Notes on Epstein-Zin Asset Pricing
(Draft: October 30, 2004; Revised: June 12, 2008)

Asset pricing with Kreps-Porteus preferences, starting with theoretical results from Epstein and Zin (Econometrica 1989, JPE 1991) and moving on to log-linear log-normal approximations that we can use to interpret Bansal-Yaron, Lettau-Ludvigson-Wachter, Hansen-Heaton-Li, etc. No guarantees of accuracy or sense.

Basics

Environment. The setting is a Lucas exchange economy: a “tree” generates a dividend each period equal to output y, which in equilibrium equals the consumption of the single representative agent. The growth rate x (of the dividend/output/consumption) follows a stationary Markov process based on some as yet unspecified definition of the state. Preferences are homothetic, which generates a stationary price-dividend ratio Q. If $q = Qy$ is the price, the (gross)

$$r_{pt+1} = \frac{q_{t+1} + yt+1}{qt} = \left(\frac{Q_{t+1} + 1}{Q_t}\right) x_{t+1},$$

where $x_{t+1} = yt+1/yt$.

Pricing relation. In this or any other arbitrage-free environment, the return r_i on any tradeable asset i satisfies

$$1 = E_t(m_{t+1} r_{it+1}),$$

for some positive pricing kernel m. Epstein and Zin propose preferences characterized by the time aggregator

$$U_t = [(1 - \beta) c^\rho + \beta \mu_t(U_{t+1})]^{1/\rho}$$

and the (expected utility) certainty equivalent function

$$\mu_t(z_{t+1}) = \left[E_t(z_{t+1}^\alpha)\right]^{1/\alpha}$$

for some random variable z. Here $\rho < 1$ captures time preference (the intertemporal elasticity of substitution is $1/(1 - \rho)$) and $\alpha < 1$ captures risk aversion (the coefficient of relative risk aversion is $1 - \alpha$). The innovation relative to additive utility is that ρ and α need not be equal. We refer to these preferences as Kreps-Porteus to distinguish them from other preferences described by Epstein and Zin (Econometrica, 1989).

With these preferences and the pure exchange environment (both are necessary), the pricing kernel is

$$m_{t+1} = \beta^\gamma x_{t+1}^{\gamma(\rho-1)} r_{pt+1}^{\gamma-1},$$
where \(\gamma = \alpha / \rho \). If \(\gamma = 1 \) \((\alpha = \rho)\) this reduces to the traditional additive model in which \(m_{t+1} = \beta x_t^{\rho - 1} = \beta x_t^{\alpha - 1} \).

Solution method. In the additive model, the process for \(m \) follows directly from that of \(x \). Here we need to find \(r_p \) first. We do this in the following steps: (i) Apply the pricing relation (2) to \(r_t = r_p \) to find the price-dividend ratio \(Q \):

\[
Q_t^\gamma = E_t [\beta^\gamma x_t^\rho (Q_{t+1} + 1)^\gamma] = E_t \left([\beta x_t^\rho (Q_{t+1} + 1)]^\gamma \right). \tag{6}
\]

Through this equation, a process for \(x \) implies a process for \(Q \). (ii) Given processes for \(x \) and \(Q \) we use (1) to compute the return \(r_p \). (iii) Given \(r_p \) we use (5) to compute the pricing kernel, which allows us to price any asset we like.

For future reference, note that \(Q \) is constant (independent of the state) if \(\rho = 0 \) (log time aggregator) or \(x \) is iid (the same distribution in all states).

Log-linear log-normal approximation

Log-normal dividend process. We can get a sense of how this works by considering a log-normal environment. Let us say that the dividend growth rate follows the infinite moving average process

\[
\log x_t = \bar{x} + \sum_{j=0}^{\infty} \chi_j \varepsilon_{t-j}, \tag{7}
\]

with \(\{\varepsilon_t\} \sim \text{NID}(0, 1) \) and \(\sum_j \chi_j^2 < \infty \) ("square summable"). This is general enough to allow a wide variety of growth rate dynamics.

