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Symposium on Aggregation
The Structure of Utility Functions'

1. INTRODUCTION AND SUMMARY

1.1 Suppose that we are given

P1 a continuous complete preference ordering =2 on a product space $=8; x §,... x S,
where

P2 each & is topologically separable and arc connected,?
implying that S is so too. A well-known result of Debreu [2] then yields

Lemma 0. There exists a continuous utility function U(:) defined on S such that
Ux) = Ux") iff * x = x', each x, X' € §.

1.2. Let us write

X =(Xg; .00y X)) = (X)icow» X; € S;each { €00, (LY
where

Q={1,2,.., 1 (1.2)

is the set of sectors. These may be thought of as groups of goods or periods of time,
for instance. In the latter case the S; might be function spaces, the x; being vectors whose
components are time series giving the consumption of the individual goods at each moment
in the period in question.

1.3. Consider any set 4 & € of sectors and define

X4 =(X)ie s Sa = n S, A=Q-A4, LWL

icA

7 clearly defines a conditional ordering on §,, given what happens off it, whose utility
functions might be written U, (x,: x;) = U(x,, x7). If, given some x; not all elements
of S, are indifferent, say that 4 is essential, if, given any, strictly essential. If the con-
ditional ordering on A is the same for all xz, say that 4 is separable. This is Leontief’s
concept of separability, somewhat generalized [ 13], [14]. 1 will use the word in this sense
throughout the remainder of this paper. It has nothing to do with the topological
separability of P2,

1.4. Take a reference vector O € § and call its component on any Sz, B < Q, 0 also.
It need not, of course represent zero consumption. If A s separable, any conditional

' Most of the work far this paper was done while the author was visiting Stanford on a grant from.
the National Science Foundation. Earlier versions were read to seminars at Stanford itself and at Chicago,
Yale, Cambridge, Essex and the London School of Economics. [ am grateful to the members of these
seminars and in particular to Kenneth Arrow, Frank Hahn, Mordecai Kurz, Tjalling Koopmans, James
Mirrlees, T. N. Srinivasan and David Starrett.

2 Complete ordering: 3= is transitive and reflexive, and, if x, y € 8, either x 2= y or ¥ 7= x, or bath,
Debreu, for instance, calls this a preordering, because indifference is allowed,

Continuous: }yeS: x =y} and {p € 85: y = x} are both closed, each x € §.

3 Topologically separable: §; has a countably dense subset, such as the rationals among the reals or
points with rational coordinates in R®. Many rather rich spaces are topologically separable. Note that
this has nothing to do with separability in Leontief’s sense, which I use below.

Are connected: If x,, ;¢ 5, they are joined by an arc in 5. Debreu assumes ** connectivity > rather
than ' arc connectivity ”. However I need the stronger postulate to provide the proof of (1.6), which
Debren leaves ta the reader. See the Appendix.

40”7 = " if and only if .
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368 REVIEW OF ECONOMIC STUDIES

ordering on it may be represented by the continuous subutility function:

U ,(x,) = U(x,, 0). (1.4

Throughout this paper I will use the same reference vector 0 e S for all separable sets,
will write 0 for 0,, its component in S,, each 4 = €, and will normalize so that

U(0) = 0. (L5

1.5. Since inessential sets affect nothing, they may be neglected.! I will accordingly
assume throughout this paper that

P3. Each sector is essential.
For simplicity of argument I will frequently make the stronger assumption
P4. Fach sector is strictly essential,

which I will however show in section 6 can be replaced by the harmless P3, except in ane
rather special case.

1.6. Debreu has also shown ? [3] that the utility function may be written

Ux) = RUx,), ..., Uy(x,) (1.6)
iff each sector is separable, and that, if at least three sectors are essential,
Ulx) = Uy(x )+ Up(x)+ < + Ux,) «(L7)

in an appropriate normalization iff each set of sectors is separable, where the U/'s are
the subutility functions just defined, and F(-} is continuous and strictly increasing. These
correspond to Leontief’s theorems on separability and additive separability, but are global
while Leontief’s are local,® and depend on weaker assumptjans.

1.7. There are extreme cases: What do we know about the structure of U{(+) if we
are given a general collection & of separable sets? Call it a separable collection.

[.8. Even without P4, it is clear that 0 and € are separable and that, if 4 and B are
separable, so is their intersection. We will see in section 2 that, if they overlap, that is
intersect and neither contains the other, then P4 implies that their union AuR, two differ-
ences A—B, B—A and symmetric difference AAB = (A— B)U(B— A) are also separable.
Let us say that a collection A of subsets of ) is complete if

(i) If A, B e s overlap, AUB, AnB, A—B, B— 4 and AAB all belong to &
(i) 0, Q e,

and define the completion o (#) of & to be the intersection of all the complete collections
containing #: that is the smallest such collection. Clearly all its elements are separable
if P4 holds. We will see in section 3 that these are the only sets whose separability is
implied by that of the elements of &, even given P4, and in section 6 that their separability
follows from P3 except in one rather special case.

1.9. P4 implies, then, that we can assume without [oss of generality that we are given
a complete separable collection &7: if the original separable collection & is incomplete,
we merely take of = «#(#). Of course if 8 is complete, we have no need of P4, though
P3 is needed even then,

1.10. Now &/ is partially ordered under the relation 2, with unique maximal and
minimal elements Q0 and 0. Call these the trivial elements of «f, the others the proper

L This presumes that we know which sectars are inessential-—surely not a strong requirement. P3
might be further weakened, but it would complicate the exposition, so that it hardly seems worth while.

2 Actually he leaves the proof of (1.6) to the reader.

3 Though Leontief’s theorems can frequently be proved to hold glabally. See [5].
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elements, and the maximal proper elements-—that is those which are not contained in any
other proper elements—the rop elements of o .

L.11. If no two top elements intersect, there is a partition {Q, Qy, ..., Q,} of Q in

which €Q,, ..., Q,, are top elements of o, and Q,, the free set, is made up of these sectors
which belong to no proper element of 2/, since each proper element is contained in a
top element. Let (y,, ¥4, ..., %) be the corresponding partition of x. Since Q,, ..., Q,
are separable, an immediate generalization of (1.6), proved in the appendix, shows that we
can write

U(x) = F(yo, Uy (11)s s Un(Vur)) -(1.8)
where F() is continuous, and strictly increasing in the subutilities U, ..., U,.

1.12. If two of the top elements intersect, it is shown in section 3 that there is a partition
{Q,0y,...,Q,) of Q, the union of every subset * of which belongs to &2, Let (3, 11, ..., Vo)
be the corresponding partition of x. An obvious extension of (1.7), proved in the appendix,
therefore implies that we can write

Ux) = U(pd+ ..ot Un(vn) - (1.9)
in an appropriate normalization,

1.13. 1t is shown in section 3 that s/ may be broken down into «/*, which is composed
of &, 0 with Q, Q,, ..., Q,, in the first case discussed abave, and with the union of each
set of the s in the second, and &/, ¢, ..., &/, which bear the same relationship 2 to
Q,,Q,,...,Q,as o to . The information in o/* yields (1.8) or (1.9) as the case may be;
that in «; permits a similar analysis of Q,, each i, and so down the utility tree. This
permits a complete characterization of the form of the utility function in terms of .

1.14. Some applications are discussed in section 4, an alternative approach sketched
in section 5 and P4 replaced by P13 in section 6. This weaker postulate is also used in the
proof of Thearem 1 in section 2.

