downward because lifetime utility falls. Bur the shift in the p curve only
serves to reinforce our argument that capital will bear part of the tax burden in the long
run. Thus we continie to use the demand-supply analogy to convey the intuition for
our results.
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Thus the steady-state capital stock falls if the rate of capital taxation 1s
increased but not as much as it would if the race of time preference
were constant. (In that case [15] would apply with " = 0.) Moreover,
the net return to capital also falls, so capital bears some of the burden
even in the Jong run.

The elasticity of & with respect to o can be expressed in the form
g dk  _ _ I _ ’ (16)
ko do [v - (hg'lg) + (L — a)(kg"lg)]

where vy = u'[g(E)]g(fz}fu[g(E)] is the elasticity of the rate of time
preference along a constant consumption path The elasticity is taken
with respect to the constant level of consumption and is evaluated at
g(k). As this elasticity approaches infinity, the elasticity of k with re-
spect to @ approaches zero, a result that is polar to that generated by 2
constant rate of time preference. More generally a range of results is
passible depending on the empirically relevant value of .

A more general perspective on the analysis in this section may be
derived from figure 24 and the market for capital. The effect of an
interest tax is to shift down the demand curve. The short-run supply
curve of capital is perfectly inelastic at the existing stack. If the rate of
discount is constant, the long-run supply curve is perfectly elastic so
that short-run and long-run impacts of the tax increase differ sub-
stantially. The variability of p allows this difference between short-run
and Jong-run impacts to be determined empirically rather than to be
imposed a priori. The relationship between the short-run and long-
run consequences of parameter changes is of interest in a variety of
contexts.'" In all such instances, the utlity functional (1) seems to be
appropriate.

V. The Long-Run Neutrality of Money

A central question in monetary theary is how the path of the money
supply affects the steady-state stock of capial in an economy popu-
lated by rational agents. The seminal investigations of this problem
are thase of Sidrauski (1967) and Brock (1974). Each author proves a
strong invariance theorem when the services of money are modeled
by entering real balances in the utility function and all other interac-
tions are excluded. In both analyses it is the assumption of constant
time preference that permits a partition of the monetary and real
sectors in the long run. When intertemporal preferences are recur-
sive, this separation is not possible. A formal proof is outhned below.

" Nagatani (1981) emphasizes the importance of the distinction for MACTOECONITIC
modeling.
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The utility functional of the representative individual is adapted
from (1):

@

U(C, B) = ~ J

A exp {—- r ule, b}dr}d!, (17}

1}
where 1, 1, > 0, 2 > 0, and u is concave; B is a path of real balances
with value 5(£} at time ¢ and U so defined still has a recursive struc-
ture. One can define a rate of time preference for each of consump-
tion and real balances. In hoth cases restrict the paths sa that ¢(T) =
6(T) = 0 locally. Then both rates of time preference are equal and are
given by p = —[U(+C, rB)] "

The representative consumer, who possesses perfect foresight,
salves the following optimization problem:

max — Lm exp {— E wle, b)d*r}dt (18)

subjecttoc + & + b + (p/p)b = w + vk + v, k(0) = kg, p(0YB(0) = My,
Here ky and Mg denate initial physical and nominal monetary assets,
respectively; p is the money price of consumption and capital goods; w
1s the real wage rate; r is the real return to capital; and v is real
gavernment transfers. One unit of labor is supplied inelasucally.

Production is carried out by means of the neoclassical production
function g, g’ > 0, g" < 0. Perfect competition in factor markets and
perfect foresight imply that, along the path that is optimal in (18}, we
have

w =g — kg'(k), r=g'(k), v = 0b (19

where 8 is the constant rate of expansion of the nominal stock of
money.

Itis shown in the Appendix that any perfect foresight equilibrium
path satisfies

e, b)) _ s
ule ) PGS O]~ g, (20a)
k=glh) — ¢ (20b)
and
b _ : e B)
5 -4t (&) B (20¢)

The maximum lifetime utility in (17} is given by H, and p[H (% + &)] 13
the “derived" rate of time preference as a function of total assets 4
+ b (If p is set equal to a constant, one obtains the differential equa-
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tion system corresponding to the standard additive udility functional
[Calvo 1979, p. 93]}

Focus on steady-state equilibria (Z, b, k), which are defined by the
equations

g'tk) = p[H(k + b)] = u(T, b), (21a)
z = g(h), (21hb)
and
u’b(E! E) te L
w@d D TEW Ele)

Assume that u{¢, b) 1s such that both consumption and real balances
are normal in an atemporal problem, where » is the utlity index.
Then it is straightforward to show that the steady state 1s unique for
any given &. A steady state exists if g'(0) = =, ¢’(0) = =, and, for any ¢
> 0, limyog (w(e, Bude, 0] = 9, liMy_w [uslc, Bl e, B)] = 0.12
Finally, a local analysis of the dynamic system (20) in a neighborhood
of the steady state shows that the steady state is locally stable.'?

