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Val. 34, No. 1, February 1993

HABITS AND TIME PREFERENCE*

By SuouvonG SHi aND Larry G. EpsTEIN!

This paper proposes a utility function incorporating both habit formation
and an endogenous rate of time preference in a manner consistent with the
intuition of Irving Fisher regarding the influence of past consumption on
impatience. It is shown that the new specification is tractable and generates
new predictions in the context of three model economies: (1) a closed economy
with heterogencous agents, (2) a small open economy with one traded good
and one nontraded good, and £3) a small open economy with a traded good and
domestic money.

[. INTRODUCTION

Habit formation has been increasingly incorporated into dynamic economic
modeling. In the conventional specification, habits are introduced as a separate
argument into the felicity function while a constant rate of discounting is main-
tained. (For example, in continuous time settings see Ryder and Heal 1973, Becker
and Murphy 1988 and Constantinides 1990, and in discrete time see Boyer 1978 and
1983}). In common with the additive utility function, this specification implies that
the rate of time preference along a constant path at level ¢ is independent of c.
Since this feature of additive utility is responsible for many of its starkest
implications (see Epstein and Hynes 1983, Epstein 1987, pp. 69-71), those
implications are shared also by the existing models of habit formation. In particular,
the above constancy of time preference leads to predictions of extreme disparities
in long-run wealth holdings in a general equilibrium with heterogeneous agents
(Becker 1980). In addition, tractability is a concern. For example, in models where
the rate of interest is exogenous, such as in the case of a small open economy facing
a given world interest rate, the well-known knife-edge property of steady states
invalidates the common procedure of linearizing the dynamic system in order to
conduct comparative dynamics analysis locally near the steady state.

This paper proposes a utility function that incorporates both habit formation and
an endogenous rate of time preference. Table 1 contains our utility specification as
well as the utility functions that are most common in dynamic economic modeling.
The Uzawa (1968} function has been widely used in applications where the
implications of a constant rate of time preference are particularly unappealing
apnd/er inconvenient.? At one level our specification differs from the Uzawa function

* Manuscript received September (991,

! The authars ace indebted ta the Social Sciences and Humanities Research Cauncil of Canada for
financial suppart and to two referees for comments. This paper is a substantial revision and extension of
a previous paper by the authors entitled **Habits, Time Preference and Interdependent Preferences.”

* They are avoided also in overlapping generations models, but these models tend to be analytically
less tractable if each generation lives for 7 > 2 periods and unsuitable for short-run analysis if T = 2.
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TABLE 1
INTERTEMPORAL UTILITY FUNCTIONS
Caonstant RTP along Endagenous RTP along
Intertemporal utility U(C) constant paths constant paths
Preference independent of I§ vleye # dt 12 vte)e -fafics dr gy
past consumption {conventional additive (Uzawa 1968)
utility)
Preference dependent on T8 vle, 2)e ™™ di 18 niere ~fa B2y dr gy
past consumption w) = ale() — 20 ey = oletr) - 2]
(Ryder and Heal 1973) {this paper)

RTP-the rate of time preference; C—consumption path; z(r)—consumption habhits.

in that the discount function 3 depends on an index of past consumption rather than
on current consumption only. The following more meaningful distinction between
the corresponding preference orders is made precise below: For the Uzawa
function, the rate of time preference (along an arbitrary consumption path) depends
on current and future consumption only, while given our specification it depends
also on an index of past consumption. Thus, our utility function is a natural and, as
we argue further below, “*minimal’” extension of the Uzawa function to incorporate
habit formation. Note that the Uzawa function is obtained from ours in. the limit as
the speed of habit adjustment o becomes arbitrarily large.

Irving Fisher (1930, p. 89) has emphasized the endogeneity of time preference
and his intwitive arguments are frequently recalled in discussions and applications
of the Uzawa utility function. But one of the determinants of time preference
discussed by Fisher that has not been considered in the recent more formal
modeling literature is “‘habits.” Fisher (1930, pp. 337-338) clearly expresses the
intuitive underpinnings for our model of time preference and intertemporal utility:

It has been noted that a person’s rate of preference for present aver future income,
given a certain income stream, will be high or low according to the past habits of the
individual. If he has been accustomed to simple and inexpensive ways, he finds it fairly
easy to save and ultimately to accumulate a little property. The habits of thrift being
transmitted to the next gemeration, by imitation or by heredity or both, result in still
further accumulation. The foundations of some of the world’s greatest fortunes have
been based upon thrift.

Reversely, if a man has been brought up in the lap of luxury, he will have a keener
desire for present enjoyment than if he had been accustomed to the simple living of the
poor. The children of the rich, who have been accustomed to luxurious living and who
have inherited only a fraction of their parent's means, may spend beyond their means
and thus start the process of the dissipation of their family fortune. In the next generation
this retrograde movement is likely to gather headway and to comtinue until, with the

Bianchard®s {1985) continuous time versian of the overlapping generations model is another possibility,
though his assumption of an age-independent probability of death may seem unrealistic. Of course, the
infinite horizon framework adopted in this paper does nat require that agents literally live forever; under
additional assumptions, the existence of appropriate intergenerational altruism justifies its use (Bamro
1974].
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gradual subdivision of the fortune and the reluctance of the successive generations to
curtail their expenses, the third or fourth generation may come to actual poverty.

The accumulation and dissipation of wealth do sometimes oceur in cycles. Thrift,
ability, industry and good fortune enable a few individuals to rise to wealth from the
ranks of the poor. A few thousand dollars accumulation under favorable circumstances
may grow to several millions in the next generation or twa. Then the unfavorable effects
of luxury begin, and the cycle of poverty and wealth begins anew. The old adage, **‘From
shirt sleeves to shirt sleeves in four generations,”’ has some basis in fact.

While intuitive plausibility is one reason for exploring new utility functions, at
least as important is that they ‘“‘make a difference’ in the sense of providing new
predictions and theoretical insights. In particular, they should be tractable when
applied to some standard dynamic models. In the second part of this paper we
provide such a justification for our specification of intertemporal utility by applying
it to three economies: (1) a closed economy with heterogéneous agents, (2) a small
open economy with one traded good and one nontraded goaod, and (3) a small open
economy with a traded good and domestic money. In all three economies we show
that a sufficiently large degree of persistence in spending habits, through its
influence on time preference, generates cyclical wealth accumulation, thus con-
firming Fisher’s intuition expressed in the quotation above at least locally near the
steady state. In the secand and third economies, cyclical wealth accumulation is
associated with cyclical current accounts and exchange rates and rich covariations
between these two variables. We emphasize that, for the reasons outlined in our
opening paragraph, the implied dynamics in all three models differ substantially
from that implied by the Ryder-Heal specification of habit formation. They differ
also from the dynamics implied by the Uzawa utility function, where the local
stability of steady states also prevails, but convergence to the steady state is
necessarily noncyclical (see Obstfeld 1981 and 1990, and Epstein 1987, for
example}.