2. THE BASIC THEOREM
2.1. Let {Qq, Q,, ..., ©Q,} be a partition of Q and (ye, ¥4, ..., ¥m) be the corresponding
pactition of x. It is shown in the appendix that
Lemma 1. If Q,, Q,, ..., Q, are separable, P1-2 imply thar we can write

Ux}y = Fpo, Uy(31)s s Unlv) (2.1}
where U (), ..., U,(~) are the continuous subutilities defined in (1.4) and (1.5} and F(-)
is well behaved: that is, is continuous in all its arguments and strictly increasing in the
subutilities.
Corollary. F mirrors the subutilities: that is
U,=FKo0,..,0 U,0,...,0), each i (2.2)
2.2. Lemma ! then permits us to prove:
Theorem 1. [Jf (0) A, B = Q overlap, (1) A, B = Q are separable, (i) B— A is strictly
essential,® then P1-3 imply that (iii) AUB, ANB, A—B, B—A, AAB = (A—B)u(B— 4)
are all separable and strictly essential.

Remark
2.3. It will be convenient to change notation slightly and write x for x,_g, y for
Xqnm 2 for xg_ 4, 8 for xz,.p, and therefore (x, y, z, @) for x, in this section.

1 That is, the union of each set of (V's.
2 That is, ¢, satisfies the definition of completeness in 1.8 with €2, in the place of (1, each i.

3 Or, of course, A— B.
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I will show that (i) and (ii) imply, with (0) and P1-3, that
(iv) Ulx, y, 2, 8) = Fu(x}+o(y)+wlz), 6), say,

where F(-, 6) is strictly increasing, which in turn clearly implies (iii): since (ili) certainly
implies (i) and (ii) we have

Carollary ** (1) and (ir),” ** (i) ”, and “ (iv)  are equivalent, given P1-3 and (0).
Proof

2.4, Since A and B are both separable, the conditional preference ordering on 5,5
is independent both of (z, 8) and of (y, 8}, and is therefore independent of (y, z, 8). Hence
their intersection is separable, too. Lemma | therefore implies that we can write:

Ulx, y, 7, 8) = Glg(x, v(y)), 2, 8) = H(x, H{v(y), 2), ) .(2.3)

where v(y) is the subutility function for AnB, g(x, (3} for A, A{v(y), z) for B, and all the
functions are well behaved and mirror the subutility functions.® Since each is continuous
on a connected domain, the range of each is an interval. (x, y, z, 8)=(x, ', 2, 8), some
x, 7, 8, y, ¥ since An B is essential, and hence for all x, z, 6 since it is separable. Hence
this interval is non-degenerate. In particular, the range of

o(y) = U0, y, 0, 0) = g(0, o(y)} = A(v(p), 0) 24
is a non-degenerate interval J containing O.
2.5 Define analogously
wx) = Ulx,0,0,0) = gi{x, 0): w(z} = U0, 0, z, ®) = A0, 2). ...(2.9)
2.6 According to 2.4,

Ulx, y, 2, 8) 2 U(x', y, 2, 6) (2.6
iff
a(x, o(y) 2 g(x', v(1)), (27
and also iff
H(x, Hu(», 2V, §) = H(x', h(v(y), 2), 8), (28

o that (2.7} and (2.8) are equivalent. I will use this to show that (2.6) holds iff u(x) = u(x),
so that A— B is separable.

2.7. Say that v € J is joined to v’ € J if there are z, z' € Sp_ 4 such that

hiv, 2) = h{v', 2'}. .29
If so
glx, vy = g(x’, v}y iff g(x, v’} 2 g(x’, V'), ..{2.10)
because each is equivalent to H(x, #, 8) = H(x', i, 8), where b = A(v, z) = A, 2').
2.8. Say that v is connected to v’ if there exists a chain » = vq, v, ..., v, = v', each

element of which, except the last, is joined to its successor. Clearly (2.10) holds in this case,
tao.

2.9 “ Being connected to ™ is an equivalence relation, and so partitions J into equiva-
lence classes.

2.10. These equivalence classes are intervals. To see this, let o, v, p<¢’, belong to
the same equivalence class K, and take & such that s>@>v". In the chain connecting
u, ¢' there are a pair 4, v,,, such that ; 2 & = v,,,. In an obvious notation, therefore:
Mo, z) = Ao, 200 1) £ B, 2;,. ) S Moy, 2,4 ,) because A(+, z,, ;) is increasing. Since
A{v;, -) is continuous on the connected space Sz_ ,, this implies that there is a Z¢€ S3_
such that A(v;, 7} = &(d, z,,,). © is therefore joined to v; € K, and hence belongs to K too.
K is therefore an interval,

L Since e.g. h(o(y), 0y = KO, p, 8, 0) = u(y). To say A((¥), z) is well behaved is to say that it is
continuous, and strictly increasing in o.
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2.11. I will show that there is only one equivalence class, so that each v € J is connected
to O in particular, implying, by (2.5)-(2.7) and (2.10), that U(x, y, z, 8) = Ux', y, z, 6), iff
u(x) = u(x'} so that A— B is separable with subutility function w(x) = U(x, 0, 0, 0.

2.12. Suppose the contrary and let v* be a common frontier point of two equivalence
classes Jy, J,. Since J, being an interval, is connected, such a point exists. If either J;
or J, is degenerate, it may be the end point of J; otherwise it is an interior point, since
both are intervals. In either case it belongs to J, and not merely to its closure. Should
v* be the upper bound of J, for instance, I, below is empty, but this does not affect the
validity of the argument.

2.13. Since B— A is strictly essential, there are z, 2’ € S5, such that

h(v*, 2)> h(v*, 2°). .(2.11)
Since & is well behaved by 2.4 there is a § >0 such that
Mo*, 2) 2 My, 2') = Wv*, 2'), ve In[v*, v*+8] = I, say, L (2.12)

and since #(v*, -) is continuous in z on the connected space Sy_ ,, there exists a z2¥ € Sp_
such that A(v*, z*) = A(v, z’). Hence v* is connected to each veJ,. Similarly there
exists an >0 such that #* is connected to each v e Jn[v* —e, v*] = J_, say. Since it is
a common frontier point of Jy, J, = J, this implies that it belongs to both equivalence
classes, which is impossible. There is therefore only one equivalence class, so that 2.11
implies that A — B is separable with subutility function #(x). Being separable and essential,
it is strictly essential. Hence B— A is separable with subutility function w(z) by a similar
argument.

2.14. Lemma I now implies that we can write
U = Glg(u, v),w, 8) = H(w, v, w), 0) (2.13)
in a slightly new notation where all the functions are well behaved.
2.15. T will now show that this implies that we can write *
Ulx, v, z, 8 = Fla(u(x)) +b(w(p))+ c(w(2)), 6) 214

where all functions are well behaved. Since this is just (iv} in a different notation, it praves
both the theorem and the carollary.

2.16. According to a theorem of Aczel * on associative functions,
U = G(g(y, v}, w) = H(u, A(v, w)), (2,15
where all functions are well behaved, and
u, v, w, g, A, G, H all range over the same interval <a, >, ...{2.16)

would imply that we could write

g(u, v) = $la) +5()), Ao, w) = Y(b(v) + c(w))

that Glg, w) = F($™ g)+c(w)), H(u, h) = Fla(w) +¢~ (1)), (2.17)
so tha
U = Fa(u)+ o)+ co(w)), ..{2.18)
where
all functions are well behaved. ..£{2.19)

2.17. (2.18)-(2.19}) is the sort of thing we want. There are twa obstacles in the way
of finding it: @ and the fact that (2.16) is not normally satisfied.

