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Feonametrica, Vol. 32, No. 1-2 (January-April, 1964)

STATIONARY UTILITY AND TIME PERSPECTIVE!

By TrarLing C. KoorMAaNS, PETER A. DIAMOND, AND RICHARD E. WILLIAMSON

This paper extends an eatclier study by one of the authors, A set of postulates
concerning a utility function of an infinite consumption program implies the existence
of a utility scale such that postponement of each of two programs hy the same time
delay cannat increase, and generally diminishes, the difference of their utilities. This
property of “time perspective’ allows previous results concerning “impatience™ to be
extended and generaljzed.

1. INTRODUCTION

In A PREVIOUS article ene of the authors [8] studied some implications of a set of
postulates concerning a preference ordering of consumption programs for an
infinite future. The preference ordering was assumed te be representable by a
numerical utility function defined on the space of consumption programs, and
the postulates were formulated as properties of that function. While these postulates
themselves appeared to be concerned only with properties more immediate and
elementary than any questions of timing preference, it was found that the postulates
implied, at least in certain parts of the program space, a preference for advancing
the timing of future satisfactions. This conclusion was expressed by the concept
of impatience. In its simplest form this concept was defined to mean that, if in any
given year the consumption of a bundle x of commodities is preferred over that
of a bundle x’, then the censumption in two successive years of x,x’, in that order,
is preferred to the consumption of x’,x.

Impatience sc defined is, of course, a property of the underlying preference order-
ing. Consequently it is also a property exhibited by every utility function representing
the preference ordering. In other words, it—and for that matter all other properties
of the utility function studied in the previous article—is invariant under any con-
tinuous increasing transformation of the utility scale. Te emphasize this fact,
the title of that article used the term “‘ordinal utility.”

Subsequently we have found a deeper property of the preference ordering in
question, to be called the property of time perspective. Besides being of considerable

I During the academic year 1959-60 the wark by Koopmans on this study was supported by a
grant from the National Science Foundation to the Cowles Foundation. During the summer of
1960 the work of Diamond and Koopmans, and during that of 1962 the work of Koopmans and
Williamson was also carried out under Cowless Foundation auspices, mostly under Contract
Nanr 3055(01) with the Office of Naval Research. During the academic year 1960-61 the work of
Koopmans and Williamson was supported by Harvard University, and Diamond participated in
discussions during that year.

We are indebted to Herbert Scarf for highly valuahle comments that have led us to the present
proof of the “weak time perspective” property, and to Herbert Simon and Menahem Yaari
for valuable critical comment.
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interest in ijtself, this property can be used to derive the previous result regarding
impatience, and to generalize that result and extend it to a larger part of the
program. space, The time perspective property is most conveniently formulated as
a {(no lenger ordinal) property of a certain subclass of the utility functions that
represent the given preference ordering. To define it, consider two consumption
programs, {(x,x’,x"”,...) and (y,»",»". ..}, of which the first is preferred to the
secand. Now postpone each entire program by one time unit, and insert a common
consumption bundle z in the gap so created in both programs, to make (z, x, x’,. . .)
and (z,p,y". . .), respectively. Then, by Postulates 3 and 4 of the previous study,
the postponed first program is still preferred to the postponed second program.
We shall say that a utility function chosen to represent the preference ordering has
the property of time perspective if, for all programs (x, x’,x",. . .) and (3,1, 3",. . )
and for all inserts z that one may choose in the above description, the difference
of the utilities of the postponed programs is smaller than the difference of the utilities
of the original programs. Since utility differences enter into this definition, time
perspective, as a property of a utility function, is not invariant for continuous in-
creasing transformation of the utility scale. We say, however, that a preference
ordering of consumption programs itself has the property of time perspective if it
can be represented by at least one utility function having that property.

The term “time perspective” is derived from an analogy with perspective in
space. As the timing of the differences between any two programs is made to recede
into a more distant future, the utility difference between the programs diminishes,
in an appropriate representation of the ordering. To be precise, we call this property
strong time perspective, as distinct from a property to be called weak time perspective,
in which the utility difference either remains the same or diminishes.

The proof of strong time perspective found so far takes weak time perspective as
its point of departure, but requires lengthy reasoning beyond that, and also a slight
strengthening of Postulate P2 below. For these reasons, the present paper is limited
to weak time perspective only. However, the reasoning of the present paper will
suffice to show that in any utility function exhibiting time perspective, among all
pairs of programs subjected to a postponement as described, equality of utility
differences before and after postpenement can only be in some sense an exceptional
case, whereas shrinkage of the utility difference occurs in some average sense in-
dicated in Section 5 below.

