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John H. Cochrane and Lars Peter Hansen 
UNIVERSITY OF CHICAGO, DEPARTMENT OF ECONOMICS 
AND NBER 

Asset Pricing Explorations 
for Macroeconomics 

1. Introduction and Overview 
Asset market data are often ignored in evaluating macroeconomic mod- 
els, and aggregate quantity data are often avoided in empirical investiga- 
tions of asset market returns. While there may be short-term benefits 
to proceeding along separate lines, we argue that security market data 
are among the most sensitive and, hence, attractive proving grounds 
for models of the aggregate economy. 

An important strand of research on economic fluctuation uses models 
without frictions to explain the movements of aggregate quantities (e.g., 
Kydland and Prescott, 1982; Long and Plosser, 1983). Historically, asset 
market data have played little, if any, role in assessing the performance 
of these models. This habit is surprising. The models center on intertem- 

poral decisions, and asset prices provide information about intertempo- 
ral marginal rates of substitution and transformation. Hence, asset 
market data should be valuable in assessing alternative model specifica- 
tions. Once the basic point that equilibrium models can explain particu- 
lar quantity correlations has been made, one would expect extensive 
use of price data in general and asset price data in particular to sort 

among the many specifications of preferences and technology that give 
roughly similar predictions for quantity correlations. 

It is sometimes argued that successful models connecting real quanti- 
ties to security market data may have to feature frictions, such as trans- 
actions costs, imperfect markets, liquidity or borrowing constraints, etc. 
(For an articulation of this view, see Mehra and Prescott, 1985). If, how- 
ever, marginal rates of substitution are disconnected from asset returns 
because of frictions, why should one still expect marginal rates of substi- 
tution to line up with marginal rates of transformation? If market fric- 
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tions are necessary to understand asset price data, they have potentially 
serious implications for the quantity predictions of business cycle 
models. 

Perhaps the most convincing evidence for our view is that an array 
of researchers have studied new utility functions in an effort to address 
the dramatic failure of simple log or power utility models to account for 
basic features of asset pricing data. Although this research was not 

explicitly motivated by an effort to match correlations among aggregate 
quantities, the proposed changes in utility functions might substantially 
alter important dynamic properties of the resulting models, including 
measures of the welfare effects of interventions or policy experiments. 

Not only can security data be informative for macroeconomic model- 

ing, but macroeconomic modeling should be also valuable in interpret- 
ing the cross-sectional and time-series behavior of asset returns. A large 
body of empirical work on asset pricing aims simply at reducing asset 
valuation to the pricing of a relatively small number of "factors," with- 
out explicit reference to the fundamental sources of risk. While these 

dimensionality-reduction exercises can be quite useful in some contexts, 
it is difficult, if not impossible, to evaluate the significance of apparent 
asset-pricing anomalies without specifying an underlying valuation 
model that ties asset prices to fundamental features of the underlying 
economic environment, that is, without using some dynamic economic 
model. For example, the predictability of returns is only an anomaly 
given evidence that this predictability is at odds with the times series 
behavior of marginal rates of substitution or transformation. Clearly, 
documentation that expected returns on some assets vary over time 
"because" the expected return on the market or some factor portfolio 
varies over time fails to address this central issue. 

As emphasized by Hansen and Richard (1987), stochastic discount fac- 
tors provide a convenient vehicle for summarizing the implications of 

dynamic economic models for security market pricing. Alternative mod- 
els can imply differing stochastic discount factors. A primary aim of this 

paper is to characterize the properties of the discount factors that are 
consistent with the behavior of asset market payoffs and prices. Such 
characterizations are useful for a variety of reasons. First, they provide 
a common set of diagnostics for a rich class of models, including new 
models that might be developed in the future. Second, they allow one to 
assess readily the information content of new financial data sets without 
recomputing a test of each candidate valuation model. Finally, they 
provide a general way of assessing the magnitude of asset-pricing puz- 
zles. As emphasized by Fama (1970, 1991), almost all of the empirical 
work in finance devoted to the documentation of apparently anomalous 
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behavior of security market payoffs and prices proceeds, implicitly or 

explicitly, within the context of particular asset pricing models. Charac- 
terizations of stochastic discount factors that are consistent with poten- 
tially anomalous security market data provide a more flexible way of 

understanding and interpreting the empirical findings. 
The remainder of this paper is organized as follows. We survey Han- 

sen and Jagannathan's (1991) methods for finding feasible regions for 
means and standard deviations of stochastic discount factors. We then 
extend these characterizations by exploring additional features of dis- 
count factors implied by security market data. For instance, uncondi- 
tional volatility in discount factors can be attributed to either average 
conditional volatility or to variability in conditional means. We provide 
a characterization of this tradeoff as implied by security market data. 
We also quantify the sense in which candidate discount factors (implied 
by specific models) must be more volatile when they are less correlated 
with security market returns. We then apply these characterizations to 
reexamine a variety of stochastic discount factor models that have been 

proposed in the literature. Taken together, these exercises constitute 
Sections 2 and 3 of our paper. 

In Section 4 we follow He and Modest (1991) and Luttmer (1991) and 

investigate the effects of market frictions on the implications of asset 
market data for analogs to stochastic discount factors. He and Modest 
(1991) and Luttmer (1991) have considered a variety of frictions such as 
short-sale constraints, bid/ask spreads or transactions costs, and bor- 

rowing constraints. Not surprisingly, these market imperfections tend 
to loosen the link between asset returns and marginal rates of substitu- 
tion and transformation. However, they do not eliminate this link, and 
asset returns still provide useful information for dynamic economic 
models. We focus exclusively on borrowing constraints because of the 
attention these imperfections have received in the macroeconomics liter- 
ature and because of their potential importance in welfare analyses. 

2. Interpreting Asset Market Data using the Frictionless 
Market Paradigm 
To assess the implications of asset market data for economic models 
and to discuss asset pricing anomalies, one needs some conceptual 
framework or paradigm. The frictionless market paradigm is by far the 
most commonly used framework, because it provides a conceptually 
simple and convenient benchmark. Of course, it is easy to be critical of 
frictionless markets. Several remarks come to mind under the heading, 
"the real world is complicated." Obviously, asset markets do not func- 
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tion exactly as described by this paradigm. At some level of inspection, 
market frictions such as transaction costs, short sale, and borrowing 
constraints must be important. Later in this essay, we will have more 
to say about market frictions. But a better understanding of the implica- 
tions of asset market data viewed through the frictionless markets para- 
digm is a valuable (and perhaps necessary) precursor to assessing the 
importance of financial market imperfections. 

2.1 STOCHASTIC DISCOUNT FACTORS 

Many frictionless-market empirical analyses are conducted with the ad- 
ditional straitjacket of tightly specified models, featuring consumers that 
aggregate to known, simple utility functions. Among other things, ag- 
gregation typically requires that consumers engage in a substantial de- 
gree of risk pooling. Decisive empirical evidence obtained within this 
straitjacket is easily misconstrued as evidence against the frictionless- 
market paradigm itself. The points of this subsection are: (1) to empha- 
size that, as long as there are no arbitrage opportunities, we can always 
interpret asset market data through the frictionless-market paradigm; 
and (2) to show that the observable implications of frictionless-market 
asset pricing models can be conveniently understood by characterizing 
the stochastic discount factors through which such models generate asset 
price predictions. 

We begin by developing the frictionless-markets paradigm in a now 
and then economy.' Trading in securities markets takes place in the now 
time period, and payoffs to holding these securities are received in a 
subsequent then time period. A payoff to a security is a random variable 
or equivalently a bundle of contingent claims in the then time period. 
Consumers/investors in this economy can form portfolios of securities, 
without transactions costs, short sale constraints, or other impediments 
to trade. 

The Principle of No-Arbitrage follows when consumers are not satiated 
in the then time period. Because consumers always want more of the 
numeraire good, any portfolio with a payoff that is always nonnegative 
and sometimes positive must have a positive price. Equivalently, any 
claim contingent on an event that might occur must have a positive 
price. 

The Principle of No-Arbitrage implies that alternative ways of con- 
structing the same payoff must have the same cost or price, as long as 
there is a nontrivial, nonnegative portfolio payoff. Thus, the Principle 

1. Our formulation closely follows the formulations of Ross (1976), Harrison and Kreps 
(1979), Kreps (1981), Hansen and Richard (1987), and Clark (1990). 
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of No-Arbitrage implies that each portfolio payoff must have a unique 
price, that is, we obtain the Law of One Price. 

Consumers/investors can purchase a claim to a linear combination of 

any two security market payoffs by simply purchasing the correspond- 
ing linear combination of the securities. The unique assignment of prices 
to portfolio payoffs must inherit this linearity. Thus, we can think of 
asset pricing in arbitrage-free frictionless-markets as a linear pricing func- 
tional that maps the space of asset payoffs (then) into prices (now) on the 
real line. 

How can we think about testing the frictionless-market paradigm? We 
could look for two portfolios with the same payoffs, but different prices 
(i.e., we could test the Law of One Price), or we could look for a portfolio 
with a nonnegative and nontrivial payoff with a nonpositive price (i.e., 
test the Principle of No-Arbitrage). The detection of pure arbitrage oppor- 
tunities is seldom the aim of empirical work on asset prices, and conse- 

quently empirical researchers typically look at security market data sets 
that do not imply direct violations of the Principle of No-Arbitrage. For 
such data sets, we can always use the frictionless markets paradigm as 
an interpretive device. Equivalently, we will be able to find a stochastic 
discount factor that will correctly price all of the observed portfolio 
payoffs. 

As an example, suppose we use data on n primitive payoffs in an 
econometric analysis. For example, we may use data on the measured 

one-period returns on n assets. Stack these payoffs into an n-dimen- 
sional random vector x with a finite second moment. A common space 
P of payoffs to use in econometric analyses of such assets consists of 

constant-weighted portfolios of the primitive payoffs: 

P = p: p = c x for some c E n}, (2.1) 

where c is a vector of portfolio weights. Let the vector q denote the 
prices of the original payoff vector x. When all of the original security 
payoffs are converted into returns, q is a vector of ones. We can then 
construct a candidate price of a portfolio payoff, say c ? x, from prices 
of the original n payoffs via: 

rr(C x) = c q. (2.2) 

The Law of One Price is simply the implication that this price assign- 
ment depends only on the payoff c ? x itself and not necessarily on the 
choice of c used to construct this payoff. If E(xx') is nonsingular, there 
is only one portfolio weight that achieves any attainable payoff. Thus, 
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the Law of One Price is trivially satisfied. Clearly, the use of formula 
(2.2) to assign prices to payoffs implies that the pricing functional Tr will 
be linear on P. 

A stochastic discount factor is any random variable y that correctly repre- 
sents the prices of payoffs via the formula: 

?r(p) = E(yp) for all p in P. (2.3) 

The name is motivated by the fact that y is used to discount payoffs 
differently in alternative states of the world. Using the familiar covari- 
ance decomposition: cov(y, p) = E(yp) - E(y)E(p), equation (2.3) is 
equivalent to 

Tr(p) = E(y)E(p) + cov(y, p). (2.4) 

The first term on the right side of equation (2.4) uses E(y) to discount 
the mean payoff, and the second term adjusts for the riskiness of the 
payoff. 