The paper proceeds as follows: Section 2 formulates and analyses our model of
utility. In the next three sections the three economies mentioned above are defined
and analysed. Technical details and proofs are supplied in the Appendix. A more
detajled set of proofs is available from the authors upon request,

2. INTERTEMPORAL UTILITY AND TIME PREFERENCE

2.1. Utiliry. A consumption path € assigns consumption ¢(¢) = 0 to each time
¢t = 0 over an infinite horizon. We propose the following functional form for the
utility fupction defined on such paths:

(2.1} ue) = Jm u(c) exp —J’r Al dq-) dr,
0 0

z = alc — 2), 20) =z, =0 given,

where o > 0 and regularity conditions for » and 8 are described below. The
dependence of U(C) on 2,4 is suppressed in the notation.
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Integration from time —o implies that
!
) =a f e(1) exp (a(r — 1)) dr,

a weighted average of past consumption levels with weights declining exponentially
into the past at the rate o. We refer to z(z) as the level of **habits’* or index of past
consumption and to o as the rate of habit adjustment. Two limiting cases are
noteworthy. If & = 0, then z and 8(2) are constant which yields the conventional
time-additive utility function. On the other hand, if o = ® then z = ¢, B(z) = A(c)
and the Uzawa function is obtained. From the perspective of our specification (2.1),
therefore, these common functional forms correspond to alternative extreme
assumptions about the rate of habit adjustment.

Of course, there exist alternative functional forms that contain the Uzawa and
additive functions as special cases. For example, inspection of Table 1 suggests the
alternative

2.1 e = fm vlc, 7} exp (—J‘I Bic) d?’) dr.
0 0

We would argue, however, that (2.1) is simpler than (2.1') in the informal but
significant sense that each of its component functions 8 and v is a function of a
single argument, while in (2.1°) v depends on twe arguments. On such informal
grounds, (2.1) seems to us to be a “‘minimal’’ extension of the Uzawa function that
incorporates habit formation in a way that captures Fisher’s intuition (see (2.6}
below). .

Returning to our functional form (2.1}, we adopt the following assumption for v
and 8.

ASSUMPTION 1. v and 8 are twice continuously differentiable and
MA=>0,8 >0and g’ =10,
(ii) v < 0, v’ = 0 and —log (—v) concave,
where all functions are evaluated at ¢ and the restrictions hold for all ¢ = 0.

The implications of (i) and of 8' > 0 in particular will be clarified shortly by
considering the rate of time preference implicit in 7. Here we note merely that the
additive utility model corresponds to 8’ = ( and that our assumption that 8is linear
is adopted for the purposes of simplification and specificity. Condition (i) guaran-
tees, as in the case of the Uzawa function (see Epstein 1987, Lemma 1}, that the
intertemporal utility function U is globally increasing and strictly quasiconcave.?

¥ Condition (ii) can he weakened to

it

Gi" Bv' — v >0, y'znandv—,(ﬁn'—n,e']+g3'v'<0,
o
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An attractive feature of Assumption [ is that it does not depend upon o. This
allows us to examine the consequences of different degrees of habit persistence
without worrying about whether changing o destroys the basic regularity properties
of U/. Notice also that if Assumption 1 is satisfied only on a subset of positive
consumption levels, then I/ is well-behaved on a suitably restricted domain and the
analyses in Sections 3 through 5 are valid for a suitably restricted set of interest
rates.

2.2, Time Preference. Let Up(C} denote the marginal utility with respect to a
small increment in consumption along the path € and at times near T, in the sense
made precise by the Volterra derivative. (See Wan 1970 and Ryder and Heal 1973
for a definition and applications in similar settings.) For our utility function (2.1) we
have

T
(2.2) Uz(C} = [¢'(c(T)) + o W(T)] « exp (—f B(z) d'r),
0

where ¥(T) represents the shadow value of the stock of habits. More precisely, let
7C denote the “*tail”’ of C which assigns consumption ¢(t + T) to each time ¢ = 0,
Then

al(rC)
az(Ty

= —Jm v{c(t)) _r BT~ dr| exp —J’I Blz) dr| dt
T T T

and therefore ¥(7) > 0 and Uy > 0.

In analogy with conventional practice in discrete-time models and in agreement
with Epstein and Hynes (1983}, we define the (local) rate of time preference pas the
rate of decrease in marginal utility along a locally constant consumption path.
Precisely,

(2.3 ¥(D)~=

(2.4) p=—r log Ur(C|amy=o0-
The restriction to locally constant paths serves to isolate the effect on the marginal
utility of the time delay.* Performing the differentiation yields

a(B(z(T)) + o)¥(T) + U(7C)B']

(2.5) p =B~ o' (e(T)) + oW (T) ’

which is sufficient for I7 to be well-behaved locally in the neighborhood of constant paths and thus suffices
for the local analyses to follow. We have chosen ta adopt (ii) because of its relative simplicity.

* If the consumption path is such that &(T) # 0, the expression (2.4) measures the rate at which
marginal utility would fall with time if ¢ were to remain momentarnly fxed.
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which shows the way in which p depends upon past consumption z(T) and upon
current and future cansumption 7C (through ¢(T), ¥(7T) and U{;C)). Thus we can
think of a (local} rate of time preference function p(z, C), where there is no harm
in setting T = 0.

Along a globally constant consumption path, where all past and future consump-
tion levels equal ¢, we compute that z = ¢ and p = 8(z). Thus 3 describes the rate
of time preference along such paths. The assumption that 8’ > ¢ implies that time
preference increases if we move from one constant consumption path to a higher
one, corresponding to the assumption of increasing marginal impatience in Lucas
and Stokey (1984). This assumption is necessary for dynamic stability as has been
widely recognized in studies employing the Uzawa function, but there is disagree-
ment in the literature over its intuitive appeal. For low consumption levels,
decreasing impatience seems intuitive, for the reasons given by Fisher (1930, pp.
72-73), i.e., a “‘man must live’" and thus greater poverty increases the importance
attached to immediate versus future consumption. But for higher consumption
levels, increasing impatience seems reasonable for the reasons given in Epstein
(1987, pp. 73-74) and Obstfeld {1990}, for example. Thus the reader may prefer to
interpret the local dynamic analysis below as applying to a region of relative
affluence.

