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Abstract 

Macroeconomic models may produce ARMA structures where the determinant of the 
MA matrix polynomial has some roots inside the unit circle. This implies that the 
impulse-response functions are no longer identified and may vary in an infinite- 
dimensional space. This paper deals with this problem in the VAR, or structural VAR. 
framework. We provide a method to strongly limit the research for economically 
interesting nonfundamental impulse-response functions and show how to construct such 
representations from estimated VAR coefficients. We also give two empirical applica- 
tions: GNP-unemployment, USA data, and interest rate-inflation, French data. 

Key, words: Nonfundamentalness; Alternative impulse-response functions 
JEL classij?cation: C22; EC? 

1. Introduction 

Several papers have pointed out that economic models may produce moving 
average representations which are not fundamental, i.e., representations in 
which some of the roots of the MA determinant lie within the unit circle: see, e.g., 
Hansen and Sargent (1980, 1991), Futia (1981), Quah (1990), and Lippi and 
Reichlin (1991, 1993). 

Such representations, although they imply the same autocovariance structure, 
cannot be obtained from inversion of estimated VARs. In fact, given an 
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autocovariance structure, there exists an infinite- and infinite-dimensional va- 
riety of MA representations compatible with it; in such variety fundamental 
representations are only a thin subset. Consequently, when the economic model 
does not guarantee fundamentalness, the dynamic analysis based on standard 
impulse-response functions may be misleading. 

This paper first proposes a criterion to limit the space of relevant MA 
representations; secondly, it shows how to construct such representations from 
estimated VAR coefficients. The method, which we illustrate on the basis of two 
examples, is easily implementable and can be employed to explore the range of 
the different dynamic impulse-responses to the shocks implied by a given model. 

The paper is organized as follows. In Section 2 we give some background and 
terminology. In Section 3 we show that all nonfundamental representations in 
the ARMA class may be obtained from a fundamental one by means of Blaschke 
matrices. The latter are nontrivial matrices in the lag operator L which trans- 
form white noises into white noises. In Section 4 we introduce the distinction 
between basic and nonbasic nonfundamental representations with respect to 
a given ARMA representation: basic representations are finite in number up to 
multiplication by orthogonal matrices. We argue that the economic examples 
found in the literature, though providing a motivation for exploring nonfun- 
damental representations, do not produce nonbasic nonfundamental repres- 
entations. However, as we will show in Section 5, when our knowledge is limited 
to an estimated VAR, the distinction between basic and nonbasic representa- 
tions is difficult. Nonetheless, if the estimated VAR is thought of as an approx- 
imation to an ARMA model, the MA roots of the latter should produce circles 
in the set of VAR roots. This feature is indeed quite evident in the two empirical 
cases analysed in Section 6, and is the basis of the criterion we propose to limit 
the exploration of nonfundamental representations. The results in Sections 
3 and 4 are developments from Rozanov (1967) and Hannan (1970). Some of 
them can be found more or less explicitly in Hansen and Sargent (1991). The 
proofs are in the Mathematical Appendix. 

2. Background and terminology 

Let X, be an n-dimensional stationary stochastic vector whose entries may be 
either I(0) or k-differences of I(k) processes. Assume for simplicity that X, has 
rational spectral density. In this case x, admits moving average representations: 

x, = B(L)&, 

B(L) = f Bi L’. 
i=O 
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where (i) U, is a white noise vector; (ii) B(L) is a matrix of rational functions in 
L with no poles of modulus smaller or equal to unity. Representation (1) is 
called,findamental if, in addition, (iii) det B(L) has no roots of modulus smaller 
than unity. When this is the case u, belongs to the linear space spanned by _x,_~, 
k 2 0, call it I,. 

If some of the roots lie strictly inside the unit circle, then representation (1) 
is called norlfundamenta/. In that case, as we will show in the next section, u,, 
while belonging to the space spanned by .x-~, k being any integer, does not 
belong to I,. 

Macroeconomic models based on intertemporal maximization under rational 
expectations typically produce equilibrium solutions of the ARMA form: 

M(L)x, = P( L)w,, 

where x, is as in (1) u’, is a white noise, M(L) and N(L) are (finite) polynomial 
matrices whose coefficients are functions of the ‘deep parameters’, while 
det n/r(L) has no roots of modulus smaller or equal to unity. 

It is important to point out that x, is to be meant as the vector of all the 
variables observed by the econometrician. Accordingly, the space I, is also called 
the econometrician’s injbrmation spuce. 