The Riesz Representation Theorem guarantees the existence of a sto- 
chastic discount factor as long as the Law of One Price is satisfied. For 
our example, it is easy to construct a stochastic discount factor y: 

y* = x'E(xx')-lq. (2.5) 

This is not the only discount factor, however. For instance, choose any 
random variable e for which E(ex) = 0. Then y* + e also is a stochastic 
discount factor. Define Q to be the family of all stochastic discount 
factors, that is, the family of all random variables with finite second 
moments that satisfy (2.3). 

One theoretical device for generating a stochastic discount factor from 
an underlying model is to use the implied intertemporal marginal rate 
of substitution of consumers in the model economy. For instance, this 
is the device used in consumption-based or utility-based asset pricing 
theory. With a time-separable power utility function, the consumers' 
first-order conditions imply that equation (2.3) is satisfied for a "candi- 
date" stochastic discount factor given by the marginal rate of substitu- 
tion m: 

u' (Cthen) 
m = p = P(Cthen/cnow)- (2.6) 

U'(Cnow) 
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where u(c) = [cl' - 1]/(1 - -y) is the one-period power utility function, 
y - 0, and 3 > 0 is a subjective discount factor. Hence, if accurate 

consumption data are available, the observable implications of this 
model specification are that m is in the set QJ of admissible stochastic 
discount factors. 

Utility-based models typically generate strictly positive candidates for 
stochastic discount factors. For example, in equation (2.6), u'(Cnow) > 0 
and u'(cthen) > 0 imply m > 0. More generally, Kreps (1981) and Clark 
(1990) show that under the Principle of No-Arbitrage, there will gener- 
ally exist a strictly positive stochastic discount factor. With this in mind, 
we let ` + + denote the subset of J consisting of all stochastic discount 
factors that are strictly positive. Any of these discount factors could be 
used to assign arbitrage-free prices to derivative claims formed from pay- 
offs in P or formed from other payoffs traded by consumers. Equiva- 
lently, they could be used to assign positive prices to any nontrivial 

event-contingent claim in the then time period. Therefore, utility-based 
models often lead to a model-based way of constructing a strictly posi- 
tive candidate m in the set 9 + +. 

The stochastic discount factor given in equation (2.5) might well be 

negative with positive probability depending on the covariance struc- 
ture of the primitive payoffs and might not be in 09 + +. Similarly, incom- 
plete market models such as the familiar Capital Asset Pricing Model of 
Sharpe (1964), Lintner (1965), and Mossin (1968) and linear factor mod- 
els as suggested by Ross (1976) and Connor (1984) imply candidate 
stochastic discount factors that need not be strictly positive. The Capital 
Asset Pricing Model implies a candidate discount factor that is equal to 
a constant minus a scale multiple of the return on the wealth portfolio. 
More generally, exact linear factor pricing models imply stochastic dis- 
count factors that are linear combinations of the/an underlying collec- 
tion of "factors," but they do not restrict these linear combinations to 
be positive. Hence, whether `J or the smaller set 9 + is the relevant 

family of stochastic discount factors depends on the economic models 

being studied. 

2.2 MOMENT IMPLICATIONS FOR DISCOUNT FACTORS 

A large body of empirical work in asset pricing specifies and tests mod- 
els with candidate stochastic discount factors. Given a candidate m, a 
chi-square test is formed using the sample counterpart to the moment 
restriction: 

E(mx - q) = 0. (2.7) 
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For models that imply a prespecified parametric family of such m's, one 
conducts the test by minimizing the hypothetical chi-square value and 

adjusting the degrees of freedom according to the number of estimated 

parameters (e.g., see Brown and Gibbons, 1985; Cochrane, 1992a; Ep- 
stein and Zin, 1991; Hansen, 1982; Hansen and Singleton, 1982; MacKin- 

lay and Richardson, 1991). 
This approach has been partially successful to date. However, statisti- 

cal measures of fit such as a chi-square test statistic may not provide 
the most useful guide to the modifications that will reduce pricing or 
other specification errors. At times, the parametric approach looks like 
a fishing expedition without a well-articulated strategy for finding the 

promising fishing holes. Also, application of the minimum chi-square 
approach to estimation and inference sometimes focuses too much at- 
tention on whether a model is perfectly specified and not enough atten- 
tion on assessing model performance. 

Hansen and Jagannathan (1991) suggested a complementary empiri- 
cal approach: Instead of proposing alternative parametric models and 

testing them, begin first by characterizing the set (J or Q + + of stochastic 
discount factors consistent with asset pricing data and divorced from a 

parametric specification. 
To review the simplest characterizations obtained by Hansen and Ja- 

gannathan (1991), we study a regression of a discount factor y onto a 
constant and the vector x of asset payoffs observed by an econome- 
trician 

y = a + x'b + e, (2.8) 

where a is a constant term, b is a vector of slope coefficients, and e is the 

regression error. The standard least-squares formula for the regression 
coefficients gives: 

b [cov(x, x)]-lcov(x, y) (2.9) 

a Ey - Ex'b. 

Without direct data on the stochastic discount factor y, these regression 
coefficients cannot be estimated in the usual fashion. Instead, we can 

exploit the fact that y must be a valid discount factor to infer them. The 

pricing relation q = E(yx) implies 

cov(x, y) = q - E(y)E(x). (2.10) 
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Substituting equation (2.10) into equation (2.9), we obtain 

b = [cov(x, x)]-1 [q - E(y)E(x)]. (2.11) 

Hence, asset information alone can be used to construct the regression 
coefficients b, given E(y). 

Because the right-hand side variables of a regression are uncorrelated 
with residuals by construction, 

var(y) = var(x'b) + var(e). (2.12) 

It follows that var(x'b)1/2 gives a lower bound on the standard deviation 
of y. Thus, we have a lower bound on the standard deviation of all 
admissible stochastic discount factors y in J with the prespecified mean, 
Ey. 

In our construction of a volatility bound, we considered the typical 
case in which no linear combination of the vector x of asset payoffs used 
in an econometric analysis is identically equal to one, i.e., there is no 
real risk-free interest rate. As a consequence, the price of a unit payoff 
is not known, and Ey cannot be inferred from the asset market data. 
Instead, we must calculate the lower bound on the standard deviation 
of y for each possible value of the mean. This computation leads to the 
lower envelope of the set of means and standard deviations of admissi- 
ble discount factors (in J), which we denote yS. 

2.3 ASSET PRICING PUZZLES 

Feasible regions for mean-standard deviation pairs of stochastic dis- 
count factors can be used to summarize asset pricing anomalies. Figure 1 
plots two such regions. The regions were constructed using quarterly 
data on the real value-weighted NYSE portfolio and the 3-month Trea- 
sury-bill returns, from 1947 to 1990. In computing the boundaries of 
these regions, we approximated population moments using their sam- 
ple counterparts. To justify this use of time series data to approximate 
population moments, we presume that the now-and-then economy is 
replicated in a stationary fashion, at least asymptotically (e.g., see Han- 
sen and Richard 1987). 

The cup-shaped region in Figure 1 shows how much volatility in 
stochastic discount factors is implied by two returns often used in em- 
pirical analyses of the utility-based intertemporal asset pricing model. 
The minimum standard deviation of a discount factor y is about 0.25. 
Because the mean discount factor is near one, and because discount 
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Figure 1 BOUND ON THE STANDARD DEVIATION OF STOCHASTIC 
DISCOUNT FACTORS AND EQUITY PREMIUM PUZZLE 

0.35 - 

0.30 - 
7=50 

A 

0.25 - 

o y=40 
.: A 

>' 0.20 - 
a) 
-D y=30 
'o A 

0.15 - 

0 
.C.) y=20 
() A 

0.10 - 

y=10 

0.05 - 

7=0 
0.00 I A , 

0.85 0.90 0.95 1.00 

Mean 

Solid line: Minimum standard deviation of discount factors y that satisfy 1 = E(yx) for given E(y), 
where x = value-weighted NYSE return and Treasury Bill return. Quarterly data, 1947-1990. 

Dashed line: Bound calculated from excess return, value-weighted NYSE return minus T-bill return. 

Triangles: Mean and standard deviation of marginal rate of substitution generated by power utility, 
using quarterly nondurable and services consumption per capita, 

mt+, = (Ct+l/Ct)-u - 

factors have the units of inverse gross returns, this is a substantial stan- 
dard deviation. Figure 1 also shows us that the mean discount factor 

(equal to the average of the inverse of the risk-free return if there is 
one) must be very near 0.998, unless we are willing to accept a dramati- 

cally higher standard deviation of the discount factor. 
The boundary of the second region is depicted by the dashed line in 

Figure 1. This boundary was computed using the excess return of stocks 
over bonds. Hence, it was constructed with a single security payoff with 
a zero price. To differentiate this region from the initial return region, 
we will refer to it as the Equity-Premium Region 3. In general, the bound- 
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ary of a feasible region for means and standard deviations constructed 
from a vector z of excess returns is a ray from the origin with slope 
[Ez'cov(z, z)-1Ez]"2 for positive values of Ey. This slope is just the "price 
of risk" or the asymptotic slope of the mean-standard deviation for the 
asset market returns used in an econometric analysis. When z is a scalar, 
as in our illustration, the formula for the slope collapses to the ratio of 
the absolute value of the mean excess return to its standard deviation. 
Of course, the Equity-Premium Region 2 always contains the original 
return region Y; however, as illustrated in Figure 1, the boundaries 
touch at one point. 

It is not readily apparent that the region Y (or for that matter 2) is 

"puzzling." Clearly, there exist stochastic discount factors that correctly 
price both securities on average. It only makes sense to use the term 

puzzle once we have narrowed the class of asset valuation models. In 
other words, we cannot say that the volatility bounds for stochastic dis- 
count factors are excessively large without knowing how large the vola- 

tility is of candidate discount factors implied by particular models. 
For a point of reference, and as a diagnostic for a commonly used 

model, we computed sample means and standard deviations implied 
by representative consumer models with power utility functions. The 

triangles in Figure 1 give the mean-standard deviation pair for a candi- 
date discount factor m constructed using formula (2.6) and aggregate 
quarterly per capita nondurable and services consumption data from 
1947 to 1990. These calculations assume that B = 1 and the indicated 
range of the curvature coefficients y. Alternative choices of P can be 
inferred by making proportional shifts in the means and standard devia- 
tions. 

Our statement of the Equity-Premium Puzzle is that curvature coeffi- 
cients y of at least 40 are required to generate the variance of discount 
factors implied by the equity-premium region 2 (for the triangles to lie 
over the dashed line). Furthermore, even if we are willing to admit 
curvature coefficients of 40 or more, the resulting mean-standard devia- 
tion pairs still do not lie in the cup because of their low means (the 
candidates have means Em < .85). Recall that Em is the predicted aver- 
age price of a unit payoff. When the riskless return is equal to this 
average, the riskfree rate is in excess of 17% per quarter. In effect, there 
is more than just an Equity-Premium Puzzle, but also a Riskfree-Rate Puzzle 
(see also Weil, 1989).2 

2. Kocherlakota (1990) argued that increasing the subjective discount factor to values 
greater than one is not implausible and can be consistent with existence of equilibrium 
in a growing economy with infinitely lived consumers. Increasing 3 helps to "resolve" 
the Riskfree-Rate Puzzle but not the Equity-Premium Puzzle. 
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These statements of the puzzles do not involve the specific assump- 
tions of the Mehra and Prescott (1985) model, including a two-state 
Markov approximation to the distribution of consumption growth, an 
endowment economy, the identification of a stock index as a claim to 

aggregate consumption, use of Treasury bills as a proxy for a real risk- 
free bond, etc. They are not specific to this particular set of assets,3 nor 
to postwar data. Thus, our formulation suggests that attempts to resolve 
the puzzle by allowing levered equity, accounting for the monetary 
mispricing of Treasury bills, or permitting a more general Markov struc- 
ture for the endowment shock are not likely to be productive. 

