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Abstract

Hansen, Heaton and Li (2005) have recently shown, how news
about changes in the long-run growth rates of consumption can im-
pact on current asset prices, if preferences are nonseparable over time.
This paper provides a complementary approach to theirs. It exam-
ines asset pricing with generalized Epstein-Zin preferences, allowing
for nonseparabilities between consumption and leisure as well as trend
growth in consumption. A log-linear approximation for the asset pric-
ing formula is provided, showing how news about future consumption
and leisure changes matter for asset prices. The asset pricing formulas
are evaluated empirically.

Keywords: consumption-based asset pricing, business cycle, calibra-
tion, equity premium, Sharpe ratio, nonseparability between consumption
and leisure, two-agent economy
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1 Introduction

This paper examines asset pricing with Epstein-Zin preferences, allowing for
nonseparabilities between consumption and leisure as well as trend growth
in consumption. A log-linear approximation for the asset pricing formula is
provided, showing how news about future consumption and leisure changes
matter for asset prices. The asset pricing formulas are evaluated empirically.

In particular since Mehra and Prescott (1985), many approaches have
been undertaken to provide preference-based (or production-based) theories
consistent with observed asset-pricing facts. Surveys of the literature are e.g.
in Cochrane (2001) or Campbell (2003), and a list of “exotic preferences”
generated by the ensuing research can be found in Backus, Routledge and
Zin (2004). While there are many routes, those seeking to “reverse-engineer”
preferences from asset pricing facts have mainly followed two approaches.
The first involves habit formation or “catching up with the Joneses”, see e.g.
Campbell and Cochrane (1999) for a formulation that matches a number
of key asset market facts. The second approach seeks a separation of the
intertemporal elasticity of substition from risk aversion, which could be called
Porteus-Kreps-Epstein-Zin-Weil preferences1. This paper contributes to the
latter branch of research.

Most approaches to pricing assets, using Epstein-Zin preferences, typi-
cally substitute out some unobserved value function by an expression, in-
volving the value of the market in order to derive testable implications, see
in particular Epstein and Zin (1989) and Campbell (1996). This makes it
both hard to apply this framework to the case of non-representative agents
as well as applying it in the solution of business cycle models, as in e.g.
Tallarini (2000). This paper instead follows the lead of Hansen, Heaton
and Li (2005) to derive asset pricing equations from a log-linear expansion
around some steady state or some well-understood benchmark (such as the
case of unitary intertemporal elasticity of substitition). This paper is com-
plementary to theirs. Rather than directly casting the pricing equation as
an operator equation and exploiting the framework of Hansen-Scheinkman
(2005), we instead derive an approximate infinite-horizon formula for pric-
ing assets, involving future news about leisure and consumption. Combined

1These preferences can be reinterpreted within a robust-control perspective, see Hansen,
Sargent and Tallarini, 1999.



with assumptions regarding the evolution of the state of the economy, an
operator-based pricing equation can then be re-derived and compared to the
results in Hansen-Heaton-Li (2005) as well as Campbell (1996). An empirical
application is provided.

A number of researchers have stressed that nonseparabilities between con-
sumption and leisure are important to explain key facts regarding labor mar-
kets, see e.g. Hall (2006). Likewise, many aggregate models typically feature
trending variables, e.g. due to a unit root or trend growth in the log of total
factor productivity. In this paper, I therefore seek to develop an asset pric-
ing formula based on Epstein-Zin preferences, which allows for these features.
Rather than evaluating the resulting asset pricing equations with the avail-
able apparatus of numerical techniques, see e.g. Judd (1998), I provide asset
pricing formulas, using a log-linear framework. The log-linear framework has
become a useful point of departure for understanding key features of asset
pricing more deeply, and is therefore a useful and perhaps even necessary
complement to an entirely numerical evaluation. For a number of reasons, in
particular the reasons emphasized in Weitzman (2005), the approximation
here should be regarded as a “small-shock” approximation, rather than an
asset pricing framework that properly handles tail-events.

2 Preferences

I use capital letters to denote the original variables, and small letters to de-
note log-deviations from a steady-state growth path (unless explicitly stated
otherwise). The preferences I wish to examine are given by

Vt = (1 − β̃)U(Ct, ΦtLt; Φt) (1)

+βH−1 (Et [H(Vt+1)])

where Ct denotes consumption and Lt denotes leisure, and where Φt is an ex-
ogenous and possibly trending variable, and where I assume that (Ct/Φt, Lt) ∈
D for some open convex subset D of IR2

++. I make several assumptions.

Assumption A. 1 (Φt/Φt−1, Ct/Φt, Lt) is a stationary and strictly positive
stochastic process. Furthermore, the logarithmic means Γ̄, C̄ and L̄ satisfying

log
(

Γ̄
)

= E [log Φt − log Φt−1]
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log
(

C̄
)

= E [log Ct − log Φt]

log
(

L̄
)

= E [log Lt]

are well defined with (C̄, L̄) ∈ D.

This assumption is satisfied in many stochastic models, where the driving
process as well as the resulting economic variables, including consumption
and leisure, are stationary and their logs have finite means. It is also satis-
fied in many models with a stochastically trending total factor productivity,
provided log Φt is cointegrated with the log of total factor productivity. This
includes models with preference shocks and stochastic trend growth, where
the productivity of leisure grows with the productivity of market labor in the
long run. Interestingly, it also includes models with catching-up-with-the-
Joneses preferences, where Φt is some average of present and past aggregate
consumption so that the ratio of private consumption Ct to the aggregation
variable Φt is stationary.

Assumption A. 2 U(·, ·; ·) is twice continously differentiable. It is concave
and strictly increasing in its first two arguments.

The role of the third argument in U(·, ·; ·) will become clearer below. For
the other two arguments, this is a standard assumption.

Assumption A. 3 The functions obey the following functional form restric-
tions.

U(ΦC,L; Φ) = Φ1−η
(

Ũ(C,L) + χ
)

− χ̃ (2)

and
H(V ) = ((1 − η)(V + χ))

1−ν
1−η (3)

for some function Ũ(·, ·) and parameters η > 0, ν > 0, χ, χ̃ satisfying

ν > 0

(1 − η)
(

Ũ(C,L) + χ
)

≥ 0, all (C,L) ∈ D
β̃ = βΓ̄1−η < 1

χ̃ =
1 − β

1 − β̃
χ
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Note that Ũ(·, ·) must be concave.
This may appear at first to be a strange assumption. Intuitively, this

assumption assures that the curvatures do not change as the economy grows
richer. Instead, risk aversion with respect to relative gambles in consumption
remains stationary. Likewise, the tradeoff between leisure and consumption
remains stationary (i.e. income and substitution effects balance), when wages
grow with consumption. The same considerations have led many researchers
to assume CRRA specifications in growing economies with separable pref-
erences: the assumption above constitutes a generalization to the case of
nonseparabilities across time. These assertions follow from the following fun-
damental property of the preference formulation above. Define

C̃t =
Ct

Φt

Ṽt = Φη−1

t (Vt + χ) − χ

Proposition 1 Equation (1) can be rewritten as

Ṽt = (1 − β̃)Ũ(C̃t, Lt) + (4)

β̃H−1

(

Et

[

(

Φt+1

Γ̄Φt

)1−ν

H(Ṽt+1)

])

Proof: Note that for any ϕ and x, one has ϕ1−η (H−1(x) + χ) =
H−1(ϕ1−νx) + χ, as long as everything is well-defined. Note that χ =
(1 − β̃)χ̃ + βχ. Finally, note that

H(Vt+1) =
(

(1 − η)Φ1−η
t+1 (Ṽt+1 + χ)

)
1−ν
1−η = Φ1−ν

t+1 H(Ṽt+1)

Thus,

Ṽt + χ = Φη−1

t (Vt + χ)

= (1 − β̃)Φη−1

t (U + χ̃)

+
β̃

(Γ̄Φt)1−η

(

H−1
(

Et

[

Φ1−ν
t+1 H(Ṽt+1)

])

+ χ
)

= (1 − β̃)
(

Ũ(C̃t, Lt) + χ
)

+β̃

(

H−1

(

Et

[

(

Φt+1

Γ̄Φt

)1−ν

H(Ṽt+1)

])

+ χ

)
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Subtract χ to obtain (4).
•

Define
V̄ = Ū = Ũ(C̄, L̄)

and note that V̄ is that value for Vt and Vt+1, which satisfies (4) for C̃t = C̄,
Lt = L̄, Φt+1/Φt = Γ̄.