L If so, we can clearly normalize so that F{A, 0} = X and a(u(0¥) = ... = 0. Doso. Thena+b+c, b, a,
o, a +¢ are the subutility functions for A\tB, ANB, B—A, A—B, A48 respectively. Since each of these
sets is separable and essential, it is strictly essential.

2 [1] page 321, Corollary 1 to Theorem [ of page 320,
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2.18. Consider the latter first. Since u«(-), ..., are continuous on arc connected domains
Si_g --,and A—B, ..., are essential, the domains of u, ¢, w are all non-degenerate intervals.
To make them all of the same type, restrict &, v, w to the interior of their domains until
further notice. The domains of u, v, w, are now all open intervals. So, by their continuity
on connected spaces, are those of g(-) and A(-). We can map each of these intervals onto
(0, 1) by well-behaved transformations which are independent of 8. Do so0, and denote the
transfarmed concepts by the same symbols as the old, thus retaining (2.13).

2.19. 2.13 also implies that the common range of U(-, 8), G{-, 8) and H{-, 8) is an
open interval. There is a well-behaved transformation L, which makes (0, 1) the common

range of
Li(U) = Gylglu, v), w) = Hylte, b, v)) -(2.20)
where
Golg, w) = Ly(G(g, w, 6)), Ho(1, 1) = Ly(H{x, b, 6)). . A{2.21)
All these functions are still well behaved, and (2.16) is now satisfied with G4, H, replacing
G, H. By 2.18 we have (2.17)-(2.19), except that the new functions also require a subscript 6.

2.20. In particular therefore

g(u, v) = dolagu)+ by(v)), -(2.22)
and we can clearly normalize so that
ag{(+5) = hy{0-5) = ¢o{(+5) = 0, each 6. ..(2.23)
Do so and drop the suffix ¢ in the case & = ( to get
Dol ag() — by(v)) = dalu) + b(v)). (2.24)
Taking o = -5 first and then 4 = -5, we have
ag = ¢3(a), by = $5(b), ...(2.25)
so that, by (2.24),
¢ (a+b) = ¢3(a)+ ¢5(b), (2.26)
where
Py =g " {227

is well behaved by (2.19) on its interval domain I, say, which contains the arigin. The
domains of g and & being nan-degenerate intervals this implies

O = k,A, say, Ael; k;>0, a constant, ..(2.28)
so that '
ks = da,l{a = bm‘fb
...(2.29)
= Cﬂfc‘l
by a similar argument applied to A(-).
2.21. The B-version of (2.18) is
Ly(U) = F{ag(u) + by(v) +c4(w)) . 2.30)

= Fylky(a(u)+ B(v)+ co(w)))
U = Fla(u)+ b{v) + e{w), 8), say, ~{2.14)

as we wished, where all the functions are well behaved.?

by (2.29), so that

' ay, by, ¢y, @, b, ¢ all vanish together, so this creates no problems.
2 We normalize so that F(A, §) = A once more, so that the argument of footnate 1, p, 371 works,
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2.22. All this so far only when u, u, w are restricted to the interior of their interval
domains. It holds throughout these domains by the good behaviour of all the functions
in (2.14).

2.23. This campletes the proof of both theorem and corollary.

2.24. Given Pl, P2 and P4 we may therefare assume without loss of generality that
we are given a complete collection s of subsets of Q which are known to be separable,
that is a complete separable collection. Of course the ariginal separable collection 4
may already be complete. If so we will not need P4, though a certain amount of essentiality
will be needed in applying the results.

2.25. The intersection of two complete collections, each containing a given collection
4, 1s clearly complete and contains 4. Hence there exists a smallest collection (%) with
these properties. To know that the elements of & are separable is to know that these of
££(F) are, given P1, P2 and P4.

3. THE UTILITY TREE
3.1. In this section I will show how the partial ordering of the complete collection ¢
under > determines the structure of U(-).

3.2, Consider first the partial ordering itself. For this we need no pastulates at all
other than the existence of the complete collection s,

3.3, The definitions in 1.10 of a top element A of &£, as 2 maximal praper element and
in 1.11 of the free ser Q, as composed of those sectors which belong to no praper element,
may be rephrased as

Ae s is a top element of o if AcB<Q=B ¢ & L3
Q, ={ieQ: ieBcQ=B¢ &)} ..(3.2)

where “ < " denotes strict inclusion, denying the possibility of equality.
3.4. Top elements may or may not intersect. See that o is top disjoint if no pair of

its top elements intersect, top overlapping, if at least one pair do. We will see below that
there are at least three top elements in the latter case, and that each pair overlap.

3.5. & top disjoint,
351 Let Q,, Q,, ..., O, be the top elements. Then
(Qq, 4, ..., Q,} is a partition of £, .(3.3)

where €, is the free set defined in (3.2). Let (¥q, ¥4, ---, Pm) be the corresponding partition
of x. Lemma 1 implies

U(x) = F(yﬂa Ul(yl)‘l LRRS | Um(vm))a (34)
where the U,(-) are continuous subutility functions, and F(+) is well behaved.

31.5.2. Suppose that a proper element C of & intersects one of the top ¢lements, Tt
is contained in it if o is top disjoint. This is obvious if m = 1, since € cannot contain
free sectors. If m = 2, let C intersect Q;, Q. Since (3.1) implies that it contains neither, it
overlaps each. Hence B = Cuf); is a proper element of o, contradicting (3.1). Hence &«
may be listed, with trivial double counting, as the union of

&*={Q, 0, .. 0, 0},

..(3.5)
d,={Ces: C=QY, i=12, ..,m
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3.6. & top overlapping.

3.6.1. Call the top elements 44, ..., A,. At least one pair intersect. Since neither
contains the other by (3.1), they overlap.

A; and A; overlap. ...{3.6)
Then A;uA; € o by Theorem 1, so that
Aod; = Q, (3.7
by (3.1). Hence
Q, = 0, by (3.2). -..(3.8)

3.6.2. Since no other top ¢lement contains either 4; or 4; by (3.1), (3.7) implies that
any other overlaps both. Hence !

(3.6) and (3.7) hold for each i, j, i # j, -..(3.9)
A;—A; = 4, = Q, say, each i, j, { # ], ...(3.10)
and
while, by Theorem 1,
Q,‘_z AJ—AIE&{, QIUQJ =A1AAJE‘¢ ..(312)
because of (3.6).
3.63. Now
Cr=)Qes,each I < {L,2, ..., m} ..{3.13)
iel

by (3.12) and Theorem 1. This is most easily seen when 7 = {1, 2, ..., ¢}, say. Define in
that case D; = Q;u€); e o by (3.12). Hence E, = D, € of and by repeated application

g

of Theorem 1 so does each E; = E;_,uD; = |} Q. Since C; = E,when/ = {1, 2,...,1}
i1

this proves (3.13} in this particular case. The argument is clearly valid in general with

m

trivial alterations. In particular, therefore ] Q,es. It is contained in none of the
P=t

top elements A, 4,, ..., A,. Hence |] O, =Q by (3.1), so that (3.11) implies that
i=1

{Q,, Q,, ..., Q,} is a partition of Q, ..£3.14)
and,
mz 3, ..(3.15)

since otherwise 4, = Q, and 4, = Q, cannot intersect, contradicting (3.6) Natice too
that

4;=0= ) Q, ..(3.16)
F#i
NA=N0=U%={]Qex. (31N
iefl iel iefl jer
3.6.4. If (4, ¥4 ..., V) i the corresponding partition of x, (3.13)«(3.15) imply that
Ux) = U(y) + Ua(n)+ -+ Upn(¥)s -(3.18)

in an appropriate normalization, where the Ug-) are continuous subutility functions, by
Lemma 2.