In recent years there have been a number of studies in which postulated pro-
perties of a preference ordering were reflected in properties of a utility function
representing such an ordering in simplest form. A valuable survey of the results of
such investigations has been made by Aumann [1]. There is a certain similarity
between the present study and a whole group of investigations by, among others,
von Neumann and Morgenstern [11], Herstein and Milnor [7], L. I. Savage [9],
and Debreu [4]. While these studies deal with a wide range of different choice
situations, their common element has been the existence of a representing utility
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function of a simple additive form invariant only for linear increasing transforma-
tions of the utility scale. The term “cardinal utility™ has been used to describe
such utility functions. Our present results are weaker in that the “simple” property
of time perspective that distinguishes an interesting class of representations of the
given ordering is in general conserved by a class of scale transformations wider
than just the linear ones. For this reason, we shall speak of utility functions or
scales possessing the time perspective property as quasi-cardinal.

Results of a recent study by Diamond [5] suggest the possibility of deriving the
postulates concerning a utility function, used in the present study, from postulates
concerning the underlying preference ordering. We shall, however, not pursue that
idea in the present study.

The notaticn and numbering of equations, postulates, diagrams, and theorems
of the previous study by Koopmans [8] will be continued here. In particular, all
equation numbers below 49 serve also as references to proofs or fuller explanations
in the previous study. The reading of the present paper will be facilitated by prior
reading of the previous study and by inspection of its diagrams. Nevertheless, we
shall restate the postulates in Section 2, so that our statements will be complete in
themselves, and also because we shall introduce a strengthening of the first
postulate. This strengthening is needed to correct an error in the previous
study.?

In Section 3 we shall summarize enough of the results of the previous study to be
able to present, in Section 4, the main result of the present paper. Sections 5 and 6
discuss further implications of this result. Section 7 presents an example with a
variable discount factor. Finally, in Section 8 we discuss questions of “realism”
of the system of postulates as a whole, and consider some possihilities for further
weakening or otherwise modifying some of the postulates,

Technical aspects of the reasoning are placed in starred sections generally bearing
the same number as the section to which they refer.

2. RESTATEMENT OF THE POSTULATES

In the following, ,x=(x,x,,...}=(x;,:x}={;x,_(, X)) t=2,3,. .., denotes an
infinite sequence of consumption vectors x,=(x,,,- - ., X,,) relating to successive
periods £=1,2,. ... The postulates will be referred to as PI (previous study), P1’
(present study), P2, etc. Interpretations of these postulates have already been given
in the previous study. We shall enlarge somewhat on the interpretation of P4. Also,
in Secticn 2*, we shall interpret the strengthening of P1 to P1.

P1’ (Existence and Continuity): There exists a utility function U( x), which is

2 This error was kindly brought to our attention by Richard Levitan of the International
Business Machines Corporation.
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defined for all | x=(x,,x,,...) such that, for all {,x, is a point of a bounded convex
subset & of the n-dimensional commodity space. The function U(,x) has the con-
tinuity property that, if U is any of the values asswmed by that function, and if U’
and U'' are mmbers such that U< U< U", then there exists a positive number &
such that the utility U(,x") of every program | x' having a distance d{;x’, (x}< 8 from
some program x with utility U(,x)y= U satisfies U' U, xY2U".

P2 (Sensitivity): There exist first-period consumption vectors x,x," and a program
12X from-the-second-period-on, such that

U(xy,2%) > Ulx], %} .
P3 (Limited Noncomplementarity): For all x,x1,,%, ;X" ,

(P3a)  Ulx;,,x)2U(xy,,x) implies U(x;,,x)2U(x], %7,
(P3b)  U(xy, )2 Ulx,,,x") implies U(x},,x)2 U(x],,x7) .

P4 (Stationarity): For some x, and all ;x, ,x",
Ulxy,,x)2U(xy,,x") if andonly if U(Gx)2U(;x)).

Ta clarify the meaning of the notation U(,x) in this postulate, we give an equiva-
lent statement in more explicit tabular form:

P4 equivalent: For some x, and all ,x, ,x', program A below is at least as good as
program B if and only if program C is at least as good as program D,

Program Period

1 2 3 4
A X1 X2 X3 X4...
B X1 xa xa Xi...
C Xz Xz X4 .....
D Xo X5 X4 e.eos

Hence Postulate P4 says that the ordering of a subset of programs that differ
only from the second period on is the same as that of corresponding programs
obtained by advancing the timing of every future consumption vector by one
period, This does not imply that, after one period has elapsed, the ordering then
applicable to the “then” future will necessarily be the same as that now applicable
to the “present” future, All postulates are concerned with only one ordering,
namely that guiding decisions to be taken in the present. Any question of change
or constaney of preferences as the time of choice changes is therefore extrancous
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to the present study. Postulates P4 and P3b taken together express merely an in-
variance of the present ordering under postponement of entire programs, provided

gaps created by such postponement are filled in the same way for all programs
compared.

P5 (Extreme Programs): There exist x, % such that

Ux)2U(x)SU(%) for all (x.