I shall also often impose the following, additional assumption.

Assumption A. 4

1 =
ŨC

(

C̄, L̄
)

C̄

Ū
(5)

This can always be assured by shifting the intercept of the felicity function
Ũ(·, ·) without affecting economic choices, i.e., this is a normalization of
the preference function. The assumption is convenient, since I can then
easily calculate random shifts in the value function Ṽ in terms of equivalent
permanent increases in consumption.

It is time to examine some examples.

Example 1 Suppose that H(·) is linear, i.e. suppose that ν = η 6= 0. In
that case, (1) becomes

V0 = E

[

∞
∑

t=0

βtU(Ct, Lt; Φt)

]

i.e., the standard formula for time-separable preferences, except that it more
generally also allows for Φt to enter the felicity function directly.

Example 2 A standard specification is

U(C,L; Φ) =
C1−η

1 − η
= Ũ(C,L)

0 = χ = χ̃
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Note that U(C,L; Φ) does not depend2 on L. In that case, equation (1) reads

Vt =
1

1 − η

(

C1−η + β
(

E
[

((1 − η)Vt+1)
1−ν
1−η

])
1−η

1−ν

)

which is a standard specification for Epstein-Zin preferences. It is easy to
verify assumption 3. Note that U(·, ·; ·) does not depend on its third argument.
Note, though, that assumption 4 is violated.

Example 3 Let

Ũ(C,L) =
(Cv(L))1−η

1 − η
− χ∗ (6)

for some strictly positive and strictly increasing function v(L) so that Ũ(·, ·)
is concave. In order to achieve (5), I need

χ∗ =
η

1 − η

(

C̄v(L)
)1−η

(7)

Consequently,

χ∗ =
η

1 − η
Ū (8)

To assure (1−η)(Ũ(C,L)+χ) > 0, as required in (3), one needs χ to satisfy

(1 − η)(χ∗ − χ) ≥ 0

The simplest assumption is to set

χ = χ∗ (9)

This assumption has an additional role, see the remarks following proposi-
tion 2. With this and assumption 3,

U(Ct, Lt; Φt) =
(Ctv(Lt))

1−η − 1−β

1−β̃
η
(

C̄v(L)
)1−η

1 − η

and U(·, ·; ·) again does not depend upon its third argument. For v(L) con-
stant, one obtains a version of example 2, additionally satisfying assumption
4.

2Strictly speaking, this violates assumption 2 and my theory below does not apply to
this case. However, it is easy to see that a simplified version of that theory, dropping all
terms involving leisure, applies here as well.
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Example 4 With the definition of the previous example 3, let v(L) = Lθ,
θ > 0. Then,

Ũ(C,L; η) → log(C) + θ log(L) −
(

log(C̄) + θ log(L̄)
)

+ 1 (10)

as η → 1. This thus delivers the preference specification in Tallarini (2000)
except for the constant intercept. The intercept is due to my normalization
(5), which one can also check directly. Furthermore

H−1 (E[H(Vt+1]) →
1

1 − ν
log (E [exp ((1 − ν)Vt+1)])

One way to check this is to define f(η) = (1−η)χ(η) = η
(

C̄1−αL̄α
)1−η

. Note

that f(1) = 1 and write (1 − η)(Vt+1 + χ(η)) ≈ 1 + (1 − η)(Vt+1 − f ′(1)) ≈
exp((1−η)(Vt+1−f ′(1))) to see that H(Vt+1; η) → exp((1−ν)(Vt+1−f ′(1))).
Likewise, H−1(x; η) → log(x)/(1 − ν) + f ′(1). Combining, the terms f ′(1)
drop out.

Example 5 For a case where Φt will enter the utility function U(·, ·; ·), con-
sider the GHH-preferences, see Greenwood, Hercowitz and Huffman (1988),

Ũ(C,L) =

(

C − κ(A − L)1+φ
)1−η

1 − η
− χ (11)

where A is the total time endowment and thus, A − L is working time, and
κ, φ, η are parameters and where

χ = −
(

C − κ(A − L)1+φ
)

−η

1 − η
κ(A − L)1+φ

in order to fulfill assumption (4). Now,

U(Ct, Lt; Φt) =

(

Ct − Φtκ(A − Lt)
1+φ

)1−η

1 − η
− χ

which amounts to letting the “productivity” of leisure grow as the economy
grows, and which is familiar from the literature employing GHH preferences.
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Example 6 For a simple catching-up-with-the-Joneses example, consider
Φt = C

aggr
t to be aggregate consumption at date t, and Ũ(·, ·) any of the

specifications above. Note though, that for Φt to enter the original problem,
one needs a specification such that Φt does not drop from U(Ct, Lt; Φt). E.g.
with (11) of example 5, one obtains

Vt = (1 − β̃)

(

Ct − C
aggr
t κ(A − Lt)

1+φ
)1−η

1 − η
− χ + βH−1 (Et [H(Vt+1)])

3 Second-Order Characterizations

Introduce

ηcc = − ŨCC(C̄, L̄)C̄

ŨC(C̄, L̄)
(12)

ηll = − ŨLL(C̄, L̄)L̄

ŨL(C̄, L̄)
(13)

ηcl,c =
ŨCL(C̄, L̄)C̄

ŨL(C̄, L̄)
(14)

ηcl,l =
ŨCL(C̄, L̄)L̄

ŨC(C̄, L̄)
(15)

which characterize the curvature properties of the felicity function Ũ . Note
that ηcc ≥ 0 is the usual risk aversion with respect to consumption and ηll ≥ 0
is risk aversion with respect to leisure. Due to the Epstein-Zin formulation,
e.g. the role for ηcc will be the characterization of intertemporal substitution,
rather than risk aversion.

Define

κ =
ŨLL̄

ŨCC̄

If preferences are nonseparable in consumption and leisure, then ηcl,c 6= 0
and consequently

κ =
ηcl,l

ηcl,c

8



and hence, κ can be calculated from ηcl,l and vice versa, given a value for
ηcl,c. To provide some further intuition on κ, consider a stochastic neoclas-
sical growth model with a Cobb-Douglas production function, where wage
times labor equals the labor share (1 − θ) times output Yt. The usual first-
order condition with respect to leisure then shows κ to be the ratio of the
expenditure shares for consumption to leisure, and is equal to

κ =
L̄

(1 − L̄)

(1 − θ)Ȳ

C̄

The following proposition may be useful, if one wishes to avoid depen-
dency of U(·, ·; ·) on Φ.

Proposition 2 Do not necessarily impose assumption 4. U(C,L; Φ) does
not depend on Φ for all (C,L, Φ), iff

(1 − η)(Ũ(C,L) + χ) ≡ ŨC(C,L)C (16)

U(C,L; Φ) does not depend on Φ for (C,L) locally around (ΦC̄, L̄) up to a
second-order approximation, iff

(1 − η)(Ū + χ) = ŨC(C̄, L̄)C̄ (17)

η = ηcc (18)

1 − η = ηcl,c (19)

Proof: For equation (16), differentiate the right-hand side of the rela-
tionship between U(·, ·; ·) and Ũ(·, ·) in assumption 3 with respect to Φ. For
the local approximation, differentiate again with respect to C, with respect
to L and with respect to Φ. Evaluate these as well as (16) at the steady
state. Noting that one equation is implied by the three others, one obtains
(17) to (19). •

When assumption 4 is imposed, equation (17) can be rewritten as

χ =
η

1 − η
Ū (20)

Note that this coincides with (8), provided (9) holds. Thus, (9) is necessary
in example 3 to assure that U(C,L; Φ) does not depend on Φ. Equation (18)

9



links the relative risk aversion with respect to consumption of the auxiliary
felicity function Ũ(·, ·) to the risk aversion parameter η of the functional
form assumption 3. It may be natural to impose this condition anyhow.
Equation (18) shows, that using the same η in (6) as in (2) was necessary
for that example in order for U(·, ·; ·) not to depend on Φ. Equation (19)
is an equation effectively familiar from imposing the equality of income and
substitution effects in balanced growth models, see King and Plosser(1989).
It is easy to verify directly that (18) and (19) are satisfied in example 3.