3.6.5. Moreover no element C € o7 overlaps an Q;: If it were to, it would be a proper
element, and would therefore overlap 4; = €, too, by (3.1), so that B = CuA4; would be
a proper element of o by Theorem 1, contradicting (3.1). We can therefore ance mare

' We see that each A, overlaps A4, if A, overlaps any 4,, Hence each A, averlaps A,.
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list &, with only trivial double counting, as the union of

A ={)Q:1<{1,2, ..., m},
(e (3.19)
A={Cesd: C=Q}, i=1,2..,m

3.7. Let us define a complete collection relative to C by replacing £} by C in the
definition of a complete collection in 1.8, We may then summarize the main results in
3.5.6. in the following theorem:

Theorem 2. Any complete collection s may be written

() o = ¥y ( g .sx’i)
i=1
where
(i) £, ={Adeof: A<},
is complete relative to Q;, 1 = 1, 2, ..., m and where the top collection
(i) &* ={0,Q, Q. ..., Q,}, m = 0if o is top disjoint, in which case

(v) {Qq, Qy, ..., Q,} is a partition of Q, in which € is the free set and £, ..., Q,
the top elements of of, or

V) A*={Cr=)QuITcd={1,2,...m}},m23, if o« is top overlapping, in
which case et

(i) {Q,, Qy, ..., Qu} is a partition of Q, s that Q, is empty and the top elements of
o are 8y, ..., Qo m =3

3.8. It is now clear how to find the structure of U(-), given the separable complete
collection &, and P1-3.

3.8.1. Determine the top elements of . Do they intersect? Determine the Q,,
% o, If o is top digjoint

Ulx) = F(yo, Uy(1)s s Un(Pm))s - (3.4)
where F(-) is well behaved by Lemma 1. If top overlapping
Ux) = Uy(r)+ Up(y) + ..+ Upl(Ym), ..(3.18)

in an appropriate normalization. This exhausts the information in .

3.8.2. In either case each U4} is a continuous subutility function defined on

SQ.‘ = I—[ Sf’
Jegly

and ##; is complete relative to Q; by (ii).

3.8.3. Look at each «; in turn. Discover its top elements. Do they intersect?
Find the Q,;, 2], o, in an obvious notation. If &, is top disjoint, we can write

Uiy} = Flyio, Un(yids Unaia), --) (34
where F{+) is well behaved; if top overlapping
Uy = Fi(EjU:j(yiﬂ)s . (3.18)

in an appropriate normalization, where F{-) is continuous and strictly increasing. The
presence of this latter Fi{-) may be surprising. It is needed because when &/ is top inter-
secting, the U;(y;) will already have been normalized to secure (3.18), and so cannot now
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be renormalized to get rid of the Fi(+) in (3.18;)." This means, too, that the U, (-) in
{3.18;} do not generally satisfy 2 (3.4) in 1.3. However, continuous strictly increasing
transforms of them do, which is all that is required for us to be able to turn next to the
## ;;, legitimately, applying the same procedure, and so down the utility tree.

3.8.4. At each stage (3.4), or (3.18) or one of their analogues, is equivalent to the
separability of the elements of the top collection. Since &£ is finite each of its proper
elements is contained in some top collection. Hence the structure discovered by this
procedure is equivalent to the separability of each element of . If of = /(%) as defined
in 1.8 and P4 holds, it is equivalent to the separability of the elements of 3.

pi]

2 1 241 232 233

FigUre 1

3.9. This procedure can be represented graphically. Represent a top collection by

or.~T~in the top disjoint case, according to whether or not there are free sectors
and byr—t—in the top overlapping case, when m = 3. If m = 4, for instance, us ,
~7%~, [T Tlinstead. The entire collection & can then be represented as in Fig. 1.
The sectars corresponding to each ray may be listed at its end, or separately as here:

9, ={1,2}, O ={345), @ ={,..,13}

Q. = {3}, Q, =45,

Q, ={6,7 8} Q) ={9}, Q,, = {10, ..., 13}
Qo= {6= 7}= Dy = {8}3

Q,,, = {10}, Q,,, = {11}, Q,55 = {12, 13},

U/(-) can be read straight off this information. Here it is 3
Ux) = F(xy, x5, FI(F{((X3), Fi2(x4, X5))y Fy(Xgs X7, Fay((Xg))
+ Fya{xg)+ Faa(Fasi(xy0)+ Faaa(x11)+ Fi3a(x12: X(3)))- -.(3.19)

1 If & is top disjoint no such problem exists—nor does it in general if the next higher collection is.

2 And so are not strictly subutility functions in. the narrow sense in which I have used this term so
far. OF course this does not matter at all since they reflect preference perfectly and are continuous,

3 Where the F's are well behaved—that is, continuous in all their arguments, and strictly increasing
in the F’s among them. Having a choice between, for instance, F11;(x10} and {21,(xq), in the case of hottom
sets, | chose the F notation for apparent cansistency.
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3.10. Clearly it is sufficient to list the hottom elements of & here—that is, those of
its proper elements of which no proper subset belongs to /.
3.11. T will call the partial ordering of .« under =, as represented in these diagrams,
the structure of <7,
4. SOME APPLICATIONS

4.1. In this section I will apply these results to the theory of decisions over time
and to the aggregation of production relations. The latter topic is a large one; accordingly
I wiil merely sketch its treatment. | will assume essentiality throughout but not strict
essentiality: to be precise, I use P1-3, but not P4.

4.2. Consider first a person who expects to live » years and whose preferences among
prospects from year { forward are independent of his plans for the interim. Formally

#={B;: By={i,i+1, ...,n}, i=1,..,n By=0% {4.1)

This is a nested set of intervals, no two of which overlap, so that /(%) = #. In particular,
it is top disjoint at each stage. Tts graph is given in Figure 2 and its utility function is

U(JC) = F(xls F(l](xZJ F(z)(x31 EREF) F{n-Z}(xn—ls F(n—l)(xn))‘“))) (42]

in the notation of 3.8.9 where (i) stands for i 1's in a row.

{,2,..,u1
{1} / {2,3, ..., 1
{2 / (3,4, ..., 1)
/
{3} |
% o
{n—1} {n}

Fizurg 2

4.3. Suppose that his preferences in each of the initial periods

Ci={1,2,..,i}i=1,2..,n-1, {43
are aiso independent of what he means to do later, so that
.% = {Bn, - Bﬂ, Cl! Ci’ aaayg Cn_ l}‘ ..<(4.4}
Then
{iyand 4; = {i} are separable, i = 1, 2, ..., n. .(4.5)

{1} = €, {n} = B,, {i} = BnC,, i =2, 3, ..., n—1, are separable, and being essential
therefore strictly essential. Hence each element of o/(#) is separable. Moreover 4, = 8,
A, =C,_; and A;=BAC, i=12, ..., n—1 are the top elements of /(%) so that, if
nz 3,

U(x) = ZU(x,), .--(4.6)
in an appropriate normalization.
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4.4. Consider next a person wha expects to live # = 3 years, whose preferences within
each pair of adjacent years is independent of what he intends to do in the others. Formally:

B =1{D, D,y ...D,_ 2}, D;={i,i+1},i=1, ...,n—1 (47

Hence {i} = D;. nD; is separable and hence strictly essential, i = 2, 3, ..., n—1. Thus
{t} = D;—D, and {n} = D,_, — D, are toa, so that P3 holds again, and each element
of (%) is once more separable. Hence

n—L n-2 i-1] n—1
A=\ DjA4,= | DpA= 1) DA L] D, ...(4.8)
iZ2 =g i1 =4
are the top elements of <#(#). Since {i} = A,, we have (4.6) once more.
This case was discussed in [5] and [10].