The white noise w, belongs in general to the agents’ information space. The 
latter may be larger than the econometrician’s. As a consequence. representation 
(2) or its implied moving average 

x, = hil(L)) l N( L)w,, (3) 

is not necessarily fundamental. This means that the standard identification 
criterion for ARMA models, i.e., the assumption that all the roots of the MA 
determinant lie outside the unit circle does not have any economic justification, 
and therefore cannot be invoked to select one out of the multiple peaks of the 
likelihood function. Although some implication of the economic model can still 
be tested (see, e.g., Hansen and Sargent, 1991) this identification problem is 
a real difficulty when the aim is to study impulse-response functions and relative 
variances of components. 

The problem is even more complicated when we take up the approach of VAR 
or structural VAR literature. Here, even though an intertemporal maximization 
under rational expectations is usually assumed as background, yet the dynamics 
are not fully specified. In particular, the theory does not produce information on 
the orders of the AR and MA matrix polynomials. In this case it is standard 
practice to estimate an unrestricted vector autoregression, while economic 
theory can still play a limited role in the subsequent identification step. 

VAR procedure consists in, first, the estimation of the model: 

S(L)x, = u,, (4) 
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where S(L) is a finite polynomial matrix whose order is such that the hypothesis 
that u, is a white noise is not rejected.’ Secondly, the moving average representa- 
tion is obtained by inversion: 

X, = S(L))‘& (5) 

Lastly, the theory is employed to identify the ‘structural’ white noise u’,, where 
this simply means to determine a matrix K such that w, = Ku,. Finally, the 
structural impulse-response functions are determined as 

Y, = [KS(L)]_‘(Ku,) = [KS(L)]_‘w,. (6) 

Representation (6) being obtained from the inversion of S(L), has all the 
roots on the ‘right side’ of the unit circle, i.e., is fundamental. This has two 
consequences: first, its economic meaning is guaranteed only in the particular 
case in which the econometrician’s and the agents’ information spaces coincide. 
Secondly, it is only in this particular case that (6) can be thought of as an 
approximation to an underlying fully specified ARMA model. 

3. Blaschke matrices and nonfundamental representations 

In this section we show how to obtain all nonfundamental MA representa- 
tions from a fundamental representation. For this we must introduce Blaschke 
matrices. 

Let z denote a complex variable and A(z) an n x II matrix whose elements are 
rational functions of Z: aij(z) = hij(z)/~ij(z), where hii and cij(z) are poly- 
nomials with no common roots. We shall assume throughout that det A(z) has 
a finite number of zeroes (otherwise it would vanish over the whole complex 
field). Notice that we are not assuming real coefficients for aij(z). Therefore the 
stochastic processes we will refer to below are complex. This will simplify the 
treatment by avoiding clumsy distinctions between real and pairs of complex 
conjugate roots. On the other hand, restricting to a real A(z) and to real 
processes will not create any problem. 

Dejinition I. A(z) is a Bluschke Matrix, BM henceforth, {fi 

(BMl) A(z) bus no poles of modulus smaller or equal to unity. 

I When x, is cointegrated, model (4) is misspecified and estimation must be performed on the basis 
of an Error Correction Model. For the purpose of the discussion here, there is no need to develop 

such case. 



(BM2) 

I.e., 

M. Lippi, L. R~ichlin ! Jnurnd of Econorm~rrics 63 i 1994) 307- 325 311 

Denoting by A*( .) the matrix obtained by transposing and taking conju- 

gate coeficients, we have 

A(z)-’ = A*(z- ‘), (7) 

A(z)A*(z- ‘) = I. (8) 

(Notice that BM are orthogonal matrices,for 1 z 1 = 1.) 

Let U, be a white-noise n-dimensional vector. If the covariance matrix of U, is 
the identity we call II, an orthonormal white noise. It follows immediately from 
(BM2) that if U, is an orthonormal white noise, then A(z) is a BM if and only if 
the vector 

v, = A(L)& 

is also an orthonormal white noise. 

(9) 

Elementary examples of BM are: 

(I) A(z) is a constant orthogonal matrix; 
(II) A(z) = R (r, z), where 

Z-CL 
----0 

R(cc,z) = 1 - az 

( ‘i 0 I’ 

with 1 c() < 1, while I here denotes the (n - 1)-dimensional unit matrix. 

Examples (I) and (II) combine to give 

A(z) = R(a,,z)KiR(az,z)K, . ..R(G.z)K,,,, (IO) 

with Ki orthogonal and many positive integer. The theorem below states that all 
rational BM have the form (10). 

Theorem 1. Let A(z) he a BM. Then there exists an integer r and complex 
numbers Xi, i = 1, r, 1 C(i ( < 1, such that 

A(z) = R(~x~,z)K,R(z,,z)K~ . ..R(cc.,z)K,, 

where Ki are orthogonal matrices. 