2.* The norm, or concept of distance between two programs, used in Postulate [,
is defined by

(6) a(,x', (xy=suplx,—x,/ , [x¢—x,| = max|xf —x,f .
t k

The only difference between the previous Postulate P1 and the present Postulate
P1’ is that the set 2 of all feasible one-period consumption vectors x is now required
to be convex and bounded. This means (convexity) that any weighted average
Bx+(1—-8)x', 0<B<1 of two feasible one-period consumption vectors x, x' is
again a feasible consumption vector, and (boundedness) that there is a lower3 and
an upper bound to the feasible rates of consumption of any commodity.

3. SUMMARY OF PREVIOUS RESULTS

Postulates P1°, P2, P3, and P4 have been shown to imply that there exist scalar
functions wu(x), ¥(u, U), of a vector xeZ and of twa scalars u, U, respectively, such
that the aggregate utility function U(, x) satisfies a recurrent relation

(1) U(x)=V(ux), UGx) .

Subject to supplementation on one open point discussed in Section 3* below, the
aggregator function V{u, U} has also been shown to be continuous and increasing
in its two arguments u, U. For the second argument U, equation (11) specifies the
aggregate utility U(,x) of that part ,x of the given program ,x that starts with the
second period (evaluated as if it were to start immediately). For the first argument
u, (11) specifies the value assumed by an immediate, or one-period, utility function
u(x) for the consumption vector x = x; of the first period in the given program. The
function wu(x) is defined and continuous on the set & of all feasible consumption
vectors.

By using Postulate P5 also, it has been shown further that, by two independently
chosen, continuous, and increasing transformations of the variables U, 4, respec-

3 While zero is a natural lower bound to all cansumption proper, one may wish to treat labor
of various kinds as negative consumption. In that case the absolute value of the negative lower
bound for each type of [abor expresses the maximal amount of that labor that can be rendered.
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tively, ane can make the range of each of the functions U(,x) and u(x) ceincide
with the closed unit interval [0, 1],

(12) 0=U(x})sU(x)2U(;¥)=1 for all programs ,x,
(13) I=u(xX)2u(x)Su(@)=1 for all vectors x .

Accordingly, the domain of V(u, ) becomes the unit square, its range the unit in-
terval, and

(14) K0,00=0, V{,1)}=1.

The key property of the function ¥(u, U) proved and used in the previous study
concerns its iterated application. We use again the notation

Vf(lut; U)E V(H.]_, ]/s:(uly s V(uts U) e )) ]

where (1, denotes the finite sequence (i, u,, . . ., #.). [f the #, = u(x ) are the immedi-
ate utility levels associated with the successive vectors x, of a program , x then clearly
far all <,

U(lx) = Vt(lut; U(r+ ].x)) 1
a generalization of (11). The equation
(26) Vi(iuU)=U

therefore expresses the condition that the postponement of a program of utility
U by 1 periods is just compensated for by the insertion, in the 7 periods so vacated,
of consumption vectors x,,. .., x, with a sequence of one-period utility levels
u,=u(x), t=1, ..., . Obviously the utility

(2?) U= U(lxu le) lxn .. ‘)
of the program indefinitely repeating the comsumption pattern (x,={(x, ..., X,)

meets this condition. It has been shown that, given the urility pattern (u, associated
with a consumption pattern ,x,, there exists one and only one value

(28) U=W(u)
of U that satisfies the condition (26). The correspondence function W u,) is con-
tinuous and increasing in each of its arguments u,, . . .,

We are now able to state the key property (29) of V{,u,; U) derived in the previ-
ous study {(and illustrated in Figure 6 of that study for the case t=2):

u,.

(29) If U[:] W(u) then U
~

<

-2

<

>

Vt(lut; U) I’Vr(lt""t) .

This indicates that repeated application of the function V,(,u,; U} to any initial
value U brings about a monotonic approach to W, (;«,). It has been shown in (32)
that W (,u4,) is also the limit for infinitely repeated application, regardless of the
initial value U used.
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It will be useful to compare the already proved property (29} with the yet to be
proved time perspective property described in Section 1. We can now state the
latter as follows: There exists a continuous increasing transformation of the utility
scale, as a result of which,

it U>U, V@(u,Uh=U0", Ve U)=U0", 21, then
(49) {49a) weak time perspective , yr-ursyy-u,
(49b) strong time perspective, U"'-U"<U'=-U.

Note that the strict inequalities in (29) represent special cases of (49b) obtained by
those choices of x4, that make U”=U, or U=V, respectively. These are the
only cases of (49) involving comparisons of utility levels rather than of utility
differences. Thus {29) states the ordinal special cases contained in {49b}; that is, the
only cases that are invariant for continuous increasing transfermations of the
scale. In contrast, neither (49a) nor (49b) can be true for all equivalent ordinal
scales. The main aim of the present study is to show that the ordinal comparisons
in (49b) already known through (29) are sufficient, given the continuity and mono-
tonicity of ¥(u, U), to prove the existence of one or more scales for which the quasi-
cardinal comparisons in (49a) are also valid.