4.5. Klein-Nataf aggregation. Suppose that we are given an economy of # firms
with production frontiers

¢j(xj) = O:j = Ia 2: veay My ..‘(4.9)
where

xj = (x?i x}) ey x?)a .f410)

gives the net output of each good and service 2 in firm j, and each x}, that of those in the
ith class. The classes may, for instance, be “ outputs , ““ labour inputs  and “ capital
inputs ”* as in [7] and [13]. If so the labour and capital inputs will appear as negative
net outputs.

4.5.1. Let us require that an aggregate production relation

X°= FX', X% ..., X", LA410)
where
—F(-) is well behaved ...(4.12)

—that is continuous and increasing,® should held for the ecanomy as a whole, given only
that the individual firms lie on their own production frontiers, whether or not the allocation
between them is efficient, where

X=X = X048, %, ., X)), i=0,1, ..., m, (4.13)
and
X% ') is continuous and strongly increasing” in each xj, i=0,1,..,m,..(4.14)

is an agaregate measuring the net output of the ith class of good in the economy as a whole.
Notice that it depends on how the total output T ,x} of goods in this ¢lass is divided among
the firms.S

4.5.2. Choose a reference vector g; for the jth firm, which is on its praduction frontier.
Write x; = %;+a; in ths equations to date, (X)) = $,(F;+2), X'(¥') = X'(F' +a)— X'(a'),
F(X', ..., X" = X'+ XNa"), ..., X™a™))—F(X"(a"), ...,X"™(a™)), and drop the bars
to get (4.9)-(4.14) with

$40) = x(0) = F(0) = 0, each i, /. ..(4.15)

L A full discussion of this topic would require a separate paper. Hence the rather sketchy analysis
and ad hoc assumptions below,

2 From now on I will use * goods ** to cover services too.

1 This terminology is sufficiently consistent with that of Sections 2-3 not to be confusing, I hope.

4 Strongly increasing in each x§:

Xy = XUy if x = % and XxD= X000 &' =3, ¥l some .

5 There is nothing, for instance, to ensure that different firms make equally efficient use of the same
jnputs = negative net outputs.
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4.5.3. Define subaggregates

X = X40, ..., x}, 0, ...), so that X}(0) =0 ...(4.16)
setting x, = 0, k& # j, in (4.11) we have
¥0=FX}5L X}, XD, X5 = Xi(x) L (41T)

whenever the /th firm is on its production frontier. Let us require that the aggregate
production relation (4.11) reflect the technologies of the individual firms in the sense that,
if all but one of them are on their production frontiers, it holds only if the remaining one
is too. Then (4.17) is the equation of this frontier. .

4.54. Choose now a vector x; on the jth firm production frontier, each j. Vary
x%, holding X%(x?) and each xi, i # 0, constant. Each firm remains on its production
frontier (4.17) and X' remains unchanged, i>0. (4.11) therefore implies that X%(x0)
remains unchanged also. Hence

XOx%) = GOX (x9), .. XS, 525, o (418)

at least when x,, is efficiently producible—that is when ¢ach x{ lies on its firm’s production
frontier for some (xf),i#0. Let us call the set of such xJ, 87, and restrict each x5 to S9.
Then (4.18) holds everywhere. Solving (4.11) for each X' in turn, as we can by (4.12)
restricting each x} to S} defined in a similar manner, and applying a similar argument we
get

Xi=G(Xi, X4, .., XD, i=0,1,2, .., m, . (4.19)
where each
G'(*) is well behaved, G'(0) =0, G0, ..., X}, ..., 0) = X, ...(4.20)
if each
S% is tube connected,* .(4.21)

a reasonable assumption which I will make.
4.5.5. Substituting from (4.17) and (4.19) into (4.11), we get
X =G%XxY, ..., X9 = GXKY,), ... F(Y,)

=FX. .., X"
= FGHY"), G*(Y?), ..., G"(Y™)
= — U(X), say (42D
where ‘ ‘
X=X ., XN ¥V=(X,.,X)Y=(X}..,XD ..(4.23)
and
U(-), — F(-), each G'(-), well behaved. (424)

4.5.6. This would seem to be just the sort of problem to which our results should
be applied, U(-) ranking as an honorary utility function. Nevertheless two difficulties
remain—we need to have (7, /) essential, each £, j>0, and the space § of X must be a product
space. The former can, as it happens, be considerably relaxed, but the latter is really
needed.

L 8! is rube connecred: if xi, yi e S! they are connected by an arc all of whose other points belong to
the interior of §{. Continuity follows as in Lemma 1, the strictly increasing property as in footnote 10
to Section TV of [6].
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4.5.7. Now it might be thought that we could just take

S= 1] I1 S5 ..(4.25)

i=1 =1
which is certainly a product space. Unfortunately this is not sa. Suppose for instance
that firm j neither produces nor uses any good in class 0. Then the equation (17) of its

production frontier is
FXL X% .., Xm=X=0. ..(4.26)

In other words it is a constraint on X}, ..., AL Since the aggregate production relation
(4.22) is only required to hold when each firm is on its production frontier, it only holds
for X constrained as in (4.26), and therefore not over the entire product space §. 1 will
arbitrarily assume that this does not happen, and that (4.22) holds for all ¥ € S.

4.5.8. For essentiality it is sufficient to assume that each S} contains a pair X}, p}
with x;>p%. 1 do so." Since (i, /) in the obvious notation is certainly separable, it is
strictly essential.

4.59. I am now in a pasition to apply the analysis of section 3 with

Q={,10,..(@mas}
each (7, j) strictly essential and

#={B', ..,B"Cy, .., Cl ..(4.27)

where
B ={(, 0, ...0m}, C ={¢),.., )} ech i j>0. ...(4.28)

Now
{(i.)) = 4; = (BACYU( U Cye () ..(4.29)

and is clearly a top element, each i, j>0. Hence
U(X) = ZUYXY) . (4.30)

in an appropriate normalization, which merely comes to the application of a well-behaved
transformation to X°, which is certainly legitimate, and leaves (4.9)-(4.30) unchanged
after trivial change (n notation. Apply it. Of course

U(+), and each U'(-), are well behaved, (43D
U(0) = U(Q) = 0, each i, j>0. {432

4.5.10. Define now ‘
fiXhH=-F0,..,0,X,0..). ..(4.33)

It is well behaved and f(0) = 0, so that we can apply this transformation to X* without
affecting any of (4.9)-(4.33} or the interpretation of the aggregates. Do so. Setting

X% =0,k # iin (422) ylelds

X' =3,U4XY . (4.34)
because of (4.20) and (4.32). Setting X = 0, k& # j in this vields
Xi=UYX?, ..(4.35)
so that _ ‘
X'=xx., ..(4.36)

L This assumption can be greatly weakened. Set 4, = 1 if .S} contains such a pair and 0 if it does not,
i, 0. Then (4.22) holds if A is comnected: that is, if its rows and columns cannot be independently
permuted to put A in block diagonal form—the blacks in general being rectangular.
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(4.22) and {4.30) now yield

uM;