Log-linear approximation. The problem is that the return \(r_p \) isn’t log-normal: the \((Q + 1)\) term in (6) isn’t log-linear in \(Q \), so \(Q \) isn’t exactly log-normal — nor is \(r_p \). But we might guess that it’s approximately log-normal, a guess we’ll make here without further verification. A linear approximation \(\log(Q + 1) \) [in \(\log Q \)] around an arbitrary point \(\log \bar{Q} \) is

\[
\log(Q + 1) \cong \kappa_0 + \kappa_1 \log Q \tag{8}
\]

where \(\kappa_1 = \bar{Q}/(Q + 1) < 1 \) and \(\kappa_0 = \log(\bar{Q} + 1) - \kappa_1 \log \bar{Q} \). [Note: these aren’t free parameters — they should be implied by the model via \(\bar{Q} \). More later.]

Solution. With this approximation, we conjecture an infinite MA process for \(\log Q \) and use it to find the kernel:

\[
\log Q_t = \bar{Q} + \sum_{j=0}^{\infty} \theta_j \varepsilon_{t-j} \tag{9}
\]

with \(\sum_j \theta_j^2 < \infty \). We start by evaluating (6):

\[
\log \left[\beta^\gamma x_t^{\rho \gamma} (Q_{t+1} + 1)^\gamma \right] = \gamma \left(\log \beta + \rho \log x_{t+1} + \log(1 + Q_{t+1}) \right)
\]

\[
= \gamma (\log \beta + \rho \bar{x} + \kappa_0 + \kappa_1 \bar{Q}) + \gamma \sum_{j=0}^{\infty} (\rho \chi_j + \kappa_1 \theta_j) \varepsilon_{t-1-j}. \]
To compute the conditional expectation, recall that if \(x \sim N(a,b) \), then \(\log E(x) = a + b/2 \). Applying that here, we have

\[
\gamma \log Q_t = \gamma (\bar{Q} + \sum_{j=0}^{\infty} \theta_j \varepsilon_{t-j}) \\
= \gamma (\log \beta + \rho \bar{x} + \kappa_0 + \kappa_1 \bar{Q}) + \gamma^2 (\rho \chi_0 + \kappa_1 \theta_0)^2/2 + \gamma \sum_{j=0}^{\infty} (\rho \chi_{j+1} + \kappa_1 \theta_{j+1}) \varepsilon_{t-j}.
\]

Lining up terms, we see:

\[
(1 - \kappa_1) \bar{Q} = (\log \beta + \rho \bar{x} + \kappa_0) + \gamma (\rho \chi_0 + \kappa_1 \theta_0)^2/2 \\
\theta_j = \rho \chi_{j+1} + \kappa_1 \theta_{j+1}
\]

with the second equation holding for \(j \geq 0 \).

It takes some effort to find the \(\theta \)'s. If we solve (13) for \(\theta_{j+1} \) and substitute repeatedly, we find

\[
\theta_j = \kappa_1^{-j} \left(\theta_0 - \rho \sum_{i=1}^{j} \kappa_1^{i-1} \chi_i \right).
\]

The square summability condition requires \(\lim_{j \to \infty} \theta_j^2 = 0 \), which implies

\[
\kappa_1 \theta_0 = \rho \sum_{j=1}^{\infty} \kappa_1^j \chi_j = \rho X_0.
\]

(This condition isn’t enough for square summability, but gives us \(\theta_0 \) if it does.) Given \(\theta_0 \), we then use (10) to fill out the sequence. With (11) we can refine our solution of the price process:

\[
(1 - \kappa_1) \bar{Q} = (\log \beta + \rho \bar{x} + \kappa_0) + \alpha \rho (\chi_0 + X_0)^2/2 \\
\theta_j = \rho \kappa_1^{-j} \sum_{i=j+1}^{\infty} \kappa_1^i \chi_i = \rho \kappa_1^{-j} X_j.
\]

for \(X_j = \sum_{i=j+1}^{\infty} \kappa_1^i \chi_i \) and \(j \geq 0 \). For future reference, note that \((1 - \kappa_1) \bar{Q} = \kappa_1 \), which we could use later to eliminate \(\kappa_1 \) from our expressions. [Recall: \(\kappa_1 \) is not a primitive parameter and should, in principle, derived from the parameters governing preferences and the growth rate process.]