Examination of the rate of time preference function for consumption paths that
are not globally coastant reveals much about the nature of our utility function.
First, if we evaluate the derivative along a globally constant path then (2.5) implies
that

ﬁ] GUB’
—_— |’ — > q0.
o + oW (B+o)B+2a)

d
(2.6) a plz, C)|constam path =

Hence, past consumption increases the degree of impatience, which conforms with
Irving Fisher's intuition and with our attributing the time nonseparable nature of U/
to “‘habits.” The dependence of p on past consumption distinguishes our model
from Uzawa's, where p depends only on current and future consumption. In the
Uzawa case, the rate of time preference p, obtained from (2.4) by letting o0— 0, is
given by

p(z, C) = [Blc)u'(c} = B'{c)e(c))/['(c) — B"U(C)],

which is independent of z.

The nature of the intertemporal nonseparability exhibited by our utility function
is further clarified by considering the dependence of p on future consumption. By
making use of the Volterra derivative we can compute that for ¢ > 0

d a
G, )= BB e = (B + o) BT 2 (), ,C),

2N az(0)

where we henceforth suppress in the notation that derivatives of p are evaluated
along constant paths. Say that current consumption and time ¢ consumption are
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complementary if 9p(z, C)ac(t) > 0. The complementarity between future and
current consumption predominates in the sense that

(2.8)

“’a_p CYdt = -2 12 32 (y'—}—gqf)_l }0
Lacm“"’ S B e B ey

There are other definitions of ‘‘complementarity™ that have been used in the
literature to elucidate the nature of time nonseparable utility functions. Ryder and
Heal (1973) define notions of adjacent and distant complementarity in terms of the
effect of a change in c{r3) at the marginal rate of substitution between (¢} and
e(ty). Adjacent complementarity prevails if for all 3 in some neighborhood of ¢,
an increase in ¢(r4) shifts preference towards c(z|) at the expense of 1, > {,.
Roughly speaking, we are looking at the limit as £, — t; becomes arbitrarily small,
which is natural in light of the central role of the (instantaneous} rate of time
preference in determining dynamics in continuous time and also simplifying in the
sense of delivering an unambiguous sign in (2.8). We further restrict attention to
first order perturbations of a constant consumption path since we are interested
only in local behaviour near a steady state. With these modifications of the Ryder
and Heal definitions in mind, the positive signs in (2.6} and (2.8) correspond to the
existence of adjacent complementarity. Qur notion of complementarity should also
be distinguished from that due to Edgeworth and discussed by Obstfeld (1990},
where complementarity is defined as positivity of the cross partial of U{(C) with
respect to ¢(0) and ¢(r). The Edgeworth notion is cardinal, while ours and the
Ryder and Heal notion are based on marginal rates of substitution and thus are
ordinal in nature.

3. EQUILIBRIUM WEALTH ACCUMULATION

As indicated in the introduction, in a competitive equilibrium with heterogeneous
agents, each of whom has a rate of time preference that equals an exogenous
constant in steady states, only the most patient individuals can have positive wealth
in the long run (Becker 1980). A less extreme long run distribution of wealth is
possible if the rate of time preference of each individual is suitably endogenous
(Epstein 1987). Here we consider the implications for the dynamics of wealth
accumulation if habits influence the rate of time preference in the way modeled by
our intertemporal utility function (2.1). Of particular interest is whether the cyclical
dynamics conjectured by Fisher can be confirmed.

Since our focus is on the structure of time preference (and since the paper is
already quite long) we simplify the production side by assuming that the marginal
product of capital is a technological constant, Then there is no market interaction
between agents and the model decomposes into a number of separate problems of
individual utility maximization subject to an intertemporal budget constraint with a
constant rate of interest. A model of individual wealth accumulation is of indepen-
dent interest and is also of use below in Section 4. Our discussion will for the most
part relate to this model of individual behaviour; the implications for market
equilibrium dynamics will be summarized at the end of the section.
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Consider, therefore, a copsumer with utility function (2.1) who faces an
exogenous real interest rate r > 0. If x denotes wealth and if we define the discount

factor
a(t) = exp (—f 8(2) df),
0

then the consumer’s optimization problem can be expressed as follows:

®) max f " a(t)u(c) di

: 0

subject to

3.1 &= —B(z)a, ag =1,

(3.2} z=ga(c— z}, zo > 0 given,

(3.3} x=rx—c, xq >0 given,
c, x=0.

The associated discounted Hamiltonian is
H = afv(c) + Yolc — z) — ¢B(z) + wlrx — c}],

where ¥{¢) is defined by (2.3} and equals the shadow price of z, and where ¢ is the
utility variable

¢(1) = U, C).

We have made use of the fact that — ¢(¢} equals the current-valued shadow price of
the auxiliary state variable «. If (2.1) is used to evaluate U(,C) then differentiation
implies that

(3.4) = B2} — vic).

Thus the maximum principle implies the following set of differential equations in { z,
¢, ¥, ¢, x) which must be satisfied by an interior optimum for (P): equations (3.2)
through (3.4) and

(3.5) T=(@+a)¥+¢p,
v+ oW
(36) c= T [P(Zs €, (vb! T) - r]s

where, in a slight abuse of earlier notation, the rate of time preference function p( z,
¢, ¢, ¥) is defined in (2.5). Note the familiar relation implied by (3.6) between the
sigh of consumption growth and the relative magnitudes of the rate of time
preference and the rate of interest. Since intertemporal utility is strictly quasicon-
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cave, equations (3.2) through (3.6) and convergence to steady state values,
described below, define the unique optimum for (P).5
The steady state {z2*, ¢*, ¥*, ¢*, x*) is characterized by

Blz¥)=r, e* =z%, x*=z%r,
&* = u(c*)/r and T* = —.ﬂ(c*)ﬁ'f(r(r + a)).

The steady state exists if inf 8( - ) < r, in which case it is unique.s Note the
contrast with the Ryder and Heal specification in which 8 is constant; there, steady
states either do not exist if 8 # r, or comprise a continuum if 8 = r.

Now turn to dynamics near the steady state. Such local dynamics are faithfully
represented by the linearization of (3.2) through (3.6). Since there are two
predetermined variables, x and z, local stability requires that the matrix J of the
linearized system have exactly two eigenvalues with negative real parts (stable
raots). This is also sufficient for stability under the regularity condition described in
the Appendix. Convergence to the steady state is cyclical if the stable roots are
complex.