Comparative statics analysis of (21) yields the following results:

db

a0 < 0, (22a)

dk

e >0, (22b)
and

dr

20 = {). (22¢)

A higher rate of monetary expansion increases the rate of price infla-
tion and thus raises the opportunity cost of holding money. The
steady-state quantity of real balances is therefore reduced, but the
steady-state levels of consumption and the capical stock are increased.
The source of these results is clear from figure 24. The rate-of-time-
preference schedule is a function of total assets: p[H(k + b}] rather
than p[ £ (k)] is the correct specification. When real balances decline in

' For constant paths U = —~{ufz, )] 7!, so U and u are ordinally equivalent. Thus
assumptions on  are readily wanslated into assumptions on the nature of the prefer-
ence order defined by {J on coustant (consurmpoon and real halances) paths. For ex-
ample, the normalcy assumption is equivalent to the requirement that both consump-
tion and real balances are normal goods in intertemporal optimization problems in
which {J is the utility index and only constant paths € and B are allowed.

'* The analysis is similar to Calvo (1979, pp. 96—99) and Obstfeld {1981, pp. 1149
51) and s omitted.
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response to the rise in opportunity cost, the time preference curve
drawn against £ shifts down. Thus the intersection with the marginal
productivity schedule occurs at a larger level of capital. When the rate
of time preference is maintained to be constant, the equation g'(k) =
p uniquely defines the steady-state capital stock, and the neutrality of
money is imposed. Recursive preferences therefore produce the To-
bin effect as a feature of rational choice, and with a minimum
specification of interactions.'*

This nonneutrality theorem has implications for two central and
related issues in monetary economics. A basic feature of the business
cycle is that real output is serially correlated, and equilibrium models
of output Auctuations introduce a Tobin effect to generate this behav-
1ot (see Lucas 1975; Fischer 1979). The result above provides a basis
tor this effect that is consistent with rational intertemporal choice. An
associated problem concerns interest rate behavior in the United
States. Before World War II, changes in nominal interest rates are
less than changes in expected inflation. After Warld War 11, changes
in nominal interest rates with respect to changes in expected inflation
are less than predicted when tax distortions are introduced (see Sum-
mers 1982)."° These results are consistent with the specification of
preferences in (17). The equilibrium real interest rate and the equilib-
rium rate of monetary expansion are negatively related. The change
in the real rate will thus moderate the response of the nominal inter-
est rate when equilibrium inflation is changed.

Brock (1974, pp. 773-74) also obtains a nonneutrality result in a
model with endogenaous labor supply in which the marginal rate of
substitution between consumption and leisure at any time T depends
on real halances at that time.'® Such interdependence is nst underly-
ing our nonneutrality result.

Expand our model to include a labor-leisure choice. Let L be a
leisure path with value [(#) at time £ Suppose

U(C, B, L) = — Lm exp {~ E wle, b, I)d.’-r}dl (23)

'* A referee informs us thar Michener (1981) has studied the Tobin effect in the
discrete-time framework of Koopmans et al. (1964).

'Y Assume that the only distortion is a tax on interest income at the rate o. If the
after-tax real rate is constant—as would be the case with additive preferences—the
change in the nominal interest rate with respect to a change in expected inAation is 1/(]
— a). This latter expression exceeds unity. The Summers study {1982) indicartes that,
given 11.5. tax paramerters, nominal rates change by less than is consistent with a con-
stant real rate. It should also be noted that Summers's results also indicate that effects
other than simple rational nenneutralities are present.

'® That is, v,fv; 1s not independent of b where the utility function is [§e ™ ¥u(c, b, {)dt.
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and
wle, b, D) = ul{e, ) + u?(h).