(11) 

Let us recall the definition of a fundamental representation for x,, i.e., 
the moving average (I), with the properties (i), (ii), (iii). Since in this paper 
we are interested in identification restrictions which usually include at least 
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orthogonality of the components of u, (like in Sims’ recursion schemes or in 
Blanchard and Quah, 1989) it will be convenient to add the condition: 

(iv) U, is an orthonormal white noise. 

Now let 

x, = B(L)& (12) 

be fundamental. Nonfundamental representations can be immediately obtained 
from (12). Setting L’, = A(L)-‘u,, A(L) being a nonconstant BM, the 
representation 

X, = B(L)[A(L)V,] = [B(L).4(L)]v, 

fulfills (i), (ii), and (iv), but not (iii). The converse is proved in the Appendix. 
Thus: 

Theorem 2. Let x, he stationary with rational spectral density. If x, = B(L)u, is 

ajiindamental representation qf x, and x, = C( L)u, is any MA representation, i.e., 
one whichfuljills (i), (ii), and (iv), but not necessarily (iii), then C(L) = B( L)A( L), 
where A(L) is a BM. 

Theorem 2 implies that if x, = C( L)v, is nonfundamental, the space generated 
by c’,_~, k 3 0, is not contained in the econometrician’s information space. In 
fact, applying Theorem 2, x, = B( L)A(L)u,, where A(L) is BM. Assuming for 
simplicity that B(L) is invertible: A(L)u, = B(L)- ‘xt. Since the inversion of 
A(L) can be obtained only by using the forward operator F, recovering u, 
requires using not only the past but also the future of x,. 

Notice that A(L)- ’ does not possess an expansion in L valid in and on the 
unit circle. In fact, A(L)- ’ contains the ratios 

1 -cCiL 

L - cli ’ 

with 1 cci ( < 1, which have poles inside the unit circle. However, setting F = L- ‘, 
such terms can be rewritten as 

1 - ,qF 

so that A(L)- 1 has a valid expansion in the forward operator F. Thus, if U, is an 
orthonormal white noise, then u, = A( L)u, is an orthonormal white noise lying 
in the past of u,, while u, = A(L)- ‘v, lies in the future of II,. 
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Let us lastly notice an important difference between fundamental and nonfun- 
damental representations. We have: 

U. If x, = B(L)u, and x, = 8( L)d, are two fundamental representations, then 
B(L) = l?(L)K, where K is an orthogonal matrix. (See Hannan, 1970, p. 66, 
Theorem IO’.) 

This uniqueness result does not hold for nonfundamental representations, 
even when their determinants are equal. For instance, setting 

we have 

@)C(L)_‘_ii ;:; ?I, 

although det C(L) = det c(L) = (f. - r)/(l - EL). 

4. Basic and nonbasic representations corresponding to a given vector ARMA 

In this section we assume that an ARMA representation is given for the vector 
x,, i.e., a couple of polynomial matrices M(L) and N(L) such that 

M(L)& = N(L)% (13) 

where U, is a white noise, det M(L) has no zeroes of modulus smaller or equal to 
unity, M(0) = I. 

Definition 2. The ARMA representation (13) of the stationary stochastic vector 
x, is fundamental if N( L)u, is fundamental. 

We now study the set of alternative representations which have the same AR 
polynomial as (13) but whose MA matrices may differ for a BM.2 For an 
economic motivation of this problem we may go back to intertemporal maximi- 
zation under rational expectations and assume that the restrictions produced by 

*As is well known, even assuming fundamentalness, whereas the moving average representation 
M(L)-‘N(L)u, is unique up to an orthogonal matrix, the couple of polynomial matrices in (13) is 

not unique. Here we do not deal with this problem. 
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the economic model are sufficient to completely identify the AR matrix while 
leaving the position of the MA roots (inside or outside the unit circle) undeter- 
mined. Most of the examples mentioned in the Introduction produce such 
a situation. 

Now expand representation (13): 

N(L)=N,+N,L+ .‘. +N,L4, 

and assume that it is fundamental, so that: 

detN(L) = ~(1 - a,L)(l - x,L) ... (1 - cc,L), 

with 1 Xi ( d 1 and h < nq, z = det N0.3 

(14) 

Let Sz be the subset of R” whose elements tr) fulfill the condition: wi is equal 
either to 1 or to - 1. 

Theorem 3. (a) For any given w E 8, there exist representations 

P(L) = P, + PIL + ‘.’ + P,L4, 

det P(L) = ~(1 - p,L)(l - fi,L) ... (1 - fl,,L), 

where w, is an orthonormal white noise, while pi = c(~ if wi 

wi = - 1, p = det PO. (b) If P(L) and Q(L) correspond 
P(L) = Q( L)K, with K orthogonal. 