The local dynamics of the optimal consumptien/savings, wealth accumulation
plan are summarized in the following theorem.

THEOREM L.  Under Assumption | and inf B( - ) < r, there exists o > 0 such
that the dynamic system (3.2) through (3.6) is lacally stable for all 0 < o # o and
is eyclical if and only if o < o(. Moreover, a is increasing in the steady state
values af B' and v"fv".

Apart from the possible exception of a, the steady state is locally stable for all
positive o. Since the rate of interest is constant, stability is due exclusively to the
endogenous rate of time preference. Intuitively, two aspects of time preference
affect stability. First, complementarity between future and current consumption
(see (2.8)) is stabilizing. (For example, if initial wealth is smaller than the steady
state level, then positive accumulation is required to reach the steady state. Along
the adjustment path consumption is in some average sense below ¢* and so the rate
of time preference is smaller than its steady state value r. Thus consumption is
induced to increase consistent with convergence to ¢*.) This is the only force
operating in the Uzawa model and “explains’ the well-known local stability
prevailing there. In the present model, p also varies with past consumption which
dependence is also stabilizing if dp/dz > 0. (For example, if consumption has been
in excess of ¢* for some time, then the large value of z implies a high degree of
impatience and therefore a decline in the rate of consumption as wealth is run
down.) Thus stabilizing forces predominate in our model.

Turn to the results concerning the existence of c¢ycles. First, the theorem
validates Fisher's intuition only in part since the cycles are local and they dampen

¥ The proof is analogous to that of Epstein (1987, Lemma 2).

% Since p = B(z*) in a steady state, 2* is uniquely determined by 8(z*) = r which is the steady state
implication of (3.6). Then ¢* = z*, x* = ¢*fr and the steady state value ¢* and ¥* are uniquely
determined by (3.4) and (3.5). )
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towards the steady state; our model does not generate limit cycles. Second, cycles
are more likely if habits adjust more slowly, or the steady state rate of time
preference is more sensitive to the level of consumption, or if the desire to smocth
consumption is weaker. Since cycles are impossible in the Uzawa model and since
the latter is approached as o — e, it is not surprising that we obtain cycles only for
sufficiently small o. On the other hand, it is interesting to note that cyclical
behaviour is to be expected if it is believed that the common additive utility model
holds not exactly, but in the approximate sense of (2.1) with ¢ near Q.

The nature of the censumption function e¢{x, z) generated by the utility
maximization problem (P) is of interest. In the Appendix we show that consumption
is normal and also that it is addictive in the sense that ¢ is increasing in z. (Becker
and Murphy 1988 define addiction in this way.) This adds to the justification
provided in Section 2.2 and inequality (2.6) in particular for our use of the term
“‘habit formatjon'" to describe the time nonseparable feature of our utility function.

Finally, consider briefly the implied equilibrium dynamics in an ecopomy
populated by many such consumers and with a constant real interest rate. Theorem
1 applies ta describe the wealth accumulation path followed by each consumer. In
particular, unlike the case where steady state rates of time preference are constant
as in the Ryder and Heal specification, all consumers ¢an own positive wealth in the
long run even if rates of time preference, in the sense of the functions £( « ), differ
across consumers. And, unlike the case where everyone has a Uzawa utility
function, convergence to the steady state can be cyclical for some consumers, ¢.g.,
for those with large degrees of habit persistence.

4. THE REAL EXCHANGE RATE AND CURRENT ACCOUNT

We modify and reinterpret the model of individual wealth accumulation just
analyzed so that it represents the behaviour of a representative agent in a small
apen economy in which there exists a traded and a nontraded good. The model s
used to investigate the effect of habits on the dynamics of the real exchange rate and
current account.

4.1. The Model. At each instant the representative agent consumes a traded
good and nontraded good at rates denoted f (for foreign} and d (for domestic). Real
expenditure (an index of aggregate consumption) at ¢, ¢(z), is given by the relation

(4.1) c(r) = u( fi1), d(1)),

where u is a positive, increasing, concave and linearly homogeneous *‘aggregator’
function.

Intertemporal utility U/ is defined via (2.[) where C is the intertemporal program
of real expenditure. We specialize Assumption 1 by requiring that

(4.2) u= —1.

Epstein and Hynes (1983) emphasize the analytical advantages of the comparable
assumption in an Uzawa-type model where time preference is unaffected by habits.
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Note that the rate of habit formation 7 depends on the consumption levels f and d
only via c. _ '

Adopt the traded good as numeraire and denote by ¢ the (relative) price of the
nontraded good or the real exchange rate and by » the constant real world interest
rate. Then the optimizaton problem solved by the representative agent is

max U/

(4.3) subject to {4.1) andk=rx+y—f— qd,
x(0) = x4 given and lim x{r)e " = 0.

f—r o

Here x denotes the claims in foreign assets or external balance, y = y, + gy, is
aggregate domestic output with y, and y ; denoting outputs of traded and nontraded
goods respectively. Both outputs are assumed to remain constant over time.

Because of the fact that f and 4 enter 7 only via real expenditure ¢, a two-stage
budgeting procedure is valid for (4.3). For any chosen ¢(¢), it is optimal to choose
consumption at ¢ to solve

(4.4) e(ne(g(r)) = min {f + g(t)d: u(f, d) = (1)},
£d :

where the homogeneity of 1 has been used to express the value of this atempeoral
budget allocation problem in the form shown on the left. The function e( - ) is the
unit cost function dual to u, with the price of f having been normalized to unity. In
particular, e( - ) is increasing and concave (see Diewert 1982). Then

(4.5) p=elq)

serves as the price index for real expenditure and the intertemporal problem can be
transformed into problem (F) of Section 2 with the singlte exception that the wealth
accumulation equation is

(4.6) i=rx+y-—pc.

Denote this modified problem by (P1).

An equilibrium is a tuple { f(¢), d(z), (1), q(t), x(f)}g such that intertemporal
utility is maximized and the market for the nontraded good clears, i.e., d{(f) = y4
for all . (For the traded good, the excess domestic demand (1} — y, can be met
by a perfectly elastic world supply at price g(r).) Shephard’'s Lemma (or the
envelope theorem) applied to (4.4) implies that it is optimal to satisfy 4 = ce’(g) at
any instant. In conjunction with market clearing this implies

4.7) c(De'(g(t)) =vq, or g{t)=-e (ya/le(r)), forallt,

By straightforward modifications of the arguments in Section 3, we can derive the
dynamic system that describes an equilibrium. In particular, the maximization
problem gives '
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e

b
(4.8) —g=—=—{p—r).
€ p

From {4.5), (4.7) and (4.8), real expenditure follows a dynamic rule similar to (3.6):
é e!i’ 1 ei’ 2

4.9 cE T oo k=

The wealth accumulation equation can be rewritten (using (4.5) and (4.7)) as
(4.10) x=rx+y—ele W yz)]e.