Then the marginal rate of substitution {according to U) between ¢(T')
and I(T), defined using Volterra derivatives, is u}[c(T), {T))u}{(T),
{(T)], which is independent of 5(T). In spite of this fact, a nonneutral-
ity result can be obtained. The explanation is clear: Brack imposes
intertemporal independence (additivity) so thac real balances can in-
fluence consumption-leisure choices only via within-period interde-
pendence. In our specification the latter is not required because of the
intertemporal complementarity embodied in U. From (5), appropri-
ately extended, the form taken by this intertemporal interdepen-
dence is evident: the rate of time preference falls if future real bal-
ances are reduced.

VI. The Long-Run Distribution of Wealth and Consumption

Ramsey (1928) conjectured that in the long run the most patent
household will acquire all the capital stock. Becker (1980) has verified
this result in a dynamic general equilibrium model with heterogene-
aus households in which each household discounts future consump-
tion at a constant rate. This extreme and unappealing long-run dis-
tribution result is a direct consequence of the assumed constancy
of households’ rates of time preference. We show, in the contexr of
a simplified model, that a more appealing long-run distribution
emerges if household preferences have the form (1).

There are H households, & = 1, 2, ..., H. Household 4 has the
utility functional U*,

UMC) = - Lx exp {— E uh(c}d'r}dz, (24)

where u” satishies the properties specified in Section I1.

We need to make precise the statement that household 4 is more
patient than household ;. Because rates of time preference are not
constant, the following definition seems appropriate. Let p* and p/ be
the rate of time preference functions for households £ and j, respec-
tively. Household 4 is no less patient than j if p* < p/ whenever both
households face identical future consumption streams. In light of (5),
this is equivalent to the requirement that

U: exp [— E u"‘(c)d‘r}dr} a = H: exp [— E uf(c)d'r}dr] -

for all consumption paths C. But this is equivalent to u*(c) < 1/(¢) for
all ¢.
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Individual households solve the following problem:
max U*(CH) subject to k= vkt~ P RA0) = B> 0,  (25h)

where r > ( is the constant rate of return. For simplicity we assume a
linear technology, g(k) = rk, k = Zk" and thus static expectations are
rational. We assume that for each A, «*(0) < r < w/(e),

The problem (25) was solved in Section 111. Household stocks are

adjusted manotonically o their steady-state values B h=1,... H,
where
uh(rfz") = r (26)
Thus the economy converges to a steady-state configuration of paosi-
tive consumption (', ..., 2% ..., ") such that
wey =» h=1,..., H. (27)

All households own positive stocks and enjoy pasitive consumption in
the long run. Patience s rewarded by larger steady-state consump-
tion; that is, u®{¢) = w/(¢) for all ¢ implies chac =gt

VII. Long-Run Consumer Demand Functions

Traditional demand theory summarizes hehavior by consumption
functions in which income or wealth appeats as an argument. But in
the long run boch are choice variables for the consumer. In face, long-
run or steady-state consumption depends only on prices and the rate
of interest. We now show this precisely in a model where preferences
are described by (1), and some striking results emerge. (A stable
steady state does not exist if the rate of discount is constant, as was
noted in Sec. IIL.) Moreover, we thoroughly analyze the comparative
statics properties of the long-run consumption functions and thus
derive the implications of utility maxirmization for long-run consumer
behavior.'s
The following mtertempaoral optimization problem is solved:

= [
max — J exp {—* [ w(cy, - - -, c,d)d*r}dz, {28)

o 0
subject to w = rw — Xp¢; and w(0) = wy > 0; w denotes wealth, r
denaotes the rate of return to saving, and py, . . . , p,, are the prices of

the n consumption goads. Since we wish to focus on steady states, »

'? After completing this paper, we saw a paper by Lucas and Stokey (1982} that
undertakes an extensive analysis of growth with many households in the discrete-time
framework of Koopmans et al. {1964).

'9 Such implications in the context of a habit formation model are examined by
Pollak {1970, 1976).
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and the prices are assumed to be constant. The function u is increas-

ing, concave, and positive, and w(G, . . ., 0) < r < u(ee, . . ., o).
Steady-state consumption (£, .. ., G,) s a function of rand p, .. .,
P, Arguments similar to rthose used in previous sections shaw that the
steady-state consumption funcaons, (v, pr, ..., pady - - Euln P o
£.), are the unique solutions of the following equations:
L i o
—.':—., 1,]=].,<..,n, (29)
Y 12
and
‘LL(E[, PR E,,_) = .

