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1 Introduction

In this paper, I explore the transmission of credit conditions into the real economy. Indeed,

disturbances in the financial sector, if allowed to develop fully, could have severe negative

consequences for real activity.1 An implication of this link between credit markets and the economy is

that credit spreads—i.e., the difference between corporate and Treasury yields—should forecast real

activity. Establishing the presence of this link though is difficult because credit spreads in turn reflect

current and lagged macroeconomic information that can potentially capture predictable components

in future real activity. I use a no-arbitrage term structure model that captures the joint dynamics of

GDP, inflation, Treasury yields and credit spreads to identify what drives the relationship between

credit spreads and the real economy. I show that there is a component of credit spreads orthogonal to

macroeconomic information that indeed forecasts future real activity, lending support to the presence

of a transmission channel from borrowing conditions to the economy.

Exploring the relationship between credit spreads and future real activity can be motivated

by the “financial accelerator” theory developed by Bernanke and Gertler (1989) and Bernanke,

Gertler, and Gilchrist (1996, 1999). A key concept in this framework is the “external finance

premium,” the difference between the cost of external funds and the opportunity cost of internal

funds due to financial market frictions. A rise in this premium makes outside borrowing more costly,

reduces the borrower’s spending and production, and consequently hampers aggregate activity. The

external finance premium can fluctuate for many reasons. Changes in the premium could reflect

real productivity shocks, monetary policy shocks, or even problems in the financial sector affecting

borrowers’ balance sheets. For forecasting future output however, it is immaterial where a shock to

the external finance premium originates. The external finance premium is not directly observable.

Credit spreads are a useful proxy although they need not be driven by the exact same factors as the

external finance premium itself.

As a first step in my analysis, I use an OLS regression approach and examine the predictive

power of credit spreads for the whole term structure and rating categories ranging from AAA to B

1 In light of the recent turmoil in the financial markets, the relationship between financial instability and economic

outlook has received a lot of attention. Federal Reserve Chairman Ben Bernanke and other Federal Reserve officials

have repeatedly affirmed that the Federal Reserve Board is aware of the implications and dangers of disturbances in

the financial sector for the broader economy. See, for example, Bernanke (2007a, 2007b) and Mishkin (2007a, 2007b).
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by regressing future GDP growth on the spreads and control variables. I find that credit spreads

across the whole spectrum of rating classes and across the whole term structure have predictive

content above and beyond that contained in the term structure of Treasury yields and the history of

GDP growth and inflation.

However, not every factor that affects credit spreads needs to be related to future GDP growth.

Credit spreads could be related to GDP either through expectations of future rates, term premia,

or one factor that is related to both.2 The OLS approach is not suited for establishing the

differences between the various potential drivers of the spreads. Understanding the difference

between determinants of credit spreads and the drivers of the predictability helps learning about

the transmission mechanism from borrowing conditions to real output.

A natural framework that does allow identifying and disentangling the sources of predictive power

is a macro-finance term structure model.3 Using the model we can decompose credit spreads (and

Treasury yields) along two main dimensions. On the one hand, the spreads can be separated into

a component given by expectations about the future short rate and the term premium. On the

other hand, the spreads can be explicitly characterized as a function of the state variables in the

model. Therefore, as a second step in my analysis, I estimate a parsimonious, yet flexible model with

two observable (inflation and GDP growth) and three latent factors to capture the dynamics of the

observed macro variables, Treasury yields and corporate bond spread curves.

Having estimated the model and explicitly separated out the various components of the credit

spreads, I rerun the predictive regressions implemented in the first part of the paper using model

implied spreads and individual components as regressors. The purpose is to investigate where the

forecasting power inherent in the spreads originates from, which allows better GDP forecasts and

more efficient use of the available information.4 Namely, I am able to quantify the contributions of

2 Credit spread term premia are defined as the difference between the credit spreads calculated under the risk neutral

measure and the credit spreads calculated assuming zero prices of risk.
3 This kind of model was first introduced by Ang and Piazzesi (2003). I use the term “macro-finance term structure

model” to highlight the observable macro factors. Other authors simply use “no-arbitrage term structure model.”
4 Using only Treasury yields, Ang, Piazzesi, and Wei (2006) demonstrate that a macro-finance term structure model

leads to more efficient and accurate forecasts compared to those obtained by the standard approach using unrestricted

OLS regressions. The term structure forecasts also outperform a number of alternative predictors. Methodologically,

my paper is, to the best of my knowledge, the first to examine the predictive content of the term structure of credit
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expectations vs. term premia, and the relative importance of various factors in the model.

I find that one common “credit” factor is responsible for the incremental predictive power of credit

spreads above the information contained in the history of inflation and GDP growth. Moreover, credit

spreads across the whole term structure and for all rating classes react strongly to movements in this

factor, whereas Treasury yields are largely unaffected. Finally, the credit factor is strongly correlated

with the index of tighter loan standards from the Federal Reserve’s quarterly “Senior Loan Officer

Opinion Survey” and as such can be interpreted as a proxy for credit conditions.

Decomposing the spreads into an expectations and a term premia piece I find that both are

relevant for predicting GDP growth. However, there is some variation across rating classes; the

relative importance of the expectations piece is higher for lower grade credits. Unfortunately, knowing

the relative importance of expectations and term premia does not provide a final answer to the

question where the predictive power of the credit spreads comes from.

Separating spreads into contributions from the various factors yields more insights. I find that the

most important contributor to the forecastability is the credit factor, explaining between 50% and

100% of the forecasting power. Macro factors are important for shorter forecast horizons, whereas the

additional two factors in the model—while affecting Treasury yields and credit spreads—are largely

irrelevant for forecasting purposes. Taken together, the macro factors and the credit factor capture

virtually all predictive power inherent in the actual spreads.

The credit factor is constructed to be independent of current and past innovations in inflation and

GDP growth. The strong predictive power of the credit factor provides evidence for the existence of

a transmission channel from credit conditions to real activity. This finding is also consistent with the

financial accelerator theory since the relationship between the external finance premium and future

real activity does not depend on the origin of the shocks. The question where the shocks to the

credit factor originate should be investigated in a structural model, which is beyond the scope of this

paper. In the setup of this paper, disturbances in the financial sector could be purely exogenous or

they could be driven by additional macro factors not captured in the empirical model.

The paper is organized as follows. Section 2 reviews the relevant literature in regards to the

theoretical underpinnings why Treasury yields or credit spreads should be useful predictors of real

activity. Section 3 establishes the predictive power of the term structure of credit spreads in a

spreads in a no-arbitrage framework.
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simple regression framework. The macro-finance term structure model is introduced in Section 4

and the estimation methodology is discussed in Section 5. Section 6 presents the estimation results

and identifies the sources of the predictive power and Section 7 concludes. The Appendix contains

a detailed description of the data used in the paper, additional regression results and robustness

checks, and technical details.

2 The External Finance Premium and Real Activity

Relating fixed income asset prices to future real activity involves thinking about which quantities

should be in the center of focus: the level of interest rates such as the short rate or the difference

between yields with different levels of risk such as credit spreads. This section describes the theoretical

work that connects these ingredients with future output and provides the motivation for the empirical

setup of the paper.

2.1 The Financial Accelerator Mechanism

A central measure in the relationship between fixed income asset prices and real output is the external

finance premium, which is defined as the difference between the cost to a borrower of raising funds

externally and the opportunity cost of internal funds. Due to frictions in financial markets, the

external finance premium is generally positive. Moreover, the premium should depend inversely on

the strength of the borrower’s financial position, measured in terms of factors such as net worth,

liquidity, and current and future expected cash flows.

A higher external finance premium—or, equivalently, a deterioration in the cash flow and balance

sheet positions of a borrower—makes borrowing more costly and reduces investment and hence overall

aggregate activity, thus creating a channel through which otherwise short lived economic or monetary

policy shocks may have long-lasting effects. This framework is known as financial accelerator and

was developed by Bernanke and Gertler (1989) and Bernanke, Gertler, and Gilchrist (1996, 1999).

Although the financial accelerator effect originally refers to the increase in persistence and

amplitude of business cycles, the concept generally applies to any shock that affects borrower balance

sheets or cash flows. In particular, the framework is also useful in understanding the monetary
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policy transmission process. Bernanke and Gertler (1995) argue that monetary policy works not

only through the traditional cost-of-capital channel but also through effects similar to the financial

accelerator that make monetary policy more potent. They distinguish between two separate credit

channels. The balance sheet channel, builds on the premise that changes in interest rates affect net

worth and thus the external finance premium. As a result, the first order effects of monetary policy

actions through the cost-of-capital channel are intensified by the financial accelerator. The bank-

lending channel, works in a more subtle way as it is concerned with how monetary policy can affect

the supply of loans by banks. If bank balance sheets deteriorate or the external finance premium

rises, the supply of loans shrinks, which eventually adversely affects economic growth.

The financial accelerator and the credit channel frameworks highlight how credit market

conditions can propagate and amplify cyclical movements in the real economy or strengthen the

influence of monetary policy, respectively. In addition, Bernanke and Gertler (1990) show that

disturbances in the financial sector also have the potential to initiate cycles, which underlines the

generality of the idea that regardless of its origin, a rise in the external finance premium or a

deterioration of borrowers’ balance sheets eventually results in slower growth.

2.2 Proxies for the External Finance Premium and Forecasting Real

Activity

The external finance premium is not directly observable. Moreover, the short review in Section 2.1

indicates that the external finance premium can be affected by a variety of shocks. Empirically, risk-

free interest rates and credit spreads may react differently to those shocks. For example, an increase

in the external finance premium due to expectations of higher default rates should mainly be reflected

in widening credit spreads, not rising risk-free rates. On the other hand, a higher external finance

premium due to a positive monetary policy shock is reflected in a higher short-term interest, and not

in credit spreads.5

Because fluctuations in the external finance premium can be reflected in either risk-free interest

5 A priori, it is not obvious, how the short rate and credit spreads are linked. Morris, Neal, and Rolph (2000) provide

empirical evidence that the relationship between Treasury yields and credit spreads depends on the time horizon. In

the short run, Treasuries and credit spreads are negatively correlated because a rise in Treasury yields produces a

proportionally smaller rise in corporate bond yields, whereas in the long run, the correlation is positive.
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rates, credit spreads or both, it is sensible to investigate the empirical link between real activity and

all of them. So far, the existing empirical literature concerned with predicting GDP growth using

asset prices has focused on the term spread and, to a lesser extent, on the short rate.6 Historically,

the term spread has been a widely used and reliable predictor of economic activity, but its forecasting

power has been declining since the mid-1980s.7 However, this does not mean that the relationship

between interest rates and real activity has disappeared but simply, that it is no longer detectable in

the data. In fact, if the Federal Reserve reacts systematically and decisively to expected fluctuations

in either inflation or real output under a stabilizing monetary policy, it works to eliminate them

altogether. Boivin and Giannoni (2006) find that monetary policy has been more stabilizing since

the early-1980s, which explains the lack of predictive power of the term spread during that period.8

Empirical evidence on the performance of credit spreads as predictors of GDP on the other hand is

very scarce. The few existing studies consistently find that credit spreads are useful predictors of real

activity. At the same time, it is an open debate which particular credit spread is the best proxy for the

external finance premium. Gertler and Lown (2000) and Mody and Taylor (2004) argue that the right

measure is a long-term high yield spread and they show that it outperforms other leading indicators—

including the term spread—since the data has become available in the mid-1980s.9 Chan-Lau and

Ivaschenko (2001, 2002) on the other hand argue for the use of investment grade credit spreads and

they also find some predictive power to back up their claim. However, the existing literature fails

to explore the information content of the whole term structure and across different rating classes. It

remains unclear, whether all credit spreads have the same predictive power and, if not, which spread

should be chosen for forecasting purposes.

The remainder of the paper has two main goals. First, I fill a gap in the empirical literature

and establish the predictive power of the whole term structure of credit spreads for different rating

classes in a simple OLS regression framework as opposed to investigating the forecasting power of

6 The Treasury term spread is defined as the difference between interest rates on long and short maturity government

debt. See Stock and Watson (2003a) for a comprehensive survey.
7 See, for example, Dotsey (1998).
8 Boivin and Giannoni (2006) also provide evidence that the reduced effect of monetary policy shocks is largely due

to an increase in the Federal Reserve’s responsiveness to inflation expectations.
9 Stock and Watson (2003b) find mixed evidence for the junk bond spread as a leading indicator as it falsely predicted

a slowdown in 1998 although it still outperforms other indicators in a one-by-one comparison.

6



one arbitrary credit spread. Second, I seek to understand what drives the predictive power. This

requires decomposing the credit spreads into components that may or may not reflect the external

finance premium and thus be related to future GDP growth. To achieve this, I need to go beyond

the OLS framework and estimate a macro-finance term structure model, which allows identifying the

drivers of the credit spreads.

The macro-finance model is estimated without the underpinnings of a structural macroeconomic

model. Consequently, even though the model allows identifying latent factors that are unrelated to

observed macro variables it is not possible to pinpoint exactly what the actual causal relationships

are between the state variables in the model. However, as mentioned in Section 2.1, the financial

accelerator theory is ultimately agnostic about the source of shocks to the external finance premium.

While it may be of independent interest to better understand the shocks to the external finance

premium, I focus on the transmission mechanism from the external finance premium to real activity.

Thus, a result that links one of the drivers of the predictive power to the external finance premium

would be consistent with the financial accelerator mechanism.

3 Forecasting Regressions

This section examines the in-sample predictive content of credit spreads using OLS regressions. Over

the 1992:2–2005:4 sample period, I document the strong predictive relationship between real activity

and credit spreads across the whole term structure, even when adding contemporaneous and lagged

GDP growth and inflation, and the 5-year term spread as control variables.10

3.1 Data and Methodology

Denote the annualized log real GDP growth from t to t + k expressed at a quarterly frequency as

gt,k =
400

k
log

(
GDPt+k

GDPt

)
=

1

k

k∑
i=1

gt+i. (1)

Using this notation, gt,1 = gt+1. Furthermore, denote the credit spread for a rating class i and

maturity τ as CSi
t(τ) = yi

t(τ)− yT
t (τ), where yi

t(τ) and yT
t (τ) are the corporate and Treasury yields,

10 Some robustness checks using an extended sample period are performed in Appendix C.
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respectively. The Treasury yields used are unsmoothed Fama-Bliss zero coupon bond prices for

maturities ranging from three months up to ten years.11 Zero coupon corporate bond yields for the

same maturities and rating classes AAA, BBB and B are taken from Bloomberg. Credit spreads are

calculated as the difference between the corporate and the Treasury yields. GDP data are available

through the FRED database (Federal Reserve Bank of St. Louis). A detailed description of the data

is provided in Appendix A.

The predictive power of the credit spreads can be examined in the following regressions:

gt,k = αi
k(τ) + βi

k(τ)CSi
t(τ) + controls + ut+k. (2)

Future GDP growth for the next k quarters is regressed on the credit spread for rating class i and

maturity τ . I am careful to avoid overstating the predictability by using Hodrick (1992) (1B) standard

errors, which appropriately account for heteroskedasticity and moving average error terms ut+k.