Xix")y =0, ...(4.37)

Ju]

i

and, when we put xi =0, k # j,

S Xix) =0, . (4.38)
i=a

4.5.11. Since (4.38) clearly implies (4.37} which is of the form (4.11), with the defini-
tions (4.36), such aggregation is possible iff well behaved subaggregates Xj'(xji) exist for
each firm j and class of goods /, such that the equations of the production frontiers for
the individual firms can be written in the form (4.38), and then the aggregates for the
ecanomy are the sum (4.36) of the corresponding subaggregates from the individual firms
—as Nataf discovered in 1948,

4.5.12. There 1s one apparent paradox. (4.38) implies that

X =0 . {4.39)

too, where o o
X'(xX) = E,a,X (x% .-.{4.40)
which is well behaved if each ¢;>0. Yet these X' are not mere transforms of the X,

and (4.39) represents quite a different locus in the space of the x} than does (4.37). This is
certainly true and an obvious source of worry for statisticians fitting aggregate production
functions, but it does not upset our analysis. We looked for a particular relation and
found it—it was never required that there should not be others.?

5. AN ALTERNATIVE APPROACH

5.1. In this section I will discuss briefly an alternative approach which is sometimes
easier to apply than that in section 3, at least in the case of complete additive separability.®

5.2. Say that C < Q is a component of B if no element of & overlaps it. 0, Q are
the trivial components, the others proper components. The component collection €(#) of &
is made up of the components of #. It satisfies the following lemma.

Lemma 3.
() If B* =2 B, €(B*) < ¥(B),
(ii) Component collections are complete,
(iit) €(A) = €(A(B)}.
Proof of (). The components of #* satisfy the conditions required of those of 2.

Proof of (i1). Take a pair 4, B of overlapping elements of €¥(#Yand a DeB. 1 will
show that
D does not overlap any of AUB, AnB, A—B, B—A or AAB. L5
Since (0, () e ¥(B), this wilt prove (ii).
A, for instance, does not averlap D. Hence
atleastone of D2 4, 4 2 D, DnA = 0, holds. L5

1 Though his results were local while these are global, and depend on weaker assumptions. In
particular he needed # = 3, while we only need #, # = 2 here.

2 This point is discussed in [4] and touched on in [6].

3 Complete additive separability. The case in which we can write U{x) = ZUx)) in an appropriate
normalisation.
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Considering B, tao, we have the following possibilities.

D> Bsay: If A2 D, A2 B; it PnA =0, DnB = 0. Neither is consistent with A
and B overlapping. Hence D 2 A, implying that D D AUBR.

D < A4, B: implying that D < AnRA,
D < A, BnD = 0, say: implying that D < A— B,
AnD = BnD = 0: implying that (4uB)nD = Q,

In none of these cases can D averlap any of 4UB, AnB, A—B, B— A, AAB. Hence ¢S]
and therefore (ii) holds.

Proof of (11). Since o#(R) 2 R, €(H(B)) = ¥(B) by (i), so that we need only show
that
F(A(R)) = B(R). .(53)
Take € € €(#) and define

B ={BeB BcC},%B,={Be#: B2CorBnC=0=4-2, ..{54)

since C does not overlap any element of 4. All the proper elements of &, = (%)
are contained in C, and each e¢lement of &/, = &/(#,) either contains C or does not
intersect it—as is obvious when one remembers that we could treat C as a single sector
in constructing «/(#,). Hence C is a component of & = o/, uaf,. Moreaver &, and
/, are each complete and no element of either overlaps the other. Hence « is complete.
Since it certainly contains &, o 2 «/(%). Hence C is a component of &/(#); which
immediately yields (5.3} and therefore (iii).

3.3 (ii) implies that we can define the top elements of (%) in the same manner as
we did those of o/(#) in section 3. Call them top companents of B— or of A(H). In
particular, therefore, (%) is either top disjoint or top overlapping. Indeed, it is top
disjoint if s#(#) is top overlapping and, except in one highly special case, top overlapping
if (A} is top disjoint.

5.4. If /(%) is top disjoint, 3.5.2. implies that the union of any collection of the
Q,, i>0 and any of the free sectors, is a component of . The top components are therefore
found by dropping from € any one free sector or any one top element Q,, i>0, of A (B).
If m+p>2, where m is the number of top elements, and p of free sectors, () is therefore
top overlapping. If m+p < 2 it is clearly top disjoint.

5.5. If, on the other hand, «/(#) is top overlapping, 3.6.4. implies that Q,, Q,, ..., O,
as defined in (3.10) are the top components so that ¥(4) is top disjoint. Hence we have:

Theorem 2. If {Q,, Q, ..., Qu.}, {P1, V2, ...r Y} are corresponding partitions of Q and
x,and m = 3, Pl, 2, 4, imply that we can write

o Uy = LU L(5.3)
in an appropriate normalization, iff

each (3, is a top component. ~454)
Each UL{") is continuous in this case.
Coraligry. Pl, P2 and P4 imply that we can write

Ulx) = ZU(x;) .(5.5)
in an appropriate normalization, iff

{1}, {2}, ..., {n} are the only proper components of &, when # > 3. ...{5.6)

5.6. This s much the most useful result to be derived from this approach. Given
P1, P2 and P4 it would have yielded U(x) = TU/(x,) immediately in 4.3 and 4.4. Combined
with the results of section 6, it would have yielded the same results immediately, given
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P1-3. Itis possible to give a complete analysis of the structure of U(-) using these methods,
paralieling that in section 3, but the existence of free sectors in the top overlapping case,
and the possibility that m+p < 2, makes it relatively clumsy. I will therefore forbear
to give it here.

5.7. However, one relation between the two approaches is worth bringing out. Let
r=1ij.. k, k>0,in n+[-—ary notation, or a blank, and say re Rif ij ... k is the label of
a node or terminus in a diagram such as Fig. 1 or 2. Then

o = {Q,: re R} U {0} 5D
is complete and is composed of just those elements of .o which are also compaonents of it.!

6. STRICT ESSENTIALITY RELAXED

6.1. In none of the examples discussed in section 4 did I have to use strict essentiality.
The reason was that in each case at least one pair of overlapping separable sets 4, B had
A—B strictly essential because it was, or contained, the intersection of a number of
separable sets, which, itself separable and essential, was strictly essential. Theorem 1
therefore implied that B— A, too, was strictly essential, which in turn implied that various
other sets were, until I had enough strict essentiality to prove all T needed, without explicitly
assuming any at all. Since ordinary essentiality is rather nugatory—inessential sets affect
nothing and so may be neglected if known-—it would be interesting to know whether
this were commonly the case. In this section I will show that it is. Since a full and
rigorous analysis would take up rather a lot of space, and this article is already too long,
I will merely sketch the analysis at some points.

6.2. & = {d, B}, where A and B overlap, is the simplest non-trivial, or proper, example
of a connected collection—that is one each pair of distinct elements 4, B of which are linked
in & by a chain,
A=B.B, .. B, =B, ..(6.1)

of its elements, each of which, except the last, overlaps its successor.2 In this case the
propet elements of o#(4) are clearly {AnB, 4 — B, B~ A} and their various combinations—
in fact just those sets whose separability is implied by P1-3 iff 4 is separable and A—B
strictly essential. In fact this result is true in general as we will see in Theorem 3 below.