2.4 STATISTICAL INFERENCES 

In our discussion so far, we have treated sample moments as if they 
were equal to the underlying population moments. That is, we ab- 
stracted from sampling error. It is interesting to know whether the Equi- 
ty-Premium Puzzle and the Riskfree-Rate Puzzle still have content once we 
account for sampling error. To answer this question, we use statistical 
methods proposed by Hansen, Heaton, and Jagannathan (1992). In the 

nonparametric spirit of this exercise, we use large sample central limit 

approximations in making probability assessments. 
To test whether sampling error can account for the violation of the 

volatility bounds, it is convenient to derive equivalent second moment 
bounds. Note that the orthogonality of the regression residual to the 

right-hand side variables in the regression implies that the random vari- 
able a + b'x must satisfy the pricing formula (2.3) and, hence, is a 
stochastic discount factor in J. For a prespecified mean Ey, a + b'x also 
must assign a price Ey to a unit payoff. Combining these equations, we 
have that 

E 1 [1x] a- Ey . (2.13) 
lX_ -b q 

By premultiplying equation (2.13) by the row vector [a, b'], we obtain 
the following formula for the second moment of a + x'b: 

E[(a + x'b)2] =[Eyq'] b (2.14) 

3. Formally, one gets roughly similar bounds even if one does not use Treasury-bill data, 
because many other sets of assets imply about the same slope of the mean-standard 
deviation frontier. 
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This formula turns out to be quite useful for econometric inference, 
because it says that the second moment bound is just a linear combina- 
tion of the regression coefficients. 

Given a candidate discount factor m, we combine relations (2.13) and 
(2.14) into a composite set of moment restrictions: 

E{1 [ x] 
a 

- } =0 (2.15) 

E{[mq'] _m2 0.O 

For instance, m might be constructed via the power utility formula (2.6). 
The first set of moment implications requires that a + x'b have mean 
Em and correctly price the payoffs q. The last moment inequality re- 

quires that the candidate m satisfies the second moment bound associ- 
ated with Em. In contrast to the moment restrictions (2.7), the 
restrictions (2.15) do not require the candidate m to price assets correctly 
on average. 

As is clear from our previous discussion, the parameters a and b 
can be identified and estimated using only the moment conditions in 

equation (2.13). We use such estimates to approximate the asymptotic 
covariance matrix for the composite moment relations in (2.15) and to 
account for sampling variability when testing inequality (2.14).45 Be- 
cause of the one-sided nature of the restriction, the probability values 
of the resulting test statistics are one-half those of a chi-square random 
variable with one degree of freedom. 

In Table 1 we present results for the Volatility Test just described. We 

report test statistics obtained using the two original returns (value- 
weighted NYSE and Treasury bill) and using the single excess return. 
The first group of test statistics pertains to the original region YS, while 

4. This strategy is very similar to one proposed by Burnside (1991) and Cecchetti, Lam, 
and Mark (1992). 

5. From Hansen (1982) we know that the asymptotic covariance matrix can be interpreted 
as a spectral density matrix at frequency zero. In our empirical analysis, we followed 
Newey and West (1987) and used Bartlett weights to estimate this density matrix. To 
implement the volatility test, we transformed the sample counterparts to the moment 
conditions using a lower triangular decomposition of an estimate of the inverse of the 
asymptotic covariance matrix. The last transformed moment condition should hold with 
an inequality. We obtain our test statistic by minimizing the quadratic form in the 
transformed moment conditions by choice of a and b where the last moment condition 
only contributes to the sample criterion when the inequality is violated. 
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Table 1 VOLATILITY TESTS USING T-BILL AND VALUE-WEIGHTED 
RETURNS 

Returns Excess returns 

y Statistic p-value Statistic p-value 

1 2.19 .069 2.68 .051 
5 4.93 .013 2.43 .060 

10 4.90 .013 1.47 .113 
15 4.76 .014 0.75 .193 
20 4.61 .016 0.36 .274 
30 4.30 .019 0.05 .412 
40 3.99 .023 0.00 .500 
50 3.66 .027 0.00 .500 

The Volatility Test is a test of the moment conditions 

E{[x] [1 lx [] L = and E{[m q'] [] - m2} 

where m = (Cthen/C,ow)-y and x = value-weighted NYSE and T-bill returns. The asymptotic covariance 
matrix was estimated by weighting autocovariance j with the Bartlett weight (T- [j|)/T for Ijl < T and 
adding. The results reported are for T = 10.6 

the second group pertains to the equity premium region 2. As is evident 
from Table 1, sampling error does not appear to be the explanation for 
the puzzles displayed in Figure 1.7 In comparing the two columns of test 
statistics in Table 1, recall that raising y increases volatility of the implied 
discount factors but has an adverse effect on the mean. The adverse 
mean effect is evident in test statistics based on the two returns but 
absent in the test statistics constructed using only the excess return. 

Interestingly, the smallest probability value for the return-based tests 
occurs at y = 1. 

Table 2 reports a chi-square test of the pricing relation (2.7). We in- 

6. The magnitude of the test statistics turned out to be sensitive to the choice of T. We 
also tried values of T = 5, 15, and 20. In the case of y = 1, the test statistics range from 
1.63 to 2.72 when both returns were used and from 2.21 to 2.79 when the single excess 
return was used. In the case of y = 50, the test statistics ranged from 4.63 to 2.69 when 
both returns were used. Overall, the test based on both returns turned out to be more 
sensitive to the choice of T as might be expected because of the serial dependence in 
the real T-bill return. 

7. When m is constant, the limiting distribution no longer applies because the only solu- 
tion to the moment conditions is a = m and b = 0. Hence, for m's with very low 
variation (values of y near zero), the performance of the volatility test statistic might 
be poor. 
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clude this Pricing-Error Test for the sake of comparison and to empha- 
size that volatility bounds are not a substitute for directly testing the 

pricing implications of a model. It is necessary that a correctly specified 
asset pricing model satisfy the bounds, but not sufficient. The point of 
the Volatility Tests is to assess whether the volatility bounds are robust 
to sampling error. For this particular data set, the two sets of test statis- 
tics seem to convey very similar messages, although the probability 
values tend to be smaller for the Pricing-Error Tests. 

2.5 INCORPORATING POSITIVITY 

As we discussed previously, the Principle of No-Arbitrage implies the 
existence of a strictly positive stochastic discount factor. Furthermore, 
utility-based candidate discount factors are strictly positive by construc- 
tion. For these reasons, it is interesting to look at volatility bounds for 
positive stochastic discount factors (or, more conveniently, for nonnega- 
tive stochastic discount factors). Unfortunately, we can no longer appeal 
to least-squares regression theory to derive these bounds. However, 
there is a useful representation result that can be applied instead. As 

long as (rr, P) satisfies the Principle of No-Arbitrage, Hansen and Jagan- 
nathan (1991) showed that there exists a payoff p* in P such that 

rT(p) = E[max{p*, O}p] for all p in P. (2.16) 

Table 2 PRICING-ERROR TESTS USING T-BILL AND VALUE-WEIGHTED 
RETURNS 

Returns Excess returns 

X2(2) p-value X2(1) p-value 

1 17.65 <.001 10.30 .001 
5 58.20 <.001 5.51 .002 

10 62.92 <.001 6.83 .009 
15 61.87 <.001 4.38 .036 
20 59.97 <.001 2.79 .094 
30 55.61 <.001 1.26 .262 
40 51.04 <.001 0.66 .417 
50 46.46 <.001 0.38 .537 

The Pricing-Error Test is a test of the moment conditions 

E(mx) = q 

where m = (cthen/now,)- and x = value-weighted NYSE and T-bill returns. We used the sample 
covariance matrix as an estimate of the asymptotic covariance matrix. 



130 . COCHRANE & HANSEN 

Thus, the pricing functional nT can always be represented using an op- 
tion on a payoff in P with a zero strike price. Clearly, max{p*, 0} is a 
nonnegative random variable. Hansen and Jagannathan (1991) verified 
that this also has the smallest second moment among nonnegative sto- 
chastic discount factors. 

This representation leads to a characterization of the feasible region, 
9y+, of mean-standard deviations for nonnegative discount factors. To 
apply it, we add a unit payoff to P and make up alternative prices for 
that payoff. Specifying a price for a unit payoff is equivalent to assigning 
a mean to y. This assignment is not arbitrary because the arbitrage 
bounds from the literature on options pricing impose limits on the range 
of possible prices of a unit payoff consistent with the absence of arbi- 
trage opportunities (see Hansen and Jagannathan, 1991, for details). For 
each price assignment within these bounds, we find the option on a 
payoff in the augmented space that satisfies the counterpart to equation 
(2.16). The lower envelope of 9 + is constructed by computing the stan- 
dard deviations of each such option. 

Figure 2 gives a comparison of the boundaries of regions 9f and Y+, 
without and with positivity, constructed using the real value-weighted 
and T-bill returns as in Figure 2. Notice that the boundaries agree for 
ranges of Ey for which the volatility bounds are small. Once the volatil- 
ity bounds get larger than about 0.7, the boundaries start to depart. 
This pattern is easy to explain: as the standard deviation of y, whose 
mean is near one, rises past 0.7, the frontier y's in % are more likely to 
be negative in some states of the world and, hence, omitted from 9 + +. 
As one might therefore expect, this pattern is quite common across data 
sets on various assets. Hence, exploiting nonnegativity tends to be an 
important refinement when the original volatility bounds (for 0i) are 
already quite substantial. 

The vertical lines in Figure 2 are used to denote the upper and lower 
arbitrage bounds on the mean of y. By eliminating discount factors that 
are negative in some states of the world, we gain considerably more 
information about the means of the remaining nonnegative discount 
factors. Where before we could only quantify a dramatic increase in the 
standard deviation of discount factors associated with mean discount 
factors far from 0.998, now we can rule out mean discount factors below 
about 0.98 or above 1.03. In this way, positivity makes the Riskfree-Rate 
Puzzle more dramatic. 