Equilibrium is defined by (4.9), (4.10), the appropriate forms of (3.2), (3.4) and
(3.5) and by convergence to steady state values,

4.2. Dynamics. The naturat counterpart of Theorem 1 is readily proven for
the present dynamic system and much of the discussion of Theorem I may be
translated. In particular, the steady state is unique if inf 8( - ) < r and is locally
stable for all o # o for some g, convergence is cyclical if and only if o < o and
o depends in an intuitive manner on 8( - ). Here we concentrate on implications
and interpretation that are specific to the present open economy model.

Since a cyclical adjustment implies a cyclical current account, a large degree of
habit persistence (small o} leads to cyclical behaviour in the current account. This
is in contrast to the informal literature (see Lawrence 1987) where the view is
expressed that persistence in spending is responsible for a persistent current
aceount.

Another factor influencing the qualitative dynamics is the parameter « defined in
(4.9). The cut-off value o is decreasing in x. To interpret this relation, specialize
the aggregator U from (4.2) to the CES form

(4.11) u(f, d)y=[8f"+ (1 - 8)d"1"*, v< 1, § €0, ),
in which case we compute
(4.12) K=(I—v)(ﬁ"—l)”'“’q”""‘l,

which is decreasing in 8. Thus our model confirms the intuition that a large budget
share for nontraded goods (& smaller) contributes to persistence in the current
account in the sense of making oscillatory convergence less likely.? The intuition is
as follows: Capital accumulation increases demand for both traded and nontraded
goods, and hence exerts an upward pressure on the real exchange rate g (since the
supply of the nontraded good is fixed) and in turn on the price index. The larger the
budget share for nontraded goods, the more sensitive is the price index to the real
exchange rate and hence to capital accumulation. Large adjustments in the price
index imply that real expenditure need not adjust rapidly and hence cycling is less
likely.

To conclude, consider the effects of a once-and-for-all increase (from time 0) in

" We can also show that a larger 3 increases the speed of convergence to the steady state and, when
convergence is cyelical, reduces the periad of cycles.
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government expenditure on the traded good, modeled in the usual way as a lump
sum tax with no offsetting benefits to utility. The long run effects are similar to those
in models with Uzawa utility (see Penati 1987). Namely, the steady state levels of
consumption of both traded and nontraded goods and of the real exchange rate do
not change, but the external balance of the country is improved because consumers
accumulate foreign assets to finance expenditure.

However, the transition of the economy, in particular the adjustment of the
current account, can be very different in our model. Although the country
experiences a current account surplus at the beginning of the transition, a deficit
can emerge later. When the adjustment path is ¢yclical, in particular, the current
account changes positions many times between a surplus and a deficit. As the
cycling continues, the real exchange rate undergoes various periods of appreciation
and depreciation, and such appreciation or depreciation accompanies a current
account surplus at one time and a deficit at another. (One can verify the behaviour
of the current account and the real exchange rate by salving them as functions of
(x, z), as in Part 4 of Section 2 of the Appendix.) In contrast, in models employing
the Uzawa utility function, an increase in government expenditure on the traded
good generates a current account surplus and appreciation in the real exchange rate
during the transition.

5. MONEY GROWTH AND CYCLICAL DYNAMICS

In this section, we investigate whether cyclical current accounts can be optimal
responses to international investment opportunities. The conventional model (e.g.,
Obstfeld 1981) implies monotonic current accounts and also, in apparent contra-
diction to empirical evidence (Sachs 1981), that the exchange rate's depreciation
falls short of the rate of monetary growth if and only if the current account is in
surplus. Our model is consistent with cycles in the current account and exchange
rate and thus also with nonstandard cerrelations between these variables.

5.1. The Model. The model is a variation of the real model of the last section
in which the nontraded good 4 is replaced by domestic real money balances m. The
traded good f is numeraire and the domestic nominal price is £, which can also be
interpreted as the reciprocal nominal exchange rate. Let # = #/¢ be the inflation
rate. Then the opportunity cost of holding real balances, or the relative price of m,
is g = ¥ + . Otherwise, the notation and utility specification are as above. In
particular, we assume that at any instant consumption of the traded good and real
money balances may be aggregated into ‘‘real expenditure’ ¢ which has price p
satisfying (4.5).

A simplifying assumption is adopted. We assume the Cobb-Douglas form for the
aggregator i, i.e., take ¥ = 0in (4.11) to obtain

(5.1} ¢ =ulf, m)=[55(1_3)l—a]—ifam1—a and
(5.2) pze(q):ql—a_

The representative agent’s optimization problem is
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max U

subject to (5.2), W=+ L-pc,
w(0) = wy >0 given, lim e "w(1) =0,

=

where L is a lump-sum transfer and w denotes total real wealth. An optimal
program that also clears the money market and corresponds to government hudget
balance defines an equilibrium. Since foreigners do not hold domestic money,
market clearing requires that

(5.3) mim=MM— 7=y,

where yis the constant rate of growth of money supply and M is the nominal stock
of money. Secondly, lump-sum transfers are financed by money growth,

(5.4) L=mMM.

5.2, Dynamics, The dynamic system that characterizes equilibrium is de-
scribed in the Appendix. The existence of a unique steady state is easily proven as
in earlier models if ¥y + » > 0. However, the dynamic system is larger (it is
6-dimensional) than those studied above because the inflation rate is determined
endogenously. Thus the analysis of local dynamics is more complicated. Never-
theless, adequate mathematical machinery exists in the form of Routh’s criterion
(Gantmacher 1964) for local stability and Marden (1966, Theorem 41.2) p. 191, for
determining whether the path to the steady state involves cycling. Roughly
speaking, Marden describes a procedure for counting the number of zeros of a
(characteristic) polynomial in any given sector of the complex plane.

The dynamic system has two predetermined variables, habits z and wealth. It is
convenient to work with net claims on foreign assets x, rather than total wealth,
where w and x satisfy

w=yr+x+ m,

v denotes the constant domestic output of the traded good. Making use of (5.1)
through (5.4) we can derive the law of motion

(5.5) k=rx+y—f, x(0)=x4 given,

and we can work with the state variables 7 and x.

The existence and uniqueness of the steady state can be established readily as
before. Lacal stability of the dynamic system is shown in the Appendix. For local
¢ycling, the following theorem is established.