Since GDP growth is serially correlated, its own past values are themselves useful predictors. This

means, the controls in the regression equation (2) should include current and lagged GDP values

in order to determine whether the credit spreads have predictive content for real activity over and

beyond what is contained in past values. Furthermore, GDP growth and inflation are negatively

related.12 To answer the question whether the term structures of credit spreads contain relevant

information that is not already included in the history of GDP growth and inflation itself, current

and lagged values of inflation, π, should also be added as control variables.13

Historically, the term structure of Treasury yields and the term spread in particular has been a

good predictor of real activity. In order to verify that the predictive power of credit spreads is not

driven by information already contained in Treasury yields, I also include the 5-year term spread and

the short rate as a control variable.

In addition to running the regression (2), I also run the following regression:

gt,k = αk + δk(L)gt + ηk(L)πt + ut+k, (3)

where δ(L) and η(L) denote lag polynomials such that δ(L) = δ(1)gt + δ(2)gt−1 + ... + δ(p)gt−p+1 and p

is the number of lagged values of GDP growth included (gt is a lagged value relative to the forecasted

11 I thank Rob Bliss for providing me with the Treasury yield data.
12 See, for example, Fischer (1993), or Bruno and Easterly (1998).
13 Inflation is calculated as the growth rate in CPI, available through the FRED database (Federal Reserve Bank of

St. Louis).
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variable). Unless otherwise noted, regression (2) with controls and regression (3) are performed with

p = 2, which means current and lagged GDP growth and inflation are included.

3.2 Credit Spread Regressions

This section reports the results from regressing future GDP growth on credit spreads. To summarize, I

find the following: (1) Credit spreads across the whole spectrum of rating classes and maturities (only

with the exception of short maturity AAA spreads) have predictive power, even when controlling for

the information contained in the history of the macro variables and the term structure of Treasury

yields; (2) longer maturity spreads perform better than short maturity spreads for the same rating

class in terms of R2s; (3) combining spreads of different maturities and rating classes in a single

regression helps improving adjusted R2s suggesting that the forecasting power may be driven by

more than a single factor.

3.2.1 Univariate Regressions

Table 1, panel A contains the results for the βi
k(τ) coefficients in the simple univariate credit spread

regression without controls for the sample period 1992:2–2005:4. Apart from short-term AAA spreads,

almost all βi
k(τ) coefficients are significantly different from zero. Panel B in Table 1 displays the same

βi
k(τ) coefficients for the credit spread regressions including control variables. All coefficients that are

significant in the univariate regressions are also significant in the full multivariate regressions with

all the controls. Current and lagged GDP values are insignificant in general, whereas coefficients

for current and lagged inflation are significantly negative for forecast horizons one year and above,

confirming the documented negative relationship between inflation and real activity.14 The coefficient

for the term spread is insignificant in general. The addition of the history of macro variables has

a positive effect on both, R2s and adjusted R2s, thus suggesting that macro variables are indeed

relevant for explaining future GDP growth.15

While overall, the results clearly indicate that credit spreads have significant forecasting power,

there are differences across rating classes and maturities. In general, longer maturity spreads perform

14 Coefficients other than those for the credit spreads are not reported.
15 Adding more lags of the macro variables does not qualitatively change the results for the credit spread coefficients,

i.e. the significant coefficients remain significant; however, adjusted R2s do not improve further.
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better than shorter maturity spreads for the same rating class. 1-year AAA spreads for example are

not significant, and R2s for 10-year BBB spreads are much higher than those for 1-year spreads.

The only exceptions to this regularity are horizons below one year for forecasting regressions using B

spreads. At the same time, the results for B spreads are very robust to the choice of maturity—the

discrepancy in terms of R2s is very small.

Despite exhibiting consistent forecasting power across the whole term structure, B spreads are

not the best predictor based on the R2. Investment grade credits can reach R2s of over 60%, whereas

the maximum R2 for the 10-year B spread is a mere 28%. This result seems to contradict Gertler and

Lown (2000) who argue that high yield spreads are particularly suitable for forecasting GDP growth

because lower rated firms face a higher external finance premium and are more likely to suffer from

financial market frictions. Alternatively, the results could also be driven by the fact that the credit

spreads are a polluted measure of the external finance premium in the first place.

Panel C in Table 2 summarizes the R2s from the full regressions using all control variables. In

addition, the table contains the R2s from regressing future GDP growth on (1) the history of macro

variables only (panel A) and (2) the history of macro variables and the short rate and various term

spreads (panel B), respectively. This allows to assess the impact of adding variables to the regression

with macro variables only. The results in panel B reveal that including either the short rate or various

term spreads in regression (1) leaves R2s basically unaffected (with the exception of short horizon

forecasts using the 1-year spread). This lack of an effect is consistent with the demise of the term

structure of Treasury yields as a predictor of real activity after the period of monetary tightening

under Chairman Paul Volcker ended in the mid-1980s. The full regression results using Treasury

yields documenting the declining predictive power of the short rate and the term spread are reported

in Appendix B.1.

Only the inclusion of the credit spreads (panel C) improves R2s significantly (again, with the

exception of short maturity AAA spreads). This result implies that credit spreads do contain relevant

information not present in past GDP growth, inflation or the Treasury yield curve. As an additional

exercise to corroborate this conclusion I estimate simple VARs that include the 10-year B spread in

addition to GDP, inflation and the short rate. Shocks to the credit spread that are orthogonal to the

short rate, GDP and the price level have a significant effect on the future path of the economy (see

Appendix B.2 for detailed results).
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3.2.2 Multivariate Regressions

To further examine whether the whole term structure of credit spreads is relevant, I use multiple

spreads for a rating class in a single regression; namely, I choose to combine information from the

“level” and the “slope” of the term structure of credit spreads. In analogy to terminology used for

Treasury yields, the level is given by the 3-month spread and the slope is defined as the difference

between the 3-month and the 10-year spread for a given rating class i, respectively. The results for

the multivariate regressions using both the level and the slope are displayed in Table 1, panels C

(without controls) and D (including controls). Again, the controls do not drive the results.

Adding another piece of information to the regression improves the R2s for all rating classes

and horizons by up to 4 percentage points. Moreover, coefficients on the slope and level are both

significant for AAA spreads for horizons between two and three years and for BBB spreads for

horizons two quarters and above. In the case of B spreads, all relevant information is picked up by

the level. This suggests that at least for investment grade credits, different maturity spreads contain

different relevant information. Thus, there seems to be a benefit in using several different credit

spreads as opposed to arbitrarily picking one.

Obviously, spreads can also be combined across rating classes. Depending on the forecast horizon,

a different, seemingly arbitrary combination of spreads results in the highest R2s.16 This can be taken

as evidence that the whole term structure of credit spreads across the whole rating spectrum contains

relevant information for forecasting future GDP growth. Unfortunately, the regression framework

does not allow to systematically analyze which spreads are most informative and which combination

is the right one for a given horizon. At the same time, knowing the right combination would not

give us much insight as to what is actually driving the forecasting power. Being able to attribute

the forecasting power of the credit spreads to a number of underlying factors will also give us some

additional confidence in the validity and persistence of the spreads as leading indicators for future

real activity.

Section 4 introduces a macro-finance model, which allows to disentangle and pin down the factors

that drive credit spreads and that are responsible for the predictive power. The model will also be

helpful in understanding the break-down of the term spread as a leading indicator since the mid-1980s.

16 Results for this exercise are not reported.
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4 A Macro-Finance Term Structure Model

The macro-finance term structure model described in this section helps disentangling the different

sources of predictability found in the term structure of credit spreads. The model builds on the

macro-finance literature starting with Ang and Piazzesi (2003) that links the dynamics of the term

structure of Treasury yields with macro factors by adding credit spreads as observable data.

Duffee (1999) and Driessen (2005) estimate a no-arbitrage term structure model with credit

spreads but they do not include macro variables. Wu and Zhang (2005) is the first paper to examine

the joint behavior of macro variables and credit spreads in a three-factor model with observable

factors only. Amato and Luisi (2006) estimate a version that combines observable and latent factors

but they do not allow for the latent variables to influence the macro factors. The model presented

in this section is more general and specifically allows to investigate how shocks to latent factors can

feed back into the real economy.

4.1 State Variables

The model is set in discrete time at quarterly frequency. I assume that the joint behavior of the

Treasury yields and corporate bond spreads is captured by the state vector zt = [ mt xt ]′. The

vector of macroeconomic variables contains GDP growth and inflation and is given by mt = [ gt πt ]′.

Even though the focus of the paper is on forecasting GDP growth, inflation is explicitly included as

an observable state variable because of its importance in determining monetary policy. Therefore,

I am interested in separating out the effect of inflation from other information contained in credit

spreads. xt denotes the vector of latent factors in the model and can contain lags of mt, any other

macro variables not explicitly modeled, or any unknown variables. This means that zt fully reflects

the available information at time t.

The state vector follows a VAR(1) process under the physical probability measure P,

zt = µ + Φzt−1 + Σεt, (4)

where εt ∼ N(0, I).
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4.2 Treasury yields

The short-term interest rate rt is assumed to be a linear function of the state variables:

rt = δ0 + δ′zzt = δ0 + δ′mmt + δ′xxt. (5)

In order to value the assets, the model needs to be completed by specifying the stochastic discount

factor ξt :

ξt = −rt−1 − 1

2
Λ′t−1Λt−1 − Λt−1εt, (6)

where the market prices of risk follow the essentially affine specification (Duffee (2002)):

Λt = Λ0 + Λzzt. (7)

Under these assumptions, yields on zero coupon Treasury bonds are linear in the state variables:

yT
t (τ) = aQ(τ) + bQ(τ)′zt

= aQ(τ) + bQm(τ)′mt + bQx (τ)xt (8)

, aP(τ) + bP(τ)′zt

Short rate expectations
+ aTP (τ) + bTP (τ)′zt

Term premium
(9)

where τ is the respective maturity and aQ and bQ solve well-known recursive equations with boundary

conditions aQ(1) = δ0 and bQ(1) = δz.
17 In particular, this means that yT

t (1) = rt; using quarterly

data, the nominal risk-free rate is the 3-month Treasury yield.

The second line of equation (8) decomposes the yields into the expectations of the future short

rate and the term premium. The first component can be calculated using the usual factor loadings

and assuming zero market prices of risk.

4.3 Corporate Bond Spreads

Duffie and Singleton (1999) show that defaultable bonds can be valued as if they were risk-free by

replacing the short rate rt with a default adjusted rate rt + st, where st can be interpreted as the

product of the risk-neutral default probability and loss given default and is called the “instantaneous

default spread.”

17 For the recursive equations see Ang and Piazzesi (2003).
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If we assume the instantaneous spread to be a linear function of the state variables:

si
t = γi

0 + γi′
z zt = γi

0 + γi′
mmt + γi′

xxt, (10)

yields on zero coupon corporate bonds for a given rating class i = {AAA,BBB, B} will also be linear

in the state variables.

yi
t(τ) = ãi,Q(τ) + b̃i,Q(τ)′zt. (11)

Credit spreads can then be calculated as the difference between the yields on defaultable and default-

free bonds and decomposed into expectations and term premia just as Treasury yields.

CSi
t(τ) , yi

t(τ)− yT
t (τ)

= (ãi,Q(τ)− aQ(τ)) + (b̃i,Q(τ)− bQ(τ))′zt

, ai,Q(τ) + bi,Q(τ)′zt

= ai,Q(τ) + bi,Q
m (τ)′mt + bi,Q

x (τ)xt (12)

, ai,P(τ) + bi,P(τ)′zt

Short rate expectations
+ ai,TP (τ) + bi,TP (τ)′zt

Term premium
(13)

5 Econometric Methodology

The model parameters of the term structure model are estimated jointly via maximum likelihood

with Kalman filter following Bikbov and Chernov (2006), Duffee and Stanton (2004), and de Jong

(2000), among others.

5.1 Observation Equations

GDP growth and inflation represent the two observable state variables in the model. Treasury yields

and credit spreads are the observable data, which help estimating the parameters of the model. GDP

and inflation data are taken from the FRED database (Federal Reserve Bank of St. Louis), Treasury

yields are unsmoothed Fama-Bliss zero coupon bond prices provided by Rob Bliss and credit spreads

are calculated as the difference between zero coupon corporate bond yields taken from Bloomberg

and the zero coupon Treasury yields. All yields are available for three and six months, and one, two,

three, five, seven and ten year maturities. A detailed description of the data is provided in Appendix

A.
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The macro variables are assumed to be observed without errors. Furthermore, I allow for

estimation errors for both Treasury yields and corporate credit spreads. This assumption is necessary

to be able to specify the model in state-space form. In addition, this specification means that the

latent factors are not per se associated with a predetermined set of yield maturities that could be

used to solve for the latent factors directly.

The state equation in the model is defined by equation (4). In addition, we have the observed

asset prices, which represent the observation equations as follows:

yT
t (τ) = aQ(τ) + bQm(τ)′mt + bQx (τ)′xt + εt (14)

and

CSi
t(τ) = ai,Q(τ) + bi,Q

m (τ)′mt + bi,Q
x (τ)′xt + εi

t, (15)

where yT
t represents the Treasury yields for maturity τ and CSi

t stands for the corporate bond spread

for rating class i and maturity τ . The right-hand side of equations (14) and (15) are expanded

versions of equations (8) and (12).

The estimation errors are denoted by εt and εi
t, respectively. I assume that the Treasury yield

estimation errors are i.i.d normal with standard deviation σε. The credit spread estimation errors

are also assumed to be i.i.d normal with standard deviation σi
ε.

5.2 Number of Factors and Identification

Jointly fitting a total of eight Treasury yields and twenty-four credit spreads (three rating classes,

eight spreads each) with a parsimonious term structure model is a daunting task. In addition, two of

the factors are already given by the observable macro variables in the model. A principal components

analysis of the yields and credit spreads reveals that at least three latent factors are needed to

capture around 92% of the variation in the data not explained by the macro variables. Two latent

factors would explain significantly less variation, whereas adding a fourth factor would only explain

an additional 2.4%. Adding more factors is also problematic because the number of parameters

increases disproportionally. In order to achieve a manageable dimensionality of the parameter space,

one either needs to restrict the number of state variables or impose restrictions on certain parameters.
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I choose to impose only restrictions needed for identification and thus allow for the richest possible

set of interactions amongst the factors. This decision implies however, that the number of factors

needs to be limited to a reasonable number. Therefore, I choose to have three latent factor and

estimate a five-factor model. Then, the vector of latent factors xt is equal to [ x1,t x2,t x3,t ]′.