3.* The real-valued function U(,;x) is defined on the Cartesian product & of an
infinite sequence of identical sets Z, where ¥ is convex and bounded. In addition U
is continuous on & in the topology defined by (6). We now show that (4 is con-
nected in that topology. Let (x and (x’ be points of (#. Because & is convex, the
segments defined by x,/'(6)=0x,+{1 —@)x,/, 001, lie in & for each ¢. Because &
is bounded the functions x,”(8) from [0,1] to & are equicentinucus. It follows that
the function , x"(8) from [0, 1] to | & is continuous in the topology of definition (6),
so & is (arcwise) connected. Tt follows, by the continuity of U{, x), that the values
assumed by U(;x) for all ;xin (& fill an interval, which by Postulate P2 is nondege-
nerate. By Postulate PS5, it is the closed interval [U(,x), U(,X)], which can by an
appropriate continuous increasing transformation be made to be the unit interval
[0,1]. This proves (12) and (14). In particular, one can take | x=(x,x,x, . . .), where
x=x,and [ £=(%,%, %, ...}, where X=%,.

By a similar argument, for any given x; the values assumed by the function
Ulx,, ,x) for all ,xe,& again fill an interval. By (L1}, (12), and since V(x, /) has
previously been proved to be increasing in U for all «, this interval must be

[UGx, 2x), Ulxy, X =[V(u(x,),0), V{u(x,),1)] .

Hence, for any given u and for 02 U= 1, V(u, U) assumes all values in [F(i, (),
W(u, 1)]. Using again that VF(u, U) increases with U, it follows that M, U) is con-
tinuous in U. This point, not covered by the previous study, makes available all
other conclusions of that study on the basis of the strengthened Postulate P1°,
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4. PROOF OF THE WEAK TIME PERSPECTIVE PROPERTY

It will be useful to shift the discussion from points U on the utility scale to
(closed nondegenerate) intervals, for which we shall use the interchangeable nota-
tions

(50) =0 U]={U\UsU<T}, whereU<TU.
In particular, the unit interval will be denoted
(51) F£=[0,1].

The shift to intervals has the advantage that the set inclusion symbol > can be
used to represent sets of inequalities occurring frequently in the reasoning:

(52) W9 stands for UsU'<T'2U.

Because F(u, U) is continuous and increasing in U, insertion in ¥ of all the points
U/ of an interval % gives another interval, which we denote by

(33) Vv, )=V (l), V(x,0)] .

This operation can be iterated for a finite sequence ,u, of values of u, expressing
the effect of postponement of all programs with utilities in the interval % by 1
periods, with insertion of a common consumption sequence (x, with an associated
ane-period utility sequence (. in the gap created. For further simplification of

nofation, we shall use ¥ as an operator symbol to denote any operation of this
kind:

(54) U '=V¥ stands for ¥’ =V u, ;%) for some t=1 and some ,u,.

We shall now list those properties of the class ¥ of all these “postponement™
operations that enter into the proof of weak time perspective.

(a) Successive application of two operations ¥, V' of ¥~ yields another operation
V'=V'Vof ¥ (ie., ¥ is a semi-group).

This property follows directly from the definition (54) of the generic operation V.
For, if %'=V%, and %''=V'4%’, then obviously

(55) U =VAluy; Vot B))= Voot 15 %) -

We have a semi-group rather than a group (in which each operation can be undone
by an inverse operation) because the future has a beginning but no end. Hence the
postponement of a program only creates a gap to be filled, whereas a program
cannot be advanced without suppressing one or more consumption vectors.

(b) As applied to points, each Vin ¥ is a continuous increasing transformation
from the unit interval .# onto a subinterval V.4 thereof.
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This property foltows from the continuity and increasing character of Viu, 1)
with respect to U,

(¢) If U, UU" are any given points with I7'#0 or 1, then there exists an operation
Vin ¥ such that VU=U".

(d) As applied to intervals, no ¥ transforms any interval 4 into an interval %’
containing %

(56) If %"=V then % H% .

Properties (c} and (d) will be proved in Section 4* below.

It may be emphasized again that all the properties (a), (b), (c), and {d) are ordinal.
In particular, the translation (56) of the key property (29) into “interval language™
uses only the ordinal concept of one interval not being contained in another.

It will be clear that, if (56) were violated by any operation V and interval U,
then at least the strong time perspective condition (49b) could not be satisfied.
For, if any V¥ were to contain %, then there could be no scale in which V% is
shorter than 4. It is somewhat less obvious that an almost converse statement is
also true: that if (56) holds throughout, then at least a scale with the weak time
perspective property (49a) can be constructed. According to a mathematical
theorem, to be published elsewhere by two of the present authors [12], the condi-
tions (a), (b), (), and (d) above suffice for the existence of at least one, and possibly
infinitely many, such scales. A few further remarks on the nature of the proof are
given in Section 4* below.