6.3. Call the elements Py, ..., P, of the partition Z(#) of the overset

X&) = ] B ..(6.2)
Be &
of a proper connected collection 4, found by superimposing the partitions {8, 4 4)— B},
B e %, the parts of &, and

FH(R)={C: C= Us P, some S < {L, .., s}, ..(6.3)

the power collection of #.° We then have
Theorem 3. If a separable connected collection # contains an overlapping pair of
elements A, B whose difference A— B is strictly essential, P1-3 imply that of () is separable,
Proof of theorem. I will proceed by proving a sequence of Lemmas.

Lemma 4. If @ is comnected and 0¥ B, there are an overlapping pair A e ¥,
Be #-—%.

1g, Qe r clearly. Since each (1, is a2 component of < and an element of it, no two overlap.
2 Let us ban empty connected collections. The rrivial connected collections are then those containing

anly one element,
3 In normal terminology, S{H) is the power collection of #{). If & is trivial, 2(F) = FU{0}.

2B
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Proof. A chain linking Ce % with D e #—~% has a first element in B—%. Call it
B and its predecessor A.

Lemma 5. Jf & is connected with A, B e B overlap, we can write B = {By, ..., B},
say, where By = 4, By = B and each #B; = {B,, B,, B;_,} is connected.

Proof. 2, and &, are clearly connected. Suppose 4, is, some 2 £ j<k. According
to Lemma 4, # — 4, contains an element which overlaps an element of 2, and is therefore

linked to all of them. Callit B;,,. £, is connected.

Temma 6. Theorem 3 holds if of (B) is replaced by R(B).
Proaf. I will proceed by an induction on the number » of elements of 4.

Lemma 6 follows immediately from Theorem 1 when # = 2. I will assume it for
n =k—1and proveitforn = k.

Define ¥ = 4,-, in the notation of Lemnma 5. The inductive hypothesis implies that
% satisfies Lemma 6, and we wish to prove that & does too.

Set

P(E) = {0y, -.-, O} ..(6.4)
s$o that the elements of #(#) are the non-empty ones among
(a) URB)—XF) = B~ %),
() Q,—B,, cach p, ..(6.5)
(¢) Q,nB,, cach p.

I will first show that each of these and
O(#) ...{6.6)
are separable and so strictly essential.

(6.6) implies, of course that we can talk of components relative to Q(#), while their
definition implies that the parts Py, ..., P, of % may be taken as sectors and that they
are the only components of # relative to Q(#). Because of Lemma 2 the separability of
the elements in (6.5)(z) and (b) and (6.6) is therefore all that is required to prove the lemma.

I will now prove that these elements are all separable.

Note first that Q,— B, is certainly separable unless @, and B, overlap, and B, — (%)

if B, = Q(%). Since
%) & B, (8.7

because B, averlaps some B; € ¥ by Lemma 4, it remains to show that
Q,— B, is separable when it is not empty, ..(6.8)
B, — (%) is separable when it is not empty. ..(6.9)

This I will now do.

Suppose first that B, intersects each of the parts 0, of . Since it overlaps some
B; €%, it overlaps at least one Q,. Suppose it overlaps ¢,. Then B, — Q, contains each
other BynQ, which, being the intersection of separable sets by the inductive hypothesis,
is separable and hence strictly essential. Hence B,— @, is strictly essential and so, by
Theorem 1, Q,— B, is separable, proving (6.8} in this case. Moreover U#)— B, = Q,— B,,
which, being separable is strictly essential. Since (%) is separable by the inductive hypo-
thesis this immediately implies (6.9) too. This completes the proof of Lemma 6 in this
case.

Suppose next that B, does not intercept each Q,, so that some

g, < %) B, ..{6.10)

{%)— B, is therefore strictly essential, implying (9) by Theorem 1. When B, overlaps
some @, two cases arise. If B,—€(%) # 0 it is strictly essential by (6.9), so that
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B,—Q, 2 B,— %) is strictly essential too, and Q,— B, therefore separable. If
B,—{X%) = Q,

B, must intercept another part Q, of €, since it overlapsa B, %. Hence B,— 0, = BingQ,
which is separable and therefore strictly essential. Hence Theorem 1 implies once more
that Q,— B, is separable, completing the proof of the lemma.

Lemma 7. «/(B) = RB)u{Q} = HB), say.
Progf. Lemma 6 immediately implies

A (B) 2 HB). {6.11)

If now C, D e 9(4) and overlap, they are the unions of parts of #. So therefore are

their differences, union . . . which therefore belong to 2(%) also. Since 0, Q & G(R), it
is complete, It clearly contains 4. Hence

By = HB). ...(6.12)

(6.11) and (6.12) prove Lemma 7. Substituting into Lemma 6, we prove Theorem 3.
6.4. Define now the nucleus and periphery
N(#)= () B, P(B) = UB)— N(%) L {6.13)
Bed

of a collection 4, and say that a proper connected collection is a tangle, or tangled collection,
if its nucleus is empty, and a star, or star colleetion, if it is not. There are then three distinct
types of connected collection: trivial—with one or no elements—star and tangled. We
have

Coroliary to Theorem 3. If 4 is a tangled collection, PI-3 imply that «#(4) is separable.
Proof. Clearly N(%) = ﬂ B is separable, each 0 =% = #. Since N(#) = 0 there

Bed
is at least one collection % for which N(%¥) # 0, M%) = 0, each #o¥. According to
Lemma 4 there is an overlapping pair A%, Be £—-%. A—B 2 N(¥) which being
separable, is strictly essential. Hence A — B is strictly essential; proving the corollary.

6.5, To apply this analysis is to a general separable collection 4, one breaks it down
into connected pieces.

Say of two elements 4, B of &, that they are joined in # if A = B, or they are linked
in . * Being joined in 4 " is an equivalence relation and so partitions 2 into equivalence

classes or pieces.
Z', teT, say, ..(6.14)

with the property that elements in the same piece are joined while those in different pieces
are not. Pieces are connected collections, indeed maximal connected collections in the
obvious sense of the word. They may, of course be trivial connected collections, con-
taining only one element, but as elements of a partition, they cannot be empty.

6.6. Thearem 4. If B, t € T, are the pieces of 4,

(R = U&i(ﬁﬂ‘). ...(6.19)
reT
Proof. Since of(B) = (R,
A(B)2 | A(B) =2, say. ...(6.16)
I will now show that er
D = A(R), (RS

alsa, thus proving (6.15). To do so, note that # = each #'. Hence & = #. It is also
complete: it certainly contains 0, €, and if C, D e & overlap, they both belong to the
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same &/(#*), so that their unjon, differences, etc., do so too. Since /(#) is the inter-

section of the complete collections containing 4, this implies {6.17). With (6.16) this
proves the theorem.

Corollary.
(B = {Qyo ) #(B). ...(6.18)
teT

6.7. (6.18) is a simple recipe for calculating 27{3).

First one finds the pieces &', te T of #. Since it is easy to see whether sets overlap,
this is easily done. Then one finds the parts of the proper pieces. This is again easily
done.

Consider now the collection F(#) composed of the oversets X&), reT, and the
parts of the proper pieces, together with © and 0. Since none of its elements overlap,
it is complete, and its structure, as defined in section 3, is easily discovered.

So far there are no overlapping subcollections. However this is easily corrected.

If an overset corresponds to a proper piece &', #(#') is overlapping. Mark Q(#') with
a +. All other nodes are disjoint.