Introduce

ζ = −H ′′(V̄ )V̄

H ′(V̄ )
=

ν − η

1 − η

V̄

V̄ + χ
(21)

as the elasticity of the function H(·), measuring the degree of curvature in
departing from the benchmark expected discounted utility framework. Note
that ζ = 0 iff H(·) is linear, i.e., if the benchmark expected discounted utility
framework applies. If the the normalization assumption 4 together with local
independence of U(C,L; Φ) around the steady state path is imposed, then

ζ = ν − η (22)

as can be seen from equation (20) together with V̄ = Ū .
The next proposition shows, that these values together with some steady

state values completely determine our preference specification up to a second
order approximation.

Proposition 3 1. Assume values for V̄ > 0, C̄ > 0, L̄ > 0, η > 0,
ηcc ≥ 0, ηll ≥ 0, κ > 0, ηcl,c, ζ and χ. Iff these values satisfy

0 < (1 − η)
(

1 +
χ

V̄

)

ζ + η (23)

0 < (1 − η)(V̄ + χ) (24)

0 ≤ ηccηll − η2

cl,cκ (25)

then there is a concave utility function Ũ(C,L), U(C,L, Φ) defined on
some open domain D ⊂ IR2

++ containing (C̄, L̄) as well as ν > 0, H(·)
satisfying (21), (12) to (15) as well as assumptions 2, 3 and 4. The
function Ũ(C,L), U(C,L, Φ) is unique up to a second order approxi-
mation.

10



2. Assume values for V̄ > 0, C̄ > 0, L̄ > 0, η > 0, ηll ≥ 0, κ > 0 as well
as ζ. Iff these values satisfy

0 < η + ζ (26)

0 ≤ ηηll − (1 − η)2κ (27)

then there is a concave utility function Ũ(C,L), U(C,L; Φ) defined on
some open domain D ⊂ IR2

++ containing (C̄, L̄) as well as ν > 0, H(·)
satisfying (21), (12) to (15) as well as assumptions 2, 3 and 4 such that
U(C,L; Φ) does not depend on Φ locally around (ΦC̄, L̄). The function
Ũ(C,L), U(C,L, Φ) is unique up to a second order approximation.

Proof:

1. Suppose such functions exist. Then ν > 0 implies (23), concavity of
Ũ(·, ·) implies (25) and the positivity of (1− η)(Ũ(C,L)+χ) evaluated
at (C̄, L̄) implies (24).

Conversely, suppose these conditions hold. Let

ν = (1 − η)
(

1 +
χ

V̄

)

ζ + η

and define H(V ) per the functional form in assumption 3. Define

ŨC(C̄, L̄) =
V̄

C̄
> 0

exploiting assumption 4. Note that

ŨL(C̄, L̄) = κ
C̄

L̄
ŨC(C̄, L̄) > 0

Define

Ĉ =
C − C̄

C̄
, L̂ =

L − L̄

L̄

The second-order approximation of Ũ around (C̄, L̄) must be the fol-
lowing quadratic function, which I shall conversely use for providing a

11



constructive example,

Ũ(C,L)

Ū
= 1 +

ŨC

Ū
(C − C̄) +

ŨL

Ū
(L − L̄)

+
1

Ū

(

1

2
ŨCC(C − C̄)2 + ŨCL(C − C̄)(L − L̄) +

1

2
ŨLL(L − L̄)2

)

= 1 + Ĉ + κ L̂ − 1

2
ηccĈ

2 + ηcl,lĈL̂ − 1

2
κ ηllL̂

2 (28)

exploiting the normalization of assumption 4. The assumptions are now
satisfied. Tracing through this construction, one can see that there is
no choice, demonstrating uniqueness.

2. Suppose, the conditions hold. Define

ν = ζ + η

χ =
η

1 − η
V̄

ηcc = η

ηcl,c = 1 − η

Complete the construction as in the previous step. Note that

(1 − η)(V̄ + χ) = V̄ > 0

Per proposition 2 and equation 22, the result now follows. The converse
is now easily established as well.

•

Since ηcl,l = κηcl,c, the concavity condition (25) can be rewritten as

0 ≤ ηccηll − ηcl,cηcl,l (29)

which may be slightly more reminiscent of the formula for a determinant.
Define c = log(C)−log(C̄), l = log(L)−log(L̄) and u = log(Ũ(C,L))−log(Ū)
to be the log-deviations, and notice that c ≈ Ĉ up to first order, etc.. It may

12



be tempting to directly replace these terms in (28). Since that is a second-
order approximation, however, one needs to be more careful. A second-order
Taylor expansion of f(c, l) = log Ũ(C̄ exp(c), L̄ exp(l)) yields instead

u ≈ c + κl − 1

2
ηccc

2 + (ηcl,l − κ)cl − 1

2
κ (ηll + 1 − κ)l2

Example 7 To be specific, example 3 gives

ηcc = η

ηcl,c = 1 − η

κ =
v′(L̄)L̄

v(L̄)

ηcl,l = (1 − η)κ

ηll = ηκ − v′′(L̄)L̄

v′(L̄)

For the logarithmic case, i.e. for example 4, one obtains

ηcc = 1

ηcl,c = 0

κ = θ

ηcl,l = 0

ηll = 1

which one could have also obtained from the previous set of equations, noting
e.g. that ηll = ηθ − (θ − 1) = 1.

4 The Investment Problem

To proceed towards asset pricing, consider the investment problem of an
agent maximizing V0 subject to the evolution of preferences, (1) as well as a
recursively defined budget constraint of the form

Ct + St + . . . = RtSt−1 + . . .

where St is the wealth invested in some asset with a gross return (measured
in consumption units) of Rt from period t − 1 to t. Let Λt be the Lagrange

13



multiplier on the budget constraint, and let Ωt be the Lagrange multiplier
on (1). We obtain the standard Lucas (1978) asset pricing equation,

Λt = βEt[Λt+1Rt+1] (30)

as well as two further first-order condition from differentiation with respect
to Vt and with respect to Ct.

A “period” here shall be interpreted to be the relevant investment hori-
zon. For example, while trading costs (and, in some countries, Tobin taxes)
probably are a major friction for short investment horizons such as a few
months, they presumably matter less, if the horizon is several years. Thus,
I shall abstract from trading costs, despite the considerable attention they
have attracted, see e.g. Luttmer (1999), and instead investigate a variety of
investment horizons. A further reason for considering different investment
horizons is the return predictability, which has been observed at longer rather
than shorter horizons.

Since these variables are trending, it is more convenient to restate the
investment problem in terms of the detrended variables3. Define

Γt =
Φt

Φt−1

S̃t =
St

Φt

The maximization problem now reads

max V0 s.t.

Ṽt = (1 − β̃)Ũ(C̃t, Lt) + (31)

β̃H−1

(

Et

[

(

Γt+1

Γ̄

)1−ν

H(Ṽt+1)

])

C̃t + S̃t + . . . =
Rt

Γt

S̃t−1 + . . . (32)

Let Ω̃t be the Lagrange multiplier for the first constraint (31) and Λ̃t be the
Lagrange multiplier for the second constraint (32). The first-order conditions

3Equivalently, take the first-order condition from the original problem, and detrend
them.
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are

∂

∂Ṽt

: Ω̃t = Ω̃t−1

(

H−1
)

′

(

Et−1

[

(

Γt

Γ̄

)1−ν

H(Ṽt)

])

(

Γt

Γ̄

)1−ν

H ′(Ṽt)(33)

∂

∂C̃t

: Λ̃t = (1 − β̃)Ω̃tŨ1(C̃t, Lt) (34)

∂

∂S̃t

: Λ̃t = β̃Et

[

Λ̃t+1

Γt+1

Rt+1

]

(35)

All variables in these equations are now stationary, allowing the possibility
for approximation around some fixed value. While this can in principle be
done with high-powered numerical tools such as Judd (1998), we seek to
understand the implications of these equations, using loglinearization here,
in order to obtain some “first-order, small-noise” insights.