We record the result in a theorem involving only the aggregate utility function
U{, x} to which the postulates refer.

TreoreM 2 (Weak Time Perspective): If P1’, P2, P3, P4, and P5 are satisfied,
there exists a continuous increasing transformation U* = ®(UY such that, if U * 1 x) >
UX(y1x), then, for all 121 and all |x,,

0 UM x4 1X) — UX(1 X XV S UR( ) = U(')

So far, we have not been able to make sure that scales with the time perspective

property exist that have a finite range. That is, in the new scale the utility levels

associated with the worst and best programs | x and , %, respectively, may have to be
assigned the values

(57) Ut x)= —oo0, U X)=+w.

4.* Thus far we have allowed independent transformations of the arguments z,
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U of V(u, U). Tt will now be convenient, rather than necessary, to apply the trans-
formation (23) of the previous study to the one-period utility scale, so as to make,
in accordance with {14),

(58) Wi=Wiw)=u, so VU U)=U, forall u,Ues.

These relations will be conserved if from here on we apply any required trans-
formations simultaneously to u and U.
To prove Property (c) we note that, if I/ < U’ < 1, the sequence defined by

Uy=U, Ue =V(LUY, (t=12,...)

is, by (29) and (58), an increasing sequence of which the limit is 1 by (58), (32).
Hence there is a 7 such that U, £ U'< U, and a u such that U'Su<1 and

t- 1=
V‘((u!l! LIEINT Y l: U): V(u: Ut—1)=U’ 1

because V(u, U) is continuous and increasing in u. The proof is similar for
U= U'>0. In case U=/, clearly U'=V(U, U} by (58).

To prove {(d), we shall show that the assumption that &'= V¥ >4, and hence
U'sU<TU<V, contradicts (29). If we should have IJ'=U, a contradiction with
(29) would already have occurred. But if U' =V {ju,;U)<U, then by (58) and the
fact that V(u, U) increases with u, at least one of the elements u,, t=1,.. ., tin
(4, must satisfy

(59)  u,<U.

We arrange the u, for which (59) holds in order of increasing ¢, and increase each
of these in succession continuously from the given value up to U until, by the
continuity and increasing property of V(u, U) with regard to both of its variables,
we have reached a sequence ;u; such that

U=V ul; U)=U, U=V U)> Vius 0)=TU'2T,

again contradicting (29). Such a sequence u, is bound to be reached because, if we
continue the increases in the u, satisfying (59) until all of them have been raised to
U, we shall obtain a sequence ;1" such that, using (58),

w'zl, —t=1,..,71; hence V{(u;U)zU.

The construction of a scale with the weak time perspective property, given in
[12], is analogous to, but not identical with, the construction of Haar measure [3}
or [6, Ch. XI]. It starts from a ‘“counting function” % : 4 of two intervals, ¥, &,
which, while using only ordinal concepts, roughly measures % using 7 as a
measuring rod. If we call any interval V' for Ve ¥ an image of 7, the counting
function is defined as the minimum number of images of & required to cover %.
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To derive a continuous measure from this function, one needs to form the ratio
(60) (H:TWF :T)

of the count of % to that of'a fixed standard interval &, before one can shrink the
interval J down to an arbitrarily chosen point T,. One wishes to make that limit
transition in such a way as to obtain an additive interval function; that is, a func-
tion A(%) satisfying

(61) if U=U' then M#uZ)=NU)+ M%) .
This can be achieved by using a generalized timit* [2, II, §3]

(62) M= Lim (U%:9)WF: 7).
T-T-=0
TEPe=T
The resulting function is found to be positive and finite if & and % are nondegener-
ate intervals in the interior #° of #, and if T4 0 or 1. One also has, for all U,0
or i,
(63) Lim A(4)=0.
U—-[~+Q
Ual,zlU
Finally, due to the properties of the counting function used in the construction of
A, one obtains

(64) A V)< A(9)

for all Ve¥" and all % <.#°. It follows that the continuous increasing transforma-
tion

C+A[% U]} if U>%,
(65) Uk=p(l) = {C if U=1%,

C—M[U, LD if U<}

defines a utility scale satisfying (49a), provided the aggregator function V(u, U) is
likewise transformed by

(66) V¥*u*, U =@(V(P-1(u*), &~ (U*))).

The construction is not necessarily unique. From simple examples such as
V(u, U)=4{u+ U) it is easily seen that in general no unigue scale with either the
weak or the strong time perspective property exists, even if one were to prescribe
the utilities U*(;x), U*(;x") of two nonequivalent programs ,x, x’ in the scale in
question.