Comparing various existing models in the literature with the macro-finance model presented in

this paper confirms that the chosen specification is indeed parsimonious given the set of observable

variables. Modeling only macro variables and Treasury yields, Ang and Piazzesi (2003) also estimate

a five-factor model with two observable and two latent factors. Bikbov and Chernov (2006) show

that at least a total of four factors are needed to capture the slope of the Treasury yield curve in

a macro-finance model with two observable macro factors. Driessen (2005) uses four latent factors

to capture the dynamics of the Treasury yield curve and the common variation in credit spreads in

addition to one latent factor per firm in the sample. With only three firms (or three rating classes)

this would result in a seven-factor model. Finally, Amato and Luisi (2006) estimate a macro-finance

model with three observable and three latent factors but they use credit spreads from only two rating

classes.

Identification of the model needs to take into account that there is a mixture of macro and latent

variables. Define µ = [ µm µx ]′. I let µm, Φ, δ0 and δm be free. µx is restricted such that the

long-run mean of the latent factors is equal to zero, i.e.:

e′i = (I − Φ)µ = 0, (16)

where ei is a vector of zeros with a one in the position of the respective latent factor. Furthermore,

δ1x = δ2x = δ3x = 1. Finally, the matrix Σ, controlling the variance in the state equation (4), is given

by:

Σ =




σgg 0 0 0 0

σπg σππ 0 0 0

σ1g σ1π σ11 0 0

σ2g σ2π 0 σ22 0

σ3g σ3π 0 0 σ33




(17)
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5.3 Additional Considerations

Risk Premia. Despite being identified in the model, risk premia are very hard to estimate in

practice. Also, a rich specification of risk premia bears the danger of overfitting the data. I follow

Bikbov and Chernov (2006) and augment the standard log-likelihood function, L, with a penalization

term which is proportional to the variation of the term premium in (9) and (13):

Lp = L − 1

2σ2
p

∑
τ

(aTP (τ))2 + bTP (τ)
′ ·Diag(var(zt)) · bTP (τ)

− 1

2σ2
p

∑
i,τ

(ai,TP (τ))2 + bi,TP (τ)
′ ·Diag(var(zt)) · bi,TP (τ), (18)

where σp controls the importance of the penalization term, and the “Diag” operator creates a diagonal

matrix out of a regular one. If market prices of risk are equal to zero, the term premia will be equal

to zero as well. Therefore, Lp imposes an extra burden on the model to use the risk premia as a

last resort in fitting the yields. This helps to stabilize the likelihood and simplifies the search for the

global optimum. In particular, this setup helps avoiding very large values of risk premia.

Fitting Credit Spreads and Choice of Estimation Period. Treasury yields and macro variables

are available starting in 1971:3. Credit spreads for the whole term structure and all rating classes

only become available in 1992:2.18 Theoretically, it is possible to estimate the macro-finance model

using all available data. It is relatively straightforward to deal with the many missing credit spreads

in the early sample period in the Kalman filter framework by only partially updating whenever

observations are missing (see Harvey (1989)). However, I choose to estimate the model only over the

common sample period 1992:2–2005:4 as the focus of the paper is on extracting information from

credit spreads, not Treasury yields. Estimating the model over the common sample period results

in a better fit of the credit spreads compared to a specification for the whole sample. Truncating

the sample is also an approach to deal with time-varying predictive relations as noted by Stock and

Watson (2003a).

The fit of credit spreads can be improved further by imposing appropriate restrictions on the

estimation errors. I use the following restrictions to make the estimation errors roughly proportional

to the level of the yields and credit spreads:

ε2 =
1

2
(εAAA)2 =

1

2
(εBBB)2 = (εB)2. (19)

18 See Appendix A for a detailed description of data availability.

17



While this modification slightly improves the fit of credit spreads it does not drive the results, meaning

that filtered latent factors are highly correlated to those from an unrestricted estimation.

Optimization. I need to estimate 92 parameters in the model. There is a large cross-section of

observations available, which should help in pinning these parameters down. However, the relative

short time series of 14 years of quarterly data leaves a concern of whether a global optimum can be

found. I use a very large and efficient set of starting values to ensure that the global optimum is found.

The grid search is extremely costly in a multi-dimensional space, and, in practice, limits the extent

of the global search. The computational costs can be reduced by using the Sobol’ quasi-random

sequences to generate the starting points (see, e.g., Press, Teukovsky, Vetterling, and Flannery

(1992)). I evaluate the likelihood for two billion sets of starting values, and then optimize using

the best twenty thousand points as starting values. I optimize alternating between simplex and SQP

algorithms and eliminating half of the likelihoods at each stage.

6 Estimation Results and Sources of Predictive Power

This section presents the results from estimating the macro-finance term structure model described in

Section 4. Section 6.1 describes the model fit and verifies that the model implied spreads are able to

pick up the predictive power observed in the data. Section 6.2 examines whether expectations, term

premia or both together drive the forecasting ability. Section 6.3 decomposes the credit spreads into

components attributable to the observable macro and the unobservable finance factors and examines

their contributions to the overall predictive power.

6.1 The Predictive Power of Model Implied Spreads

6.1.1 Model Fit

The model fit is directly relevant to the question whether it is possible to capture the information

that drives the predictive power of the credit spreads with the specification proposed in Section

(4). As I am interested in examining the sources of the forecasting power, the model implied yields

and spreads must also forecast GDP growth. If the implied spreads do not exhibit any predictive

power, we are unable to make any statement about the sources of the predictive relationship with
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real activity other than recognizing that we need to introduce more factors into the model.

Using a fairly parsimonious model we cannot expect to be able to fit the whole term structures

of Treasury yields and credit spreads for different rating classes perfectly. The results in Section 3

suggest that there is relevant information contained in a wide variety of different spreads except in

short maturity AAA spreads. Furthermore, long maturity spreads seem to be more informative in

general. Hence, the better we are able to fit long maturity spreads for all rating classes and lower

grade spreads for all maturities, the better we can expect the model to perform in producing implied

spreads that contain the same forecasting power.

Other than describing the model fit, the paper does not report the technical details of the

estimation results such as parameter values, or tests of their statistical significance. There are too

many parameters to discuss, and most of them are hard to interpret.

Treasury Yields. The model fits Treasuries very well. R2s for levels are above 97% and mean

absolute pricing errors are between 9 and 20 basis points (or between 2.5% and 8.2% expressed as

a fraction of yield levels). At the same time, the model also fits the slope reasonably well with an

R2 of about 93%, while the curvature is fit with an R2 of 79%. The R2s are displayed in Table 3

along with the results for the fit of the corporate spreads. Figure 1 plots the actual and implied slope

(Panel A) and curvature (Panel B).

Corporate Yields and Credit Spreads. The model fits B spreads almost as well as Treasury

yields with R2s close to or above 97% for almost all maturities. For BBB spreads, R2s range

between around 60% for short maturities and up to 80% for longer maturities. AAA spreads display

the greatest disparity with an R2 as low as 13% for the short spread, while the 10-year spreads are

fitted well with an R2 of almost 80%. The actual and implied spreads for selected maturities are

displayed in Figure 2. The standard deviations of the errors in the observation equation (15) are

0.15 for AAA and BBB spreads and 0.22 for B spreads. This implies that the model values the

high grade spreads within just under 30 basis points and the B spreads within about 44 basis points

(2σεi). The mean absolute errors range between 6 and 11 basis points for AAA spreads, between 12

and 16 for BBB spreads and between 12 and 25 for B spreads. Expressed in fractions of the actual

spread levels, the average errors for AAA spreads range between 15% and 58%, for BBB spreads

between 15% and 23%, and for B spreads between 4% and 9%.
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6.1.2 Implied Spreads and Estimation Errors

To test whether the model is able to capture the predictive power apparent in the real data I rerun

the predictive regressions from Section 3 using the model implied spreads. Namely, I replicate Panel

A from Table 1 using the implied credit spreads (Table 4, panel A) and the estimation errors (Table

4, panel B). The results confirm that overall, the implied spreads are performing satisfactorily. The

coefficient for the estimation error is only significant for 10-year AAA and BBB spreads at forecast

horizons two and three years. This means that only long maturity high grade spreads might contain

additional information that can be used for forecasting GDP growth at long horizons, which the

model is not able to capture.

Other than that, the implied spreads produce roughly the same R2s as the actual spreads for

the various horizons with exception of short-term AAA spreads. The model implied spreads have

marginally significant forecasting power, whereas the actual spreads do not forecast GDP growth.

This is not really surprising given the poor performance of the model in fitting short maturity AAA

spreads. However, this could also be evidence for a problem with the actual data. The average value

of AAA short maturity spreads is around 35 basis points. Since they are calculated as the difference

between Treasury and corporate bond yields, noise in either of the time series directly translates into

noise in the spread time series with an order of magnitude that is similar to the spread level itself. It

is even possible that the implied spreads are a cleaner and thus better measure for the risk of AAA

rated firms than the observed spreads.

6.2 Expectations and Term Premia

The state variables affect the credit spreads and Treasury yields through the expectations about

the future short rate and through the term premia. Having estimated a full model, it is easy to

decompose the credit spreads and investigate the role of the term premia in forecasting GDP growth

in detail. The part of the credit spreads that is driven by the expectations about the future short

rate can be computed by setting the risk parameters to zero in the equations for the Treasury yields

and credit spreads, equations (8) and (12). The difference between the a credit spread under the Q-

and under the P-measure is defined as the credit spread term premium

Figure 3, rows one through three, shows the implied credit spreads under the risk neutral measure,
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the spreads under the P-measure and the term premia. For shorter maturities, expectations about the

future short rate drive most of the variation in credit spreads. For longer maturities, spreads under

the P-measure flatten out and almost all the variation comes from the term premia, this effect being

even more pronounced for higher grade credits. The same pattern can be observed for Treasury

yields (see Figure 3, row four). By definition, the term premium starts at zero for the 3-month

spreads, thus implying that all the forecasting power of the shortest maturity spreads is attributed

to the P-measure by default. Consequently, one would conjecture that, as maturity increases and the

implied spreads based on expectations about the short rate flatten out, the importance of the term

premia would increase.

Table 5 displays the coefficient estimates from running multivariate predictive regressions using

the term premia and the credit spreads under the P-measure. The results are not entirely in line

with what would be expected. For AAA spreads, expectations are never significant, whereas term

premia are for all horizons; the forecasting power of AAA appears to be solely driven by term premia.

For BBB and B however, the P-measure component is mostly significant for short maturity spreads

while term premia are relevant for longer maturity spreads. This result implies, that it is not possible

to determine what drives the forecasting power in the case of lower grade credit spreads as both,

expectations and term premia are important depending on the maturity of the spreads.19 Therefore,

it is necessary to further decompose the implied spreads and explicitly consider the contributions of

the state variables.

6.3 The Determinants of Credit Spreads and the Drivers of Forecasting

Power

6.3.1 Macro Variables and Latent Factors

Apart from decomposing credit spreads (and Treasury yields) into expectations and term premia, it

is also possible to directly assess the contributions of the five state variables to the predictive power

of the credit spreads. Specifically, I am interested in disentangling the information in credit spreads

19 Hamilton and Kim (2002) decompose the Treasury term spread in a similar fashion. They also conclude that both

components matter. In addition, they find that the contribution of the expectations piece is significantly larger than

that of the term premium.
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that is not related to the macro variables. Even given the factor loadings in equations (12) and

(8), separating out the contribution of the macro variables is not straightforward because they are

correlated with the latent factors.

In order to extract all information related to GDP growth and inflation from the latent factors,

I use the projection method introduced by Bikbov and Chernov (2006). This allows decomposing

each latent factor xi into a component explained by GDP growth and inflation, and a residual piece

fi which is orthogonal to the history of the observable macro variables, Mt = {mt,mt−1, ..., m0}:

ft = xt − x̂(Mt), (20)

x̂(Mt) = c(Θ) +
t∑

j=0

ct−j(Θ)mt−j, (21)

where the matrices c are functions of parameters Θ = (µ, Φ, Σ) that control the dynamics of the state

variables. The details of the procedure are provided in Appendix D.

The residuals f from the projection are not unique. Dai and Singleton (2000) show that for

a given set of bond prices there are multiple equivalent combinations, or rotations, of the factors.

However, this property can be exploited by choosing a specific rotation that is useful for interpreting

the residuals f . I rotate the factors such that they are orthogonal to each other and f1 and f2 are

interpreted as a “credit” and a “level” factor, respectively. The credit factor is designed to capture

common variation in credit spreads not driven by the macro variables while the level factor picks up

the variation on the short end of the Treasury yield curve. The details of the procedure are provided

in Appendix E. The third factor f3 is interpreted as a “slope” factor.

Panel A in Figure 5 graphs the credit factor f1 with the B 3-month and 10-year spreads. The

correlations are 70% and 57%, respectively. For BBB spreads, the correlations are slightly lower

with 61% and 54%, whereas correlations with AAA spreads on the long and the short end reach

50% and 18%, respectively (50% and 40% if the correlations are measured with implied spreads). As

already indicated by the factor loadings, Treasury yields are virtually uncorrelated with the credit

factor (below 5%).

The credit factor is strongly associated with the index of tighter loan standards from the Federal

Reserve’s quarterly Senior Loan Officer Opinion Survey, as the correlation between the two is 62%.20

A plot of the two series is provided in Figure 5, panel B. The relationship between f1 and the index

20 The survey can be obtained from the Federal Reserve website (Board of Governors of the Federal Reserve System).
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of tighter loan standards further supports the interpretation of f1 as a credit factor as it is not only

a relevant determinant of credit spreads but also directly related to a proxy for credit conditions.

The level factor f2 is highly correlated with Treasury yields of all maturities. Figure 6, panel

A, graphs f2 with the 3-month and 10-year Treasury yields. The correlations between f2 and the

Treasury yields are 77% and 53%, respectively. Moreover, the level factor is also strongly associated

with the Federal funds target rate; the two series are plotted in Figure 6, panel B, the correlation is

67%.21 Since the Federal funds rate is often considered as an indicator of monetary policy, f2 can

also be interpreted as a “monetary policy” factor.

6.3.2 Factor Loadings

Figure 4 plots the normalized loadings of credit spreads and Treasury yields. This allows visualizing

the initial impact of a shock to the state variables on the yields or spreads for different maturities. To

make them comparable, the loadings are normalized by the standard deviation of the factors and the

credit spreads or yields, respectively; the figure shows the contemporaneous impact of a one standard

deviation shock to any of the factors on the financial variables measured in standard deviations.