(15) 

zz 1, /jiZc([’ if 

to the same w, 

Dejinition 3. The nonfundamental ARMA representations obtained in Theorem 
3, which are finite in number up to orthogonal matrices, will be called basic with 
respect to representation (13). 

The uniqueness result (b) has an important consequence. Consider all the 
basic moving averages compatible with a given ARMA and suppose that a given 
recursive scheme is chosen for identification. Then there is only one MA 
representation corresponding to that recursive scheme and having a given 
determinant. The same result holds if instead of a recursive scheme we choose 
a different identifying restriction that turns out in a linear transformation of the 
white noise through an orthogonal matrix (this is the case, for instance, with the 
restriction imposed in Blanchard and Quah, 1989). 

A Given the structure of N(L), the degree of det N(L) could be less than nq 
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Remark I. Basic nonfundamental representations are obtained from (13) 
by manipulating only the MA polynomial matrix, while the AR remains 
untouched. Moreover, if (13) is an ARMA (p, q), basic representations are 

ARMA (P, 4). 

Remark 2. The above definition is related to a given representation of x,, not to 
x, itself. Different representations, containing different MA polynomials, give 
rise to different sets of basic nonfundamental representations. 

Now let us go back to representation (13) and suppose we substitute A(L) w, 
for U, in the RHS, where 

A(L) = KR(y,L), 

with 1 y 1 < 1, y # C(i, for i = 1, h. In this case, irrespective of the orthogonal 
matrix K chosen, the representation 

M(L)xt = N(L)KR(y,L)w, (16) 

is not an ARMA, since the matrix R(y, L) is not a polynomial matrix, while 
det(N(L)K) does not contain the factor 1 - YL. An ARMA representation 
corresponding to (16) can be obtained by multiplying both sides by the scalar 
(1 - YL): 

(1 - 7L)M(L).x, = N(L)K L ; y (1 yL)I c > w,. 

This may be sufficient to highlight the features of nonbasic ARMA repre- 
sentations associated with (13), i.e., those obtained from (13) by using arbitrary 
BM to manipulate the MA polynomial matrix: 

(A) The orders of the MA and AR polynomial matrices increase with respect to 
(13), according to the number of ‘nonbasic’ roots in the BM. Thus any order 
may be reached. 

(B) If ;I, ) 7 ) < 1, is an MA root of a nonbasic representation associated with (13) 
y # ri, i = 1, h, then 1) - ’ is a root of the AR polynomial. 

In Lippi and Reichlin (1993) we have shown how far one can go when one 
allows for nonbasic representations. Precisely, discussing the decomposition of 
GNP into demand and supply components, we have proved that if arbitrary 
nonbasic representations are allowed, one can obtain any pre-assigned ratio 
between the variance of the two components. 

On the other hand, property (B) of nonbasic nonfundamental ARMA repre- 
sentations is not likely to occur in models based on economic theory. Even in the 
case in which roots inside the unit circle cannot be excluded, both common sense 
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and close examination of the examples in the literature, suggest that only by 
aflukewecouldhavey,IyI < l,andT- ’ as roots of the determinants of the MA 
and the AR matrices, respectively. We conclude that the research of sensible 
nonfundamental representations associated with a given ARMA must be limited 
to basic representations. 

5. The VAR case 

The situation is much more complicated when we start with an estimated 
VAR, like in standard or structural VAR analysis. The difficulty is that we do 
not possess an immediate criterion to discriminate between basic and nonbasic 
representations. In fact, even if we stick to the idea that the underlying data 
generation process may be approximated by an ARMA structure, here the latter 
has undergone a further approximation by (4). Consequently, we have to deal 
with two problems. Firstly, whether there is some evidence of a nontrivial MA 
polynomial; secondly, in case of a positive answer, how to identify a reasonably 
small subset of the complex plane containing the roots of the MA polynomial. 

To further clarify the issue, let us recall that a standard fundamental ARMA 
can always be obtained from (4) as 

det S( L)s, = S,,( L)u,. (17) 

Model (17) could be used to experiment with basic nonfundamental repre- 
sentations. This naive solution has been adopted in Lippi and Reichlin (1993). 
However, if for instance the structural model were an AR(2), and such a struc- 
ture were correctly estimated as a VAR, the basic nonfundamental representa- 
tions obtained from (17) would be completely illegitimate. 

Here we try to move a step further and propose a criterion to detect a genuine 
MA component which is based on the fact that MA roots should generate circles 
in the set of the roots of the estimated VAR determinant. 

This point can be illustrated by a two-dimensional model. Suppose the ‘true’ 
ARMA is 

x, = (N, - Nr L)U,. 