4 In the reference, instead of a construction using Banach's generalized limit, an existence
proof along the lines of Halmos® discussion of Haar measure is given.
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5. WEAK VERSUS STRONG TIME PERSPECTIVE

The following elementary consideration suffices to show that any scale with the
weak time perspective property must in some average sense exhibit strong time
perspective. Consider the effect of postponement of the best and worst programs
by one period. In terms of the original scale where {12), {13), and (14) hold, this
effect is subjeect to the inequalities

=
V(u,0)<V(u,1)[<]1,

{67 ifO[z]u{{]I then O[z
<

because of (14) and the monotonicity of V (4, {7). Being ordinal, (67) goes over into
any new scale u* = @(u), U* = &(U), constructed to have the weak time perspective
property, provided 0 and 1 are replaced by 0*= &(0), 1*=(1), respectively. If,
contrary to (57), 0* and 1* are finite, then obviously for all u*

V*(u*, 1¥)— V(u*,0%)
P <1.

(68)
Since for any partition 0¥*=Uj<Ut< ... <Uf=1% of [0 1*] the left hand
member in (68) is a suitably weighted average of the corresponding ratios

VA, U ) = VA, UD)
Ut — Uy

for alt intervals of the partition, the latter ratios average out at less than [, whereas
none exceeds 1. If, on the other hand, ane or both of 0¥, 1* are infinite, one can
for any finite w* construct a similar argument in which 0%, 1* are replaced by any
w*, @* such that #*<u*<i* and u* < i*.

We intend to return in a later paper to the problem of constructing a scale ex-
hibiting strong time perspective throughout.

6. TIME PERSPECTIVE AND IMPATIENCE

The time perspective property {49a} or (49b), whichever is applicable, directly
implies two extensions of the results of the previous study with regard to impatience.
Omitting asterisks, assume that the aggregator function V(u, U} satisfies (49a), and
that the scales of # and U have been made comparable by the transformations (23)
leading to (58). Let there be two consumption vectors x', x" with immediate utilities
w',¢" such that

(69) w’' =u(x<u(xV=u".
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Consider two programs , x’=(x’,x", ;x) and x"' =(x", ¥, ,x) of which the common
continuation ;x from period 3 on is such that

(70} u"<U=UGx)<u’.

Then, by (58) and the monotonicity of V(u, U),

(71) UrsVu", Uy< U<V, =0,

and, by (49a) with =1,

V(' ,U)— V', U SU - U" ,
(72)
V(" U= V(" U)SU' - U .

By adding the inequalities (72) and using the definitional equalities in (71), we
obtain

(73) V!, V", Uz V", V', U)),

the inequality defining weak impatience for the program ,x’. If (49b) had heen
available, we would have proved the presence of strong impatience, with the >
sign in (73), defined simply as “impatience’” in Definition 1 of the previous study.

In the previous study strong impatience was established for {J in the “central”
interval

(1) U =Wy, u) SUSWyu',u")="U"

Curves
Vi, ) =
constank

Figure 1. — Zones (a) of strong impatience previously found and zone (h) of weak impatience
added in the present study.
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or in either of the “lateral” intervals
(15 ysuU=w, «'2UsU,
where 7 and U are defined by

(76) V@, Uy=u", V", D=u,

if solutions to these equations exist, and by =0 andjor U=1 otherwise. The
presently established interval of weak impatience contains the “central” interval
and is adjacent to both “lateral” intervals, thus closing the gaps as indicated in
Figure 1.

Nothing conclusive can be said about impatience in the “outlying™ intervals
0= U< and U< U< for any ", for which these intervals are nonempty.
While My, U)=4%(u-+U) is an obvious example where strong impatience holds for
all programs, it is not difficult to construct other examples where the function
V(u, U}, while satisfying the strong time perspective condition (49b), is such that
for some (¢",, U} in an outlying zone the = sign in (73} changes to <, a case
which might be called strong patience. In Section 6* below we give a lemma that
facilitates the determination of subintervals of impatience and of patience in the
lateral intervals. This lemma is based entirely on the monotonicity properties of
Vi, U).

The second extension of previously announced results arises from the observation
that in all previous and present proofs of impatience relations the symbols u”,
can without any change in the proof be reinterpreted as finite sequences, iy, #;
of one-period utility levels. In that case the symbals ¢, where accurring as
scalars rather than as arguments of I must be replaced by W,.(,ul/) and W.(,u.),
respectively, and expressions such as V(" I/) must be read as iterated functions
Vo(quz; U). The proof of (73) thus comes to rest on (49a) for arbitrary values of 7.
Careful reading of Section 13* of the previous study will show that its results are
subject to the same generalizing reinterpretations.

We state these results in the form of a theorem which again is formulated entirely
in terms of the aggregate utility function U(,x).