The plotted loadings on the macro variables take into account that GDP and inflation are

correlated with the latent factors xt by modifying the original factor loadings bQm given in equations

(9) and (13) and adding ct(Θ)bQx , where ct(Θ) is taken from equation (21). As such, the loadings

represent the true contemporaneous impact of variations in either GDP or inflation on Treasury yields

and credit spreads. Positive shocks to GDP cause spreads to narrow, although the effect on AAA

short maturity spreads is only minor. Inflation appears to have almost no effect on either spreads or

Treasuries.22

The normalized factor loadings for the two residual factors f1 and f2 in Figure 4 illustrate the

effect of the chosen rotation. Credit spreads load heavily on the credit factor, whereas Treasury

yields are only marginally exposed. The largest loadings on f1 occur for short maturity BBB and

B spreads; the relevance of f1 slightly decreases with maturity but the credit factor is an important

To be specific, the correlation is measured between factor f1 and the prewithened index of tighter loan standards. I

prewithen the time series by regressing it on eight lags of GDP growth and inflation.
21 The Federal funds target rate is available through the FRED database (Federal Reserve Bank of St. Louis).
22 Note that the factor loadings only reflect the immediate effect of shocks to the state variables and do not take into

account the influence of lagged inflation.
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determinant for credit spreads across all classes and maturities. Almost the reverse is true for the

level factor f2: Treasury yields for all maturities consistently and strongly load on the level factor

f2 while the loadings of credit spreads are very small (with the exception of short maturity AAA

spreads).

While the credit factor can be attributed to credit spreads and the level factor is almost exclusively

a driver of Treasury yields, the third factor f3 affects both. However, it seems to work mainly on the

long end and in opposite directions for Treasury yields and credit spreads. Long maturity Treasury

yields load positively on f3 while long maturity credit spreads for all rating classes have negative

loadings. Therefore, f3 can be thought of as a slope factor. Correlations with short dated Treasury

yields and credit spreads are virtually zero, whereas the correlation with 10-year Treasury yields is

almost 74% and correlations with long maturity credit spreads are also high in absolute terms but

negative, ranging between −48% to −58%.

Even though factor loadings differ between credit spreads of different rating classes it is noteworthy

that the shapes of the term structure of factor loadings in Figure 4 are very similar for all credit

spreads, implying that credit spreads are driven by common factors. This is consistent with findings

by Collin-Dufresne, Goldstein, and Martin (2001) who conclude that most of the variation of credit

spread changes for individual bonds is explained by an aggregate common factor.23

6.3.3 The Forecasting Power of Credit Spread Components

The projection procedure described in Section 6.3.1 allows to single out the component of the credit

spreads driven by movements in the macro variables:

CSi
M,t(τ) = ai,Q(τ) + bi,Q

m (τ)′mt + bi,Q
x (τ)′x̂(Mt) (22)

Similarly, the components of the credit spreads attributable to the residuals fj can be calculated as

the product of the respective factor loading times the realization of the factor, CSi
fj ,t(τ) = bi,Q

x (τ)′fj

for j = {1, 2, 3}. Thus, the implied spreads ĈSi
t(τ) can be decomposed into its components according

23 In contrast, Driessen (2005) estimates a model that assumes firm-specific factors to begin with and Amato and

Luisi (2006) conclude that one dominant latent factor per rating category drives most of the variation in credit spreads.
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to a variation of equation (12):

ĈSi
t(τ) = ai,Q(τ) + bi,Q

m (τ)′mt + bi,Q
x (τ)′x̂(Mt) + bi,Q

x (τ)′ft

, CSi
M,t(τ) + CSi

f1,t(τ) + CSi
f2,t(τ) + CSi

f3,t(τ). (23)

Figure 7 graphs the implied spreads and its various components, macro variables including the

projection (and including the constant), credit factor f1, level factor f2 and slope factor f3. A

reflection of Figure 4, the f2-component is only marginal for all credit spreads. The part that can

directly be attributed to the observable macro variables either directly or via projection seems to

account for a large part of the variation in the implied credit spreads.

To examine the predictive content of the components of the credit spreads, I run two sets of

univariate regressions. First, I regress future GDP growth on the standardized values of CSi
M,t(τ)

to investigate the contribution of the macro variables. Second, I regress future GDP growth on the

standardized credit, level and slope factors, respectively.

Panel A in Table 6 reports the coefficient estimates from the first set of regressions. Macro

variables are relevant contributors to the forecasting power for horizons up to two years for longer

maturity credit spreads. However, the macro factors do not contribute to predicting GDP for short

maturity spreads.

The results of the second set of regressions are reported in Table 6, panel B. The credit factor

f1 has significant forecasting power at all horizons and R2s range between 7% and 54% for the one

quarter and three year horizons, respectively. The level and slope factors on the other hand do not

have any predictive content. In the case of the slope factor, the lack of predictive power is notable

as credit spreads at the long end load quite heavily on f3. This means that while shocks to f3

may significantly move credit spreads they contain no information as to the future direction of the

economy.

Compared with actual credit spreads, the R2s for the credit factor regressions are usually higher

than those for short maturity spreads and below the numbers for longer maturities. This supports

the conclusion that the credit factor accounts for a large part but not all of the forecasting power.

Table 7 displays the results from regressing future GDP growth on all the components of the

implied spreads in equation (23). The results from the univariate regressions mostly carry over to

the multivariate case. The significant effect of the credit factor f1 largely remains intact but it is
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driven out by the contribution of the macro factors for short horizon forecasts (one and two quarters).

The factors f2 and f3 are still insignificant, except for short maturity AAA spreads at one and two

quarter horizons.

Excluding the factors f2 and f3 from the full regression often results in better adjusted R2s

compared to the full set of regressors, especially for lower grade spreads and longer forecast horizons

(results not reported). This provides further evidence that only the macro variables and the credit

factor are relevant for forecasting GDP growth.

6.4 The Sources of Forecasting Power and the External Finance Pre-

mium

To summarize, first, I showed that a five-factor macro-finance model is capable of picking up the

predictive power contained in the actual data, which justifies decomposing the implied spreads and

further investigating the sources of the forecasting ability. Second, disentangling the expectations

from the term premia does not provide a lot of insight as both components contribute to the predictive

power of the credit spreads. Finally, decomposing credit spreads into components based on the state

variables in the model helps discovering the drivers of the predictive power.

Of the five factors in the model, only the two macro variables and the credit factor are relevant

for forecasting GDP growth. The relevance of the credit factor in predicting future real activity is

consistent with the existence of a transmission channel from borrowing conditions to real activity

along the lines of a financial accelerator. Namely, it seems that the credit factor picks up disturbances

in the financial markets that are manifested in changing credit conditions and ultimately affect the

external finance premium. Within the given empirical framework it is not possible to determine

where shocks to the credit factor originate. This should be further investigated in a structural model

with no-arbitrage restrictions such as the models of Rudebusch and Wu (2003) and Hordahl, Tristani,

and Vestin (2006).

Contrary to credit spreads, Treasury yields are largely driven by factors that do not have any

forecasting power. Specifically, the level or monetary policy factor is the main driver of the short

rate, which explains its lack of predictive power in the sample period considered.
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7 Conclusion

Credit spreads over the whole spectrum of rating classes are suited to predict future GDP growth up

to a horizon of three years. However, within a simple OLS regression framework, it is not possible

to further investigate the predictive power and identify its sources.

A macro-finance term structure model estimated jointly for Treasury yields and credit spreads is

able to capture the predictive power of credit spreads reasonably well. A shock to inflation positively

affects both, Treasury yields and spreads for all rating classes, albeit in most cases only marginally.

Innovations to GDP growth have a positive impact on the term structure of Treasury yields, especially

on the shorter end, while credit spreads narrow for all rating classes, with larger declines for longer

maturity spreads. All credit spreads load heavily on a credit factor, which can be linked to the index

of tighter loan standards and thus can be interpreted as a proxy for credit conditions. In contrast,

Treasury yields load strongly on a level factor, which is associated with the Fed funds target rate

and therefore can also be interpreted as a monetary policy factor.

Disentangling term premia and expectations does not answer the question what drives the

predictive power inherent in credit spreads as both components are important depending on forecast

horizon and maturity of the credit spreads. Decomposing the spreads into contributions from the state

variables on the other hand, yields more insights about the drivers of forecasting power. The most

important contributor to the predictability of credit spreads is a credit factor, which is independent

of the observed macro variables and can be interpreted as a proxy for credit conditions and explains

between 50% and 100% of the overall predictive power. Current and past realizations of GDP growth

and inflation contribute significantly to the forecasting power of spreads from all rating classes at

short horizons. The macro factors and the credit factor account for virtually all predictive power

found in credit spreads. Shocks to credit spreads that are not related to these factors are irrelevant

for forecasting purposes. In particular, the level or monetary policy factor has no forecasting power.

Consequently, the short rate, which loads heavily on the level factor, does not predict future real

activity. This finding does not imply that monetary policy has no impact on output but can be

explained by a stabilizing monetary policy regime over the sample period. The high predictive power

of the credit factor lends support to the existence of a transmission channel from borrowing conditions

to real activity consistent with the financial accelerator theory.
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Appendix

A Data Description

This section provides a detailed description of the data used in this paper. GDP growth and inflation

represent the two observable state variables in the model. Treasury yields and credit spreads are the

observable data, which help estimating the parameters of the model.

A.1 Macro Variables

Since I intend to evaluate out-of-sample forecasts, it is necessary to pay close attention to when the

data becomes available in order to avoid introducing a look-ahead bias. I use quarterly time series

of real GDP and seasonally adjusted CPI available through the FRED database (Federal Reserve

Bank of St. Louis). Real GDP is a three decimal time series in bn of chained 2000 USD, seasonally

adjusted annual rate and CPI is the consumer price index for all urban consumers, all items.The

annualized quarterly log changes in these two variables proxy for gt and πt, respectively.

GDP numbers are subject to several revisions. In the first month after the end of a quarter, an

“advance” estimate is released, in the second month a “preliminary” and in the third month a “final,”

with the final number often being further revised in later releases.24 I use the revised figures instead

of the real-time dataset for two reasons. First of all, a good estimate of the final GDP number is

available in the third month after a quarter (the “final” estimate) and second, GDP numbers are

not available in the real time dataset in the early periods of the full sample.25 However, I do try to

avoid a look ahead bias by shifting the GDP time series by one period to account for the fact that

in quarter t we only have information available about quarter t− 1. Thus, implicitly I assume that

the final revised figures are the same as those of the “final” release by the BEA in the third month

of the following quarter.

gt = 400× log

(
GDPt

GDPt−1

)
, (A-1)

where GDPt is the GDP number for quarter t− 1, which is released in the third month of quarter t.

I perform a similar adjustment with the CPI numbers, which are released with a one month lag.

For any given quarter I am using the CPI numbers that are released in the third month, which are

24 More information can be found on the Bureau of Economic Analysis (BEA) website.
25 An overview of the available real time data sets can be found on the Federal Reserve Bank of Philadelphia website.
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CPI numbers for the middle month of the quarter. Hence,

πt = 400× log

(
Pt

Pt−1

)
, (A-2)

where Pt is the price level in the second month of quarter t, which is released in the third month of

quarter t.

A.2 Treasury Yields

I use quarterly time series of continously compounded zero coupon yields from 1971:3 to 2005:4 with

maturities three and six months and one, two, three, five, seven and ten years.

There are several potential sources for Treasury yields, all of which have some benefits and costs.

Cochrane and Piazzesi (2006) use the well known Fama-Bliss dataset available from CRSP, which is

not smoothed across maturities but which only has zero coupon bond prices with maturities up to

5 years. In order to incorporate longer maturities they also work with the new Guerkaynak, Sack,

and Wright (2006) dataset, which has smoothed zero coupon yields.26 Cochrane and Piazzesi (2006)

point out that even small amounts of smoothing across maturities have the potential to lose a lot of

information.

It is certainly more desirable to work with unsmoothed yields. However, measuring the whole yield

curve, i.e. using maturities longer than five years is also very important as the slope of the curve is

correlated with the macro environment (Estrella and Hardouvelis (1991); Estrella and Mishkin (1998);

and Ang, Piazzesi, and Wei (2006)) and can be used to forecast GDP, a fact that is particularly

relevant for this paper as well.

In short, neither the Guerkaynak, Sack, and Wright (2006) nor the Fama-Bliss dataset satisfy all

needs. For the most part of the sample period I use a proprietary dataset of unsmoothed Fama-Bliss

approximation of the zero coupon bond prices, which has yields for all desired maturities, i.e. up to

ten years.27 The starting point of my sample period is determined by the first quarter in which the

ten year yield is available. However, this dataset has not been updated since 2002:4 so the data has

to be augmented by using yields from other sources for the last part or the sample period. From

2003:1 to 2005:4 I use data from CRSP. The three month risk free rate is taken from the Fama Risk

26 The data are available from the Federeal Reserve Board website (www.federalreserve.gov/pubs/feds/2006,
last accessed November 22, 2007).

27 I thank Robert Bliss for providing me with the data
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Free Rates file, the six month yield is taken from the Fama T-bill structure file and the yields up to

five years are taken from the Fama-Bliss dataset. All are continously compounded.

Thus, yields for seven and ten years are still missing for the last two years in the sample. Instead

of treating those as missing observations I choose to complete my data by using yields from the

Guerkaynak, Sack, and Wright (2006) dataset.

A.3 Credit Spreads

Credit spreads are calculated as the difference between the zero coupon corporate bond yields and

the zero coupon Treasury yields described above. Yields for AAA, BBB and B rated bonds are taken

from Bloomberg. Again, the data collection is not straightforward as there are different sources of

data with different starting points. I use the zero coupon yields for industrials that are derived by

stripping Bloomberg’s fair market value (FMC) par coupon curves. These yields are available starting

in 1989:2 for AAA bonds, and in 1993:3 for bonds rated BBB and B. In addition, Bloomberg provides

zero coupon yields that are derived by stripping a swap curve for the same rating categories. For

BBB and B rated bonds these data are available before 1993:3, so I augment my dataset accordingly

by adding the additional data points. As a result, data on bonds rated BBB start in 1991:2, B

yields are available from 1992:2. The chosen maturities are the same as those of the Treasury yields.

Figure (8) displays Treasury yields and credit spreads for 3-month, 1-year and 10-year maturities.

Unfortunately, data for the whole term structure of corporate yields is not available before 1992:2.

However, there are a few corporate bond indices available starting in the early 1970s, such as the

Lehman Brothers corporate bond indices for investment grade bonds. For each rating class i =

{AAA,BBB} there is an index for “long” (normally above 10 years) and “intermediate” (between

1 and 10 years) maturities. Using redemption yields and the corresponding Treasury bond indices,

it is possible to construct approximate credit spreads for different maturities. This in turn allows

calculating a credit spread slope by taking the difference of the two. Lehman Brothers also provides

a high yield bond index but only starting in 1987:1. The high yield bond index with the longest

maturity that is available through Datastream is the “Merill Lynch US High Yield 100,” which starts

in 1980:1. For both yield indices I calculate a high yield spread using the redemption yield of the

Lehman Brothers Treasury index (all maturities). The additional spread data, while unsuitable to

use in a term-structure model, are used to perform robustness checks for the results in Section 3.2
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and can be found in Appendix C.

B The Forecasting Power of Treasury Yields

B.1 Treasury Yield Regressions

In this section, I document the declining importance of the short rate and the term spread in

forecasting real activity since the mid-1980s. Analogous to regression equation (2), I run the following

regressions to examine the predictive power of the short rate and the term spread, respectively:

gt,k = αk(1) + γk(1)yT
t (1) + controls + ut+k, (B-3)

gt,k = αk(τ) + γk(τ)(yT
t (τ)− yT

t (1)) + controls + ut+k (B-4)

In the existing literature, the predictive regressions are usually run without control variables.