Consider its fundamental standard version: 

x, = (I - NL)U,. (18) 

Let z[’ and cc;’ be the roots of det (I - NL) and assume for the moment that 
they are real. By fundamentalness 1 ri 1 < 1. If (18) were known, research of 
nonfundamental representations would be limited to the three basic ones ob- 
tained by taking the reciprocals of rx;‘, of cc; ‘, or of both. 

If instead we estimated a VAR, then, assuming that the moduli of the roots, 
Cc; ’ are fairly greater than unity, and that the sample size is sufficiently large, the 
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VAR polynomial will be a close approximation to 

G(L)=I+NL+N2L2+ ... +N”L* 

= (I - h’p+lLp+l)(l - NLj-‘. (19) 

From elementary matrix algebra, the 2 x p roots of det G(L) are r, 1 TV, cc; ’ ‘fk, 
where 

for k = 1, p. Notice that when k varies between 1 and p, rk varies over all the 
(complex) (k + l)-roots of unity, with the exception of unity itself. Such roots 
form a regular (p + lj-polygon on the unit circle with a vertex coinciding with 
unity. The roots of det G( L) reproduce such polygon (excluding unity) on the 
circles of radii x ; ’ and c(; ’ respectively. 

No difficulty would arise if the roots were complex conjugate. Whereas in the 
real case we have two circles, a couple of complex roots would generate only one 
circle. 

Let us come to our proposed procedure. Keeping the assumption n = 2 will 
help to give a detailed presentation. Suppose, to fix our ideas, that the determi- 
nant of the estimated VAR, 

S(L)x, = 4, 

has one circle of complex roots. We proceed assuming that the VAR is an 
approximation to 

M(L)x, = N(L)& 

so that T(L) = S( Lj-’ approximates M(L)- ‘N( L), while the circle of complex 
roots is interpreted as a clue for the presence of a pair of complex conjugate 
roots in N(L). 

Step 1. Naturally, an empirical circle will be determined only approximately. 
Moreover, the position of the roots will not be sufficiently regular to permit 
identification of the MA roots responsible for the circle. Thus all the information 
we can retain is represented by the radius p of the circle. 

Step 2. Consider now any fl, with 1 a 1 = p. Then follow Theorem 3, firstly 
multiply T(L) by 

K=h-’ t12(B) 

- t11(B) 

withh=~tl,(~)~2+~t1~(~)~2.SecondlymultiplybyR(~~‘,L).Noticethatwe 
are proceeding as though p were a root of T(L) and the basic nonfundamental 
representation corresponding to /I were to be determined. In fact, in that case 
T( LjK would contain the factor 1 - Pm ’ L in the first column, so that R( B- ‘, L) 
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would replace the root p with j?- ‘. Lastly, as fl is not real, the procedure has to 
be applied to T( L)KR(/? ‘, L), with p instead of j. This will ensure that, after 
imposing the identifying restrictions, the resulting representation is real. 

Step 3. Step 2 can be employed in a grid search over the interval (0, rc) for 
the argument of fi. This means fixing a pace i = n/m, m integer, and repeating 
Step 2 for p = p(cos/2k + isinAk), k = 1, m - 1. For each argument the impulse- 
response functions can be displayed, their dynamics analysed and compared to 
the fundamental ones. In the next section we will apply the whole procedure to 
two empirical cases. 

Two caveats on Step 2 are in order. Firstly, our choice of the matrix K is based 
on the fact that if /I were a root of the MA polynomial, then using K, and then 
R(p- ‘, L), would lead to approximate a basic nonfundamental representation. 
Although our rule follows naturally from the approximation argument, since we 
try all the p’s on the circle, we are in fact dealing with nonbasic representations. 
Thus, as we have seen in Section 3, no uniqueness theorem can be invoked and 
the result is not independent of the rule adopted to choose K. Secondly, for 
n > 2 the situation is more complicated because even the assumption that B is 
a root of T(L) does not lead to a unique K. In fact, the first column of K could 
be determined, but for the remaining ones we have only the conditions that they 
must be orthogonal to each other and to the first. Thus, for y1 > 2 no natural rule 
exists to fix K, and we are not presently able to suggest a way to avoid 
exploration of further dimensions, in addition to the observed circle of roots. 

Lastly, it must be pointed out that circles of roots in the VAR determinant 
could arise in empirical cases from serious misspecification of the AR order. This 
may be shown by simulation. Thus, for a proper implementation of our method, 
it is important to perform the necessary diagnostic. 