TaeoreM 3 (Weak Impatience): If Pl’, P2, P3, P4, and PS5 are satisfied, and if
1Xp rr1%e: V21 S0~ 1, are program segments such that '
U(”E U(lxm 1%0 X o - ')> U(ﬁ-lxm t41%as c41%gs « - -)EU(Z) H
then the weak impatience inequality
U(lx:: t+ 1 %ar a+ I.x)g U(r-{— 1%gs X0 a-k-lx)
is satisfied for any continuation .. x of the programs such that

U(Z]é U(Lxr: a+1x): U(r+ 1%as o+ ]_JC)éu(-l) -



96 KOOPMANS, DIAMOND AND WILLIAMSON

Subzones in the space of ,, , x where strong impatience has been proved can be
derived from Theorem 1 of the previous study by replacing x,, x,, 2x by (x,,
o+ 1%Xas o + 1%, rEspectively.

It should be noted that the conclusions of Theorems 1 and 3 are entirely ordinal.
Hence, although the existence of a transformation giving U/, x} the (quasi-cardinal)
weak time perspective property was used in the proof of Theorem 3, its conclusions
are independent of the scale in which U(,x) is expressed.

Finally, one readily shows that Theorems 1 and 3 also cover the case where the
two program segments being interchanged are not contiguous in time, by taking
1%:=(1%p; p+1%) and 41X, =(,X,, c4,41%,) and by dropping or modifying the
first p vectors of the programs so obtained.

6.* We return to the case of interchange of two consecutive elements x',x" to
indicate a lemma that permits us to conclude from the presence of either im-
patience or patience with regard to a given continuation ;x to the same with regard
to other continuations. As before, only ' =u(x"), 4"’ = u(x"'}), and U= U(;x) matter,
and for simplicity the lemma is formulated in terms of the function V,(u’,u'"; U).

LemMa 3: If w'>u" and V(' w0 UY=V(u'" s U™, then, according as there is
(a) strong impatience, (b} neutrality, or (¢) strong patience for either U=U"or U=U",
we have (a} U">U", (b) U”"=U", or (c) U" < U, and (a) strong impatience for
'sUsuY, or (c) strong patience for U'<U< U,

Proor: In case (a} of strong impatience at U=U" we have V,(u",u'; U<
Vo ' U=V, (", u'; U"), hence U' < " because V(i ,u"; U} increases with
U. Now let U< U< U, Then, for the same reason,

Ve u's UYS V('3 U= Vil o U< V(a5 U)
The proof for the other cases is similar.

Clearly, Lemma 3 can again be extended to the case where v',u” represent
finite sequences of utility levels.

7. AN EXAMPLE WITH A VARIABLE DISCOUNT FACTOR

The question arises whether one can exhibit an example of a utility fupction
U( x) showing that the postulates of this study are not in contradiction with each
other. In the previous study a somewhat special class of examples was already ob-
tained, -
4NN U(x)= Y o Tulx), O<a<l,

=1
where u(x) satisfies (13) and has on & a strong continuity property analogous to
that of P1°. This class is special in that the discount factor « is a constant, indepen-
dent of the utility level attained.
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The previous study also showed that, if the aggregator function W(u, U} is
differentiable, one can more generally define a discount factor®

aV(u,U)
aU Tu=Wouy)

(48)(78) () = (

which is invariant for changes in the utility scale. For a fuller motivation of this
definition consider a constant program x,=x, t=1, 2, .. ., and compare the effects
on aggregate utility U(;x) of a given small change x’'=x+h¢ of x in a specified
direction £ in the commodity space 27, applied successively to first-period con-
sumption x, only, and to second-period consumption x, only. It is readily seen that
the ratio of the effects, as measured by the derivatives of aggregate utility with
respect to & in each case, is then precisely

AU(x, x+hé, x, x,...)
( h )
AU (x+hé x, x,...)
( h )

(79%) h=0 _ (U(x, x,%x,...)),

k=0

the discount factor (78) associated with the utility level I(x, x, x, . . .) of the con-
stant program considered. The scale-invariance of (79) is due to the fact that, for
A=0, the arguments of dU/éh in numerator and denominator are identical.

The question now arises whether the present postulates permit utility functions
with a variable discount factor «(U}). We shall give an example of such a case, in
which the commodity space & is one-dimensional. Assuming that, within the
interval < x =<1 more of this commodity (bread, say) is always welcome, we can
then use the amount x of bread as the simplest one-period utility indicator

(80 u(x}=x .
As a result, the recursive relation {11) simplifies to
(81) U(ix}=V(x,U(x)) .

However, we shall nof make the transformation (23) that would result in (38) and
hence in Ulx, x, x, .. .}=x as well.
Consider the aggregator function

(82) V(x,U)zélog(1+ﬂx‘5+yU), 0<x<1t, 0<USL,

where fi, y, 8, 6 satisfy the following compatible conditions,

(83) B=log(l+8+y), B.v.86>0, y<b, d<1.