Finally, for this particular data set, the corresponding excess return 
region S + coincides with the original excess return region 3. Conse- 
quently, positivity has no impact on the Equity-Premium Puzzle. 
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2.6 LENGTHENING THE INVESTMENT HORIZON 

Next we explore the sensitivity of our findings to the "investment hori- 
zon" between the now and then periods. In the calculations reported so 
far, we used quarterly data with returns measured over the quarter. 
Hence, the investment horizon coincided with the sampling interval. 
We now expand the investment horizon to be 1 year, 2 years, and 5 
years. We have (at least) three reasons for doing this. First, other empiri- 
cal investigations have focused on annual data to incorporate prewar 
data (e.g., see Grossman and Shiller, 1981; Hansen and Jagannathan, 
1991; Mehra and Prescott, 1985). By including annual investment hori- 
zons, we will facilitate comparisons to that previous work. Second, us- 

ing widely separated quarterly consumption data to measure a 

long-horizon marginal rate of substitution may mitigate time- 
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aggregation biases. Finally, to help think about solutions to asset pricing 
puzzles, it may be useful to assess whether these puzzles are less pro- 
nounced at longer horizons. 

Figure 3 reports the regions for 1-, 2-, and 5-year horizons along with 
the previously reported quarterly horizon. The asset return data are 
compounded quarterly value-weighted NYSE and T-bill returns. All re- 
gions include the positivity restriction. 

Discount factors at different investment horizons are different objects, 
so we expect the feasible regions for means and standard deviations to 
be altered as we change horizon. A two-period stochastic discount factor 
is a product of two consecutive one-period discount factors, so we might 
expect the mean of a two-period discount factor to be lower and its 
variance to be higher than that of a one-period discount factor. As seen 
in Figure 4, the bottom of the mean-standard deviation frontier shifts 
up and to the left as we increase the investment horizon. While the 

volatility implications of the long-horizon returns are more dramatic, 
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there is less information about the mean of longer horizon discount 
factors, as reflected by the horizontal expansion of the regions. 

In Figure 4 we report the two extreme boundaries (quarterly and 
five-year investment horizons) together with the mean-standard devia- 
tion pairs for the candidate discount factors constructed using power 
utility functions. Figure 4 extends the range of the power y beyond the 
values explored in Figure 1. Note that there now is a value of the power 
at which the quarterly candidates enter the region. However, the power 
is extreme, y - 210. One possible reason for entertaining large values 
of y follows from the work of Constantinides and Duffie (1991). They 
gave an illustration of a model with incomplete markets in which the 

Figure 4 VOLATILITY BOUNDS AND LONG-HORIZON MARGINAL RATES 
OF SUBSTITUTION 

Oin 
CA 

0 O~ 

C3 

o 

._ 

a) 

c: 

'D. 
c 
0 r> 
+, 

4u 

o 

5 

o 
00.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 

Mean 

Solid lines: Volatility bounds calculated from one-quarter and 5-year real value-weighted NYSE and 
T-bill returns, as in Figure 3. 

Lines with triangles: Mean and standard deviation of marginal rates of substitution generated by power 
utility, 

mt+k = (Ct+k/ct)- , 

k = 1 (quarterly), k = 4 (1 year), k = 8 (2 year) and k = 20 (5 year). Symbols plotted at y increments 
of 10. 

ul) 
d - 



134 * COCHRANE & HANSEN 

implied power for the aggregate intertemporal marginal rate of substitu- 
tion is a mongrel of the underlying preference parameter and the param- 
eters governing heterogeneity in the endowments across individuals. 
In their illustration, large values of y need not reflect high values of the 
curvature parameters in the individual preferences. (See also Mankiw, 
1986, and Scheinkman, 1989, for similar observations.) 

Raising consumption ratios to extremely large negative powers results 
in large measures of marginal rates of substitution when the consump- 
tion ratios are less than one. In effect, large values of y magnify the 
effect of "bad events" for the purposes of asset pricing (see also Rietz, 
1988). The mean of the power utility candidates (triangles) starts to 
increase when these negative growth rate observations start to dominate 
the sample moments of m. Because the sample moments are dominated 

by a few data points, the calculations for large values of y may reflect 

very poor estimates of the population moments. For this reason, inter- 

preting our large y results may be treacherous. 
As the investment horizon increases, the Equity-Premium and Risk- 

free-Rate Puzzles do not vanish, but instead appear to be more pro- 
nounced. For instance, larger values of y are required to enter the 
feasible regions. This occurs because there are fewer and fewer con- 

sumption growth observations less than one at longer horizons.8 In the 
extreme case of a 5-year investment horizon, the mean discount factor 

always declines as y increases, and the standard deviation never ap- 
proaches the bounds. In this case, there are no 5-year consumption 
ratios that are less than one in our sample. Of course, the sample infor- 
mation for the longer investment horizons is likely to be quite weak. 

In comparing 1-year investment horizon results to those of Hansen 
and Jagannathan (1991), the postwar data used in constructing Figure 
5 looks more puzzling because of the absence of the depression data 

points with pronounced negative consumption growth rates. These ex- 
tra prewar data points dramatically increase the standard deviation of 
the model-based candidate discount factors. The turning point for the 
1-year "triangle" curve occurs at y = 15, and the 1-year discount factors 
enter the region at -y 30 when prewar data is included. 

2.7 USING CONDITIONAL INFORMATION TO DECOMPOSE 
UNCONDITIONAL VARIATION 

The predictability of returns is another apparent puzzle that has re- 
ceived a lot of attention in the finance literature (see Fama, 1991, for 
a review). For this reason, we follow Hansen and Richard (1987) by 

8. The number of negative consumption growth rate observations in our sample is 33 for 
a one-quarter, 20 for a 1-year, 7 for a 2-year, and 0 for a 5-year horizon. 
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introducing formally conditioning information into our setup. Let '6 de- 
note a conditioning information set available to economic agents and to 
econometricians in the now period, which naturally includes the prices 
of securities.9 Asset prices must obey 

q = E(yxl|I). (2.17) 

There are a variety of ways in which we can exploit conditioning 
information in W6. For instance, conditioning information can be used to 

sharpen the unconditional volatility bounds. Alternatively, conditioning 
information can be used to split the unconditional variance into two 

components: the average conditional variance and the variance of the 
conditional mean: 

var(y) = E[var(yJl6)] + var[E(yj 6)]. (2.18) 

If returns were unpredictable, all unconditional variance would be due 
to conditional variance, and none to variation in the conditional mean. 

Knowledge of the split between the two components would help us to 
understand better the information in asset market data about condi- 
tional moments of the stochastic discount factors. 

Asset market data turns out to contain information about how to 
make this split in variance. In light of relation (2.18), this split also has 

implications for the unconditional variance of stochastic discount factors 

implied by the conditional moments of asset returns. We describe briefly 
how to form feasible regions for the pair {E[var(y I6)], var[E(y l6)]}. More 
details are provided in Appendix 1. First, we use the fact that any y on 
the {E[var(yJlC)], var[E(yl1S)]} frontier must also be on the conditional 
(on '6) mean-standard deviation frontier for y. If not, one could lower 
conditional variance with no effect on conditional mean. Gallant, Han- 
sen, and Tauchen (1990) provided a two-(conditional) dimensional char- 
acterization of the latter frontier. Using their characterization, we find 
the frontier for {E[var(y I 6)], var[E(y l6)]} by solving a constrained mini- 
mization problem: choose a y on the conditional mean-standard devia- 
tion frontier to minimize E[var(y l')] given var[E(yl'6)]. 

To compute such frontiers, we need a model of the first and second 
conditional moments of asset returns and the candidates. Our model is 
formed from regressions of the log returns and log consumption ratios 
on the value-weighted dividend/price ratio, the lagged log T-bill return, 
and the term premium. For simplicity, we assume the conditional covar- 
iance matrix for log returns and log consumption growth is constant, 

9. The analysis permits consumers to observe more information than econometricians. 
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and estimate it as the residual covariance matrix in the forecasting re- 

gression. We then infer the first two conditional moments of the levels 
of consumption growth and returns assuming lognormality. (Incorpo- 
rating more sophisticated models of conditional heteroskedasticity or 
more flexible laws of motion might lead to valuable improvements on 
these calculations.) 

Figure 5 presents our results. Notice that most of the unconditional 
variance of discount factors comes from conditional variance; only a 
narrow range of variation in the conditional mean discount factor is 
consistent with the data. This makes sense, because the real return on 

Treasury-bills is nearly riskless and is nearly constant over time. Also, 
notice that the unconditional standard deviation bound for discount 

Figure 5 CONDITIONAL MOMENT BOUNDS 
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factors is about .38, which is higher than the bound of about .24 that we 
encountered previously. The reason for the increase in the bound is that 
we have now incorporated conditioning information embedded in the 
conditional first and second moments of returns to sharpen the uncon- 
ditional volatility bounds as in Gallant, Hansen, and Tauchen (1990). 

Figure 5 also includes the corresponding conditioning information 

decomposition for power utility functions. For low values of the power 
y, the candidate discount factors have about the right predictability of 
conditional means, but only slight predictability is required (or allowed). 
However, these discount factors do not have enough conditional volatil- 

ity on average. As the curvature rises, the conditional variation in- 
creases, but the unconditional volatility attributed to the conditional 
mean becomes too extreme. Thus, the models predict dramatically too 
much variation in the price of a unit payoff (the reciprocal of the riskfree 
return). 

The solid square in Figure 5 gives the volatility split for the reciprocal 
of the value-weighted return on the NYSE. This candidate m can be 

justified under an assumption of logarithmic utility where the value- 

weighted return is used as a measure of the return on the wealth portfo- 
lio (see Rubinstein, 1976, and Epstein and Zin, 1991). This candidate 
also suffers from too much variation in the conditional mean and too 
little conditional variation (on average). 

2.8 OTHER PUZZLES 

Despite the widespread attention the Equity-Premium Puzzle has re- 
ceived, other data sets can imply much sharper restrictions on the family 
of feasible stochastic discount factors. Hansen and Jagannathan (1991) 
found dramatic bounds implied by quarterly holding-period returns on 

Treasury-bills of varying maturity. Knez (1991) found a Default-Premium 
Puzzle, sharp bounds implied by a data set that includes corporate and 

government bounds of similar maturity. In both cases, the apparent 
presence of near arbitrage opportunities-highly correlated returns 
with similar standard deviations and slightly different means-makes 
the bounds dramatic, especially when positivity is incorporated. Bekaert 
and Hodrick (1992) found sharp volatility bounds for stochastic discount 
factors implied by security payoffs and prices constructed from data on 

foreign exchange and international equity markets. Cochrane (1992b) 
constructed volatility bounds implied by a linearized present value 
model. In addition, these techniques can elegantly address many empir- 
ical questions relating to traditional factor pricing models in finance. For 

example, Snow (1991) recast the Small Firm Effect as set of implications 
for a variety of moments of stochastic discount factors. 
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3. Other Candidate Discount Factors 
The equity premium and related puzzles has given rise to an industry of 
"solutions." One class of "solutions" preserves the frictionless-markets 
framework, but modifies preferences or technology to produce the ap- 
propriate mean and standard deviation of discount factors. Space does 
not allow us a complete review of all the preferences that have been 

proposed, but these may give some of the flavor. 