6. Empirical results 

In this section, we will show how the procedure proposed in Section 5 works 
in practice. We perform two exercises on the basis of two bivariate VARs. After 
estimation, we first try to detect the presence of a nontrivial MA component by 
examining the position of the VAR roots in the complex plane. Having found 
evidence of such component in both cases, we compute and analyse alternative 
nonfundamental representations. 

Example 1. The first example is the VAR estimated by Blanchard and Quah 
(1989) for the log of US real GNP in first differences, and the US unemployment 
rate. Data are quarterly for the period 1948.1 to 1987.4. We retain the authors’ 
extimated coefficients for an eight-lag VAR and identification procedure, which 
consists in a long-run zero restriction on the structural MA matrix, unit 
variances, and orthogonality of the shocks. On the basis of the authors’ identi- 
fication restrictions, the shocks are interpreted as a demand and a supply shock. 
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Example 2. The second example is an Error Correction Model for the French 
nominal long-run interest rate and consumer inflation rate. Data are quarterly 
for the period 1946.1 to 1989.4. We estimate the model, compute the MA 
representation, and identify the model by imposing a triangular structure ?I la 
Sims with the interest rate preceding the inflation rate, so that the shocks can be 
interpreted as a shock to interest rate and a shock to inflation. 

The first example produces sixteen roots, the second eighteen. Figs. 1 and 
2 display their reciprocals in the complex plane. 

-0.2 . 

-0.4 

-0.6 - 
. . 

-0.8 

Fig. 1. Example I: Reciprocals of the VAR roots in the complex plane. 
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-0.4 
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-1 -0.5 0 0.5 1 

Fig. 2. Example 2: Reciprocals of the VAR roots in the complex plane. 
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In both examples, we can clearly detect one circle of roots, the radii being 
approximately 1.25 and 1.33, respectively. 

Let us first analyse Fig. 1. We can see that there are fourteen complex roots 
around the circle and two real roots, one of which is isolated. The circle suggests 
an MA component of order one with two complex roots. The isolated root 
should belong to an AR component, and since the latter must have at least two 
roots, we may infer that the real roots belong to an AR(l) component. These 
considerations suggest that the VAR approximates an ARMA (1, 1). 

In Example 2 (Fig. 2) we have eighteen roots, fourteen of which are complex 
and disposed around a circle, while the remaining four are real. The unit root is 
due to cointegration. The same reasoning as in Example 1 leads us to the 
conclusion that the approximated model is an ARMA (2, 1). 

As each experiment produces four impulse-response functions, we only show 
in Fig. 3 some of the responses of output to a demand shock for Example 1, and 
in Fig. 4 some of the responses of interest rate to a shock to interest rate for 
Example 2. In both cases the solid line corresponds to the fundamental repre- 
sentation, while the dashed and the dotted lines correspond, respectively, 
to fi = 1.25exp(in/8) and /I = 1.25exp(1.7in/8) for Example 1; to fi = 
1.33 exp(in/4) and /I’ = 1,25exp(irr/2) for Example 2. 

Two features common to both examples are worth reporting. First, there is 
a band for arg(/?), between 0 and n/2, producing interesting impulse-response 
functions. For arg( /I) greater than 7-r/2 the functions are almost identical to the 
fundamental ones, while the difference become more and more substantial as 
fi approaches zero. 

Fig. 3. Example I: Response of output to a demand shock; solid line: fundamental representation; 
dashed line: B = 1.25 exp(irr/8); dotted line: b = 1.25 exp(l,7in/8). 
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Secondly, for arg(/I) inside the band, the first impact of the shock is consider- 
ably smaller than the first impact of the fundamental function. Moreover, the 
size of the first impact is strictly linked to the relative variance of the correspond- 
ing component. 

In Tables 1 and 2 we report: (1) In the first row, the value of the first impact of, 
respectively, a unit shock to demand on output, a unit shock to interest rate on 
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Fig. 4. Example 2: Response of interest rate to a shock to interest rate; solid line: fundamental 

representation; dashed line: B = 1.33 exp(in/4); dotted line: p = 1.33 exp(iri/2). 

Table I 
Example 1 

Fundamental arg(P) = n/8 arg(fi) = 1.7n/8 

FI 0.86 0.50 0.60 

VR 9.4 0.48 1.21 

FI: First inpact of a unit demand shock on output. 

VR: Variance ratio of demand component to supply component in output 

Table 2 

Example 2 

Fundamental arg(fl) = i-r/4 arg(/J) = n/2 

FI 0.39 0.30 0.30 
VR 18 2.16 4 

FI: First inpact of a unit interest rate shock on interest rate. 
VR: Variance ratio of interest rate component to inflation component in interest rate 



interest rate. (2) In the second row, the relative variance of demand and supply 
components in output (Table l), of the interest rate and inflation component in 
interest rate (Table 2). 