But these are precisely the conditions which characterize solutions to
the following problem:

min X p.e; (30
subject to ufcy, . . ., ¢,) = r. Remarkably, it follows that long-run

consumption functions can be viewed as solving a problem of expen-
diture minimization subject to an “output” constraint where “output”
equals the rate of interest ».

The well-known comparative statics properties associated with the
problem (30) 1imply the following testable restrictions on long-run
consumption funcuons: (a) each g; is homogeneous of degree zero in
commodity prices; (8) ZpE; 1s increasing in +; and {¢) the matrix of
price derivatives (a7/dp;) 1s symmetric and negative semidefinite.
Moreover, these restrictions are exhaustive—any set of functions
satisfying a—c may be viewed as long-run consumption functions for
some u and U.*® The extensive and exhaustive testable long-run im-
plications of the model (28) constitute an appealing feature of that
model.

The relevance of problem (30) and the negative semidefiniteness of
the matrix of (uncompensated) price derivatives give precise meaning
to the statement that “income effects vanish in the long run.” Intui-
tively one suspects that this corresponds to the fact chat income is an
endogenous variable in the long run. That is not quite accurate, how-
ever, because the special comparative statics properties of the ¢s do
not extend to the utility specification based on {8).

' If the u = » indifference curve is asymptatic to all axes in n-dimensional commad-
ity space, then positive &'s that solve (29} always exist. Otherwise, for same prices the
analysis would have to be modified to allow for zero consumption of some goods.

20 8ee Deaton and Muellbauer ¢1980) for a brief discussion of the problem of integra-
hility. Actually a—¢ permit integradion to a function u thar is quasi concave. [t may be
shown that 115 concave if and only if the functions Z also satisfy 4. The expression X p.c,
1s a convex functien of r.
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The model {(28) also has strong implications for long-run welfare
analysis. Along steady-state consumption paths U = —u~' = —r~ L.
Thus steady-state utility increases with the rate of interest and is inde-
pendent of commodity prices. The burden of higher prices is borne
entirely in the transition to a new steady state. Steady-state wealthm =
(X p.z;)r is adjusted precisely to compensate for price changes in the
long run.

An mteresting additional illustration of these welfare implications
is provided by the analysis of the different consequences of inflation
in closed and open economies. The steady-state value of (17) is

g=-_-1__-_1
u{Z, b) 7

(31)

In a closed economy, an increase in the equilibrium rate of infAation
results in capital deepening and a decline in 7. Inflation is therefare
unambiguously welfare reducing. However, for a small open econ-
omy embedded in a world of perfect capital mobility, 7 is parametric.
It therefore follows from (31) chat inflation is welfare neutral in the
long run. Only a2 pure substitution effect between maoney and real
capital in the portfolios of home residents is present.

VIII. Concluding Comments

We have formulated a class of utility functionals for which rates of
time preference depend on future consumption. These funcrionals
were applied to a broad range of problems in economic dynamics to
tllustrate the critical role played by the structure of the rate of time
preterence. (Further applications may be found in the trade studies
cited.) The models we have investigaced are highly stylized. But we
hope the new results which emerge are of sufficient interest to justify
consideration of (1) as an alternative to the standard specification wich
a constant rate of discount.

Appendix

In this Appendix we prove many of the assertions made in the text. The
following lemma is of use in Sections I1 and I[1:
LEmMMa 1: Let the functional V be defined by (C) = —¢ V) where U is
defined in (1). Then V is concave.
Proor: By induction on T we can show that for each T = 0,
4

- z uie,)
—log {Z e =0
o

is concave in (g, . . ., ¢7). By standard chough lengthy limiting arguments this
result may be extended to continuous time and an infinite horizon. ||
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Consider the growth problem (9) of Section IIL. Introduce the state vari-
able z = [§ ute)dr and rewrite the problem in the form

max — L e Hdt, (32

subject to 2 = w(c), b = g(k) — ¢, 2(0) = 0, &(0) = ky. Lec HA(k(,, z¢) be the value
of the corresponding prablem where 2(0) = 2, H(ky) = H{ky, 0). Itis easy to
see that & (ky, 2g)/d29 = — H{kg, 29). Thus the Hamilton-Jacobi equadon for
(32) implies 0 = max {—e¢™* = H{k, 2)ule} + Hylh, 2)[g(k) — c]}. Take (&, z) =
(k, O) and derive

plH(k) = /™ = max {u(c) + ['(ki(gth) — <t (33)

(Recall that H = —¢~ /) Ta prove equation ¢10), differentiate {53} with. re-
spect to £ and apply the envelope theorem.