3.1 HABIT PERSISTENCE 

Constantinides (1990), Heaton (1991), and Ferson and Constantinides 
(1991) have looked at implications of models in which consumers' pref- 
erences display habit persistence. In these preference orderings, a high 
value of consumption yesterday raises the marginal utility of consump- 
tion today. For instance, the time t period utility function now depends 
on ct - Oct_1 instead of just ct where 0 is positive. As a result of the 
positive value of 0, a given series on consumption is transformed into 
a more volatile marginal rate of substitution series. The marginal rate 
of substitution for this utility function can be expressed as 

m /t (Act)- (ACt+l - 0) 7 - _O(Act+l)-? Et+l (ACt+2 -- 0)-Y ?,. = PtAc,)- 
- 

(3.1) 
(Act - O)-' - p0(ACt)-Y Et(ACt+1 - 0)- 

( 

where Act = ct/lct_ and Et is the expectation operator conditioned on 
time t information. 

Notice that formula (3.1) requires the evaluation of some conditional 
expectations. To get a rough idea of how the resulting stochastic dis- 
count factor behaves, we made the simplifying assumption that con- 
sumption growth rates are independent and identically distributed over 
time. This allowed to us to approximate conditional expectations by 
their unconditional counterparts. For a more serious investigation of the 
properties of the implied stochastic discount factors, a reader should 
consult Gallant, Hansen, and Tauchen (1990) and Heaton (1991). 
Among other things, Heaton's analysis includes an explicit model of 
consumption growth at finer than quarterly frequencies and addresses 
the issue of time-aggregation biases. 

Figure 6 includes calculations of the mean and standard deviation of 
this candidate discount factor, using habit parameters 0 = 0.5 and 0 = 
0.6. Figure 6 contains two curves indexed by the choice of 0. As Figure 
6 shows, the effect of habit persistence is to raise both the mean and the 
standard deviation of the discount factor for a given power coefficient y. 
In comparing models with habit persistence to the time separable mod- 
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els, notice that the two habit persistence curves in Figure 6 enter the 
feasible region Y at considerably lower power parameters, y = 12.5 and 
y = 7.5 respectively. Hence, Figure 6 demonstrates how habit- 

persistence can be used as a substitute for extremely large curvature 

parameters as a device for increasing the volatility of candidate discount 
factors. Ferson and Constantinides (1991) entertained considerably 
larger values of the habit persistence parameter 0. While these values 
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of 0 further increase the volatility of the candidate m, values of 0 close 
to one can lead to the consumers being "satiated" in numeraire con- 

sumption good, i.e., the numerator and denominator terms of (3.1) can 
be negative (see Heaton, 1991, for some examples). 

Abel (1990) argued for a form of habit persistence he calls "catch up 
with the Joneses" utility, in which the time t utility function of an indi- 
vidual consumer depends on the ratio ct/c_l and ct_ is aggregate con- 

sumption in the previous time period. Individual consumers treat the 
aggregate parametrically, so they presume that their own consumption 
behavior cannot influence the aggregate. The idea is that you only care 
how well you do relative to everyone else. In the equilibrium c' = ct, 
this specification of preferences leads to a stochastic discount factor: 

Ct+1 t1 
mt+ ( 

/t (+ ) (3.2) 
ct / C\t-i/ 

Note that the conditional expectations that enter equation (3.1) are ab- 
sent from equation (3.2). The marginal rate of substitution enters the 
feasible region at a value of y around 40. Because Em now always in- 
creases with y, the difference between the equity-premium region 3 
and the original return region y is less critical in assessing the model. 
In other words, while there still seems to be an Equity-Premium Puzzle, 
the Riskfree-Rate Puzzle is much less evident with this preference speci- 
fication. 

3.2 NONEXPECTED UTILITY 

Epstein and Zin (1991) used a recursive utility formulation that relaxes 
the usual assumption of separability across states (see also Weil, 1989). 
An interesting feature of their specification is that the intertemporal 
marginal rates of substitution depend on powers of consumption ratios 
in adjacent time periods and the return on the wealth portfolio. The 
formula for the resulting discount factor is 

+ =( - w,t+ (3.3) 

where rw,+1 is the gross return on the wealth portfolio, P is positive, p 
is unrestricted, y has the same sign as p + 1 and p < y. When p is 
minus one, y is zero. (We modified the notation used by Epstein and 
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Zin so that distinct parameters are used to capture the separate contribu- 
tions of the consumption growth and the return on the wealth port- 
folio.) The reason that market-wealth return enters in equation (3.3) is 
that Epstein and Zin wanted an "observable" proxy for the innovation 
in the equilibrium utility index. They derived such a proxy by "in- 

verting" the pricing formula for market-wealth return. 

Figure 7 presents the means and standard deviations of the Epstein- 
Zin (1991) marginal rates of substitution for several different parameter 
configurations. Following Epstein and Zin, we measured the return on 
the wealth portfolio by the value-weighted NYSE return. In all cases we 
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set 3 = 1 as a benchmark. As before, it is easy to see how changes in 
3 alter the mean-standard deviation pair. Figure 8 gives four curves 

depicted by solid lines and indexed by four different values of p: p = 
- 3, -1, 0, and 3. Movements along each curve corresponds to changes 
in y. When p = -1, the curve is reduced to a single point, and the 

resulting m is just the reciprocal of the return on the wealth portfolio. 
When p = 0, the curve becomes the power utility curve depicted in 

previous figures. 
As is evident from this picture, variability in the candidate m is en- 

hanced by increasing p1, that is, having the market enter with higher 
(absolute) powers. Changing y has a relatively greater impact on the 
mean discount factor than its standard deviation. Thus, most of the 

ability of this model to generate volatile discount factors comes from 
the contribution of the proxy for the wealth return, rather than from 
the contribution of consumption. 

3.3 PRODUCTION-BASED MODELS 

One can also build models of stochastic discount factors by exploiting 
intertemporal production functions. To this end, Cochrane (1991, 1992a) 
and Braun (1991) showed how to construct a time series of the (mar- 
ginal) physical returns to investment from production data given a spec- 
ification of an intertemporal production function and its parameters. In 
a frictionless-markets setting, these investment returns should obey the 
same pricing relations as returns constructed from security market data. 
One could therefore check whether physical returns to investment are 

priced compatibly with security market returns. However, our earlier 
comments about the flexibility of the frictionless-markets paradigm also 

apply to this question of pricing compatibility. Thus, it does not seem 
to us to be fruitful to devise a formal "test" of pricing compatibility 
without narrowing the class of valuation models. 

Investment returns can be used more judiciously in the context of 

particular valuation models that express a stochastic discount factor as 
a function of investment returns. For instance, Cochrane (1991) con- 
structed and studied a broadly based measure of the aggregate return 
to investment derived from an adjustment cost model of the aggregate 
intertemporal production technology. Such a return might provide a 
more comprehensive measure of the return to the wealth portfolio than 
the value-weighted return on the NYSE. It could be used to replace the 
market return in a test of the Epstein and Zin (1991) model or in tests 
of the traditional linear capital asset pricing model. 

Alternatively, Cochrane (1992a) constructed an exact factor pricing 
model using returns to residential and nonresidential fixed investments 
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as factors. By design factor models provide additional flexibility for satis- 

fying pricing relations because of the freedom to select factor loadings. 
For instance, the factor loadings and technology parameters in Coch- 
rane's model can be chosen to exactly satisfy the sample moment condi- 
tions for the value-weighted NYSE and T-bill returns used in this section 
and, hence, to satisfy the volatility bounds. However, because of the 
selection of factor loadings, diagnostics focusing on only the first two 
moments of stochastic discount factors that we study in this section may 
not be particularly illuminating for assessing the performance of factor 
models. 

3.4 CORRELATION OF DISCOUNT FACTORS WITH ASSET RETURNS 

As we saw in Section 2, stochastic discount factors on the mean- 
standard deviation frontier (on the frontier of the region U) are linear 
combinations of the payoff vector x and a unit payoff. In terms of the 
least squares regression (2.8), they are given by a + b'x. Thus, the least 
volatile stochastic discount factors are perfectly correlated with a payoff 
of a portfolio of the assets used in an econometric analysis. In other 
words, the R2 obtained by regressing a frontier y onto x and a constant is 
one. Candidate discount factors implied by alternative economic models 
often produce regression R2 that are substantially less than one. 

Rearranging the definition of R2, we obtain 

var(y) = [var(x'b)]/R2. (3.4) 

This formula can be used to construct iso-R2 contours that lie above the 

boundary of S. These contours are obtained by magnifying the original 
standard deviation bounds by the square root of the reciprocal of the 
R2. If a candidate discount factor is not perfectly correlated with the 
asset payoff vector x, it must be more volatile than the bounds derived 
in Section 2. 

Rather than report regression R2's for alternative candidate discount 
factors and trace out the corresponding iso-R2 contours, it is more conve- 
nient to study the volatility of the least squares projection of m onto x 
and a constant. It follows from the analysis in Section 2 that if a candi- 
date m is a valid discount factor, then so is its least-squares projection 
onto x and a constant. Hence, the mean and standard deviation of this 
projection should satisfy the original bounds derived in Section 2. 
Clearly the standard deviation of this projection can be low, even for 
highly volatile candidate discount factors, if the candidates are poorly 
correlated with asset returns. 

Figure 8 presents results obtained by initially regressing a variety of 



144 * COCHRANE & HANSEN 

Figure 8. VOLATILITY BOUNDS, WITH STANDARD DEVIATION OF 
REGRESSIONS OF CANDIDATE DISCOUNT FACTORS ON 
EXCESS RETURN 
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candidate discount factors onto a constant and the excess return of 
stocks over bonds. Hence, the feasible region of interest is the excess 
return region 2. The figure reports the means and standard deviations 
of the fitted projections.10 

As is evident from the figure, the power utility and habit persistence 
candidate discount factors are poorly correlated with the excess return 

10. We could have regressed the candidates onto a constant and both returns. This would 
increase variability of the projection but shrink the feasible region. A version of Figure 
8 constructed with two returns looks somewhat different than Figure 8. We present 
the excess return version because it was more "puzzling." 
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and, hence, their volatility is substantially reduced by the initial regres- 
sion. In contrast, versions of the Epstein-Zin discount factor retain a 

high degree of variability once correlation with the excess return is taken 
into account. This is not surprising because these discount factors are 
constructed using (a nonlinear function of) the value-weighted NYSE 
return to proxy for the return on the wealth portfolio. (We have not 

attempted to account for sampling error. As before, we are not propos- 
ing these calculations as substitutes for formal statistical testing.) 

The Epstein-Zin calculations are likely to be misleading because the 

value-weighted return on the NYSE may behave quite differently than 
true wealth portfolio returns. For instance, the aggregate investment 
return constructed in Cochrane (1991) is less correlated with the excess 
return of stocks over bonds. Furthermore, recall that the market return 
enters the Epstein-Zin candidate discount factors as a proxy for the 
innovation in the recursive utility index valuated at the equilibrium con- 
sumption process. Hence, an alternative strategy to construct the im- 
plied stochastic discount factor is to use an estimated law of motion for 
consumption to infer the innovation. This approach would avoid the 
implicit assumption that consumption coincides with dividends, and it 
is also likely to result in lower correlation with the excess return."1 

The inclusion of the R2 dimension to the stochastic discount factor 
characterization adds an extra challenge to proponents of market incom- 
pleteness as a source of discount rate variability. Incomplete markets 

may still be frictionless. In this case, each consumer's marginal rate of 
substitution mi should still satisfy the asset pricing equation q = E(mix), 
so each consumer's marginal rate of substitution should satisfy the vola- 
tility bounds. Thus, incomplete market models must generate individ- 
ual consumption growth series that are not only highly volatile, but that 
are also better correlated with asset payoffs than is aggregate consump- 
tion growth. But a model whose main assumption is that individual 
incomes cannot be insured in formal security markets seems designed 
to generate individual consumption variability that is uncorrelated with 

payoffs on traded assets.12 

4. Implications for Models with Borrowing Constraints 
In this section we consider the implications of asset market data for 
models in which some consumers face borrowing constraints. Our dis- 

11. This second approach could also be used to provide an information-based decomposi- 
tion of the unconditional volatility described in Section 2.7 applied to the Epstein-Zin 
(1991) model. 