THEOREM 2. There exists a pair of values for o, ') and o (0 < ¢V = ¢},
such that the equilibrium dynamic system is cyclical for o < o) and noncyclical
for o > a® Mareover, for cach o € (0'(3), w}, where

o®=(r+ Y2+ 16r88 (1B /(1 — 8))/2,
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the system is cyclical for y sufficiently large and noncyclical for y sufficiently near
—¥.

As in previcus models, sufficiently persistent habits (small ) cause cycling and
sufficiently low persistence (large o) leads to monotonic adjustment.? A feature that
is specific to the' model in this section and that differentiates it from models based
on Uzawa utility (Obstfeld 1981), is that the money growth rate can affect the
qualitative dynamics of the system, a strong form of nonneutrality of monetary
policy. For instance, when habit persistence is sufficiently low, high (low) money
growth rates are associated with cyclical (monotonic) adjustment to the steady
state.

Another feature we emphasize here is the equilibrium relation between the
current account, ¥, and the rate of growth of real money balances. In a model with
Uzawa utility, Obstfeld (1981) shows that when the current account is in a surplus
{(x > 0), real balances must be rising and the nominal exchange rate must be
depreciating at a rate lower than the money growth rate (= < ¥}, and vice versa.
This fundamental relationship generally fails in the current model with & < . To
see this, note that the equilibrium level of real money balances m depends on both
the external balance x and habits z, i.e., m = m{x, z). Thus

m=m,k+ m,i.

Clearly, therefore if m, # 0, then s and X have opposite signs for suitable
magnitudes of x and 7 relative to their steady state values. Finally, we show in the
Appendix that m, cannot vanish if the adjustment towards the steady state is
cyelical.

University of Windsor, Canada
University of Toronto, Canada

APPENDIX

Section 1. Marden’s Method. Consider a linear differential equation
(A1.1) X=JXx
where J is an n X # matrix with a real characteristic polynomial

(AL.2) f8)y=det (8- =73 a;8/, a,#0.

ji=1a

Without loss of generality, let &4,, = 1. To examine stability of (Al.1), we have to
know the number of stable and unstable roots of f{#}; to examine cycling of (Al.1),
we have to know the number of stable complex roots of f(8). Routh’s criterion
helps us in the first task and we refer to Gantmacher (1964, pp. 173-250) for a

8 The Appendix also shows that the dynamic system is cyclical when 8 —» = and noncyclical when 8
— (), in commoan with the model of Section 3.
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description. Marden’s method helps us in the second and here we outline a
specialization for determining the number of roots on the nonnegative real line.
Let 6 = v exp (i®), where i = (1) V2. Write

flve™®a, e = Fo(v, ®) + 1OF, (v, B).
When @ — 0, Fy and F| approach the following:
(Al1.3) Fod=ag+av++a, v ' +p?
Fi(vy= —(nag+(n— Dayv+ - +a,_ v ).

The Sturm sequence of polynomials generated from (Fq, F ), denoted {Fy(»), ... ,
Fr(v)}, is given by the following division algorithm:

(A14) Fk_IJ'{Fk=Gk_Fk+IJ'{Fk,k=1,...,K_l,

where Fy is the polynomial with the lowest order which can be generated by
{Al1.4). We shall assume that Fy and F; have no common divisor so that Fg is a
constant polynomial. (If Fy and F have a common divisor, first factorize f(4) and
then apply Marden’s method to the factors separately.) Without loss of generality,
let X = #. Denote by V{») the sequential sign variations (given 1) of the Sturm
sequence generated from (Fy, F). The following results are immediate implica-
tions of Marden (1966, Theorem (41.2), p. 191).

THEOREM Al.1. Let the polvnomial f{8) have N (= n) zeros on the nonnegative
real fine. Then

{Al.5) N = V() — V(=).
THEOREM Al1.2. Let f(0) and N be as in Theorem Al 1, let V(Q) be the number
af sequential sign variations of a sequence Q and write

n-—k
Fe(w)= 2 ap_1; v, k=0,1,..,n

j=0

Then the a’s are generated sequentially by the following formula: for £ = 1, ...,
n—1landj=1,....,n —k,

(ALB) By p -k = Chln—tn—k-1- T EOn e —ki—j ~ Gkt Ln—k—j>
where
Ce=Qu-prin—k+1/@upn-r and
Ap—ktln—k+l Dn-k+ln—k ,
d, = —det Qp—pn—k
dp—bken—k Ay —kn—k—1

Furthermore,
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(Al'?} N= V(“mo; dy— 1,0 tra aﬂ,ﬂ) - V(Ia Ay —m—13 *** 2 aﬂ,ﬂ)'

We can summarize the process of calculation as follows. Beginning with F and
Fy in (AL3), calculate ¢; and 4y, then a,. ;;, using (Al.6). This creates
polynomial F,(v). Continue the process until aq 4 is obtained. This being done,
{A1.7) gives the number of roots on the nonnegative real line.

Section 2. Proofs for Section 3. We divide the proof into six parts: 1. Describe
the linearized dynamic system corresponding to (3.2) through (3.6) in Section 3 and
find the eigenvalues of the matrix J in the linearized system. 2. Show that for all &
> 0 matrix J has exactly two stable roots (those with negative rea) parts) and three
unstable roots (those with positive real parts). 3. Prove that the stable roots are
complex if and only if ¢ € (0, a¢). 4. Establish the properties of o stated in
Theorem 1. 5. Specify a regularity condition (sufficient for local stability given 2)
and show that it is satisfied if and only if o # . 6. Derive the consumption function
and show that it has the properties stated in Section 3. Parts 1 through 5 form a
proof of Theorem 1.

Part 1. The linearized system and the eigenvalues. The linearized system is

(Az'l) ("za ‘%’1 llf! é! "x)T=j(Z - Z*a ¢’ - QS*! lvt' - lvb*; ¢ - C*! x — X*)Ta

where
[ s 0 0 a O
vB'lr F 0 —u' 0
J=]| ¥B' ik r+a 0
'R —aB'fy" —o(r+ o)yt 0 0
| 0 0 0 -1 r]

All variables in this matrix are evaluated at the steady state and asterisks are
suppressed.