However, adding the controls does not qualitatively change the results. I report the results without

control variables to demonstrate that they are not responsible for the disappearing predictive

relationship between the term spread and real activity.

The γk(τ) coefficients for the term spread regressions presented in Table 8, panels A and B, are

significant for horizons between one and three years in the full and in the pre-1992:2 sample. R2s

range between 20% and 36% in the full sample and go up to 50% in the early sample for the 5-year

term spread. In the post-1992:2 sample period (Table 8, panel C), the term spread loses its predictive

power. Coefficients are not significant anymore and R2s are basically zero.

My findings for the early and the full sample are in line with Estrella and Hardouvelis (1991) and

Plosser and Rouwenhorst (1994) who find empirical evidence that the long end of the yield curve

contains relevant information that is independent of monetary policy and thus, the term spread

should be preferred to the short rate alone. The coefficient for the short rate in regression equation

(B-3) is only significant for a one year forecast horizon. This result is not consistent with Bernanke

and Blinder (1992) who find that the short rate is particularly informative about future movements

of real activity, and with Ang, Piazzesi, and Wei (2006) who conclude that the nominal short rate

dominates the term spread in forecasting GDP growth.

Apart from using slightly different sample periods, both papers also employ different method-

ologies. Bernanke and Blinder (1992) for example use Granger-causality tests and estimate VARs,
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while Ang, Piazzesi, and Wei (2006) draw their conclusions from a macro-finance term structure

model. Although the macro-finance model presented in this paper is not the same as the one used

in Ang, Piazzesi, and Wei (2006) (the largest difference being that they do not consider credit

spreads), the results presented in Section 6.3.3 along with the regression results presented in this

section suggest that the findings of Ang, Piazzesi, and Wei (2006) could also be driven by a strong

predictive relationship between the Treasury yield curve and economic activity pre-1980. Appendix

B.2 provides some additional results from simple VAR specifications, which (1) provide evidence that

the effect found by Bernanke and Blinder (1992) is present in the data used in this paper during the

early but not during the late sample period and (2) reconfirm the finding that the Treasury yield

curve has lost its predictive power since the mid-1980s.

The subsamples for the Treasury yield regressions in Table 8, panels B and C, are chosen such

that the late sample coincides with the availability of the corporate bond yield data. Consequently,

the cutoff point is rather arbitrary. Estrella, Rodrigues, and Schich (2003) and Jardet (2004) both

test for the stability of the predictive relationship between the term spread and economic activity

and they find evidence for a structural break around 1984. In panel D, the predictive term spread

regressions are repeated for the sample period 1985:1–2005:4, which excludes the period of monetary

policy tightening under Paul Volcker. The results are in line with those reported in panel C, namely

that the term spread no longer exhibits predictive power. The declining importance of the term

spread in predicting GDP growth is consistent with a monetary policy regime that has been more

concerned with inflation since the mid-1980s.

B.2 Evidence from VARs

Bernanke and Blinder (1992) and Bernanke and Gertler (1995) use VAR specifications to investigate

the credit channel transmission mechanism of monetary policy. They both find that a shock to the

Fed funds rate is followed by sustained declines in real GDP.

This section has two purposes. First, using simple bivariate VAR specifications it provides a

robustness check for the regression results. The main results of Sections 3 and B.1 are confirmed,

namely that the term spread has lost its importance in the late sample period 1992:2–2005:4, whereas

information that manifests itself in credit spreads significantly affects future GDP. Second, estimating

appropriate VARs allows comparing the results for my data with those reported in Bernanke and
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Blinder (1992) and Bernanke and Gertler (1995). For the pre-1992:2 sample, I find results that

are consistent with the theory of a credit channel—an unanticipated tightening of monetary policy,

represented by a shock to the short rate, results in economic slowdown. In the late sample period

however, this effect disappears, suggesting that the findings reported by Bernanke and Blinder (1992)

and Bernanke and Gertler (1995) need to be interpreted with caution in the current environment.

To confirm the results from Section 3, I estimate simple bivariate reduced form VARs using log

real GDP and term or credit spreads for the full sample, as well as for the pre- and post-1992:2 sample.

Figure 9 plots the impulse-response functions for a 100bp shock to the 5-year term spread (panels

A to C for the full, late and early sample periods) or the 10-year B spread (panel D), respectively.

A negative shock to the term spread only has a negative effect on real GDP in the full and early

sample; during the late sample period, GDP is practically unaffected by movements in the term. An

unanticipated positive shock to the high yield spread however, leads to a significant decline in output.

To further gauge the effect of monetary policy shocks and to compare the results with those of

Bernanke and Blinder (1992) and Bernanke and Gertler (1995), I consider a slightly more complicated

VAR using the short rate as the monetary policy instrument, and including the logs of real GDP and

of CPI in the estimation.28 The lag length is chosen to be two, based on Bayes information criterion,

and the short rate is ordered last in the VAR. The impulse response functions for a 100bp increase in

the short rate are displayed in Figure 10, panels A through C. The results exhibit a “price puzzle,”

i.e. prices react positively to a shock in the short rate.29 Although this effect is counterintuitive,

I do not attempt to fix this by adding other time series to the VAR since this is not the focus of

my paper. The response path for GDP however, is in line with the results for the simple bivariate

VARs. In the full and in the early sample, output declines following a shock to the short rate. This

is consistent with the results reported by Bernanke and Blinder (1992) and Bernanke and Gertler

(1995). In the late sample however, the effect of a shock to the short rate almost reverses, again

suggesting that the relationship reported in the earlier literature has disappeared.

I add the 10-year B spread to the VAR and order it last in the system. This implies that monetary

policy can have a contemporaneous effect on the spread but it is assumed that the Fed does not react

28 Instead of the Federal funds rate however, I use the 3-month Treasury yield as this is per definition the short rate
used in the macro-finance model presented in section 4.

29 See for example Eichenbaum (1992). Sims (1992) suggests that one potential explanation is that simple VARs
omit information about future inflation that is actually available to the Fed. He proposes to include a commodity
price index to account for this information.
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to current shocks to the spread. The impulse response functions to a 100bp rise in the credit spread

are plotted in Figure 10, panel D. GDP and the short rate both react negatively to a positive shock

in the high yield spread; CPI is largely unaffected. Again, the results are in line with the findings of

Section 3 and consistent with the existence of a financial accelerator: a shock that is orthogonal to

the short rate, GDP and the price level and that manifests itself in the credit spread has a significant

effect on the future path of the economy.

C Robustness Checks for Credit Spread Regressions

It would be desirable to have a longer history for the full term structure of credit spreads.

Unfortunately, the data availability is limited in this regard. However, it is possible, to extend

the data set for high grade spreads back to the mid-1970s and for high yield spreads back to the

mid-1980s using alternative data from Lehman Brothers and Merrill Lynch (see Appendix A). To

check whether the alternative data, which is arguably less rich, yields qualitatively similar results to

the ones presented in Section 3.2, I replicate Table 1, panel A using the additional data set. The

results in Table 9, panel A indicate that the spreads constructed from the bond indices more or less

capture the same variation in future GDP growth as the data available from Bloomberg. In terms

of R2s, the Lehman Brothers high yield spread behaves strikingly similar to the B 10-year spread,

whereas the Merill Lynch spread exhibits the same pattern as the B 1-year spread (R2s are sharply

decreasing for longer horizons). The results for the extended sample periods are then presented in

Table 9, panels B and C. Panel B displays the regressions using all available data (different starting

points depending on data availability) while panel C reports the results for the subsample 1985:1–

2005:4 (or 1987:1–2005:4 for the Lehman Brothers high yield index). Comparing results using all

and only post-1985:1 data in Table 9, it is apparent that the relationship between real activity and

the high yield spread becomes stronger in the late-1980s. The market for high yield debt did not

really develop until after the mid-1980s. Before, most high yield debt were bonds that were originally

issued by former investment grade firms. This might distort results in the early periods. It is also

evident that spreads for investment grade credits become better predictors for real activity over time.

In order to check whether the results for credit spreads are solely driven by the late sample, I also

repeat the regressions using pre-1985:1 and a pre-1992:2 only, respectively. The results are weaker
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but in line with what is reported in Table 9. Long maturity investment grade spreads significantly

predict GDP for a horizon up to one year. High yield spreads predict GDP growth well for horizons

up to three years in the pre-1992:2 sample. Pre-1985:1 results are either distorted (Merrill Lynch

high yield index) or not available (Lehman Brothers high yield index).

In summary, the results reported in Section 3.2 are quite robust to alternative data and extended

sample periods, which gives further confidence that the limited availability of the whole term structure

of credit spreads is not distorting the overall findings.

D Projection

The model controlling the evolution of state variables z in equation (4) can be rewritten in block

representation as:

zt =


 µm

µx


 +


 Φmm Φmx

Φxm Φxx





 mt−1

xt−1


 +


 Σxx Σxx

Σxx Σxx





 εm

t

εx
t


 (D-5)

This model does not represent a state-space system. Nonetheless, Liptser (1997) and Liptser and

Shiryaev (2001) derive the projection of one element of the VAR(1) on the other using the same

ideas as in the Kalman filtering. In particular, these authors provide the following expression for the

conditional mean, often referred to as “forecast,” and variance of the forecast error:

x̂(Mt) = µx + Φxxx̂(Mt−1) + Φxmmt−1

+ (ΣxxΣmx′ + ΣxmΣmm′ + ΦxxPt−1Φ
mx′) (ΣmxΣmx′ + ΣmmΣmm′ + ΦmxPt−1Φ

mx′)−1

× (mt − µm − Φmxx̂(Mt−1)− Φmmmt−1) (D-6)

Pt = ΦxxPt−1Φ
xx′ + (ΣxxΣxx′ + ΣxmΣxm′)

− (ΣxxΣmx′ + ΣxmΣmm′ + ΦxxPt−1Φ
mx′) (ΣmxΣmx′ + ΣmmΣmm′ + ΦmxPt−1Φ

mx′)−1

× (ΣxxΣmx′ + ΣxmΣmm′ + ΦxxPt−1Φ
mx′)′ , (D-7)

where m and x are generically referred to as vectors of observable and latent variables, respectively.

To describe the projection initialization, some additional notations are introduced. The long-run

mean of z is:

(I − Φ)−1 µ =


 Θm

Θx



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The steady-state matrix P satisfies:

P = ΦxxPΦxx′ + (ΣxxΣxx′ + ΣxmΣxm′)

− (ΣxxΣmx′ + ΣxmΣmm′ + ΦxxPΦmx′) (ΣmxΣmx′ + ΣmmΣmm′ + ΦmxPΦmx′)−1

× (ΣxxΣmx′ + ΣxmΣmm′ + ΦxxPΦmx′)′ (D-8)

Then the projection is initialized as follows:

x̂(m0) = Θx + V xm(V mm)−1(m0 −Θm), P0 = P (D-9)

In this case Pt = P and the projection is time-stationary. An alternative strategy is to initialize P0

at the unconditional variance of z. In this case, the sequence Pt will converge to P.

The lags of the projected x in the expression (D-6) could be recursively substituted out so that

the current projection is expressed as a distributed-lag function of macro variables:

x̂(Mt) = c(Θ) +
t∑

j=0

ct−j(Θ)mt−j, (D-10)

where the matrices c are functions of parameters Θ = (µ, Φ, Σ) that control the dynamics of the state

variables z in (4).

E Latent Factor Indeterminacy

Dai and Singleton (2000) point out that identifying restrictions imposed at the estimation stage

are not necessarily unique. There are many sets of restrictions, or invariant transformations of

the model, such that the yields or inflation expectations are left unchanged. Naturally, when a

parameter configuration changes, the respective latent variables change as well by “rotating.” This

can be exploited by using invariant transformations that are useful for interpreting the latent factors.

I use the invariant affine transformation, which scales factors by a matrix. Appendix A of Dai and

Singleton (2000) describes how such a transformation affects model parameters.

The first rotation, O, ensures that the three factors are orthogonal to each other. I define a

rotation O = Rxt, so that the variance-covariance matrix of x becomes diagonal. The matrix R
is not unique; i.e., the rotation of type O can generate many triples of orthogonal factors x. The

second proposed rotation, M, can be applied after any of the rotations from the class O resolves
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this type of indeterminacy. Define M = Uxt, where the matrix U is the orthogonal matrix; i.e.,

UU ′ = I, that preserves the correlation structure between the factors. In the three-dimensional case,

the matrix U is determined by two parameters, which are established by maximizing the loading

of the 3-month B spread on x1. After the second rotation, the first latent factor, x1, is identified.

Define x
(1)
t = [ x2,t x3,t ]′, the vector of latent variables excluding x1,t. Further define the third

rotation, N = Sx
(1)
t , where S again is the orthogonal matrix. In the two-dimensional case the matrix

S is determined by a single parameter, which is established by maximizing the factor loading of the

Treasury short rate on x2.
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Table 1. Credit spread regressions

Panel A reports the slope coefficient βi
k(τ), and the R2 and R̄2 (adjusted R2) from regressing future GDP growth gt,k

for k quarters on credit spreads, CSi
t(τ), for rating class i and maturity τ :

gt,k = αi
k(τ) + βi

k(τ)CSi
t(τ) + ut+k.

Panel C reports the coefficients β1
k and βi,SL

k , and the R2 and R̄2 from the regression

gt,k = αk(τ) + βi,SL
k (CSi

t(40)− CSi
t(1)) + βi

k(1)CSi
t(1) + ut+k,

where CSi
t(τ) = yi

t(τ)−yT
t (τ)), and yi

t(τ) and yT
t (τ) denote the respective corporate bond and Treasury yields. Panels

B and D report the same quantities for the regressions above including the following control variables: short rate,
5-year term spread, and current and lagged GDP growth and inflation. Hodrick (1992) (1B) standard errors are in
parentheses. ∗ denotes significantly different from zero at 5% level. The sample period is 1992:2–2005:4, GDP data is
included up to 2007:3.