12. It is possible to create such models. For example, Constantinides and Duffie (1992) 
showed how to construct examples of incomplete market economies in which individ- 
ual intertemporal marginal rates of substitution are valid stochastic discount factors. 
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cussion illustrates how market frictions can loosen the link between asset 
markets and measured intertemporal marginal rates of substitution 
based on aggregate data. Of course, borrowing constraints are only one 
form of market friction that might be quantitatively important. Other 
frictions include incomplete markets, proportional transactions costs 
such as bid-ask spreads, and budget constraint kinks due to taxation. 
We have already commented on models with incomplete markets, and 
we will comment briefly on transactions costs in our concluding subsec- 
tion. One reason we focus on models with borrowing constraints is that, 
in contrast to some other forms of transactions costs, their quantitative 
impact is not likely to be confined to high-frequency movements in the 
time series data. Quite the contrary, borrowing constraints, if impor- 
tant, should distort the pricing links to intertemporal marginal rates of 
substitution at low frequencies as well. 

4.1 ISSUES IN MODEL FORMULATION 

It is straightforward to see how an individual's Euler equation is modified 

by a borrowing constraint: The Euler equality is replaced by an Euler 

inequality, reflecting the presence of nonnegative Kuhn-Tucker multi- 

pliers on the constraints. More thought is required to relate asset prices 
to economic aggregates, because aggregate consumption sums over indi- 
viduals who are constrained and others who are not. 

For this reason, we sketch a simple model with borrowing constraints. 
The setup is taken from Townsend (1980) and is a simple version of one 
used by Bewley (1980). There are two consumer types, A and B. Their 
endowments of a nonstorable good oscillate between chigh and clow. Con- 
sumers of type A begin with Chigh and B consumers begin with clow. 
There is no uncertainty and no variation in the aggregate endowment. 
Consumers have the same time-separable power utility function. 

In the absence of impediments to communication, agents would bor- 
row and lend to achieve constant (Pareto optimal) consumption profiles. 
We suppose instead that consumers are not allowed to borrow. Town- 
send (1980) gave a "turnpike version" of this model to justify formally 
the imposition of borrowing constraints through a physical impediment 
to communication. 

In the presence of borrowing constraints, there is no trade, and the 

equilibrium interest rates are set so that the unconstrained consumers are 
content to consume their endowments. In other words, the price q of 
the riskless bond is given by 

q = mu = 
P(Clow/high) - , (4.1) 
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where mu is the intertemporal marginal rate of substitution of the uncon- 
strained consumer. Clearly, mu is greater than the intertemporal mar- 

ginal rate of substitution of the constrained consumer, that is, is greater 
than P(Chigh/Clow)-' 

We want to know what happens when an econometrician uses aggre- 
gate data to measure the intertemporal marginal rate of substitution. In 
this simple illustration, there is no aggregate variation so that the mea- 
sured aggregate intertemporal marginal rate of substitution, denoted 
ma, is just p. Consequently, the econometrician constructs a candidate 
that is less than the discount factor: 

mu > ma = p. (4.2) 

This downward bias in ma is inherited from the distortion in the inter- 

temporal marginal rate of substitution of the constrained consumers. 
The candidate stochastic discount factor based on aggregate data implies 
a lower price for a one-period bond and, hence, a higher interest rate. 
While this "incorrect" use of aggregate data leads to a "pricing error," 
the price is biased in a predictable direction. 

Next we modify this setup by introducing in turn two alternative 
means for consumers to substitute consumption over time: valued-fiat 

money and a storage technology. Consider first a version of this econ- 
omy with valued-fiat money. If the consumers with low endowments 
have money, they will exchange this money for goods as long as mu in 
(4.1) measured at the pretrade endowment position is greater than one. 
Townsend (1980) showed that in a setup with a constant (noninterven- 
tionist) money supply, the equilibrium consumption sequences of each 

agent still oscillate and that nonnegativity constraints on money bind 
in alternating periods. A version of equations (4.1) and (4.2) still hold 
for this economy with the appropriate alterations. In particular, the 

equilibrium q is one in Townsend's monetary economy because the real 
rate of return to holding money is zero, and clow and chigh now denote 
equilibrium rather than endowment consumption levels. The allocation 
associated with the monetary equilibrium Pareto dominates that of au- 

tarky; however, because the real return to holding money is less than 
P-~, it is still not Pareto optimal. 

A storage technology with zero depreciation leads to very similar 

implications. In such an economy, the intertemporal marginal rate of 
transformation pins down the single-period asset return, so the real 
interest rate is zero. One can thus reinterpret Townsend's monetary 
economy as one in which the equilibrium consumption oscillates be- 
cause consumers' nonnegativity constraints on storage bind every other 
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time period. Relations (4.1) and (4.2) continue to apply for q equal to 
the intertemporal marginal rate of transformation determined by the 
storage technology. 

For reasons of empirical plausibility, we are interested in observable 
implications that can accommodate much more general endowment pat- 
terns than the ones specified by the previous illustrations. For instance, 
it is potentially important to accommodate stochastic endowments that 
grow over time and stochastic technologies for transferring consump- 
tion from one period to the next. (Bewley, 1980, allowed for stochastic 
endowments in his general setup and Deaton, 1991, incorporated en- 
dowment growth into a stochastic environment.) Nevertheless, the ex- 
ample economies we discussed illustrate the following related features 
that occur more generally: (1) some consumers are up against borrowing 
constraints in equilibrium, (2) the market discount factor for pricing 
assets equals the intertemporal marginal rate of substitution of uncon- 
strained consumers, and (3) an intertemporal marginal rate of substitu- 
tion measured using aggregate data is less than or equal to the market 
discount factor and the marginal rate of substitution of unconstrained 
consumers. 

Feature (1) does not always emerge because consumers may save to 
avoid the borrowing constraint in some models. For instance, by making 
the storage technology in the previous example productive so that the 
stored good is interpreted as a capital stock, the zero interest rate impli- 
cation is avoided. If this technology is too productive (relative to - 1) or 
if the utility cost to being constrained is too severe, then the borrowing 
constraints may not bind in equilibrium (e.g., see Bewley, 1977; Deaton, 
1991; Scheinkman and Weiss, 1986). On the other hand, Deaton (1991) 
emphasized that endowment growth may make borrowing constraints 
more likely to bind in equilibrium. 

Feature (2) has led some empirical researchers to attempt to identify 
a sample of "unconstrained" consumers (e.g., see Hayashi, 1987; Man- 
kiw and Zeldes, 1991; Runkle, 1991; Zeldes, 1989) and examine asset 
pricing implications for these individuals. In line with the calculations 
reported in the previous sections, we are primarily interested in asset 
pricing implications for aggregate time series data on consumption. Fur- 
thermore, as is manifested in implication (3), the measured marginal 
rates of substitution using aggregate data should still be informative 
even though they are "contaminated" by the consumption of the con- 
strained consumers. Recall that this inequality implication results be- 
cause aggregate data combines the consumption of the constrained and 
unconstrained individuals. 

Our empirical analysis in this section focuses on implication (3): the 
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downward distortion of the measured intertemporal marginal rate of 
substitution obtained using aggregate consumption data. Not surpris- 
ingly, this implication can be obtained for much more general specifica- 
tions of economies with borrowing constraints. However, once 
uncertainty is incorporated, there are alternative ways of formalizing 
the notion of a borrowing constraint (e.g., see Hindy, 1992; Zeldes, 
1989), and we will investigate two such alternatives. 

Suppose that an individual i faces a sequence of one-period budget 
constraints of the form: 

ci + E(ypilj) = e1 (4.3) 

where ci is consumption of person i in the current time period, y is 
the market-determined stochastic discount factor for pricing one-period 
securities, pi is the payoff in the subsequent time period of securities 
purchased in the current time period, and e1 is income including an 
exogenous endowment and the security market payoff in the current 
time period. Hence, E(ypil'S) is the market value of payoff p', and the 
budget constraint says that consumption plus the value of securities 
purchased must equal an endowment plus the payoffs of securities pre- 
viously purchased. In addition, we restrict the payoff p1 to be in an 
information set ~' available in the subsequent time period. 

Following Luttmer (1991), one of the forms of a borrowing constraint 
we consider is referred to as a solvency constraint:13 

pi1 0. (4.4) 

That is, any contingent contract that includes debt in some states is 
prohibited. A solvency constraint can be motivated by the severe limits 
on communication in Townsend's (1980) turnpike setup when uncer- 
tainty is explicitly introduced.14 

A second weaker notion of a borrowing constraint is a restriction that 
the current-period value of the portfolio payoff be nonnegative: 

E(yp lC) - 0. (4.5) 

13. Our use of the term solvency constraint is different from that of Hindy (1992). For 
Hindy (1992), a solvency constraint encompasses a broad class of borrowing con- 
straints including short-sale constraints and a market-wealth constraint as special 
cases. 

14. Less severe impediments to communication have been explored by Townsend and 
Wallace (1987) and Manuelli and Sargent (1992). In their environments, private debt 
sometimes circulates in equilibrium. 
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It states that the value of the consumer's portfolio today must be nonneg- 
ative, and we will refer to it as a market-wealth constraint. It does not 

preclude p' from being negative in some states of the world. This restric- 
tion has been used by Zeldes (1989), He and Modest (1991), Hindy 
(1992), and Santos and Woodford (1992), among others, and is moti- 
vated by a restriction that a consumer is prohibited from borrowing 
against future endowments (or sometimes labor income) to support con- 

sumption today.15 
Because we are interested in arbitrage-free models, or equivalently, 

models in which all nontrivial event contingent claims have strictly posi- 
tive prices (92Pry > 0} = 1), both versions of borrowing constraints 
eliminate pure debt-contingent contracts (nontrivial choices of pi that 
are less than or equal to zero). This is the sense in which both con- 
straints eliminate pure borrowing. The market-wealth constraint is less 
restrictive because it permits pt to be negative on some nontrivial event 
as long as pi is positive on other events so that its market value is 

nonnegative. As we will see, because the solvency constraint represents 
a more severe limitation on portfolio choices, it leads to weaker empirical 
implications for marginal rates of substitution than the market-wealth 
constraint. 