The four equations (31) and (33) to (35) are the key equation for asset
pricing. Equation (35) is the standard asset pricing equation (30), modified
with a term due to detrending. To make practical use of this equation,
I need to rewrite Λ̃t in terms of observables. Equation (34) relates Λ̃t to
the slope of the felicity function Ũ(·, ·), evaluated at observed consumption
and leisure, which suffices, if preferences are time-separable. Here, however,
there is an additional term indicated from Ω̃t, if H(·) is nonlinear. These
can be obtained from (33) in principle, except that now unobservables in
terms of the value function Ṽ seem to arise, which is given by equation
(31). This has led researchers in the past to seek ways to substitute out Ṽ
using observables such as wealth or some proxy thereof. Here, I pursue a
different route. As shall be shown below for loglinearization, (33) can be
related back to observables on consumption and leisure with an additional
parameter characterizing preferences.

5 Loglinearization

As before, let the log of variables with a bar denote the expectation of the
log of the corresponding stochastic variables. I.e., introduce also

log(Ω̄) = E[log Ωt]

log(Λ̄) = E[log Λt]

log(R̄) = E[log Rt]
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where I assume from now on, that Rt is strictly positive. Note that Ωt ≡ 0,
if H(·) is linear, i.e, strictly speaking, the calculations below only apply to
the case of non-separability over time. It is easy to infer the appropriate
equations, if there is separability, and I shall include comments to that end,
when appropriate.

Use small letters to denote the loglinear deviation of some variable from
its steady state. It is not hard to see4, that (31) loglinearizes to

vt = (1 − β̃)(ct + κlt) + β̃Et

[

ν − η

ζ
γt+1 + vt+1

]

(36)

exploiting (5). Note that the coefficient on γt+1 is equal to 1 if (22) holds.
I.e., risk-aversion or intertemporal substitution does not enter this equation.
Rather, it converts temporary changes in consumption and leisure and ex-
pected preference shifts into shifts of the value function. In particular, note
that a permanent increase in consumption compared to the steady state,
cs ≡ c̄, s ≥ t, and with all other variables equal to zero, results in vt = c̄.
I.e., vt measures the shift in welfare in terms of an equivalent permanent
percentage increase in consumption.

Equation (36) shows, that vt can be related back to observables, i.e.,
to ct, lt, as well as γt, as long as the parameters η,ν and ζ characterizing
preferences are known. The parameter γt can be inferred either from the
first-order condition with respect to leisure or - if e.g. denoting total factor
productivity or a smoothed version thereof - observed directly (to the extent
that total factor productivity is observable).

Equation (33) loglinearizes to

ωt − ωt−1 = −ζ (vt − Et−1[vt]) (37)

+(1 − ν) (γt − Et−1[γt]) + (1 − η)Et−1[γt]

where I have sorted the terms conveniently. Note that the change in the La-
grange multiplier on the value function equation is driven by news about the
value function and the preference shift parameter. Additionally, predictable
movements in the preference shift parameter lead to changes in the multiplier

4This can be shown by noting that, generally for variables Yt = f(Xt), one has yt =
(f ′(X̄)X̄)/(f(X̄)xt. Calculate (H ′(V̄ )V̄ )/(H(V̄ )) = ((1− ν)/(1− η))(V̄ /(V̄ +χ)) = ((1−
ν)/(ν−η))ζ, and likewise for (H ′)−1(·). Also, compare the result to directly loglinearizing
(eq:logprefs), noting that Ū = V̄ = 1 − α there.
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ωt, if the intertemporal elasticity of substitution η is different from unity. If
ζ = 0, which is the benchmark case of welfare as the discounted sum of ex-
pected utilities, and if there are no preference shocks, γt ≡ 0, then ωt ≡ 0,
starting at the steady state ω−1 = 0.

Finally, equations (34) and (35) loglinearize to

λt − ωt = −ηccct + ηcl,llt (38)

0 = Et [λt+1 − λt + rt+1 − γt+1] (39)

In a model without stochastic long-run growth, i.e. where γt ≡ 0, the
four equations (36) to (39) simplify to

vt = (1 − β̃)(ct + κlt) + β̃Et [vt+1]

ωt − ωt−1 = −ζ (vt − Et−1[vt])

λt − ωt = −ηccct + ηcl,llt

0 = Et [λt+1 − λt + rt+1]

6 Asset price implications

6.1 Preliminaries

Introduce the abbreviation

mt+1 = λt+1 − λt − γt+1 (40)

for the log-deviation of the stochastic discount factor

Mt+1 = β̃
Λ̃t+1

Λ̃tΓt+1

from its nonstochastic counterpart, M̄ = β̃/Γ̄.
Rewrite the Lucas asset pricing equation (35) as

0 = log
(

M̄R̄
)

+ log (Et [exp (mt+1 + rt+1)]) (41)

Note that there is no approximation involved so far.
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Assume that, conditionally on information at date t, mt+1 and rt+1 are
jointly lognormally distributed, conditional on information up to and includ-
ing t. Let

Covt(Xt+1, Yt+1) = Et[(Xt+1 − Et[Xt+1])(Yt+1 − Et[Yt+1])]

denote covariances, conditional on information up to and including t. Intro-
duce the abbreviated notation

covm,r,t = Covt(mt+1, rt+1)

σ2

m,t = Covt(mt+1,mt+1)

σ2

r,t = Covt(rt+1, rt+1)

ρm,r,t =
covm,r,t

σm,t σr,t

These variances, covariances and correlations may generally depend on time,
as indicated above.

Using the standard formula for the expectation of lognormally distributed
variables, equation (41) can be rewritten as

0 = log
(

M̄R̄
)

+ Et[mt+1] + Et[rt+1] +
1

2

(

σ2

m,t + σ2

r,t + 2ρm,r,tσm,tσr,t

)

(42)

For the risk-free rate

rf
t = log Rf

t+1 = log R̄f + rt+1 = log R̄f + Et [rt+1]

i.e. for an asset with σ2
r = 0, I have

rf
t = − log

(

M̄
)

− Et[mt+1] −
1

2
σ2

m,t (43)

As usual, the risk-free rate varies over time either due to variations in the ex-
pected growth rate of the shadow value of wealth, Et[mt+1], or its conditional
variance, σ2

m,t.
For any risky asset, note that

log Et[Rt+1] = Et[rt+1] +
1

2
σ2

r,t
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Let SRt denote the Sharpe ratio of that asset, calculated as the ratio of the
risk premium or equity premium and the standard deviation of the log return,
expressed in terms of log-returns rather than percent returns,

SRt =
log Et[Rt+1] − rf

t

σr,t

The Sharpe ratio is the “price for risk”, and generally a more useful number
than the equity premium itself, see Lettau and Uhlig (2002) for a detailed
discussion. Since it is the difference of the log returns that matters, it usually
does not much matter whether both returns are calculated in real terms or in
nominal terms. The calculations in nominal terms are usually easier due to
the availability of suitable data. Obviously, if rf

t is a safe nominal return, it
will not be a safe real return. This matters if unpredictable inflation volatility
is substantial: the Sharpe ratio would then not fully reflect the excess return
of a risky over a safe asset. I find that

SRt = −ρm,r,tσm,t (44)

Moreover, the maximally possible Sharpe ratio SRmax

t for any asset is

SRmax

t = σm,t (45)

This expression only depends on elements of the preference specification, i.e.
preference parameters as well as data on consumption, leisure and growth,
but not on the underlying asset structure.