Next, we use the solution to find the return \(r_p \) on the aggregate portfolio and the pricing kernel \(m \). From (1), the return is

\[
\log r_{pt+1} = \log (Q_{t+1} + 1) - \log Q_t + x_{t+1} \\
= [\kappa_0 - (1 - \kappa_1) \bar{Q} + \bar{x}] + (\chi_0 + \kappa_1 \theta_0) \varepsilon_{t+1} + \sum_{j=0}^{\infty} (\chi_{j+1} + \kappa_1 \theta_{j+1} - \theta_j) \varepsilon_{t-j} \\
= - \log \beta + (1 - \rho) \bar{x} - \alpha \rho (\chi_0 + X_0)^2/2 + (\chi_0 + \rho X_0) \varepsilon_{t+1} + (1 - \rho) \sum_{j=0}^{\infty} \chi_{j+1} \varepsilon_{t-j}.
\]
When $\rho \neq 0$, the dynamics of the return differ from those of the growth rate in the initial term (apart from scaling). The risk aversion parameter α plays no role in this, although it does affect the mean. From (5), the pricing kernel is

$$
\log m_{t+1} = \gamma \log \beta + \gamma (\rho - 1) \log x_{t+1} + (\gamma - 1) \log r_{pt+1}
$$

$$
= [\log \beta + (\rho - 1) \bar{x} - \alpha (\alpha - \rho) (\chi_0 + X_0)^2 / 2]
+ [(\rho - 1) \chi_0 + (\alpha - \rho) (\chi_0 + X_0)] \varepsilon_{t+1} + (\rho - 1) \sum_{j=0}^{\infty} \chi_{j+1} \varepsilon_{t-j}.
$$

Unlike the additive case, the moving average coefficients of the pricing kernel differ from those of the growth rate in the first term. How much depends on X_0, the (weighted) cumulative sum of moving average coefficients from next period on. Note, too, that in the iid case ($X_0 = 0$),

$$
\log m_{t+1} = [\log \beta + (\rho - 1) \bar{x} - \alpha (\alpha - \rho) (\chi_0)^2 / 2] + (\alpha - 1) \chi_0 \varepsilon_{t+1}.
$$

The model is then observationally equivalent to one with additive utility and a different discount factor (Kotcherlakota, JF, 1990).

Finding κ_1. There’s no obvious simple substitution to get rid of κ_1. We could iterate once we have everything else and make sure it satisfies its definition. Stan’s suggestion is to approximate at the solution to the iid case, where (12) becomes

$$
\kappa_1 = (1 - \kappa_1) \bar{Q} = (\log \beta + \rho \bar{x} + \kappa_0) + \alpha \rho (\chi_0)^2 / 2
$$

It’s a little ugly, but with our expression for κ_0 we could solve this for κ_1 and \bar{Q}.

Utility-based approach

This starts with an idea we got from Hansen-Heaton-Li (“Consumption strikes back,” October 2005): to do the log-linear approximation directly on the recursive representation of utility. They note that the pricing kernel can be represented by

$$
m_{t+1} = \beta x_{t+1}^{\rho - 1} \left(\frac{x_{t+1} v_{t+1} + \frac{1}{\mu_t(x_{t+1} v_{t+1})}}{x_{t+1}} \right)^{\alpha - \rho}.
$$

Here the trick is to evaluate the second term.