5 = W-I({J}is the inverse of the correspondence function I/ = Wy(a), defined hy (28).
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This function satisfies (14) and increases monotonically in x and in U. It satisfies
an inequality

(84) if U>U' then V(x,U)—V(x,U’)g%(U—U’),

slightly stronger (because y<#) than strong time perspective (49b). Because
V(x, U) satisfies the “Lipschitz condition” (84) with /8 < 1, (81) and (82) define
U(, x) uniquely by

(85) U= lim V(,x,, U)

regardless of which U is used. It can readily be verified that U(, x) satisfies all the
postulates of the present study.

The relation F(x, )=U implicitly defining the correspondence function is
equivalent to

(R6) [+8x*+9U=¢" .
From this and the definition (78) one obtains the discount factor

67 «U) = (__2’____) _ Ve
81+ px’ +yU)
x= WA
This function decreases monotonijcally from a value y/d<1 for =0 to a value
e~¢(y{d) >0 for U=1. It represents a case in which greater wealth leads the decision
maker to discount future satisfactions more, in comparison with present anes.
Examples with a discount factor that increases with U also exist.

7.% The present example has two further properties that an economist would
like to see present, but that have no further réle in the discussions of the present
study. In the first place, U(,x) is strictly concave in the entire domain 0£x,<1,
t=1,2,.. ., ofits definition. Secandly, there are no inferior periods anywhere in the
future. That is, if for any © we freeze ., ,x and maximize U(;x) by purchase from
a given budget ¢ at given positive prices «, t=1,..., 1

r

k4

max U(;x,,.;x) subject to ) m,x,<e¢, where 5,>0,
1% =1

then the maximizing purchases x(¢) are strictly increasing functions of ¢ in all
periods for which these purchases are positive.

8. COMMENTS ON THE POSTULATES

We conclude with some comments on the “realism® of the system of postulates
used for this study and on the possibility of further weakening of some of the
postulates, at a cost of greater complexity.
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In several ways the system of postulates implies an expectation of a constant or
stationary world. This comes out in the implied assumption that the utility function
arders programs assumed available with certainty, in the finjte list of commeodities,
in the boundedness of the set of feasible consumption vectors, and in the stationarity
postulate P4. These are obviously simplifications adopted in order at first to study
the significance of timing in relation to preference in isolation from other equally
significant aspects of economic choice.

The assumption of convexity of & made in P1’ rules out indivisible consumption
goods. A weaker assumption allowing some goods to be indivisible is considered
in Section 8* below.

The limited noncomplementarity assumption P3 is rather restrictive. We con-
jecture that weak forms of complementarity across a finite time span would permit
similar results to be obtained. However, this would require a corresponding
reformulation of the stationarity postulate P4 and of the theorems to be proved.

We are less concerned about possible lack of realism of P3. In situations in which
that postulate is deemed unrealistic, one can by P2 choose suitable vectors X, Xed
such that u{x) <u(x), and thereafter curtail the set & to

2" = {xe®|u(x) Su(x) S u(®)} .

P5 then holds if " is substituted for &.

8%. The question may be raised whether, now that P1’ has been strengthened
from P1 by asserting the boundedness of &, a mild further assumption of closedness
of Z in P1" might make PS5 into an implication of the other postulates. We do not
think that this is so, because compactness of & does not, in the topology defined by
{6) in Section 2*, imply compactness of the Cartesian product (& of a denumerable
sequence of identical spaces .

The assumption of convexity of the feasible consumption set & is used only in
Section 3* in proving the continuity of V{u, U) with regard to U. This proof goes
through also 9 if & is arcwise connected with a finite interior diameter, defined as the
least upper bound over all pairs of points x, x'e & of the greatest lower bound of
the lengths of all arcs in # connecting x and x'. This assumption implies bounded-
ness of &,

The existence of indivisible consumption goods cannot be recognized as long as
Z is connected. However, one can also permit % to be the union of a finite collec-
tion € of arcwise connected finite-diameter sets (%, n=1, ..., N, provided & is
connected in utility. Two connected sets 'V, 1 are called connected in utility if
there exist x(VeZM, xMeZ@ such that u(xM)=wu(x™). A collection @ of sets

@ A still further weakening of P1° which is of mathematical interest is made possible by the
following result of R. Strichartz [10]: If 2 is a Peano space (i.e., is compact, metric, connected,
and locally connected), then the Cartesian product ; & of a denumerable sequence of identical sets
¥ is arewise connected,
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' s called connected in utility if for each pair ((®), 1) of C there is 2 finite
sequence (XM, Fwm__ &@ M)y in C, of which each pair of successive sets is
connected in utility. This weakening of P1' enables one to recognize all indivisible
goads, the loss of which can in suitable situations be compensated for by an in-
creased allotment of perfectly divisible goods.

Cowles Foundation for Research in Economics at Yale University,
University of California, Berkeley, and Dartmouth College
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