6.2 Consumption, leisure and growth

Up to this point, the asset pricing calculations above were exact, given the
assumption of lognormal distributions. I shall now proceed to use the loglin-
ear approximations to the first order conditions, i.e. equations (36) to (39).
I assume that all logdeviations have a joint normal distribution, conditional
on information available at date t. I also assume that all variables dated t
are in the information set at date t.

I now apply this standard logic to the preference specification above.
Since the model was formulated such that there is a steady state, the results
above stay valid, if I replace the logarithms of the Lagrange multiplier with
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the log-deviations, etc.., except that for comparison to the data, one ought to
keep in mind (and possibly correct the formulas with) the average expected
consumption growth rate.

Use (38) to replace λt+1 in the expression (40) for mt+1,

mt+1 = −ηccct+1 + ηcl,llt+1 − γt+1 + ωt+1 − λt (46)

and rederive the expression for the risk free rate (43) and the Sharpe ratio
(44) in terms of the individual components of mt+1. I obtain

Proposition 4 To a first-order approximation

rf
t = − log

(

M̄
)

+ ηccEt[ct+1 − ct]− ηcl,lEt[lt+1 − lt] + ηEt[γt+1]−
1

2
σ2

m,t (47)

and
SRt = ηccρc,r,tσc,t − ηcl,lρl,r,tσl,t + ργ,rσγ,t − ρω,r,tσω,t (48)

One needs to be careful, how the term “first-order approximation” is to be
understood in this proposition. The equation is exact, when all variables
are jointly and conditional log-normal and the equation (38) holds exactly,
i.e. not just as an approximation. However, if (38) is a first-order approx-
imation to (34), then joint log-normality of the log-deviations with the log
return would imply, that the first-order approximation is applied globally on
the entire real line for log Ct, log Lt and log Γt+1, not just locally around C̄,
L̄ and Γ̄, as pointed out by Samuelson (1970). Judd and Guu have shown
that the first-order approximation above holds, as the standard deviations
of the shocks converge to zero, provided the underlying asset pricing equa-
tion is analytic, which essentially means that it can be represented by an
infinite-order Taylor expansion. Whether analyticity can be established, if
the underlying random variables have unbounded support (as is the case for a
normal distribution) or whether weaker but provable conditions exist, which
validate the mean-variance analysis here for lognormally distributed shocks,
as the volatility of shocks converge to zero, is an as-of-yet unsolved problem.
Analyticity can be established, if the random variables have bounded sup-
port, however. Thus, the “first-order approximation” means that it holds, as
the variance of the underlying shocks and the diameter of their support set
converges to zero, while at the same time approach a normal distribution,
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when comparing the demeaned shocks, divided by their standard deviation.
A precise statement will be included in a future version of this paper.

For a practical procedure to calculate σ2
m,t in equation (47), see equation

(59) below. If mt is homoskedastic, then the risk-free rate is only related
to the predictable growth rates in consumption and leisure, as usual. As a
consequence and if e.g. ηcc = η, then its inverse is the intertemporal elasticity
of substitution.

Equation (73) is a key equation for asset pricing, which I shall examine
more closely. First, it is useful to consider some special cases.

Example 8 Consider first the benchmark case of time-separable preferences
without trend growth Φt ≡ Φ̄ and a constant-relative-risk-aversion utility
function in consumption only,

U(Ct, Lt; Φ̄) =
C1−η

t

1 − η

In that case, ηcc = η, ηcl,l = 0 and (73) reads

SRt = ηρc,r,tσc,t (49)

This equation has been emphasized by Lettau and Uhlig (2002) and provides a
summary statement of the equity premium observation of Mehra and Prescott
(1985). Assuming t to denote years, and given observations of the Sharpe
ratio srt ≈ 0.3 (which is lower than the typical number given in the litera-
ture, since I am using log-returns here), a conditional standard deviation for
aggregate annual consumption growth of 0.015 and a conditional correlation
between stock returns and consumption of near 0.4 implies η = 50. For a
more detailed discussion, see section 8 or e.g. Cochrane (2001).

Example 9 Consider the same specification, but now allow for stochastic
consumption growth as well. Consider rederiving equation (73) directly from
the original Lucas asset pricing equation (30), noting that

Ct = ΦtC̄ exp(ct)

Ct+1 = ΦtΓ̄C̄ exp(ct+1 + γt+1)

One obtains
SRt = ηρc,r,tσc,t + ηργ,r,tσγ,t (50)
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In particular, both terms contain the relative risk aversion η as factor, be-
cause ct+1 and γt+1 both enter the asset pricing equation in the same way. It
therefore may appear puzzling, that the term involving γt+1 only enters with
a unitary coefficient in (73). There is no contradiction here, however. With
time-separability, ζ = 0 and ν = η, so that (37) becomes

ωt+1 − ωt = (1 − η)(γt+1 − Et[γt+1]) + (1 − η)Et[γt+1]

and hence,

σω,t = (1 − η)σγ,t

ρω,r,t = ργ,r,t

Replacing these terms in (73) delivers equation (50).

Example 10 Consider time-separable preferences without trend growth Φt ≡
Φ̄, but where the utility function is not separable in consumption and leisure,
i.e., where ηcl,l 6= 0. Suppose further, that ρl,r,tσl,t 6= 0. Then, given observa-
tions on correlations, standard deviations and the Sharpe ratio, for any value
for ηcc > 0, there is a value ηcl,l solving (73),

ηcl,l =
ηccρc,r,tσc,t − SRt

ρl,r,tσl,t

(51)

Thus, there is a large class of preferences which deliver the observed Sharpe
ratio for any given value of ηcc > 0, given the observations on consumption
and leisure and returns, see proposition 3: there is no need to impose ηcc = 50.
While one can assume low values for the relative risk aversion with respect
to gambles in consumption, risk aversion is not really gone per se: it is just
shifted to leisure instead. Note in particular, that the relative risk aversion
for leisure needs to satisfy

ηll ≥
η2

cl,cκ

ηcc

(52)

due to concavity of preferences, see equation (25). This is discussed in greater
detail in section 8 below.

These examples show, that the Sharpe ratio is related to news about the
economic variables during the holding period for the asset, but not beyond
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that. This changes with nonseparable preferences. To see this and to derive
a Sharpe ratio formula in terms of observables, I need a bit more algebra.
For any variable x, define the date-t news about xt+j per

ǫx,j,t = Et[xt+j] − Et−1[xt+j]

With (36), note that

ǫv,j,t = Et[vt+j] − Et−1[vt+j]

= (1 − β̃) (ǫc,j,t + κǫl,j,t) + β̃
ν − η

ζ
ǫγ,j,t+1 + β̃ǫv,j+1,t

With this and equation (37), note now that

ωt+1 − Et[ωt+1] = (1 − ν)ǫγ,0,t+1 − ζǫv,0,t+1

= (1 − η)ǫγ,0,t+1

−
∞
∑

j=0

β̃j
(

ζ(1 − β̃)ǫc,j,t+1 + κζ(1 − β̃)ǫl,j,t+1 + (ν − η)ǫγ,j,t+1

)

where I have telescoped out the previous equation and split the ǫγ,0,t+1-term.
Note that the first term (1 − η)ǫγ,0,t+1 is a term which already arises with
separable preferences, and which was crucial in example 9. The other terms
only arise due to nonseparabilities across time, however, i.e. only if ν 6=
η. One can see, that current news about future consumption fluctuations
and, in particular, current news about future changes in the growth rate of
consumption impact on the surprise in ωt+1 and therefore impact on asset
pricing. It is this component which is the center of attention in Hansen,
Heaton and Li (2005): (future) consumption strikes back.

