## **OBJECTIVE FUNCTIONS**

Fall 2002

## **Objective Functions**

I. Classical Markowitz

Trade-off is not explicitly made.

- II. Trade-off explicit:
- A. Use utility functions

## Problem is specifying utility.

B. Specify risk tolerance.

By tradition, divide variance by risk tolerance.

Mean Return
- risk penalty = <u>variance</u> risk tolerance

risk adjusted expected return

Example:

 $\overline{r} = 12$  $\mathcal{O} = 15$ Tolerance = 50

Risk adjusted expected return:  $12 - \frac{225}{50} = 7 \frac{1}{2}$ 

Same issue is how tolerance specified but maybe easier to work with investor to determine range.

- III. Safety first criteria (emphasis is on avoidance of risk).
- A. Roy's Criteria:

Minimize Prob 
$$\left( R_{p} < R_{L} \right)$$

B. Katoka's Criteria

Maximize 
$$R_L$$
  
Subject to: Prob  $\left( R_P < R_L \right) \le \alpha$ 

C. Telser's Criteria

$$\max \overline{R}_P$$

Subject to: Prob 
$$\left( \begin{array}{c} R \\ P \\ \end{array} \right) \leq \alpha$$

## Analysis of criteria:

The following analysis assumes normal returns.

A. Consider Roy's criteria:

$$\mathsf{Min Prob} \left( \begin{matrix} \mathbf{R} \\ \mathbf{P} < \mathbf{R} \\ L \end{matrix} \right)$$

Thus, want to maximize:



$$R_L$$
 serves as role of  $R_F$ 

B. Katoka's criteria

$$\begin{array}{c} {}_{\text{Maximize}} R \\ L \end{array}$$

Subject to:

$$\operatorname{Prob}\left( R_{P} < R_{L} \right) \leq \alpha$$

$$R_L \leq R_P - K\sigma_P$$

Where  $\boldsymbol{K}$  is set to match above constraint - example 1.65.

 $R_L \le \overline{R}_P - 1.65\sigma_P$ 

**Expression of straight line** 

Note if riskless lending and borrowing get funny results.

**Consider Telser's criteria:** 

$$\max \overline{R}_P$$

Subj to Prob 
$$\left( R_{P} \leq R_{L} \right) \leq \alpha$$

Constraint is:

$$R_L \leq \overline{R}_P - K\sigma_P$$