Obviously, r is an eigenvalue of J with multiplicity one. Other eigenvalues of J,
denoted by 8, are those of the upper-left four by four sub-matrix in J. The
characteristic polynomial of this sub-matrix is

fle=[6(8 —r]>-To(8—r) + A4,
where
F=og(oc+r+2u'8'v") and A= —-a{B8'1t")(rv' —vB")o + rP'].
Thus the eigenvalues 8 (# ) of J are

r+ (P2 + 4k

(A2'2} 61:;' 2 ]

i=1,2;7=1,2

where
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I+ (I? - 44)"2
(A2.3) kip=————

Part 2. The numbers of stable and unstable roots. We can directly examine the
eigenvalues in (A2.2). However, for larger dynamic systems, such as the one in
Section 3, it may be difficult to solve for the eigenvalues. To unify arguments in the
Appendix, we use Routh’s criterion to identify the numbers of stable and unstable
roots.

LEmMMA A2.1.  Forall 0 > 0, matrix J in Part | has exactly two stable and three
unstable roots.

Proor. Sincer (> 0) is a root of J, we only have to show that polynomial f(8)
in Part I has exactly two stable and two unstable roots. Applying Routh’s criterion
reveals that the number of unstable roots equals the sequential sign variations of the
following sequence:

_ Ty 2rA
(A2.4) I, —2r, ¥r* — s ﬁ_—m +T, A
It can be verified that (A2.4) has two sequential sign variations. Q.E.D.

Part 3. The existence of oy. The dynamic system exhibits cycling if the two
stable roots of J are complex conjugates. Again one can determine the conditions
for complex roots from (A2.2), but we choose to use Marden’s method for the same
reason as stated in Part 2. :

LeMma A2.2.  The two stable roots of I are complex conjugates if and only if
r'2 — 44 < 0.

Proor. Equivalently, we show that the two unstable roots of f(—4) are
complex if and only if [?—44 <0. Applying Theorem Al.2 to f{— 8) gives us the
number N of unstable real raots of f{— 8). Thus the current lemma can be restated
asN=06T2?- 44 <0

We compute Fg and F; in (A1.3) and form the first two rows of the algorithm in
Theorem Al.2, vielding

Fo=A—Tor+ (=Dl +2rv+ vt
Fi=—4A+3Tv -2 - D)v? - 2rv?, and
i, 2r, P2 =T, =T, A
=2r, =2(07-T), 3T, —4A.

That is, d44 = 1 =0, dgq = A >0, d33 = —2r < 0 and d3q9 = —44A < 0.
Further calculation by (Al.6) shows that ¢ > 0 and

ayyr=-T(1+ WirD/2, arge = A(1 + 2T/ Y,
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I'?— 44 —4A(T? - 44)

1_ = T2 4 arl
32 [r[ +4(T* = 24)r], a1 TX1+ 2T -

YTy

> —4A =022 N =22 — 44 > 0, the remark following Lemma A2.3
(below) implies I' > 0, and hence implies a2 < 0,420 > 0,8y, > 0and a5 <
0. Thus N = 2 by (AL.7). If ['Z — 44 = 0, f{— 6) has a root with multiplicity two
and again one can show that N = 2,

[2-44<0>N=0.IfT? - 44 <0, then a, g and a, g have the same sign.
Therefore, V(ay g, a1,0, 2,0, 41,05 ao,0) = 2. Since V{as 4, @33, 422, 41,1, do,a)
= 2, then N = 0 by {A1.7). However it is impossible that N < 0. Hence N = 0.
This completes the proof of Lemma A2.2. Q.E.D.

Next show that there exists oy such that [? - 44 <0& oe (0, a). Calculate

I — 44 = olah(a) + 4% 8" 1v"]
where
Wa)=(ag +r+ 282+ 4,6"(m’ - ufB ",

It can be verified that A assumes a global minimum at ¢*, where

o*=—r - 2¢'8'fv" and h(a*) = 48'(rv' —wB" " < 0.

LEMMA A2.3. There exists oy > max (0, o*) such that
[?-44A <025 €10, a().
ProoF. Foroe€ (0, ), [? —4A <0
h(o) < —4r2' B'/(av").

We briefly call the right-hand side of this inequality RHS (a) and point out the
following properties:
(1) RHS (o) > 0 Yo € (0, o), lim,,q RHS {0} = <, lim,,. RHS (o} = 0,
(2) RHS (o) is strictly decreasing, strictly convex in (0, «).
Since k(o) is quadratic, there exists at least one positive solution denoted oy, to

hioy) = —4?‘2‘0"3'}"(0'111';).

We show that oy is unique. Uniqueness is clear when ¢* = 0. When ¢* > 0, it
suffices to show that #{(0) = 0. However, one can vc;ify that 4(0) is decreasing in
r so that by Assumption 1

R(0) < B(0)], - = 48" v’ — wu") /"t = 0,
It is clear that &) > ¢*. This completes the proof of Lemma A2.3. Q.E.D.
REMARK. The above proof has shown that I' > 0 & ¢ > o*. Thus ~

[2—44=0>T>0.
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Part 4. The properties of 7. One can directly verify the properties of o stated
in Theorem I.

FPart 5. The regularity condition. The regularity condition for local stability
requires that the projection of the stable manifold of the linearized system onto the
(x, 7) plane coincide with that plane {(see Scheinkman 1976, p. 20, for example).
This condition allows aone to deduce the local stability of both the system (3.2)
through (3.6) and its linearization. Since the ecigenvectors corresponding to the
negative eigenvalues of J span the stable manifold, the regularity condition can be
specified via these eigenvectors. Denote the negative eigenvalues of J by 8, and
612, and the corresponding eigenvectors by ¥' = (y1(8p), ... , v (807, The
regularity condition is the following.

ReGULARITY. The following 2 X 2 matrix is nonsingular:
yi(812) vi(022)
[}’5(912) )’5(322)1'
With matrix J, one can verify that this is equivalent to
813 % 057 &k # ky(by (A2.2)) © I'! — 44 # 0( by (A2.3))
<o # g (by Lemma A2.3).

Therefore the regularity condition is satisfied if and only if & # o. This completes
part 3 and the proof of Theorem I.

Part 6. The consumption function. Let 8p(i = 1, 2) be the two stable roots of
the system and ¥* = (y,(8), - , y5s{82))7 the corresponding eigenvectors of J.
The stable manifold is characterized by

n|51 exp (8121)
[2(2) = 2%, «v, {8} = ¢*, x(0) —x*]7 = (¥}, ¥
§3 exp (81)

where 5, and s, are constants which, under the repularity condition, are uniquely
determined by the initial condition {z(0}, x{0)}. Thus optimal consumption can be
expressed as a function of (z(0), x(0)). This permits derivation of

dcfax=1(r— @2)(r— 822 (r + o) and dcfdz = (912 + )02 + o) [a(r + a)].