For a given asset with returns rt+1, define the covariances between future
consumption-, leisure- and growth-changes with the next period-return,

τc,r,t =
∞
∑

j=0

β̃jEt [ǫc,j,t+1ǫr,0,t+1]

τl,r,t =
∞
∑

j=0

β̃jEt [ǫl,j,t+1ǫr,0,t+1]

τγ,r,t =
∞
∑

j=0

β̃jEt [ǫγ,j,t+1ǫr,0,t+1]

The Sharpe ratio equation (73) can then be restated as follows.
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Proposition 5 To a first-order approximation

SRt = ηccρc,r,tσc,t − ηcl,lρl,r,tσl,t + ηργ,rσγ,t

+
1

σr,t

(

ζ(1 − β̃)τc,r,t + ζκ(1 − β̃)τl,r,t + (ν − η)τγ,r,t

)

(53)

For the interpretation of “first-order approximation”, see the discussion
following proposition 4. There are obviously alternative restatements of (53).
Let e.g.

σ2

ǫ,c,j,t = Covt(ǫc,j,t+1, ǫc,j,t+1) = Et[ǫ
2

c,j,t+1]

ρǫ,c,j,r,t =
Covt(ǫc,j,t+1, ǫr,j,t+1)

σǫ,c,j,tσr,t

=
Et[ǫc,j,t+1ǫr,t+1]

σǫ,c,j,tσr,t

If σǫ,c,j,t 6= 0 for all j, then one can rewrite equation (53) by replacing the
left-hand-side with the right-hand-side of the equation

τc,r,t

σr,t

=
∞
∑

j=0

β̃jρǫ,c,j,r,tσǫ,c,j,t

and thereby express this term in the same manner as the first three terms in
(53).

The derivations above were always concerning a particular asset. One
can equally well find out the maximally possible Sharpe ratio per (45). Note
that

ǫm,0,t+1 = −ηccǫc,0,t+1 + ηcl,llt+1 − ηγt+1

−
∞
∑

j=0

β̃j
(

ζ(1 − β̃)ǫc,j,t+1 + κζ(1 − β̃)ǫl,j,t+1 + (ν − η)ǫγ,j,t+1

)

To calculate the maximal Sharpe ratio, one needs to calculate the variance
of ǫm,0,t+1, which involves not only the variances of the terms in (54), but
also their covariances. I provide a tractable expression in (59) below.

7 A VAR-Approach

These quantities can be calculated from the data by calculating the news
about future variables from the impulse responses of a vector autoregression.
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This also provides for a link to the operator-approach in Hansen, Heaton and
Li (2005).

Let Yt be a vector of variables and their lags up to some maximal lag
length, containing in particular the log of the ratio of consumption to some
chosen trend variable log(Ct/Φt), log leisure logLt, the log of the growth rate
of the chosen trend variable log Γt = log Φt−log Φt−1 and log returns logRt as
the first, second, third and forth variable. Suppose that one can summarize
the correlation structure in form of a VAR,

Yt = BYt−1 + ut, Et−1[utu
′

t] = Σt−1 (54)

where the ut are uncorrelated across time and where one lag in the VAR
suffices due to “stacking” lags of the variables into the vector Yt. I assume
that β̃B has all its eigenvalues inside the unit circle. Note that I used the
somewhat unconventional date t−1 for the variance-covariance matrix of the
innovation dated t: that way, the VAR notation is consistent with the nota-
tion for conditional covariances above. Note that I allow for heteroskedas-
ticity in the innovations but not in the VAR coefficients. The news about
consumption (detrended with Φt), leisure and growth is now given by

ǫc,j,t+1 =
(

Bjut+1

)

1

ǫl,j,t+1 =
(

Bjut+1

)

2

ǫγ,j,t+1 =
(

Bjut+1

)

3

The covariance with the news about returns is now

Et[ǫc,j,t+1ǫr,0,t+1] =
(

BjΣt

)

14

Et[ǫl,j,t+1ǫr,0,t+1] =
(

BjΣt

)

24

Et[ǫγ,j,t+1ǫr,0,t+1] =
(

BjΣt

)

34

Summing up, one now obtains

τc,r,t =









∞
∑

j=0

β̃jBj



Σt





14

= Q(β̃, t)14

τl,r,t = Q(β̃, t)24

τγ,r,t = Q(β̃, t)34
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where
Q(β̃, t) =

(

I − β̃B
)

−1

Σt

and where the dependence on the preference parameter β̃ and time t has
been indicated via the argument. Alternatively, it is useful to rewrite (46) as

ǫm,0,t+1 = ~a′ut+1 − ~b′

(

I − β̃B
)

−1

ut+1 (55)

where the vectors ~a, ~b and, additionally, the vector ~|e
4
, are defined as

~a =























−ηcc

ηcl,l

−η
0
...
0























, ~b =























ζ(1 − β)
ζ(1 − β)κ

ν − η
0
...
0























, ~|e
4

=



























0
0
0
1
0
...
0



























(56)

Together with proposition (5), the following proposition follows.

Proposition 6 Given the VAR representation (54) of the data, to a first-
order approximation

SRtσr,t = ηcc (Σt)14
− ηcl,l (Σt)24

+ η (Σt)34
(57)

+ζ(1 − β̃)Q(β̃, t)14 + ζκ(1 − β̃)Q(β̃, t)24 + (ν − η)Q(β̃, t)34

where
σr,t =

√

(Σt)44

Alternatively,

SRtσr,t = −~a′Σt
~|e

4
+ ~b′Q(β̃, t)~|e

4
(58)

To calculate the maximal Sharpe ratio per equation (45), use the following
proposition.

Proposition 7 To a first-order approximation,

(SRmax

t )2 = σ2

m,t = ~a′Σt~a − 2~b′Q(β̃, t)~a + ~b′Q(β̃, t)
(

I − β̃B′

)

−1 ~b (59)

26



7.1 k-Period Asset Holdings

Since there may be frictions and preventive trading costs in adjusting port-
folios on a quarterly basis, it may be more sensible to apply the asset pricing
formulas to a holding period of k periods rather than one period, i.e. for a
longer period than the time distance between subsequent observations of the
data.

The derivation is quite similar, and a sketch suffices. The Lucas asset
pricing formula is

1 = Et

[

Λ̃t+k

Λ̃t

Rt+1

Γt+1

Rt+2

Γt+2

. . .
Rt+k

Γt+k

]

Define the compounded log-deviation of the stochastic discount factor as

mt,t+k =
k
∑

i=1

mt+i = λt+k − λt −
k
∑

i=1

γt+i

Define the averaged5 compounded log-deviation of the return as

rt,t+k =
1

k

k
∑

i=1

rt+i (60)

Similarly, let rf
t,t+k be the log-deviation for the k−period risk free at date

t. Since there generally is unexpected future variation in the risk free rate,
it is not the case that (60) (or a version, where expectations are taken on
the right hand side) holds for the k-period and 1-period risk-free rates . Put
differently, the compounding of the one-period risk-free rate is a risky return,
to which the asset pricing formulas below apply. For the k-period risk-free
rate itself, the following generalization of (47) is obtained immediately.

Proposition 8 To a first-order approximation

rf
t,t+k = − log

(

M̄
)

(61)

+
1

k

(

ηccEt[ct+k − ct] − ηcl,lEt[lt+k − lt] + ηEt[
k
∑

i=1

γt+i] −
1

2
σ2

mt,t+k,t

)

5I average the return rather than add them up, since that corresponds more closely to
the way returns are usually reported.
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For the calculation of σ2
mt,t+k,t, see proposition 10 below.

Define the normalized Sharpe ratio as

SRk,t =
Et[rt,t+k] − rf

t,t+k√
k σrt,t+k,t

where and σrt,t+k,t is the conditional standard deviation of the difference

between rt,t+k and rf
t,t+k.

Note that if the expected k-period log excess return can be written as a
sum of per-period excess returns re

t+i,
(

k
∑

i=1

rt+i

)

− rf
t,k =

k
∑

i=1

re
t+i

in such a way that the per-period excess returns are iid, then SRk,t = SR1,t =
SRt, i.e. in that case, the normalized Sharpe ratio is independent of the
holding horizon. Since excess returns are known to be somewhat predictable,
and since there are unpredictable variations in the safe rate, one would not
generally expect this independence from the horizon k to hold exactly, but
it provides a benchmark for comparison.