To ascertain which constraint is better justified would require a more 
serious modeling endeavor that examines what impediments to commu- 
nication underlie the constraints. The solvency constraint may be prob- 
lematic because of the potential difficulty in practice of establishing 
whether a complicated security market transaction does indeed result 
in a limited liability payoff. On the other hand, the market-wealth con- 
straint may be hard to justify because it does not eliminate consumers' 

ability to engage in extreme short-selling strategies as a device for 

smoothing consumption across states in subsequent time periods. 
In many setups, borrowing constraints are imposed simultaneously 

with other forms of market incompleteness. For instance, if there is a 
small collection of underlying limited liability securities, an alternative 
more severe notion of a solvency constraint is a set of short sale con- 
straints on the individual securities. Similarly, the market wealth con- 
straint is often coupled with other forms of market incompleteness (e.g., 
see Bewley, 1977; Santos and Woodford, 1992; Scheinkman and Weiss, 
1986). 

15. Because constraint (4.5) is stated in terms of market wealth and, hence, permits pi to 
be negative with positive probability, we have implicitly ruled out security payoffs 
whose market value is ambiguous. That is, we have eliminated payoffs whose negative 
part has a market value - oc, even though it is offset by a positive part with a market 
value + o. 
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In our analysis, we will follow Luttmer (1991) and consider the case 
in which security markets are complete except for the borrowing con- 
straint. That is, consumers are permitted to write general contingent 
contracts that respect the borrowing constraint and are verifiable in the 

subsequent time period (have payoffs in s'). Consequently, we do not 
consider the potentially interesting interaction between borrowing con- 
straints and market incompleteness.16 A benefit to permitting a rich 

array of security market transactions is that we can apply an aggregation 
result of Luttmer (1991) to characterize the behavior of the intertemporal 
marginal rate of substitution constructed from aggregate time series 
data. 

4.2 OBSERVABLE IMPLICATIONS 

In the periodic endowment model discussed previously, we saw how a 

simple model with a borrowing constraint led to the implication (3) that 
the measured intertemporal marginal rate of substitution using aggre- 
gate data is less than or equal to the market discount factor. Luttmer 
(1991) showed that the same relation applies in stochastic environments 
and with a solvency constraint. 

To understand this restriction better, we briefly sketch the argument 
used by Luttmer (1991). Let C+ denote the cone of payoffs that can be 
obtained from one-period security market transactions consistent with 
the solvency constraint. The payoffs in C+ include all random variables 
that are nonnegative and in the set 1g' of information available in the 
subsequent then time period. The first-order conditions for consumer i 
facing a solvency constraint can be characterized conveniently as 

E(miplI) c E(yplI6) for all p in C+. (4.6) 

In effect, the usual Euler equality is replaced by an inequality because of 
the presence of a Kuhn-Tucker multiplier from the solvency constraint. 
Given the complete markets construction of the cone C+ and the fact 
that mi and y are in the cone, it follows that 

mi y. (4.7) 

Furthermore, Luttmer (1991) showed that, if all consumers have iden- 
tical power utility functions with a common subjective discount factor, 

16. For instance, in the incomplete markets equilibrium of Scheinkman and Weiss' (1986) 
model, even though the borrowing constraints are slack, their presence has a nontriv- 
ial impact on the competitive equilibrium consumption allocation over time and across 
consumers. 
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the intertemporal marginal rate of substitution ma inherits the down- 
ward bias of the individual intertemporal marginal rate of substitution: 

ma < y. (4.8) 

Thus, implication (3) continues to hold in this more general stochastic 
setting. 

Next we follow He and Modest (1991) in our consideration of the 
less restrictive market wealth constraint (4.5). Consumers can now form 
portfolio payoffs in addition to those in the cone C+. For instance, let 
Z denote the set of one-period security market payoffs with zero market 
prices, i.e., excess returns. Any payoff in Z clearly satisfies the market- 
wealth constraint. As emphasized by He and Modest (1991), for these 
portfolio payoffs we still obtain the usual Euler equality: 

E(m'zlj) = E(yzlj') = 0 for all z in Z. (4.9) 

Note that the payoff mi - yE(ymij')/E(y2Cfi) has a zero market price 
and, hence, is in Z. Using this payoff as z in equation (4.9), it follows 
that 

m' = iy for ti _ E(ym'i l)/E(y21C ). (4.10) 

Furthermore, equation (4.8) implies that 0 < i c 1. The random variable 
J/' captures the distortion in the marginal rate of substitution caused by 
the presence of the market-wealth constraint, and 1 - 'i can be viewed 
as the "shadow value" of the borrowing constraint in terms of consump- 
tion in the now time period. In summary, the less restrictive market- 
wealth constraint implies a more stringent implication that the 
intertemporal marginal rate of substitution is proportional to y (condi- 
tioned on '6). 

Again, a version of Luttmer's aggregation result for power utility 
functions applies. The market-wealth constraint is related to an eco- 
nomic aggregate measure of the intertemporal marginal rate of substitu- 
tion via: 

ma = iay. (4.11) 

Mimicking the usual aggregation arguments for power utility functions, 
it is straightforward to show that 

- -1/a 

:a = ^ (T)a(cc) , Ca = > c', a = -1/I, (4.12) 
- i - i 
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and ci is consumption of person i in the now time period. Hence, the 
distortion factor Ja that emerges in the aggregate relation is a geometric 
weighted average of the individual 4i's with consumption weights in 
the conditioning information set 3. Therefore, like 4i, qa is in the condi- 

tioning information set J and is between zero and one. 

4.3 RESULTS 

In Figure 9 we report the boundaries of three feasible sets of mean- 
standard deviation pairs. First we reproduce the region S+, described 
in Section 2, of mean-standard deviation pairs for nonnegative market 

Figure 9. VOLATILITY BOUNDS WITH BORROWING CONSTRAINTS 
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discount factors y. The second region, denoted 2 +, is the feasible set 
for the aggregate measures ma of intertemporal marginal rates of substi- 
tution that satisfy restriction (4.8) implied by the solvency constraint. 
The third region, denoted W +, is the feasible set for random variables 
ma that also satisfy the proportionality restriction (4.11). The regions are 
constructed using results from Luttmer (1991) and He and Modest 
(1991), and the mechanics underlying these constructions are provided 
in the next subsection. All three regions were constructed using the 
same quarterly value-weighted and T-bill return series used in many of 
our previous figures. Of course, both 3 + and M + are expanded ver- 
sions of the set Y +, and the feasible set W + is smaller than 3 + because 
it incorporates the additional proportionality restriction. 

As before, we use triangles to record the mean-standard deviation 
pairs of aggregate measures of intertemporal marginal rates of substitu- 
tion for several choices of the power - y. Abstracting from sampling 
error, values of y in the vicinity of 40 are necessary to get into the more 
restrictive market-wealth region OW+, whereas values as low as 15 en- 
ter the solvency region 2. Reducing the subjective discount factor P 
to values less than one increases the range of y's that are inside the 
respective regions. Fairly sizable curvature values are still required to 
"resolve" the Equity-Premium Puzzle for either version of a borrowing 
constraint, especially for the market-wealth constraint. However, the 
Riskfree-Rate Puzzle now disappears. 

In the case of the market-wealth constraint and say, y = 40, the 
distortion factor ECf required for (4.10) to be satisfied is on average 
about .87, which may seem implausibly large. Recall that 1 - 4i is 
shadow value of the market-wealth constraint for person i. Hence, 1 
- Eqf is a (somewhat complicated) "average" shadow value where 
averaging takes place across consumers and over states of the world. 
When y = 40, this "average" shadow value is about 0.13 for quarterly 
data. Consequently, the presence of a market-wealth constraint elimi- 
nates the Riskfree-Rate Puzzle by presuming there is a high average 
shadow value for the constraint. Subsection 4.5 below includes a related 
reservation about the solvency constraint. 

4.4 COMPUTATION 

We now describe how to compute the boundaries of the solvency region + and market-wealth region W + reported in Figure 9. As indicated 
previously, Luttmer (1991) provided a general algorithm for calculating 
the lower envelope of 2 +. The algorithm is fairly easy to describe when 
there are only two original securities, each with a limited liability. Recall 



Asset Pricing Explorations for Macroeconomics ? 155 

in our application, we used the value-weighted and T-bill returns as our 

payoffs, both of which we interpret as having limited liability. 
Let x denote a random vector formed by stacking these two returns, 

and let P+ denote the cone of limited-liability payoffs that can be con- 
structed from constant-weighted portfolios: 

P+ {p: p = c * x for c E R2, p 2 0}. (4.13) 

Any ma that is less than or equal to y will assign a price to a payoff in 
P+ that is less than or equal to its market price: 

E(map) ' E(yp) for all p in P+. (4.14) 

Because portfolio payoffs outside of P+ are sometimes negative, the 

price distortion for these payoffs is ambiguous in sign. 
Next, note that in exploring the ramifications of equation (4.14), it 

suffices to look at the two edge portfolios, say, p, and P2. Any other 
payoff in P+ is a convex combination of these edges with nonnegative 
portfolio weights. Because the original two securities have nonnegative 
payoffs, each edge has a positive portfolio weight on one of these securi- 
ties and a nonpositive weight on the other.17 We normalize these edge 
payoffs so that their price is one, that is, they are returns, and we 
number them so that 

Ep1 > Ep2. (4.15) 

It turns out the boundary of ~ + has three segments. First, there is 
a horizontal segment at r(ma) = 0 from E(ma) = 0 to E(ma) = 1/Epl. 
This segment is present because for any constant ma between zero and 
1/Epl, inequality (4.14) is satisfied for both p, and P2. Furthermore, as 
long as the constant is strictly less than 1/Ep1, the inequalities will be 
strict. When the constant is equal to 1/Ep1, (4.14) will hold with equality 
by construction for edge payoff pi. This is the point at which the second 
segment begins. 

The second segment of the boundary of 3 + coincides with a segment 

17. The payoffs we used are strictly positive for all dates in the sample. We approximated 
the edges by initially holding fixed the positive weight and adjusting the negative 
weight until the resulting portfolio payoff is zero at one sample point and positive at 
all other points. In practice, approximation of edges using the empirical distribution 
may be poor because upper and lower endpoints of these distributions may be hard 
to estimate. 
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of the boundary of feasible mean-standard deviation region YS for sto- 
chastic discount factors that correctly price p, (but not necessarily P2). 
The boundary of Yf touches the horizontal axis at the point (1/Ep1,O) 
because as was just mentioned, a constant discount factor 1/Ep1 prices 
p, correctly. Furthermore, any other frontier discount factor for YS will 
also be a frontier random variable for 2 + as long as (4.14) is satisfied 
for P2. Hence, to construct the second segment of the boundary of 2 +, 
we follow the right boundary of fi until we obtain a frontier discount 
factor that also just prices P2 correctly. 

The third segment of the boundary of 3 + coincides with a segment 
of the boundary of the region S+, of stochastic discount factors that 

price correctly all constant-weighted portfolios of value-weighted and 
T-bill returns. Such discount factors satisfy (4.14) with equality for all 
admissible payoffs.18 

Consider next the boundary of W + . This construction follows He and 
Modest (1991) and is included here for completeness. Multiplying both 
sides of (4.11) by x, taking expectations (first conditioned on ' and then 

unconditionally), we have 

E(max) = (Eqf)q , where 0 < Efa ? 1. (4.16) 

Consequently, for any ma satisfying equation (4.11), we can find a sto- 
chastic discount factor ma/Era that prices the payoffs in x correctly. 