FIGURre 3

Clearly such a diagram exhausts all the information in »#(#). Figure 3 is the analogue
of Figure 1 in section 3.2 How to transform one into the other is obvious.

6.8. There remains the difficulty that we have not assumed strict essentiality. As
we have already seen, it is implied exeept possibly in the case of star pieces * of #. For
such, mark the nucleus with an & as in Fig. 3.* We then have merely to see whether any
peripheral part of the star piece in question is strictly essential by virtue of having a
separable subset, as has Q?' in Fig. 3. Clearly we need only worry about bottom star
pieces—that is those such as #?* in Fig. 3, none of whase peripheral elements contains an
element of &, or, equivalently of o/ (4).

What happens in such cases is discussed somewhat cursorily in [7]. To discuss it
fully would require several new concepts, quite a lot of space, and more of the reader’s
time than I feel justified in asking for at this stage.

London Schoo! of Economies W. M. GORMAN

L The only element of a trivial camplete callection intersects no other, nor does a part of a praper
complete collection,

2 Except for the N's which I will explain below.
1 A star piece is a piece which is a star. )
4 T am assuming that &2 and #23 in the obvious notation are both stars rather than tangles.
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APPENDIX

Debreu's results quoted in {1.6) and (1.7) of section 1 underlie all my analysis in
the slightly more general forms given below. He states but does not prove (1.6) in [3].
and his proof of (1.7}, which follows almost immediately from Theorem 1, is difficult.
Hence this appendix.

Lemma 1.1 1 {Q,, Q,, ..., Q.}, (Va, Y1+ .., V) ate corresponding partitions of Q, x,
P1-2 imply that we can write

U(JC) = F(y(h Ui(}’l); ey Um(ym)) (AI)
where
Fyq, - ) is strictly increasing,? L(AD)
iff
Q, is separable, i = 1, 2, ..., m. (A3
If so0, we can take
U;(}’:) = U(01 tra 01 Yis 0: ‘); Ul((}) = U(O) = 01 i= 11 ey 11, --(A4)
without loss af generality, in which case
F(+) is continuaus. ...(A5)
Proof.

(A 1)-(A.2)={(A. 3): obvious.

(A.3)=(A.1)-(A.2). Take a continuous utility function U(:), normalize trivially
to get L(0) = 0, and define the subutility functions as in (A.4).? Take x’, x" € S. Move

f

each y, in turn from y; to y{, holding y;, j # i constant while doing so. The definition of
separability in 1.3 implies that

Yo =y, Uy = Uiyi), i = 1, ..., m, =U(x") = U(x") .. (A.6)
Yo =yao. Ulpi) = Uly), i =1, ..., m, with at least one strict inequality=U{x") > U(x").
(AT

(A.6) is equivalent to (A.1) and hence (A.7) to (A.2).
(1)-(4)=(5). Define

z2=0g Ul ..., Up) =g, ), Z=ToxJ = Tyx -H]L I, ..(A.8)
where

Ti=8a 1=0,..,m; Jy=rangeof Ufp),i=1, ..., m. ...(A.9)

I will prave F(-) continuous at zeIntz. Only trivial modifications are required at
the frontier.3

Let then
'wzelntZ, each z' e Z L (ATOY
and choose
Yo yi € Ty such that Uy} < U, <ULy}, i=1, ..., m, (ALY
C; an arcin T, connecting y; to yf, i=1, ..., m. < (AL2)

' 1 am grateful ta Kenneth Arrow for showing me how to streamline my original clumsy proof.
2 Flya, -} strictly increasing: F(w, Uy, ..., U,) strictly increasing in (Ify, Us, ..., U,).
1 Asin (1.4) an(Ul.S) of 1.4,

4 ThatisT; = \j S Ses(l.3)in L3

. jell .. . w . .
30 U is at the E11ppn=.r limit of J,, for instance, take y; e T; such that U(y;) = U, If J; is degenerate
—that is £); is inessential—take y; = y; such that U/,(3), in which case each pt = ¥},
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Ultimately
Upd<Ul<Uly), i=1,.., m, t=T,say. (A.13)
Since the U,(-) are continuous, we can find
veCsuchthat Uy =U{, i=1,..,mt2T, L(A14)
so that

=

C,=C, say, ...(A.15)

1

(s oo Vi €

which is compact since each C;is a homeomorphism of [0, 1]. Since y§—»y, this implies
that {x'} ' has a convergent subsequence. On any convergent subsequence of {x'},

F(z")y = U(x") > U(x) = F(z2), -..(A16)

by the continuity of U(-), U,(-), ..., U(*), x being the limit peint of the particular sub-
sequence. Suppose now that F(z)+>F(z2) in the full sequence {z*}. Then there is an >0
and a subsequence such that

| F(z5)— F(z)|>e, {ALT)

on the subsequence in question. The corresponding subsequence of {x'} itself has a con-
vergent subsequence. Hence F(z'}-sF(z) for the subsequence of {z'} corresponding to
this last, contradicting (A.17). Hence

F(z")— F(z) on the full sequence. ...(A.18)

Lemma 2. If{Q,, ..., .}, (1, ..., Vn) are corresponding partitions of Q, x, and
m 2 3, Pl, 2, 4 imply that we can write

Ulx)y = ZUy,) .(A.19)
in an approviate normalization, iff

C; = |J Q, is separable, each I c® = {1, 2, ..., m}. ..(A20)

iel
Proof.
(A. 19)=={A. 20): obvious.
(A. 20)=(A. 19): Let
{1, J}; {I', I"y; {J', J"} by partitions of @ I; J. (A2

Then Theorem 1 and (4) imply that we can represent the preference ordering by either
of the continuous utility functions 2

Ux} =Up(yp )+ Uplyp) + Uy = Uiy + Uy(yy) (A.22)
V(x) =Viyd+Ve(r)+Vilye) =Viy) +Vilys) -(A.23)
in possibly different normalizations,® each consistent with (A.4), Now
V = F(U); F(-) continuous and strictly increasing.4 ...(A.24)
Hence, by {(A.4),
FU,+U) =V, +V, = KU)+ F(U,). L{A25)
Lt = (v, ¥{, -y Vi), Of course.

? Take A = Cy, B = Cy-yr as defined in (A.20) for (A.22), A = Cyroy, B = Cy far (A23),
3 Theorem § implies that the utility function can be put in the form Fye, ro, sy ) +o(ypa)+ w3y )
for instance, where F{ - ) is continuous and strictly increasing.
. 4 The proof that (A.1)-(A.4)={A.5) in Lemma 1 implies that F{ - ) is continuous and strictly increasing
ere,
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Since Uy, U; range over non-degenerate intervals containing the origin (A.24)-(A.235)
imply

Ky =AU, i>0 ..(A.26)
on the entire range of I/, It is trivial ! to normalize ¥ so that A = [ and
UJ = UJ‘—"}‘U}". .<.(A.27)

This really completes the proof, since it obviously permits us to split © into smaller
and smaller pieces, until, ultimately, we get down to the individual €, For formal com-
pleteness however, let us make the inductive hypothesis

U=U;+U;+. + U+ Uy J = {k+1, ..., m} ...(A.28)
which holds for k = 2 by (A.22) with I’ = {1}, I = {2} and implies
U = U1+U2+...+Uk+l+UJﬂ, J” = {k'}'z, wany m} ...(A.29)

by (A27) with I' = {1, 2, ..., k—1}, I" = [k}, J' = {k+1}. Hence (A.28) holds for all
k = 2, and hence for k = m, which is {A.19).
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