As we can see, the relative importance of the demand component is by far 
greater in the fundamental function than in the two nonfundamental ones. 
Furthermore, the order of the relative importance is the same as for the first 
impact values. The first statement holds for Example 2 as well, whereas the 
second applies to the comparison between the fundamental function and each of 
the nonfundamental ones. 

Summing up, the application of our method to Examples I and 2 has 
produced nonfundamental functions whose shapes are not very different from 
the corresponding fundamental. However, both first impact values and relative 
variances vary considerably. In particular, the difference in first impact values 
suggests that exogenous information on the first lag responses might provide an 
additional choice criterion among alternative functions. 

7. Concluding remarks 

Relevant economic examples show that the standard assumption on the roots 
of MA representations is not warranted. When the economic theory is suffi- 
ciently informative to produce an ARMA structure, but not to determine the 
position of the roots of the MA polynomial (inside or outside the unit circle). we 
have argued that the exploration of nonfundamental representations can be 
limited to a finite number of alternatives. On the other hand, when only a VAR 
representation is available, a choice among the alternatives is much more 
difficult. Naturally, the choice should be limited to economically sensible im- 
pulse-response functions. However, a more formal strategy can be attempted. 
We have observed that if the VAR were an approximation to an ARMA with 
a nontrivial MA polynomial, the roots of the latter would generate circles of 
complex roots in the VAR determinant. This leads us to propose a criterion to 
limit the space of possible MA representations, which is based only on the 
information contained in the determinant of the VAR matrix. Application of this 
criterion to two empirical cases gives encouraging results. 

Mathematical appendix 

The results in Lemmas 1 and 2, although preparatory to Theorem 1, are of 
some autonomous interest. 

Lemma 1. Let A(z) he BM and det A(z) he a nonzero constant. Then A(z) is 
a constant orthogonal matrix. 
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Proof: Consider the stochastic vector 

v, = A(L)u, = (A, + AIL + A2L2 + . ..)u., (20) 

where U, is an orthonormal white noise. By (BM 1) the expansion above is valid 
in an open set containing the unit disk. Since det A(L) never vanishes A(L) is 
invertible, so that 

u,=(Co+C,L+ . ..)vr 

By (20), for k 2 0, cov(v,, utmk) = Ak. Furthermore, by (BM2), v, is a white noise, 
i.e., cov(v,, u~_~) = 0, for any k. Thus, 

Ak = cov(v,, u,pk) = cov 
( 

v,, =f CsV,_k_s = 0, 
s=o 1 

for k =z 0 (for this argument see Liitkepohl, 1984). Thus A(z) = AO. Q.E.D. 

Lemma 2. Let A(z) be a BM. There exists an integer r and complex Cli, i = 1, r, 5, 
IC(il < 1, 1~1 = 1, such that 

det A(z) = T 
(z - cI1)(z - rXz) .” (z - a,) 

(1 - ar)(l - &) “. (1 - a,)’ 

Proof Let 

det A(z) = &)/q(z) 

be a nonredundant representation of det A(z). Suppose c( # 0, p(u) = 0. From (7), 

P(Z)!w’) = 6w’)q(z). 

Since q(c() cannot vanish, q(c(- ‘) = 0, i.e., q(oS- ‘) = 0. In the same way, if fi # 0, 
q(p) = 0, then p(p)-’ = 0. Since A(z) cannot have poles of modulus smaller or 
equal to unity, [xi1 < 1. Setting Iz[ = 1, we get IzI = 1. Q.E.D. 

Notice that Lemma 2 is a representation theorem for a scalar BM. We are 
now ready to prove the general representation theorem: 

Proeffsf Theorem I. If det A(z) has no roots, then A(z) is a constant by Lemma 1. 
Assume that p is a root of multiplicity m for det A(z). By Lemma 2, I ,!3 I < 1. 
Consider the system of equations 

A(B)Y = 0 

in the unknown y. As det A(p) vanishes, there exists a nontrivial solution g. Let 
K be an orthogonal matrix whose first column is proportional to g. Now define 
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i(z) = A(z)K, and notice that iii,(Z), i = 1, n, contain the factor z - p. Then 
define 

= &z)R(p, z)~ ‘. 

Firstly, a(z) has no poles of modules smaller or equal to unity. Secondly, 

Therefore i(z) is a BM. Moreover, /J is a root of det A(z) of multiplicity m - 1. 
Finally, 

.4(z) = A^(z)R(/,z)K~‘. 

Thus the Theorem may be proved by induction on the number of roots of 
det A(z). Q.E.D. 