Step 1. Since preferences are homogeneous of degree one, we can divide (3) by c_t to get

$$
v_t = [(1 - \beta) + \beta \mu_t(v_{t+1} x_{t+1})^\rho]^{1/\rho},
$$

where $v_t = U_t / c_t$. We’ll now do a log-linear approximation of this, which serves the same purpose as the Campbell-Shiller log-linear approximation of $\log(Q + 1)$ in equation (8). Taking logs, let

$$
\log v_t = \rho^{-1} \log [(1 - \beta) + \beta \mu^\rho]
= \rho^{-1} \log [(1 - \beta) + \beta \exp(\rho u_t)],
$$
where \(u_t = \log \mu_t \). A first-order approximation of the rhs around \(u = 0 \) is
\[
\log v_t = \beta u_t = \beta \log \mu_t(v_{t+1}x_{t+1}). \tag{14}
\]
If we approximate around an arbitrary value \(\bar{u} \), then we get
\[
\log v_t = \rho^{-1} \log [(1 - \beta) + \beta \exp(\rho \bar{u})] + \left(\frac{\beta \exp(\rho \bar{u})}{1 - \beta + \beta \exp(\rho \bar{u})} \right) (u_t - \bar{u})
= \kappa_0 + \kappa_1 \log \mu_t(v_{t+1}x_{t+1}).
\]
The parameters \((\kappa_0, \kappa_1)\) may be different from those used earlier. HHL start with \(\rho = 0 \), which gives you a discount factor of \(\beta \) regardless.

Step 2. Now it’s the usual guess and verify. Guess
\[
\log v = \bar{v} + \sum_{j=0}^\infty \nu_j \varepsilon_{t-j}
\]
for parameters to be determined. Evaluate the certainty equivalent [equation (4)]:
\[
\log \mu_t(v_{t+1}x_{t+1}) = \bar{v} + \bar{x} + \alpha(v_0 + \chi_0)^2/2 + \sum_{j=0}^\infty (\nu_{j+1} + \chi_{j+1}) \varepsilon_{t-j}
\]
Then the recursion (14) implies
\[
\bar{v} = \kappa_0 + \kappa_1 (\bar{v} + \bar{x}) + \kappa_1 \alpha(v_0 + \chi_0)^2/2
\]
\[
\nu_j = \kappa_1 (\nu_{j+1} + \chi_{j+1}), \ j \geq 0.
\]
Solving forward, we find
\[
\nu_j = \sum_{i=1}^\infty \kappa_1^i \chi_{j+i}
\]
\[
\nu_j + \chi_j = \sum_{i=0}^\infty \kappa_1^i \chi_{j+i} \equiv Z_j.
\]
This allows us to express \(\log v \) in terms of primitives.

Step 3. A slight variant of the mrs formula is
\[
m_{t+1} = \beta x_t^{\alpha-1} v_{t+1}^{\alpha-\rho} \mu_t(x_{t+1}v_{t+1})^{\rho-\alpha}.
\]
Line up terms:
\[
\log x_{t+1} = \bar{x} + \sum_{j=0}^\infty \chi_j \varepsilon_{t+1-j}
\]
\[
\log v_{t+1} = \bar{v} + \sum_{j=0}^\infty \nu_j \varepsilon_{t+1-j}
\]
\[
\log \mu_t = \bar{v} + \bar{x} + \alpha Z_0^2/2 \sum_{j=0}^\infty Z_{j+1} \varepsilon_{t+1-j}.
\]
That gives us

\[
\log m_{t+1} = \log \beta + (\rho - 1)\bar{x} + (\rho - \alpha)\alpha Z_0^2/2
+ [(\rho - 1)\chi_0 + (\alpha - \rho)Z_0]\varepsilon_{t+1} + (\rho - 1)\sum_{j=0}^{\infty} \chi_j \varepsilon_{t-j},
\]

which is similar to what we had before. [Needs to be checked.] Note that the discounting in the sums of depends on the point around which we approximate, since that affects \(\kappa_1 \).