Panel A: Univariate credit spread regressions
AAA 1 yr AAA 10 yrs BBB 1 yr BBB 10 yrs B 1 yr B 10 yrs

Horizon
βi

k(4)
R2

βi
k(40)

R2
βi

k(4)
R2

βi
k(40)

R2
βi

k(4)
R2

βi
k(40)

R2

(Obs.) R̄2 R̄2 R̄2 R̄2 R̄2 R̄2

1 qrt -1.09 0.01 -2.39 0.13 -1.62 0.08 -1.37 0.11 -0.53 0.17 -0.67 0.15
(55) (2.02) -0.01 (1.07)∗ 0.11 (0.65)∗ 0.07 (0.59)∗ 0.10 (0.15)∗ 0.15 (0.22)∗ 0.13

2 qrts -1.98 0.04 -2.38 0.23 -1.73 0.17 -1.47 0.23 -0.51 0.27 -0.60 0.21
(55) (1.60) 0.02 (0.98)∗ 0.21 (0.57)∗ 0.16 (0.53)∗ 0.22 (0.13)∗ 0.26 (0.19)∗ 0.19
1 yr -1.67 0.04 -2.41 0.34 -1.57 0.21 -1.47 0.35 -0.41 0.26 -0.57 0.28
(55) (1.23) 0.02 (0.86)∗ 0.33 (0.51)∗ 0.20 (0.50)∗ 0.34 (0.14)∗ 0.25 (0.17)∗ 0.26
2 yrs -1.18 0.03 -2.35 0.52 -1.18 0.18 -1.36 0.47 -0.27 0.18 -0.41 0.22
(54) (0.78) 0.01 (0.71)∗ 0.51 (0.50)∗ 0.17 (0.44)∗ 0.46 (0.13)∗ 0.16 (0.15)∗ 0.21
3 yrs -1.25 0.04 -2.07 0.58 -1.13 0.24 -1.30 0.63 -0.22 0.15 -0.39 0.27
(50) (0.65) 0.02 (0.63)∗ 0.57 (0.47)∗ 0.22 (0.41)∗ 0.62 (0.14) 0.14 (0.16)∗ 0.26

Panel B: Univariate credit spread regressions with controls
AAA 1 yr AAA 10 yrs BBB 1 yr BBB 10 yrs B 1 yr B 10 yrs

Horizon
βi

k(4)
R2

βi
k(40)

R2
βi

k(4)
R2

βi
k(40)

R2
βi

k(4)
R2

βi
k(40)

R2

(Obs.) R̄2 R̄2 R̄2 R̄2 R̄2 R̄2

1 qrt -2.75 0.21 -2.16 0.26 -1.68 0.24 -0.99 0.22 -0.49 0.27 -0.61 0.26
(55) (1.90) 0.09 (1.09) 0.15 (0.86) 0.12 (0.62) 0.11 (0.16)∗ 0.16 (0.22)∗ 0.15

2 qrts -2.94 0.25 -2.36 0.35 -1.92 0.32 -1.36 0.33 -0.50 0.36 -0.56 0.31
(55) (1.64) 0.14 (1.01)∗ 0.25 (0.75)∗ 0.22 (0.56)∗ 0.23 (0.14)∗ 0.26 (0.20)∗ 0.21
1 yr -2.06 0.24 -2.82 0.54 -1.87 0.38 -1.73 0.53 -0.44 0.38 -0.67 0.45
(55) (1.30) 0.13 (0.80)∗ 0.47 (0.68)∗ 0.29 (0.50)∗ 0.47 (0.13)∗ 0.29 (0.17)∗ 0.37
2 yrs -1.74 0.23 -2.81 0.71 -1.54 0.38 -1.64 0.66 -0.29 0.30 -0.48 0.39
(54) (0.88) 0.11 (0.62)∗ 0.67 (0.54)∗ 0.28 (0.42)∗ 0.60 (0.12)∗ 0.20 (0.15)∗ 0.30
3 yrs -2.11 0.25 -2.48 0.73 -1.73 0.48 -1.62 0.78 -0.29 0.27 -0.52 0.42
(50) (0.68) 0.13 (0.55)∗ 0.69 (0.48)∗ 0.39 (0.39)∗ 0.74 (0.13)∗ 0.15 (0.16)∗ 0.32

Panel C: Bivariate credit spread regressions
AAA BBB B

Horizon
Coeff. S.E.

R2
Coeff. S.E.

R2
Coeff. S.E.

R2

(Obs.) R̄2 R̄2 R̄2

1 qrt βi
1(1) -0.71 (1.77) 0.15 -1.99 (0.77)∗ 0.13 -0.72 (0.21)∗ 0.17

(55) βi,SL
1 -2.58 (1.02)∗ 0.12 -1.16 (0.64) 0.10 -0.44 (0.31) 0.14

2 qrts βi
2(1) -0.85 (1.71) 0.26 -2.08 (0.68)∗ 0.26 -0.65 (0.19)∗ 0.26

(55) βi,SL
2 -2.56 (0.91)∗ 0.23 -1.26 (0.57)∗ 0.23 -0.33 (0.28) 0.23

1 yr βi
4(1) -1.79 (1.30) 0.35 -2.07 (0.57)∗ 0.39 -0.60 (0.17)∗ 0.31

(55) βi,SL
4 -2.48 (0.83)∗ 0.33 -1.26 (0.53)∗ 0.37 -0.39 (0.26) 0.29

2 yrs βi
8(1) -2.02 (0.99)∗ 0.52 -1.62 (0.53)∗ 0.48 -0.43 (0.16)∗ 0.24

(54) βi,SL
8 -2.39 (0.69)∗ 0.50 -1.27 (0.46)∗ 0.46 -0.31 (0.21) 0.21

3 yrs βi
12(1) -1.99 (0.76)∗ 0.58 -1.48 (0.54)∗ 0.63 -0.41 (0.17)∗ 0.28

(50) βi,SL
12 -2.08 (0.64)∗ 0.57 -1.24 (0.42)∗ 0.62 -0.34 (0.20) 0.25

Panel D: Bivariate credit spread regressions with controls
AAA BBB B

Horizon
Coeff. S.E.

R2
Coeff. S.E.

R2
Coeff. S.E.

R2

(Obs.) R̄2 R̄2 R̄2

1 qrt βi
1(1) -0.96 (1.92) 0.27 -1.51 (0.93)∗ 0.23 -0.62 (0.22)∗ 0.27

(55) βi,SL
1 -2.36 (0.99)∗ 0.14 -0.69 (0.67) 0.10 -0.41 (0.40) 0.14

2 qrts βi
2(1) -0.93 (1.72) 0.38 -1.74 (0.85)∗ 0.34 -0.57 (0.20)∗ 0.34

(55) βi,SL
2 -2.60 (0.93)∗ 0.27 -1.15 (0.59) 0.23 -0.27 (0.35) 0.22

1 yr βi
4(1) -2.00 (1.18) 0.55 -1.89 (0.64)∗ 0.54 -0.67 (0.17)∗ 0.45

(55) βi,SL
4 -2.96 (0.77)∗ 0.47 -1.64 (0.52)∗ 0.46 -0.63 (0.29)∗ 0.36

2 yrs βi
6(1) -2.40 (0.88)∗ 0.72 -1.58 (0.50)∗ 0.66 -0.48 (0.15)∗ 0.39

(54) βi,SL
6 -2.88 (0.60)∗ 0.67 -1.68 (0.41)∗ 0.60 -0.50 (0.22)∗ 0.28

3 yrs βi
12(1) -2.55 (0.61)∗ 0.73 -1.72 (0.45)∗ 0.78 -0.52 (0.16)∗ 0.42

(50) βi,SL
12 -2.46 (0.57)∗ 0.68 -1.56 (0.38)∗ 0.74 -0.53 (0.20)∗ 0.31



Table 2. Summary of R2s

Panel A reports the R2 from regressing future GDP growth gt,k for k quarters on current and lagged macro variables,
GDP growth g and inflation π:

gt,k = αk + δ
(1)
k gt + δ

(2)
k gt−1 + η

(1)
k πt + η

(2)
k πt−1 + ut+k,

In panel B, the short rate or various measures of the term spread are added to the regression. Panel C adds the 5-year
term spread and various credit spreads. The sample period for all regressions is 1992:2–2005:4, GDP data is included
up to 2007:3.

Horizon 1 qrt 2 qrts 1 yr 2 yrs 3 yrs
Panel A Macro 0.15 0.18 0.19 0.17 0.05

Panel B

short rate rt 0.15 0.18 0.19 0.17 0.07
1-yr term spread 0.24 0.24 0.20 0.17 0.09
5-yr term spread 0.16 0.18 0.19 0.17 0.07
10-yr term spread 0.15 0.18 0.19 0.18 0.08

Panel C

AAA 1 yr 0.17 0.22 0.23 0.21 0.13
AAA 10 yr 0.24 0.35 0.54 0.71 0.71
BBB 1 yr 0.23 0.32 0.38 0.38 0.47
BBB 10 yr 0.22 0.33 0.51 0.64 0.78
B 1 yr 0.27 0.36 0.37 0.30 0.27
B 10 yr 0.24 0.31 0.45 0.39 0.40

Table 3. Model fit: R2s for implied yields and spreads

The table reports the R2s of the implied yields and credit spreads. The sample period is 1992:2–2005:4, GDP data is
included up to 2007:3.

Maturity
1 qrt 1 yr 10 yrs Slope Curvature

Treasuries 0.979 0.992 0.979 0.932 0.785
AAA 0.132 0.206 0.790 0.593 0.251
BBB 0.592 0.669 0.817 0.722 0.431
B 0.981 0.990 0.921 0.829 0.771
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Table 4. Implied credit spread regressions

Panel A reports the slope coefficient βi
k(τ), and the R2 and R̄2 (adjusted R2) from regressing future GDP growth gt,k

for k quarters on implied credit spreads, ĈSi
t(τ), for rating class i and maturity τ :

gt,k = αi
k(τ) + βi

k(τ)ĈSi
t(τ) + ut+k,

where ĈSi
t(τ) = ŷi

t(τ) − ŷT
t (τ)) and all the yields are model implied instead of actual yields. In panel B, ĈSi

t(τ) is
replaced by the estimation error given by CSi

t(τ) − ĈSi
t(τ), the difference between the actual and the implied credit

spread. Hodrick (1992) (1B) standard errors in parentheses. ∗ denotes significantly different from zero at 5% level.
The sample period is 1992:2–2005:4, GDP data is included up to 2007:3.

Panel A: Implied credit spreads
AAA 1 yr AAA 10 yrs BBB 1 yr BBB 10 yrs B 1 yr B 10 yrs

Horizon
βi

k(4)
R2

βi
k(40)

R2
βi

k(4)
R2

βi
k(40)

R2
βi

k(4)
R2

βi
k(40)

R2

(Obs.) R̄2 R̄2 R̄2 R̄2 R̄2 R̄2

1 qrt -5.89 0.05 -2.86 0.13 -2.68 0.16 -1.75 0.16 -0.55 0.16 -0.74 0.16
(55) (3.64) 0.03 (1.10)∗ 0.12 (0.75)∗ 0.14 (0.56)∗ 0.15 (0.15)∗ 0.15 (0.24)∗ 0.15

2 qrts -6.75 0.12 -2.74 0.22 -2.59 0.26 -1.63 0.25 -0.53 0.27 -0.73 0.28
(55) (3.48) 0.10 (1.03)∗ 0.20 (0.69)∗ 0.25 (0.53)∗ 0.24 (0.14)∗ 0.26 (0.22)∗ 0.27
1 yr -7.27 0.21 -2.47 0.26 -2.24 0.29 -1.40 0.28 -0.45 0.29 -0.65 0.33
(55) (3.14)∗ 0.19 (0.92)∗ 0.25 (0.71)∗ 0.28 (0.48)∗ 0.26 (0.15)∗ 0.28 (0.19)∗ 0.32
2 yrs -5.27 0.17 -2.05 0.28 -1.51 0.20 -1.15 0.29 -0.30 0.20 -0.49 0.30
(54) (2.65) 0.15 (0.74)∗ 0.27 (0.67)∗ 0.19 (0.40)∗ 0.28 (0.14)∗ 0.19 (0.16)∗ 0.28
3 yrs -4.97 0.17 -1.91 0.35 -1.29 0.19 -1.07 0.36 -0.25 0.19 -0.45 0.34
(50) (2.45)∗ 0.15 (0.69)∗ 0.33 (0.71) 0.17 (0.39)∗ 0.35 (0.14) 0.17 (0.16)∗ 0.32

Panel B: Estimation errors
AAA 1 yr AAA 10 yrs BBB 1 yr BBB 10 yrs B 1 yr B 10 yrs

Horizon
βi

k(4)
R2

βi
k(40)

R2
βi

k(4)
R2

βi
k(40)

R2
βi

k(4)
R2

βi
k(40)

R2

(Obs.) R̄2 R̄2 R̄2 R̄2 R̄2 R̄2

1 qrt 0.75 0.00 -1.48 0.01 0.55 0.00 0.85 0.01 -2.36 0.04 0.12 0.00
(55) (2.35) -0.02 (2.25) -0.01 (1.27) -0.02 (0.96) -0.01 (1.55) 0.02 (0.94) -0.02

2 qrts -0.06 0.00 -1.90 0.03 0.06 0.00 -0.28 0.00 -2.02 0.05 0.95 0.04
(55) (1.86) -0.02 (2.22) 0.01 (1.13) -0.02 (0.99) -0.02 (1.16) 0.03 (0.70) 0.02
1 yr 0.52 0.00 -2.95 0.11 -0.20 0.00 -1.35 0.05 0.43 0.00 0.39 0.01
(55) (1.49) -0.02 (1.70) 0.09 (1.01) -0.02 (0.90) 0.04 (0.98) -0.02 (0.52) -0.01
2 yrs 0.44 0.00 -4.17 0.34 -0.49 0.01 -1.97 0.18 0.86 0.02 0.61 0.04
(54) (0.77) -0.02 (1.29)∗ 0.32 (0.67) -0.01 (0.75)∗ 0.17 (0.75) 0.00 (0.31) 0.02
3 yrs -0.02 0.00 -3.74 0.37 -0.97 0.06 -2.15 0.30 1.17 0.05 0.37 0.02
(50) (0.45) -0.02 (1.06)∗ 0.36 (0.52) 0.04 (0.63)∗ 0.29 (0.63) 0.03 (0.21) -0.00
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Table 5. Implied credit spread regressions: term premia and spreads under P-measure

The table reports the coefficients βi,TP
k (τ) and βi,P

k (τ), and the R2 and R̄2 (adjusted R2) from the regression

gt,k = αk(τ) + βi,TP
k (τ)CSi

TP,t(τ) + βi,P
k CSi

P,t(τ) + ut+k,

where gt,k denotes future GDP growth for k quarters and CSi
P,t(τ) and CSi

TP,t(τ) denote the expectations and term

premium components of the implied credit spread for rating class i and maturity τ , ĈSi
t(τ), respectively. Hodrick

(1992) standard errors in parentheses. ∗ denotes significantly different from zero at 5% level. The sample period is
1992:2–2005:4, GDP data is included up to 2007:3.