Next it is asserted in the texe that /* < 0 if g” = 0. To show this, argue as
follows: f(kg) = max V(C) subject to the canstraints of problemn (9). By lemma
1 Vis a concave functional. Now standard arguments {e.g., Long 1979} show
that [ is concave. Therefore, if J* exists, as we assume, then f* = 0. From (10},
J'tk) < 0 except possibly at & = k, where p[H({#)] = g'(k). From (31}, «'[c*(4)]
= J'(k}, where ¢*(k) is optimal consumption given stack 4. Therefore f(k) =
0if and only if ci(£) = 0. But that can be ruled out by a local analysis around
[¢*(k), k] paralleling the analysis in Calve (1979, pp. 97-98) or Obstfeld
(1981, pp. 1157-58). Thus /" < 0 as desired. .

The asserted nature of aptimal accumulation paths when ¢" < 0 follows
directly from J” < 0, (7), {10), and the assumptions made in the text regarding
the relative magnitudes of u and g’ at end poines; for example, w{0) < r < (=)
if g(k) = rk. Ta confirm the passibility of selutions depicted in figure 2, 5 in
particular, we construct a concrete example. [n fact, the nextlemma describes
a general procedure for constructing examples of solutions to problems
which have the farm (9}, even given a convex-concave technology.

Lemma 2: Let f be defined on the nonnegative real line, f(0) > —o, [' > @,
and f* < 0. Let ¢ be defined on D = [J'(¢}, J'(0}] such thaton D inf {Y(z): z €
D} = 0, ¢ < 0, and § is convex. Define g(4) by

glh) = {/M — WS RN R), &> 0. (34)

Suppose that g defined in this way satisfies our assumptions for production
functions. Suppose also thac the differential equation

k= [=J RN Y — /M, RO) = &y, (35}

generates salutions &*(f; ky) which converge to 42> 0, g(k) = 0, for all ks > 0.
Finally, define u(c) = inf {{{z) + 2z : € D}, ¢ = 0. Then u > 0 and u is
nondecreasing and concave for ¢ > 0. Moreover, for all &y > 0, £%(1; ky) is the
optimal capital stock in the apprapriate version of (9} and H (k) = — otk ig
the maximum value of intertemporal utility.

An important step in the proof is to establish (33} and the “inverse” propo-
sition that u{¢) = infy.qlexp [J(R)] = J'th)[gth) — <]} Similar arguments are
applied in proofs in Epstein (1981, theorems | and 2) and Epsrein (19834,
theorem 2).2' The example in the text s a special case of the lemma with §(z)
= B: P + azand J(k) = log (k + A).

2! The procedure may be extended to allow for f* > 0 in some regions and to
canstruct examples in which it may be optimal te drive the capital stock ro zero.
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Turn to the optimization problem (18) of Section V. Rewrite the problem in
the form

max — [ e dt (36)

q
subjectto z = u{c,a — k), a = (w + vh + v) — (g}fp)(a — &) — ¢, 2(() = 0, and
a{Q) = kg + [My/p{0)]; & = & + b denotes total real wealth. The Hamiltonjan £

is given hy

L= —e"‘+)\[w+rk+ﬂ—£(a—k)—c}+|.n.u(c,a—k). (37

p
Maximization with respect to ¢ and 4 yields the first-order condition
Up I
% =¥ + ? (38]

The (initialy utility shadow price of the stack z is p(0). It is evident from
(36)}—ar it can be derived from the maximum principle—thar p(0) = f§
e”'dt, where : follows an optimal path. Similarly, n(&) = [T ¢ %7 for any ¢

Thus juw = — [T e " %r]~! = (U0, B)]"", where C and B are optimal
profiles. We conclude that
1t
BS = —aluic, B (39)
The maximum principle implies that A evolves according to A= —rkand

that A = pu,. Logarithmic differentiation of the latter and substitution of (39)
yield

e 40)

Finally, b = M/p = bib = 8 — (@’p) =8 + r — (upf,) by (38). This proves
(20c). Equation (20b) is obvious, and (20a) follows from (19} and (4Q).
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