Obviously #¢/3x > 0 and hence consumption is normal. Also, we can show that
acfaz > 0 using (A2.2):

dcldz >0 (B +o)(8n +a)>0
Sor+ o)+ kiky —olr + o)k + k) >0
Solr+o)’+A—alr+ol>0
S (rt+o)r+ 208 — auvB’t>0,

which is true by Assumption 1.
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Section 3. Proofs for Section 5. We proceed in three stages: 1. Describe the
dynamic system in Section 5 and show that on the equilibrium path, s, # 0 if the
path is cyclical (see the discussion at the end of Section 5). 2. Prove local stability
of the system. 3. Prove Theorem 2.

Part 1. The dynamic system. As in the analysis of the consumer’s maximization
problem (P) from Section 3, g obeys the law of motion (4.8). Since m = (1 —
8pelg = (1 — 8)elg™?, (4.8) and (5.3) imply

1
(A1) cle=r+vy—g——(p—r).
K

Alsa k= 1/8 — 1 (let v— 0 in (4.12)). The dynamic system consists of (4.8), (A3.1),
(3.5), the appropriate forms of (3.2), (3.4) and (3.5) with initial conditions and
convergence to the steady state.
Let w = ¢ — ¢* ~ (¢*/g*®) (g — ¢*) and «* = 0. The linearized system is
(A3.2) (%, &, &, ¢, 4, %)7
=J(Z_Z*9 4’ _4)*, W _&J*, i'b_ "“’*s q_q*a x_x‘b}f,

where J is 2 6 X 6 matrix;

- 0 T 0 adzig O
o8’ r 0 0 0 0
0 0 0 0 -z G
7= |uvp g’ 0 r+a 0 o)
qB 0 qlr + a) 0 o
(1—8)y (I1-38)y
0 0 —8gq'"°% 0 —&zig® r

All wvariables in the matrix take their steady state values and asterisks are
suppressed.

Before examining local stability, we show that m, # 0 if the equilibrium path is
cyclical. Since x and z are the only exogenous state variables, the equilibrium
values of g and f can be expressed by means of functions g(x, z) and f{x, z). Since
a one-dimensional differential equation cannot produce cycles, we deduce from
(3.5) that £, # 0.

Intratemporal optimality and Cobb-Douglas atemporal utility imply that f =
8cq' 4. Combining this relation with the analogue of (4.8) and equation {A3.1)
yields .

ff=r+y-q+38 '4q
It follows from f, # 0O that g, # 0. Finally, i/m = y — g + r implies m, # 0.

Part 2. Local stability. We show . that J has the proper number of stable
eigenvalues, and hence the dynamic system described above is locally stable under
a regularity condition (see Section 2 of the Appendix for a description of the
regularity condition).



82 SHOUYONG SHI AND LARRY G. EPSTEIN

LEMMA A3.1. Matrix J has two stable roots and four unstable roots.

PrROGF. Apparently, r (> 0) is an eigenvalue of J. Other eigenvalues of .J are the
roots of polynomial f(8):

(A3.3) f8)=0"—2r8*+ a:30° + a8+ a,0 + as

wherea;=r2—s,a3 =r>0,d4=8D=>0,as = —qD<0,s=alr + o)
and D = rsz /(1 — 8). (To economize on notation, we use the same notation as
in Section 2 of this Appendix.)

Routh’s criterion can be verified to show that f(9) has two stable and three
unstable roots. Q.E.D.

Part 3. The occurrence of cycling: Proof of Theorem 2. We apply Theorem
Al.2 to —fi—8) to find N, the number of roots on the nonnegative real line { f{8)
is given in ¢(A3.3)). The dynamic system is cyclical if N = 0 and noncyclical if N =
2. The first two rows of the algorithm in Theorem A1.2 are

]-s 2?’, az, —a3, 4y, —4as
—2r, —2a,, 3ay, —4day, Sas, 0.

Thatis, ass =1 >0, a59 = —as > 0; 444 = —2r < 0and ayg = 5a5 < 0.
Further calculation by (A1.6) shows that a3 3 < 0, and a3 > 0. Thus (AL7)
implies

(A3.4) N =1+ Viaso, a20, @10, do0) — Vlass, a2z, ap1, aep)-

The signs of a;4 and a;; (j = 0, 1, 2) are in general ambiguous, so we proceed
under additional assumptions on the parameters o and v.

(1) The dependence of N on o: Let o0 — «, one can show that ay 3 > 0, a5 ¢ < 0,
a;; > 0and g 4 > 0. Thus N = 2 by {A3.4), Next we show that N = 0 when
a— 0. If ¢ — 0, (Al.6) implies aq4 > 0 and

sgn{a; 1) = sgn (SgD/r + 16(8Dir)Ys — 258D),
sgn(a, () = sgn {4(8D)* + ¢gD[8D(3rs + 108D/r)
+ gD(358D/? — 35 — (5/r)3gDi2) ]},
sgn (&) = sgn {gD[68D — 25qD/(2r)] + 2r(8D) 2.

Ifg=rd thenasy > 0,4, <0,a;9 < 0and hence N = 0 by (A}.4). Let ¢
< r8. Onecanshow thata; g =2 0> a; > 0.Ifa, o > 0 then N = 0 by (A3.4);
if @, o = 0, then (A1.6) implies aq g = —a7,9 < 0 and again N = 0. The only case
leftis @, ¢ < 0. However, a; o <0 & g > 2r8/5 5 a3, > 0. As a result, dy >
0 (see Theorem Al.2 for the calculation of d4) and ag9 = d4 a19 —420 < 0.
Again N = 0 by (A3.4). That is, the system is cyclical when o — 0.

2) The dependence on y: The parameter y enters the a’s in (A3.4) only through the
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steady state valueof g (= r + v). If y— ® (g — =), then 4,2 > 0, 4, ;| < 0 and
a10<Ohence N=0.Ify— —r(g— 0), thena;; >0, a59 < 0 and

sgn (ayq) = sgn [88D(3 + 5s/r?) — 37 + 125/rY)],
sgn (@;;) = sgn [(48D — s(28D/r* = s(1 + 4s/r?)/i4)],
sgn (ay9) = sgn {(48D — sH[40(5D/r)?
— FIED(12s Y — 135/P% — 3) — #3520 + 45D

If 46D — 52 < 0,ie,o> o (see Theorem 2 far the definition of 0(3)), then as g
<0, a9p > 0 and hence N = 2. Therefore, in the region o € (6, ), the system
is ¢yclical if ¥y — o« and noncyclical if y — —r.
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