Panel A AAA 1 yr AAA 10 yrs
Horizon

Coeff. S.E.
R2

Coeff. S.E.
R2

(Obs.) R̄2 R̄2

1 qrt βi,TP
1 (τ) -17.12 (4.80)∗ 0.19 -2.70 (1.13)∗ 0.14

(55) βi,P
1 (τ) -1.39 (3.77) 0.16 5.41 (11.21) 0.11

2 qrts βi,TP
2 (τ) -15.78 (4.35)∗ 0.28 -2.72 (1.05)∗ 0.22

(55) βi,P
2 (τ) -3.13 (3.76) 0.25 -1.56 (11.36) 0.19

1 yr βi,TP
4 (τ) -13.82 (4.06)∗ 0.33 -2.57 (0.92)∗ 0.27

(55) βi,P
4 (τ) -4.65 (3.21) 0.31 -7.27 (9.88) 0.24

2 yrs βi,TP
8 (τ) -10.59 (3.63)∗ 0.30 -2.07 (0.74)∗ 0.28

(54) βi,P
8 (τ) -3.13 (2.45) 0.27 -3.14 (7.53) 0.26

3 yrs βi,TP
12 (τ) -10.25 (3.60)∗ 0.37 -1.85 (0.66)∗ 0.35

(50) βi,P
12 (τ) -2.68 (2.15) 0.34 0.27 (6.77) 0.32

Panel B BBB 1 yr BBB 10 yrs
Horizon

Coeff. S.E.
R2

Coeff. S.E.
R2

(Obs.) R̄2 R̄2

1 qrt βi,TP
1 (τ) -5.12 (2.24)∗ 0.18 -1.75 (0.56)∗ 0.17

(55) βi,P
1 (τ) -1.85 (0.88)∗ 0.15 -2.96 (2.24) 0.13

2 qrts βi,TP
2 (τ) -3.56 (2.15) 0.27 -1.63 (0.52)∗ 0.28

(55) βi,P
2 (τ) -2.26 (0.87)∗ 0.24 -4.20 (2.25) 0.25

1 yr βi,TP
4 (τ) -2.35 (2.09) 0.29 -1.41 (0.47)∗ 0.36

(55) βi,P
4 (τ) -2.21 (0.83)∗ 0.26 -4.66 (1.96)∗ 0.33

2 yrs βi,TP
8 (τ) -2.32 (1.72) 0.21 -1.15 (0.39)∗ 0.32

(54) βi,P
8 (τ) -1.22 (0.78) 0.18 -2.72 (1.58) 0.29

3 yrs βi,TP
12 (τ) -2.71 (1.66) 0.23 -1.08 (0.38)∗ 0.37

(50) βi,P
12 (τ) -0.64 (0.98) 0.20 -1.77 (1.77) 0.34

Panel C B 1 yr B 10 yrs
Horizon

Coeff. S.E.
R2

Coeff. S.E.
R2

(Obs.) R̄2 R̄2

1 qrt βi,P
1 (τ) -0.83 (0.72) 0.16 -0.79 (0.25)∗ 0.17

(55) βi,TP
1 (τ) -0.50 (0.18)∗ 0.13 -0.47 (0.52) 0.14

2 qrts βi,P
2 (τ) -0.41 (0.70) 0.27 -0.72 (0.24)∗ 0.28

(55) βi,TP
2 (τ) -0.55 (0.17)∗ 0.24 -0.78 (0.53) 0.26

1 yr βi,P
4 (τ) -0.04 (0.65) 0.31 -0.60 (0.22)∗ 0.35

(55) βi,TP
4 (τ) -0.52 (0.16)∗ 0.28 -0.92 (0.46)∗ 0.32

2 yrs βi,P
8 (τ) -0.14 (0.53) 0.21 -0.49 (0.18)∗ 0.30

(54) βi,TP
8 (τ) -0.33 (0.15)∗ 0.18 -0.51 (0.36) 0.27

3 yrs βi,P
12 (τ) -0.20 (0.49) 0.19 -0.47 (0.18)∗ 0.34

(50) βi,TP
12 (τ) -0.27 (0.17) 0.15 -0.31 (0.41) 0.31
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Table 6. The forecasting power of determinants of credit spreads

Panel A reports the coefficient βi,M
k (τ), the R2 and R̄2 (adjusted R2) from regressing future GDP growth, gt,k, for k

quarters on the component of credit spreads that can be attributed to the observable macro variables, ĈS
i

M (τ):

gt,k = αk(τ) + βi,M
k (τ)CSi

M,t(τ) + ut+k.

Panel B reports the coefficient β
fj

k , R2 and R̄2 (adjusted R2) from the regression

gt,k = αk + β
fj

k fj,t + ut+k,

for j = {1, 2, 3} and fj denotes the credit, level and slope factors, respectively.
The orthogonalised residuals f and the credit spread component driven by the macro variables, CSi

M (τ), are
standardized to facilitate interpretation of the results. Hodrick (1992) (1B) standard errors in parentheses. ∗ denotes
significantly different from zero at 5% level. The sample period is 1992:2–2005:4, GDP data is included up to 2007:3.

Panel A: Projection component
AAA 1 yr AAA 10 yrs BBB 1 yr BBB 10 yrs B 1 yr B 10 yrs

Horizon
βi,M

k (4)
R2

βi,M
k (40)

R2

βi,M
k (4)

R2

βi,M
k (40)

R2

βi,M
k (4)

R2

βi,M
k (40)

R2

(Obs.) R̄2 R̄2 R̄2 R̄2 R̄2 R̄2

1 qrt -0.50 0.07 -0.50 0.07 -0.49 0.07 -0.56 0.09 -0.48 0.06 -0.56 0.09
(55) (0.26) 0.05 (0.24)∗ 0.05 (0.26) 0.05 (0.22)∗ 0.07 (0.26) 0.05 (0.21)∗ 0.07

2 qrts -0.48 0.11 -0.54 0.14 -0.44 0.09 -0.59 0.17 -0.45 0.10 -0.58 0.17
(55) (0.24)∗ 0.10 (0.23)∗ 0.13 (0.25) 0.08 (0.20)∗ 0.16 (0.25) 0.08 (0.20)∗ 0.15
1 yr -0.42 0.13 -0.47 0.16 -0.28 0.06 -0.49 0.18 -0.29 0.06 -0.45 0.15
(55) (0.20)∗ 0.11 (0.19)∗ 0.15 (0.25) 0.04 (0.17)∗ 0.16 (0.25) 0.04 (0.17)∗ 0.14
2 yrs -0.29 0.09 -0.38 0.16 -0.06 0.00 -0.36 0.15 -0.07 0.01 -0.29 0.10
(54) (0.15) 0.08 (0.16)∗ 0.15 (0.24) 0.02 (0.15)∗ 0.14 (0.24) 0.01 (0.15) 0.08
3 yrs -0.11 0.02 -0.26 0.10 0.13 0.03 -0.22 0.07 0.12 0.02 -0.12 0.02
(50) (0.13) 0.00 (0.14) 0.08 (0.22) 0.01 (0.14) 0.05 (0.22) 0.00 (0.15) 0.00

Panel B: Orthogonalized residuals
f1 f2 f3

Horizon
βf1

k

R2

βf2
k

R2

βf3
k

R2

(Obs.) R̄2 R̄2 R̄2

1 qrt -0.50 0.07 0.37 0.04 0.36 0.04
(55) (0.25)∗ 0.05 (0.23) 0.02 (0.24) 0.02

2 qrts -0.52 0.13 0.22 0.02 0.27 0.04
(55) (0.25)∗ 0.12 (0.23) 0.00 (0.23) 0.02
1 yr -0.54 0.21 0.07 0.00 0.23 0.04
(55) (0.21)∗ 0.20 (0.20) 0.01 (0.21) 0.02
2 yrs -0.48 0.26 0.15 0.03 0.20 0.05
(54) (0.18)∗ 0.24 (0.15) 0.01 (0.16) 0.03
3 yrs -0.64 0.54 0.25 0.10 0.26 0.11
(55) (0.18)∗ 0.53 (0.13) 0.08 (0.16) 0.09
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Table 7. Implied credit spread regressions: full decomposition

The table reports the coefficients βi,M
k (τ) and βi,f

k (τ), and the R2 and R̄2 (adjusted R2) from regressing future GDP
growth, gt,k, for k quarters on the various components of the credit spreads:

gt,k = αk(τ) + βi,M
k (τ)CSi

M,t(τ) + βi,f1
k (τ)CSi

f1,t(τ) + βi,f2
k (τ)CSi

f2,t(τ) + βi,f3
k (τ)CSi

f1,t(τ) + ut+k,

where CSi
M (τ) and ĈS

i

f (τ) denote the components of the credit spreads that can be attributed to the observable
macro variables and its lags M , and the various orthogonalized residuals f1, f2 and f3, respectively. The implied
credit spread, ĈSi

t(τ), is the sum of the four components. Hodrick (1992) (1B) standard errors in parentheses. ∗

denotes significantly different from zero at 5% level. The sample period is 1992:2–2005:4, GDP data is included up to
2007:3.

Panel A AAA 1 yr AAA 10 yrs
Horizon

Coeff. S.E.
R2

Coeff. S.E.
R2

(Obs.) R̄2 R̄2

1 qrt βi,M
1 (τ) -24.18 (5.60)∗ 0.27 -4.07 (1.39)∗ 0.21

(55) βi,f1
1 (τ) -4.15 (5.02) 0.22 -3.49 (3.66) 0.14

βi,f2
1 (τ) 19.85 (7.19)∗ 162.90 (77.81)∗

βi,f3
1 (τ) -57.20 (21.16)∗ -2.44 (1.29)

2 qrts βi,M
2 (τ) -19.75 (5.05)∗ 0.35 -3.88 (1.23)∗ 0.31

(55) βi,f1
2 (τ) -6.43 (5.19) 0.29 -4.59 (3.81) 0.25

βi,f2
2 (τ) 12.96 (7.52) 105.40 (80.13)

βi,f3
2 (τ) -42.41 (20.84)∗ -1.80 (1.26)

1 yr βi,M
4 (τ) -14.43 (4.46)∗ 0.38 -2.90 (1.04)∗ 0.35

(55) βi,f1
4 (τ) -8.56 (4.19)∗ 0.33 -6.01 (3.07) 0.30

βi,f2
4 (τ) 6.19 (6.56) 42.36 (68.88)

βi,f3
4 (τ) -31.56 (18.86) -1.36 (1.15)

2 yrs βi,M
8 (τ) -10.92 (2.87)∗ 0.41 -2.47 (0.69)∗ 0.42

(54) βi,f1
8 (τ) -7.50 (2.83)∗ 0.37 -5.20 (2.08)∗ 0.37

βi,f2
8 (τ) 7.40 (3.97) 64.95 (44.07)

βi,f3
8 (τ) -25.44 (16.09) -1.12 (0.98)

3 yrs βi,M
12 (τ) -5.38 (2.96) 0.62 -1.59 (0.76)∗ 0.65

(50) βi,f1
12 (τ) -11.45 (3.31)∗ 0.58 -7.84 (2.44)∗ 0.62

βi,f2
12 (τ) 5.73 (3.61) 58.80 (40.74)

βi,f3
12 (τ) -18.36 (17.72) -0.93 (1.06)
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Table 7. Implied credit spread regressions: full decomposition (cont.)

Panel B BBB 1 yr BBB 10 yrs
Horizon

Coeff. S.E.
R2

Coeff. S.E.
R2

(Obs.) R̄2 R̄2

1 qrt βi,M
1 (τ) -2.59 (1.13)∗ 0.19 -2.33 (0.70)∗ 0.21

(55) βi,f1
1 (τ) -2.17 (1.07) 0.13 -2.10 (1.94) 0.15

βi,f2
1 (τ) -88.39 (81.32) -9.42 (5.09)

βi,f3
1 (τ) -21.21 (14.79) -1.23 (0.70)

2 qrts βi,M
2 (τ) -2.47 (1.13)∗ 0.28 -2.27 (0.64)∗ 0.32

(55) βi,f1
2 (τ) -2.44 (1.03)∗ 0.22 -2.63 (1.98) 0.27

βi,f2
2 (τ) -27.88 (81.23) -5.77 (5.20)

βi,f3
2 (τ) -14.32 (13.89) -0.89 (0.68)

1 yr βi,M
4 (τ) -1.78 (1.17) 0.32 -1.69 (0.55)∗ 0.36

(55) βi,f1
4 (τ) -2.57 (0.90)∗ 0.27 -3.30 (1.61)∗ 0.31

βi,f2
4 (τ) 19.71 (71.80) -1.91 (4.49)

βi,f3
4 (τ) -10.86 (12.87) -0.67 (0.63)

2 yrs βi,M
8 (τ) -0.49 (1.19) 0.30 -1.28 (0.45)∗ 0.40

(54) βi,f1
8 (τ) -2.10 (0.72)∗ 0.24 -2.95 (1.13)∗ 0.35

βi,f2
8 (τ) -28.06 (49.81) -3.33 (2.97)

βi,f3
8 (τ) -8.77 (10.47) -0.53 (0.53)

3 yrs βi,M
12 (τ) 0.45 (1.06) 0.59 -0.72 (0.51) 0.63

(50) βi,f1
12 (τ) -2.50 (0.80)∗ 0.55 -4.29 (1.27)∗ 0.59

βi,f2
12 (τ) -50.50 (42.56) -3.12 (2.72)

βi,f3
12 (τ) -8.68 (11.59) -0.44 (0.57)

Panel C B 1 yr B 10 yrs
Horizon

Coeff. S.E.
R2

Coeff. S.E.
R2

(Obs.) R̄2 R̄2

1 qrt βi,M
1 (τ) -0.49 (0.22)∗ 0.19 -0.94 (0.26)∗ 0.22

(55) βi,f1
1 (τ) -0.46 (0.23)∗ 0.12 -0.59 (0.47) 0.16

βi,f2
1 (τ) -3.37 (3.14) 5.97 (3.39)

βi,f3
1 (τ) -2.61 (1.85) -0.78 (0.42)

2 qrts βi,M
2 (τ) -0.49 (0.22)∗ 0.28 -0.91 (0.24)∗ 0.33

(55) βi,f1
2 (τ) -0.52 (0.22)∗ 0.22 -0.71 (0.47) 0.28

βi,f2
2 (τ) -0.99 (3.13) 3.52 (3.44)

βi,f3
2 (τ) -1.75 (1.74) -0.57 (0.41)

1 yr βi,M
4 (τ) -0.36 (0.23) 0.32 -0.65 (0.22)∗ 0.36

(55) βi,f1
4 (τ) -0.55 (0.19)∗ 0.27 -0.85 (0.38)∗ 0.31

βi,f2
4 (τ) 0.82 (2.76) 1.00 (2.98)

βi,f3
4 (τ) -1.33 (1.61) -0.43 (0.38)

2 yrs βi,M
8 (τ) -0.11 (0.23) 0.30 -0.42 (0.19)∗ 0.37

(54) βi,f1
8 (τ) -0.45 (0.16)∗ 0.24 -0.77 (0.28)∗ 0.32

βi,f2
8 (τ) -1.04 (1.92) 1.92 (2.00)

βi,f3
8 (τ) -1.09 (1.31) -0.33 (0.31)

3 yrs βi,M
12 (τ) 0.08 (0.21) 0.58 -0.19 (0.21) 0.60

(50) βi,f1
12 (τ) -0.54 (0.17)∗ 0.55 -1.06 (0.30)∗ 0.56

βi,f2
12 (τ) -1.92 (1.64) 1.86 (1.80)

βi,f3
12 (τ) -1.09 (1.45) -0.26 (0.34)
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Table 8. Term spread and short rate regressions

The table reports the slope coefficient γk(τ), the R2 and the R̄2 from regressing future GDP growth, gt,k, for k quarters
on the short rate and various term spreads, respectively:

gt,k = αk(τ) + γk(τ)(yT
t (τ)− yT

t (1)) + ut+k

for different sample periods. In the first column, the term spread is replaced by the short rate in the regression.
Hodrick (1992) (1B) standard errors are in parentheses. ∗ denotes significantly different from zero at 5% level. GDP
data is included up to 2007:3.