For the general case and under joint log-normality, equation (44) now
becomes √

k SRt,k = −ρmt,t+k,rt,t+k,tσmt,t+k,t (62)

or, alternatively,
√

k SRt,kσrt,t+k,t = −covt(mt,t+k, rt,t+k) (63)

Note that

mt,t+k − Et[mt,t+k] = λt+k − Et[λt+k] −
k
∑

i=1

(γt+i − Et[γt+i])

= −ηcc(ct+k − Et[ct+k]) + ηcl,l(lt+k − Et[lt+k])

−
k
∑

i=1

(γt+i − Et[γt+i]) + ωt+k − Et[ωt,t+k] (64)

The decomposition of the compounded log returns and the k−period change
in log consumption and leisure into news is

ct+k − Et[ct+k] =
k
∑

i=1

ǫc,k−i,t+i
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lt+k − Et[lt+k] =
k
∑

i=1

ǫl,k−i,t+i

k
∑

i=1

(γt+i − Et[γt+i) =
k
∑

i=1

k−i
∑

j=0

ǫγ,j,t+i

rt,t+k − Et[rt,t+k] =
k
∑

i=1

(rt+i − Et[rt+i])

=
k
∑

i=1

k−i
∑

j=0

ǫr,j,t+i

Furthermore

ωt+k − Et[ωt+k] =
k
∑

i=1

(ωt+i − ωt+i−1) −
k
∑

i=1

Et [ωt+i − ωt+i−1]

= −ζ
k
∑

i=1

ǫv,0,t+i

+(1 − ν)
k
∑

i=1

ǫγ,0,t+i

+(1 − η)
k
∑

i=1

(Et+i−1[γt+i] − Et[γt+i])

= −
k
∑

i=1

∞
∑

j=0

β̃j
(

ζ(1 − β̃)ǫc,j,t+i + κζ(1 − β̃)ǫl,j,t+i + (ν − η)ǫγ,j,t+i

)

+(1 − η)
k
∑

i=1

(γt+i − Et[γt+i])

Note that the terms ǫγ,0,t+i stemming from ǫv,0,t+i have been split across the
last two last lines in this formula.

As in section 7, suppose that the dynamics of the data can be summarized
by the VAR in equation (54) with the conventions adopted there. Introduce
the following matrices

Σt,i = Et[Σt+i]

Q(β̃, t, k) = (1 − β̃B)−1

k
∑

i=1

k−i
∑

j=0

Σt,i−1(B
′)j

29



S(t, k) =
k
∑

i=1

k−i
∑

j=0

Bk−iΣt,i−1(B
′)j

P (t, k) =
k
∑

i=1

k−i
∑

j1=0

k−i
∑

j2=0

Bj1Σt,i−1(B
′)j2

Recall the definition of ~b and ~|e
4

in equation (56). Define vectors ~a∗, ~|e
3

as
follows:

~a∗ =























−ηcc

ηcl,l

0
0
...
0























, ~|e
3

=























0
0
1
0
...
0























(65)

Calculation of the conditional covariances now yields the following gen-
eralization of proposition 6:

Proposition 9 Given the VAR representation (54) of the data, to a first-
order approximation

k3/2SRt,kσrt,t+k,t = ηcc (S(t, k))
14
− ηcl,l (S(t, k))

24
+ η (P (t, k))

34
(66)

+ζ(1 − β̃)Q(β̃, t, k)14 + ζκ(1 − β̃)Q(β̃, t, k)24 + (ν − η)Q(β̃, t, k)34

or alternatively

k3/2SRt,kσrt,t+k,t =
(

− ~a∗
′

S(t, k) + η~|e
′

3
P (t, k) + ~b′Q(β̃, t, k)

)

~|e
4

(67)

where

σrt,t+k,t =

√

(P (t, k))44

k

To similarly calculate the maximal Sharpe ratio, rewrite (64) as

mt,t+k − Et[mt,t+k] =
k
∑

i=1

~c′iut+i (68)

where

~c′i = ~a∗
′

Bk−i − η~|e
′

3





k−i
∑

j=0

Bj



− ~b′(I − β̃B)−1 (69)

The following proposition follows.
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Proposition 10 To a first-order approximation,

SRmax

t,k =
1√
k
σmt,t+k,t

where

σ2

mt,t+k,t =
k
∑

i=1

~c′iΣt,i−1~ci (70)

8 An empirical implementation

This section will be redone in a future version of this paper. For

now, there is just some rough birds-eye perspective on the data,

and some conclusions for time-separable preferences, when there

are nonseparabilities between consumption and leisure.

8.1 Data

Let us investigate the data on the correlations of log leisure, log consumption
and log excess returns. Here, log leisure is taken to be the negative of log
labor, calculated from the time series AWHI, and log consumption is calcu-
lated from the time series PCENDC96, both available from the St. Louis
Federal Reserve Bank. To calculate log excess returns rt+1 − rf

t , we used the
time series TRSP500, which is the total value of a S&P500 portfolio, with
dividends reinvested, took logs and quarterly averages, and subtracted from
this series the log of the value of a “safe portfolio of compounded quarterly
interest rates, taken from the 1-year treasury bill rate. Of this series, we
took k-th differences to vary the length of the asset holding period, and like-
wise for log leisure and log consumption. This leaves in some predictable
movements, which can and should be taken out, using the VAR approach
of section 7. I.e., in principle, one should also subtract out the part of the
excess return which is predictable with e.g. current price-dividend ratios,
in order to calculate conditional correlations and standard deviations. The
same is true for consumption and leisure. In these calculations, we thus
”pretend”, that these k-th differences are not predictable and calculate their
raw, unconditional correlations. For a first look at the data, differencing may
suffice.
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The asset market results are in table 1, whereas the standard deviations
and correlations with leisure and consumption are in table 2. The time
period is 1970:1 to 2003:4. Note that the Sharpe ratio appears to be lower by
nearly a factor of two compared to the usual numbers: this is to some degree
due to using log returns, which “worsens” negative stock market returns,
and “lessens” positive returns, as is necessary for calculating compounded
returns (i.e. geometric averages), although that does not appear to explain
it entirely.

What one can see in tables 1 and 2 is the following. First, there are
no surprises as far as the market price for risk is concerned, as one varies
the horizon: the annualized Sharpe ratio remains fairly constant at around
0.3. Second, the correlation between leisure and excess returns over a short
holding period of one quarter is very low and too low to be of much help in
helping with high consumption risk aversion to explain the equity premium
observation.

Third, and more interestingly, the picture does change at longer holding
horizons. For example, at a holding period of one year or four quarters,
the correlation between leisure and excess returns is already -.21, at eight
quarters, it is -.39, and generally exceeds the correlation of consumption
with excess returns at horizons above two years.

Finally, the correlation between leisure and stock returns is negative, i.e.
stocks provide “insurance against fluctuations in leisure. This is intuitively
not surprising, since one expects stocks to do well in booms, which are pre-
cisely the times when hours and output are high. Since the Sharpe ratio is
determined by the cross derivative term ηcl,l and not the relative risk aver-
sion with respect to leisure, this insurance aspect is not a problem for the
preference-based asset pricing framework: we shall examine the precise im-
plications in the following subsection. If relative risk aversion in consumption
is not alone to explain the observed Sharpe ratio, then (73) and the negative
correlation between leisure and stock returns implies that one needs ηcl,l > 0,
i.e. one needs that leisure and consumption are complements.