Proqfof Theorem 2. We proceed along the line of the proof of Theorem 1. Let 
c( be a root of det C(L), 1% 1 < 1. Find an orthogonal matrix K such that C( L)K 
has the factor L - SI in all the elements of the first column. Then multiply by 
R(cc, L)- ‘. This eliminates one factor, L - x. Repeating this procedure one 
eventually obtains g(L) = C(L) 2(L)- ‘, with L?(L) fulfilling condition (3), while 
A”(L) is a BM. From X, = C( L)c, we have 

x, = (C(L)& L)- 1) A(L)“, = B(L)w,, 

the last being ,a fundamental representation because B(L) fulfills condition (3). 
Thus, by (5), B(L) = B( L)K, so that C(L) = B(L)KA”(L). Q.E.D. 

Proof of Theorem 3. (a) In order to construct a matrix P(L) corresponding to 
a given o, suppose for instance that wi = - 1, so that we want to substitute the 
root Crl for the root x; ’ [the latter is the first root of det N(L)]. The procedure is 
the same as in Theorem 1. Firstly, find an orthogonal matrix K such that 
N(L)K contains the factor 1 - alL in the first column. Then multiply by 
R(ai, L), thus obtaining a new representation fi( L)d, where t7, is an orthonor- 
ma1 white noise, while 

detfi(L) = L(l - 8Y(1’L)(l - xzL) . . . (1 - c(,,L). 

The subsequent steps are now clear. Notice that the procedure is ready for 
straightforward computer implementation. 

(b) Let P(L) and Q(L) be the moving average matrices of two representations 
corresponding to the same w and let a,, CC~, . , gj be the roots inside the unit 
circle of det P(L) and det Q(L). We can assume that all the roots are simple; 
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continuity of the roots allows extension to the case when some of them are 
multiple. We proceed by induction on j. If the number of the roots inside the unit 
circle is zero, we have fundamental representations. In this case the uniqueness 
theorem (U), Section 3, applies. Assume that j > 0 and that statement (b) holds 
for j - 1. Firstly, determine the orthogonal matrices Kr and K2 such that both 
p(L) = P(L)K1 and o(L) = Q(L)K, contain the factor 1 - 5/‘L in all the 
elements of the first column. Then consider 

P(f) = P(L)R(rj,L))‘, o(L) = QI(L)R(ij, lIm’. 

The roots inside the unit circle are rI,Ez, ,Mj_ 1 for both F(L) and o(L). 
Moreover, they both contain the factor 1 - CxjL in all the elements of the first 
column. By the inductive hypothesis P^(L) and o(L) differ for a constant 
orthogonal matrix: F(L) = Q^( L)K. Considering the first column and putting 
L = q’, 

0 = @jl(XJ’) = ij2(Xj1)k~l + “’ + 4i,(T,“)k,l, (21) 

for i = 1, n. Since ai ’ is a root of the first column of h(L), the simplicity 
assumption implies that at least one of the square submatrices of the n x (n - 1) 
matrix on the RHS of (21) is nonsingular. Thus ki, = 0, for i = 2, n. Ortho- 
gonality of K implies 

(22) 

with Ikll 1 = 1 and H orthogonal. Matrices having the shape of K in (22) 
commute with matrices R(r, L). Thus: P(L) = Q( L)K, K K ; ‘. Q.E.D. 

References 

Futia, Carl A., 1981, Rational expectations in stationary linear models, Econometrica I, 171- 192. 

Hannan, E.J., 1970, Multiple time series (Wiley, New York, NY). 

Hansen, Lars Peter and Thomas J. Sargent, 1980, Formulating and estimating dynamic linear 
rational expectations models, Journal of Economic Dynamics and Control 2, l-46. 

Hansen, Lam Peter and Thomas J. Sargent, 1991, Two difficulties in interpreting vector autoregres- 

stons, in: Lars Peter Hansen and Thomas J. Sargent, eds.. Rational expectations econometrics 
(Westview Press, Boulder, CT) 77-l 19. 

Lippi, Marco and Lucrezia Reichlin, 1991, Diffusion of technical change and the identification of the 
trend component in real GNP, Working paper (London School of Economics, Financial Market 

Group, London). 

Lippi, Marco and Lucrezia Reichlin, 1993, The dynamic effects of aggregate demand and supply 

disturbances: Comment, American Economic Review 3, 6444652. 
Liitkepohl, Helmut, 1984, Linear transformations of vector ARMA processes, Journal of Econo- 

metrics 3, 2833293. 

Quah, Danny, 1990, Permanent and transitory movements in labor income: An explanation for 
‘Excess smoothness’ in consumption, Journal of Political Economy 3, 4499475. 

Rozanov, Yu, A., 1967, Stationary random processes (Holden Day, San Francisco, CA). 