Because the means and standard deviations of scale multiples of ran- 
dom variables simply inherit the same scaling, the link between S + and 
W + is particularly simple. Scale all of the points in SD+ by arbitrary 
numbers between zero and one, that is, for any point in S+, the ray 
from the origin to this point is in W +. Notice from Figure 9 that the 
boundary of W + has two segments. One coincides with a portion of the 
boundary of S +, and the other coincides with a portion of the boundary 
of the analogous region constructed using the excess return of stocks 
over bonds. 

4.5 USING AGGREGATES TO SHARPEN BOUNDS 
ON MARKET DISCOUNT FACTORS 

There is a different way to use the information contained in the marginal 
rates of substitution based on aggregate data in the presence of bor- 
rowing constraints. Rather than weakening the volatility implications to 

18. With more than two securities, one follows a natural generalization of the above 
procedure. One first locates the edges of the cone P+. Once they are located, one can 
use Luttmer's more general algorithm for computing the bounds with the short-sale 
constraints imposed on the edge payoffs. 
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accommodate measured marginal rates of substitution using aggregate 
data, we now use the aggregate data to sharpen the implications for 
stochastic discount factors that correctly price the asset payoffs. For in- 
stance, suppose a marginal rate of substitution ma constructed from 

aggregate data is less than or equal to the market discount factor y as 
is implied by both versions of borrowing constraints. Then ma can be 
used to sharpen volatility bounds for y and, hence, for the intertemporal 
marginal rates of substitution of unconstrained consumers. 

Calculation of the mean-standard deviation region for such discount 
factors is an easy extension of our previous analysis. In Section 2, we 
reviewed Hansen and Jagannathan's (1991) construction of least volatile 
stochastic discount factors that price assets and are greater than zero. 
Now we want discount factors that price assets and are greater than a 
given y, that is, we want y's that satisfy 

E(yx) = q and y ma. (4.17) 

As Hansen and Jagannathan (1991) find that frontier discount factors 
are the larger of some portfolio payoff a + x'b and zero, now frontier 
discount factors have the form 

fa+x'b if a + x'b > 
ma y m if a + x'b ma (4.18) 

for some two-dimensional vector b of portfolio weights and some real 
number a. A brief description of how we computed a and b in practice 
is provided in Appendix 2. 

In Figure 10 we report calculations for two different specifications of 
ma constructed using aggregate consumption data and values of y = 20 
and 35. For comparative purposes, we also include the bounds com- 
puted imposing only nonnegativity (y - 0). For values of y < 18, the 
feasible region is empty, because ma fails to satisfy the pricing inequali- 
ties (4.14). (Candidates ma with lower values of y entered the solvency 
constraint region of Figure 9. They had the same mean and standard 
deviation as a random variable that satisfied the pricing inequalities, 
but these candidates did not themselves satisfy the inequalities.) As y 
increases, the aggregate data is less informative about the feasible set 
of stochastic discount factors. 

Notice that for y = 20, the volatility bounds are at least doubled, and 
there is considerably more information about the feasible range of the 
mean of stochastic discount factors. Thus, although solvency constraints 
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loosen the implications of security market data for marginal rates of 
substitution computed from aggregate data, the data still pose a striking 
puzzle for the behavior of unconstrained consumers. Thus, even though 
models with solvency constraints weaken substantially the link between 

aggregate consumption data and asset market returns, taken together 
the consumption and asset return data still imply rather startling impli- 
cations for the intertemporal marginal rates of substitution of the uncon- 
strained consumers. 

4.6 EXTENSIONS 

Recently, there has been a variety of work in asset pricing that seems 
well suited to guide empirical analyses of other market frictions. For 
instance, Prisman (1986), Jouni and Kallal (1991), and Luttmer (1991) 

Figure 10 VOLATILITY BOUNDS FOR DISCOUNT FACTORS GREATER 
THAN A CANDIDATE 
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showed how to define a meaningful notion of the Principle of No- 

Arbitrage in the presence of transactions costs and short-sale con- 
straints. In addition, Jouni and Kallal (1991), building upon Harrison 
and Kreps (1979), Kreps (1981), and Clark (1990), established that this 
extended Principle of No-Arbitrage is equivalent to the existence of a 

counterpart to a strictly positive stochastic discount factor. He and Mod- 
est (1991) and Luttmer (1991) showed how to adapt some of the appara- 
tus described in Section 2 to accommodate these market frictions. 

While market frictions loosen the implications of asset pricing data 
for candidate discount factors, the important issues for empirical re- 
search are to assess the magnitude and direction of the alterations and 
to determine the extent to which asset pricing puzzles disappear when 
market frictions are accommodated. For example, Luttmer (1991) 
showed that by introducing bid-ask spreads into the analysis, the Term- 
Premium Puzzle implied by the holding period returns on short-term 

Treasury-bills is reduced to about same order of magnitude as the 

Equity-Premium Puzzle. 
A possible shortcoming of this approach is that the imperfections are 

imposed directly on the security markets. Although the solvency-con- 
straint model presumably could be justified in environments like Town- 
send's (1980) in which there are explicit impediments to communication, 
these impediments are extreme and cannot be used to rationalize the 
market-wealth constraint. Other restrictions on information flows and 
communication are known to have important implications for the opti- 
mal allocation of resources (e.g., see Atkeson and Lucas, 1992; Green, 
1987; Phelan and Townsend, 1991; Prescott and Townsend, 1984; Town- 
send, 1987). However, to date this literature has not provided an alter- 
native tractable vehicle for extracting information from asset market 
returns in building models of dynamic economies. 

5. Concluding Remarks 
This paper continues a line of research that seeks a better understanding 
of the implications of security market data for building dynamic eco- 
nomic models. More precisely, we have surveyed and extended a litera- 
ture that characterizes stochastic discount factors and provides 
information from asset market data about the properties of marginal 
rates of substitution and transformation. 

Our first extension was to consider the impact of the correlation of 
discount factors with asset returns. A successful discount factor must 
be either highly correlated with asset returns, or have even higher vari- 
ance than indicated by the original bounds derived in Hansen and Ja- 
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gannathan (1991). Our second extension used conditioning information 
to split the unconditional variance of discount factors into two compo- 
nents: average conditional variance and variation in conditional means. 

These two extensions refine previous characterizations of stochastic 
discount factors. Quarterly discount factors should be highly volatile 
(standard deviation at least .24 based on unconditional moments, .38 
based on conditional moments), they should have a mean of about .998, 
they should be highly correlated with asset returns or have even higher 
variance, and most of their unconditional variation must be accounted 
for by average conditional variation rather than variation of conditional 
means. These characterizations may help in the further refinement of 
frictionless representative consumer models. Alternatively, we may be 
led to consider models with market frictions. 

While market frictions loosen the implications of asset pricing data 
for candidate discount factors, the important issues for empirical re- 
search are to assess the magnitude and direction of the alterations and 
to determine the extent to which asset pricing puzzles disappear when 
market frictions are accommodated. Our analysis focused on two forms 
of frictions: solvency constraints and market-wealth constraints. These 
seemed to alleviate the puzzles to some extent. However, it appears 
that our estimated "average" shadow value of the market-wealth con- 
straint is implausibly high, and that the solvency constraint implies 
extreme volatility for the intertemporal marginal rates of substitution of 
the unconstrained consumers. 
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APPENDIX 1 
In this appendix we provide more information about our method for 

computing Figure 5. The aim is to minimize E[var(yl I)] subject to a 
constraint that var[E(ylqg)] = c for some valid positive number c. First, 
write the expected conditional variance of y as 

E[var(y I)] = E(y2) - E{[E(y I)]2}, (A.1) 

and the variance of E(ylIg) as 
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var[E(y lI)] = E[E(y| )2] - (Ey)2. (A.2) 

Then the associated Lagrangian is given by 

? = E(y2) - (1 + X)E{[E(y|S)]2} + X(Ey)2. (A.3) 

Finally, as argued in the text, use the representation of the conditional 
mean-standard deviation frontier for stochastic discount factors given 
in Gallant, Hansen, and Tauchen (1990): 

Yw = P* + we*, (A.4) 

where w E ', p* is the minimum second moment stochastic discount 
factor and e* is the error in the conditional projection of a unit payoff 
onto the vector x of payoffs used in an econometric analysis. Explicit 
formulas are given in Gallant, Hansen, and Tauchen. In solving the 
constrained minimization problem it suffices to look at discount factors 
of the form (A.4). Hence, we only need to choose w. 

To derive the first-order conditions, we follow the usual practice of 
perturbing the optimal w in any arbitrary direction in the conditioning 
information set 'S. The optimal (real) coefficient on that perturbation 
must be zero for all such directions. This results in the following first- 
order conditions for the optimization: 

E(ywe*l6) - (1 + X)E(ywJI)E(e*I)) + X(Eyw)E(e*l6) = 0. (A.5) 

Because e* is the conditional projection error of a unit payoff onto the 
vector x of payoffs, the corresponding projection is 1 - e*. Hence, e* is 
conditionally orthogonal to 1 - e*, and 

E[(e*)2 | ] = E(e*I ). (A.6) 

It follows from (A.4) and (A.6) that 

E(ywe*l ) = wE[(e*)2 1] 
= wE(e*lI). (A.7) 

Substituting equation (A.7) into equation (A.5) and dividing by E(e* IC) 
gives 

w - (1 + X)E(ywl<) + X(Eyw) = 0 (A.8) 

Solving equations (A.8) and (A.4) for w gives the solution to the 
problem. 
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APPENDIX 2 

In this appendix we briefly describe an algorithm that we used to con- 
struct the volatility bounds reported in Figure 10. The algorithm is very 
similar but not identical to one suggested by Hansen and Jagannathan 
(1992) for computing specification error bounds. 

Step 1: Transform prices so that the new pricing formula is 

E[(y - ma)x] = q where q - q - E(max). 

Step 2: Find the arbitrage bounds for pricing unit payoff with the q 
prices. 

Step 3: Augment x with a unit payoff and augment q with a corre- 
sponding ^ price of a unit payoff within the arbitrage bounds. Setting 
a ^ price for a unit payoff determines the mean of y via: 

Ey = *r(1) + Ema. 

Step 4: Find the arbitrage bounds for pricing ma using the augmented 
payoffs and prices. For each price, find the minimum norm nonnegative 
stochastic discount factor by solving the dual problem in Hansen and 
Jagannathan (1991). Note that 

E(y2) = E[(y - ma)2] + 2E[(y - ma)ma] + E[(ma)2]. 

By fixing the price assignment to ma, we fix the middle term, and the 
third term is fixed by our measure of ma. Hence, we minimize the left 
side by minimizing the first term. The dual problem in Hansen and 
Jagannathan (1991) is designed to minimize E[(y - ma)2] by choice of a 
nonnegative value of (y - ma) subject to the pricing restriction. Finally, 
minimize E(y2) by choice of the price assignment to ma. 

Notice that step 3 provides a mean and step 4 the corresponding 
second moment bound. Since the mean is fixed in step 4, we obtain a 
corresponding volatility bound. Steps 3 and 4 must be repeated for all A price assignments to a unit payoff within the arbitrage bounds. 
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