The asset pricing formulas above in principle allow for time variation in
the volatilities. To generate a time-varying volatility series for leisure, I have
calculated the GARCH process

σ2

l,t = (1 − φ)σ2

l,t−1 + φ(lt − lt−1 − E[lt − lt−1])
2

initializing the process with the unconditional variance of leisure. I have
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Figure 1: The time-varying volatilies of leisure and consumption.

likewise proceeded for consumption. A plot of the two series is in figure 1.
Equation (73) suggests that changing volatities induce changes in the

Sharpe ratio. For example, assuming time-separability as well constant cor-
relations, I find

∆SRt+1 = ηccρc,r∆σc,t+1 − ηcl,lρl,r∆σl,t+1 (71)

Assuming furthermore, that stock market volatility stays constant as well,
a surprise decrease in the Sharpe ratio implies an extra positive surprise in
stock returns. Keeping in mind the negative correlation ρl,r < 0 and the
positive value for ηcl,l, equation (71) therefore predicts a negative correlation
between stock returns and changes in the volatilies of consumption as well
as leisure. Table 3 investigates this issue. Indeed, and in particular at longer
horizons, we see that the correlation is negative indeed, in particular between
the volatility for leisure and stock returns. I.e., decreases in business cycle
uncertainty increase stock returns: this makes a lot of intuitive sense. Figure

33



−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−60

−40

−20

0

20

40

60

Leisure volatility change

E
xc

es
s 

R
et

ur
n

Figure 2: The correlation between changing leisure volatility and excess stock
returns for a holding period of k = 8 quarters

2 shows that negative correlation for a holding period of k = 8 quarters.

8.2 Implications for preferences

We now use these observations to draw out implications for preferences, as-
suming now that volatilies and correlations stay constant. The standard case,
on which practically the entire asset pricing literature has focussed, is the
case ηcl,l = 0. If additionally, preferences are time separable, i.e. ν = η, then
(73) implies

ηcc =
SR

ρc,rσc

(72)
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Horizon k std.dev. Sharpe Annualized

(Quarters) of rt+1 ratio Sharpe ratio, SR
√

4/j

1 6.87 0.15 0.30
2 10.37 0.21 0.29
3 13.18 0.24 0.28
4 15.40 0.27 0.27
5 17.51 0.29 0.26
6 19.32 0.31 0.25
7 20.96 0.33 0.25
8 22.21 0.36 0.26
9 23.34 0.39 0.26
10 24.66 0.42 0.26
11 25.81 0.44 0.27
12 26.75 0.47 0.27
13 27.69 0.50 0.28
14 28.42 0.54 0.29
15 29.01 0.58 0.30
16 29.47 0.63 0.31
17 29.99 0.67 0.33
18 30.75 0.71 0.33
19 31.17 0.76 0.35
20 31.41 0.82 0.37

Table 1: Properties of excess returns, when varying the holding horizon.
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Horizon k std.dev. std.dev. corr(c,l) corr(l,r) corr(c,r)
(Quarters) of leis., σl of cons., σc

1 0.45 0.67 -0.33 -0.07 0.27
2 0.80 1.04 -0.42 -0.08 0.34
3 1.11 1.33 -0.51 -0.15 0.37
4 1.36 1.64 -0.55 -0.21 0.39
5 1.58 1.90 -0.58 -0.28 0.39
6 1.78 2.10 -0.61 -0.33 0.40
7 1.95 2.27 -0.62 -0.36 0.41
8 2.10 2.42 -0.62 -0.39 0.42
9 2.23 2.52 -0.61 -0.42 0.40
10 2.32 2.60 -0.62 -0.45 0.37
11 2.40 2.67 -0.63 -0.47 0.36
12 2.46 2.73 -0.62 -0.50 0.34
13 2.50 2.80 -0.62 -0.52 0.35
14 2.51 2.87 -0.60 -0.54 0.36
15 2.51 2.95 -0.59 -0.56 0.37
16 2.49 3.01 -0.57 -0.58 0.39
17 2.47 3.06 -0.55 -0.60 0.41
18 2.45 3.09 -0.53 -0.60 0.41
19 2.42 3.12 -0.51 -0.60 0.41
20 2.39 3.11 -0.48 -0.59 0.41

Table 2: Variances and correlations of leisure and consumption with excess
returns.
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Horizon k std.dev. std.dev. corr(σc, σl) corr(σl, r) corr(σc, r)
(Quarters) of leis.vol. of cons.vol.

1 0 0.01 0.18 0.06 0.00
2 0.01 0.02 0.22 -0.01 -0.00
3 0.02 0.02 0.24 -0.13 -0.01
4 0.02 0.03 0.21 -0.23 -0.00
5 0.03 0.04 0.21 -0.28 0.01
6 0.03 0.05 0.18 -0.32 0.02
7 0.03 0.06 0.17 -0.38 0.02
8 0.03 0.07 0.17 -0.46 0.02
9 0.04 0.07 0.18 -0.50 -0.00
10 0.04 0.08 0.18 -0.52 -0.04
11 0.04 0.09 0.20 -0.52 -0.06
12 0.04 0.10 0.24 -0.53 -0.07
13 0.04 0.10 0.28 -0.53 -0.08
14 0.04 0.11 0.31 -0.53 -0.10
15 0.05 0.11 0.35 -0.51 -0.11
16 0.05 0.11 0.38 -0.52 -0.11
17 0.05 0.11 0.41 -0.54 -0.13
18 0.05 0.11 0.44 -0.54 -0.12
19 0.05 0.10 0.45 -0.53 -0.10
20 0.05 0.10 0.43 -0.52 -0.09

Table 3: Variances and correlations of the volatility of leisure, the volatility
of consumption and excess returns.

37



for the level of relative risk aversion in consumption. Using an annual holding
period, k = 4, and the data of the tables above, one obtains

ηcc =
0.27

1.64% ∗ 0.39
= 42

Even assuming perfectly positive correlation, one needs ηcc = 16.5. Other
authors typically find even much higher values, see Campbell (2004). These
values seem high on a priori grounds and incompatible with standard macroe-
conomic models.

With nonseparabilities between consumption and leisure, however, lower
values for ηcc are possible, when the value of the cross-derivative is changed
simultaneously as well. To that end, rewrite equation (73) as

ηcl,l =
SR − ηccρc,rσc

−ρl,rσl

(73)

For the macroeconomic implications, and since leisure is fairly volatile, it is
desirable to pick the relative risk aversion with respect to leisure as low as
possible. We thus assume that equation (??) holds with equality,

ηll =
κη2

cl,l

ηcc

For holding periods of one year, k = 4 and two years, k = 8, table 4 as well
as figures 3 and 4 show the resulting values as a function of the relative risk
aversion for consumption, ηcc.

We see that explaining the Sharpe ratio remains hard: low values for the
relative risk aversion in consumption require dramatically high values for the
relative risk aversion in leisure. It is some progress that one can explain
the observed Sharpe ratio at levels of relative risk aversion below 20, even
when taking account the correct correlations, using the calculations based
on a holding period of k = 8 quarters. Obviously, these are still fairly high
numbers.

9 Conclusions

This paper has provided a loglinear framework for pricing assets, using a gen-
eralization of Epstein-Zin preferences, allowing for nonseparabilities between
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Figure 3: The implied value for the cross-derivative ηcl,l, when varying the
relative risk aversion for consumption between 3 and 60.

ηcc ηcl,l ηll

k=4 k=8 k=4 k=8
3.0 84.7 41.1 1389.2 327.5
5.0 80.4 38.7 749.8 173.5
10.0 69.5 32.5 280.0 61.2
15.0 58.5 26.3 132.6 26.7
20.0 47.6 20.1 65.8 11.7
30.0 25.8 7.7 12.9 1.1
40.0 4.0 -4.7 0.2 0.3
50.0 -17.9 -17.1 3.7 3.4

Table 4: Implied values for the cross-derivative term ηcl,l and the minimal
relative risk aversion in leisure ηll, when varying the relative risk aversion in
consumption ηcc.
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Figure 4: The implied value for the minimal relative risk aversion in leisure
ηll, when varying the relative risk aversion for consumption between 3 and
60.
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consumption and leisure. As in Hansen, Heaton and Li (2005), I find that
news about future consumption (and leisure) matters for current asset prices,
if preferences are non-separable across time. The relationship between future
news and the current Sharpe ratio has been calculated, using a log-normal
framework. A VAR formulation has been provided, allowing the calculation
of the news component based on current innovations.
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