Panel A: 1971:3–2005:4
short rate rt 1 year 5 years 10 years

Horizon
γk(1)

R2
γk(4)

R2
γk(20)

R2
γk(40)

R2

(Obs.) R̄2 R̄2 R̄2 R̄2

1 qrt -0.09 0.01 1.26 0.03 0.42 0.02 0.26 0.01
(138) (0.10) -0.00 (0.83) 0.03 (0.23) 0.02 (0.17) 0.01
2 qrts -0.16 0.03 0.98 0.03 0.57 0.07 0.41 0.05
(138) (0.11) 0.03 (0.63) 0.02 (0.22)∗ 0.06 (0.17)∗ 0.04
1 yr -0.22 0.09 1.38 0.10 0.80 0.20 0.60 0.17
(138) (0.11)∗ 0.09 (0.48)∗ 0.09 (0.23)∗ 0.19 (0.18)∗ 0.16
2 yrs -0.16 0.09 1.36 0.18 0.78 0.35 0.57 0.28
(137) (0.10) 0.09 (0.40)∗ 0.17 (0.23)∗ 0.34 (0.18)∗ 0.27
3 yrs -0.08 0.04 0.88 0.13 0.56 0.33 0.40 0.24
(133) (0.10) 0.03 (0.33)∗ 0.13 (0.20)∗ 0.32 (0.16)∗ 0.23

Panel B: 1971:3–1992:1
short rate rt 1 year 5 years 10 years

Horizon
γk(1)

R2
γk(4)

R2
γk(20)

R2
γk(40)

R2

(Obs.) R̄2 R̄2 R̄2 R̄2

1 qrt -0.20 0.02 1.13 0.03 0.50 0.03 0.39 0.02
(83) (0.17) 0.01 (0.99) 0.01 (0.29) 0.02 (0.25) 0.01

2 qrts -0.33 0.08 0.91 0.03 0.73 0.09 0.64 0.09
(83) (0.18) 0.07 (0.75) 0.01 (0.28)∗ 0.08 (0.23)∗ 0.08
1 yr -0.44 0.21 1.59 0.12 1.06 0.30 0.93 0.29
(83) (0.17)∗ 0.20 (0.58)∗ 0.11 (0.29)∗ 0.29 (0.25)∗ 0.28
2 yrs -0.30 0.18 1.66 0.25 1.00 0.51 0.83 0.45
(83) (0.16) 0.17 (0.51)∗ 0.24 (0.28)∗ 0.50 (0.24)∗ 0.44
3 yrs -0.12 0.06 1.02 0.17 0.70 0.45 0.55 0.36
(83) (0.14) 0.05 (0.42)∗ 0.16 (0.25)∗ 0.45 (0.21)∗ 0.35

Panel C: 1992:2–2005:4
short rate rt 1 year 5 years 10 years

Horizon
γk(1)

R2
γk(4)

R2
γk(20)

R2
γk(40)

R2

(Obs.) R̄2 R̄2 R̄2 R̄2

1 qrt 0.17 0.02 2.02 0.12 0.14 0.00 -0.00 0.00
(55) (0.17) 0.00 (0.61)∗ 0.11 (0.25) -0.01 (0.20) -0.02

2 qrts 0.11 0.02 1.40 0.10 0.07 0.00 -0.01 0.00
(55) (0.16) -0.00 (0.64)∗ 0.09 (0.25) -0.02 (0.19) -0.02
1 yr 0.05 0.00 0.59 0.03 0.00 0.00 -0.01 0.00
(55) (0.15) -0.01 (0.62) 0.01 (0.24) -0.02 (0.18) -0.02
2 yrs 0.03 0.00 0.24 0.01 0.07 0.01 0.06 0.01
(54) (0.14) -0.02 (0.36) -0.01 (0.21) -0.01 (0.17) -0.01
3 yrs 0.04 0.01 0.47 0.04 0.13 0.02 0.09 0.02
(50) (0.11) -0.01 (0.34) 0.02 (0.19) 0.00 (0.16) -0.00

Panel D: 1985:1–2005:4
short rate rt 1 year 5 years 10 years

Horizon
γk(1)

R2
γk(4)

R2
γk(20)

R2
γk(40)

R2

(Obs.) R̄2 R̄2 R̄2 R̄2

1 qrt 0.04 0.00 2.24 0.15 0.30 0.02 0.10 0.00
(84) (0.10) -0.01 (0.47)∗ 0.14 (0.20) 0.01 (0.16) -0.01

2 qrts -0.01 0.00 1.73 0.15 0.28 0.03 0.13 0.01
(84) (0.10) -0.01 (0.49)∗ 0.14 (0.20) 0.02 (0.15) -0.00
1 yr -0.07 0.01 1.21 0.10 0.29 0.04 0.19 0.03
(84) (0.10) 0.00 (0.48)∗ 0.09 (0.19) 0.03 (0.15) 0.02
2 yrs -0.11 0.05 0.80 0.07 0.35 0.10 0.25 0.10
(83) (0.10) 0.04 (0.33)∗ 0.06 (0.20) 0.09 (0.16) 0.08
3 yrs -0.10 0.06 0.52 0.05 0.33 0.13 0.24 0.12
(79) (0.09) 0.04 (0.26)∗ 0.03 (0.17) 0.12 (0.14) 0.11
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Table 9. Credit spread regressions: Lehman and Merrill Lynch bond indices

The table reports the slope coefficient βi
k(τ) and R2 from regressing future GDP growth gt,k for k quarters on credit

spreads, CSi
t(τ), for rating class i and maturity τ :

gt,k = αi
k(τ) + βi

k(τ)CSi
t(τ) + ut+k,

where CSi
t(τ) = yi

t(τ) − yT
t (τ)) and yi

t(τ) and yT
t (τ) denote the respective corporate bond and Treasury yields .

Hodrick (1992) (1B) standard errors in parentheses. ∗ denotes significantly different from zero at 5% level.

Panel A: 1992:2–2005:4
AAA IM AAA L BBB IM BBB L LB HY ML HY

Horizon
βAAA

k (IM) R2 βAAA
k (L) R2 βBBB

k (IM) R2 βBBB
k (L) R2 βHY

k R2 βHY
k R2

(Obs.)
1 qrt -1.55 0.06 -1.68 0.12 -0.94 0.15 -1.34 0.17 -0.42 0.19 -0.52 0.23
(54) (0.74)∗ (0.67)∗ (0.27)∗ (0.42)∗ (0.11)∗ (0.11)∗

2 qrts -1.54 0.10 -1.75 0.22 -0.93 0.26 -1.36 0.30 -0.41 0.31 -0.48 0.34
(53) (0.77)∗ (0.68)∗ (0.25)∗ (0.41)∗ (0.10)∗ (0.10)∗
1 yr -1.44 0.12 -1.70 0.31 -0.83 0.30 -1.32 0.42 -0.37 0.37 -0.41 0.35
(51) (0.82) (0.64)∗ (0.26)∗ (0.39)∗ (0.10)∗ (0.10)∗
2 yrs -0.99 0.09 -1.54 0.40 -0.60 0.25 -1.06 0.43 -0.30 0.36 -0.27 0.23
(47) (0.73) (0.55)∗ (0.26)∗ (0.34)∗ (0.10)∗ (0.11)∗
3 yrs -1.26 0.17 -1.39 0.45 -0.53 0.28 -0.88 0.43 -0.25 0.38 -0.21 0.21
(43) (0.78) (0.55)∗ (0.25)∗ (0.34)∗ (0.10)∗ (0.11)

Panel B: all available data
1973:1–2005:4 1980:1–2005:4

AAA IM AAA L BBB IM BBB L ML HY

Horizon
βAAA

k (IM)
R2

βAAA
k (L)

R2
βBBB

k (IM)
R2

βBBB
k (L)

R2
βHY

k
R2

(Obs.) (Obs.) (Obs.) (Obs.) (Obs.)
1 qrt -1.77 0.04 -3.03 0.09 -1.46 0.12 -2.15 0.17 -0.34 0.07

(0.86)∗ (131) (0.76)∗ (131) (0.31)∗ (131) (0.44)∗ (131) (0.15)∗ (103)
2 qrts -1.17 0.03 -3.00 0.14 -1.18 0.12 -2.06 0.24 -0.29 0.07

(0.77) (130) (0.71)∗ (130) (0.28)∗ (130) (0.44)∗ (130) (0.16) (102)
1 yr -0.05 0.00 -2.29 0.13 -0.48 0.03 -1.44 0.18 -0.22 0.07

(0.73) (128) (0.63)∗ (128) (0.27)∗ (128) (0.41)∗ (128) (0.14) (100)
2 yrs 0.73 0.03 -0.83 0.03 0.22 0.01 -0.43 0.03 -0.12 0.04

(0.60) (124) (0.57) (124) (0.23) (124) (0.34) (124) (0.12) (96)
3 yrs 0.52 0.02 -0.32 0.01 0.25 0.02 -0.05 0.00 -0.14 0.08

(0.61) (120) (0.51) (120) (0.19) (120) (0.26) (120) (0.07) (92)
Panel C: 1985:1–2005:4

AAA IM AAA L BBB IM BBB L LB HY ML HY

Horizon
βAAA

k (IM)
R2

βAAA
k (L)

R2
βBBB

k (IM)
R2

βBBB
k (L)

R2
βHY

k
R2

βHY
k

R2

(Obs.) (Obs.) (Obs.) (Obs.) (Obs.) (Obs.)
1 qrt -1.47 0.05 -1.38 0.06 -0.89 0.11 -1.35 0.13 -0.53 0.32 -0.58 0.34

(0.62)∗ (83) (0.58)∗ (83) (0.25)∗ (83) (0.39)∗ (83) (0.09)∗ (75) (0.09)∗ (83)
2 qrts -1.53 0.08 -1.53 0.12 -0.85 0.16 -1.37 0.21 -0.52 0.49 -0.55 0.49

(0.60)∗ (82) (0.56)∗ (82) (0.23)∗ (82) (0.35)∗ (82) (0.09)∗ (74) (0.09)∗ (82)
1 yr -1.21 0.07 -1.50 0.17 -0.63 0.12 -1.25 0.25 -0.45 0.52 -0.45 0.45

(0.59)∗ (80) (0.51)∗ (80) (0.21)∗ (80) (0.31)∗ (80) (0.08)∗ (72) (0.08)∗ (80)
2 yrs -0.39 0.01 -1.19 0.17 -0.27 0.04 -0.84 0.19 -0.32 0.40 -0.27 0.27

(0.53) (76) (0.48)∗ (76) (0.22) (76) (0.30)∗ (76) (0.07)∗ (68) (0.07)∗ (76)
3 yrs -0.35 0.01 -1.04 0.18 -0.19 0.03 -0.66 0.17 -0.24 0.35 -0.19 0.19

(0.51) (72) (0.46)∗ (72) (0.21) (72) (0.28)∗ (72) (0.07)∗ (64) (0.07)∗ (72)
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Figure 1. Treasury yields: actual and implied slope and curvature

The figure shows the actual and model implied slope and curvature of the Treasury yields.
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Figure 2. Credit spreads: actual and implied levels

The figure shows the fit of the credit spreads levels. I plot actual and model implied 1- and 10-year credit spreads for
AAA, BBB and B credits.
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Figure 3. Implied spreads and Treasury yields, and term premia

The figure shows the decomposition of the implied credit spreads (thin black line) and Treasury yields into a part
based on expectations about the future short rate (thick blue line) and a term premium (thick green line).
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Figure 4. Normalized factor loadings

The figure shows how Treasury yields and credit spreads change in response to a one standard deviation change in any
of the state variables. The responses are also expressed in standard deviations to facilitate comparison and gauge the
relevance of the various state variables.
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Figure 5. Factor f1, B spreads and index of tighter loan standards

Panel A plots the quarterly time series of the estimated factor f1 against 3-month and 10-year B spreads. Correlations
between f1 and the credit spreads are 70% and 57%, respectively. Panel B plots the factor f1 against the prewithened
index of tighter loan standards from the Senior Loan Officer Opinion Survey. The prewithened series are residuals
from regressing the original series on eight lags of inflation and real activity. The correlation between the two series is
62%. All series are normalized to facilitate comparison.
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Figure 6. Factor f2, Treasury yields and Federal funds target rate

Panel A plots quarterly time series of the estimated factor f2 against 3-month and 10-year Treasury yields. Correlations
between f2 and the Treasury yields are 77% and 52%, respectively. Panel B plots the factor f2 against the prewithened
Federal funds target rate. The prewithened series are residuals from regressing the original series on eight lags of
inflation and real activity. The correlation between the two series is 68%. All series are normalized to facilitate
comparison.

1992 1994 1996 1998 2000 2002 2004 2006
−3

−2

−1

0

1

2

3

Panel B: f
2
 vs. Federal funds target rate

Fed funds target
f
2

1992 1994 1996 1998 2000 2002 2004 2006
−3

−2

−1

0

1

2

3

Panel A: f
2
 vs. Treasury yields

Treasury 3m
Treasury 10yrs
f
2

57



Figure 7. Decomposition of implied spreads

The figure shows the implied credit spreads and the decompositions thereof into the contributions from the various
factors. The projection piece includes the constant, the direct contribution of the macro variables and the projection.
The contribution of the orthogonalized factors is calculated by multiplying the factor loading by the realizations.
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Figure 8. Treasury yields and credit spreads

Panel A shows the 3-month, 1-year and 1-year Treasury yields, and 10-year corporate bond yields Panels B through
D show the 3-month, 1-year and 10-year credit spreads, respectively for AAA, BBB and B credits.
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Figure 9. Impulse response functions for bivariate VARs

I plot the impulse response functions for simple bivariate VARs with lag length equal to four quarters. Panels A
through C show the impulse response functions of real GDP and the term spread to a 100bp shock in the term spread
for different sample periods. Panel D plots the impulse response functions for GDP and the 10-year B spread to a
100bp shock in the B spread. The lag length is determined using Bayes criterion.
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Figure 10. Impulse response functions for VARs

I plot the impulse response functions for multivariate VARs with lag length equal to two quarters. Panels A through
C show the impulse response functions of real GDP, inflation and the short rate to a 100bp shock in the short rate
for different sample periods. Panel D plots the impulse response functions for GDP, inflation, the short rate and the
10-year B spread to a 100bp shock in the B spread. The lag length is determined using Bayes criterion.
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