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Why do networks matter in commerce?

What are examples of “large sets of irregularly 
connected entities” we observe as a consequence of 
(electronic) commerce?

(intentionally blank)

Why are these “networked” data valuable?
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Why do networks matter in commerce?

What are examples of “large sets of irregularly 
connected entities” that affect outcomes in 
(electronic) commerce and which we do not observe ?

(intentionally blank)

What explains the formation and structure of these “underlying” networks?

A very basic framework
There are underlying networks that affect outcomes 
in electronic commerce.

Manageable and useful abstractions of these networks which 
are informed by theories from the social sciences can lead to 
better theories that are related to electronic commerce. 

There are empirical networks generated as a by-
product of electronic commerce which can

Describe outcomes of electronic commerce;

Be used to predict future outcomes, and

Influence underlying networks.

Modeling these empirical networks in a rigorous way 
can be informed by useful abstractions of the 
underlying networks that generate them.
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Agenda for this tutorial
Abstracting networks towards better theory.

Modeling for prediction using networked data.

Modeling for explanation using networked data.

(1) Abstracting 
networks to theorize
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Abstracting networks to theorize
Goals of this part of the tutorial

A basic understanding of the diversity of “complex” networks in 
business, society and nature

A basic understanding of some properties  of these networks 
that are useful.

A basic understanding of the manageable mathematical 
abstractions of these networks, and the connection between 
these abstractions and the properties described above.

Examples of networks

Interdisciplinary collaboration network at the Santa Fe Institute
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Examples of networks

High-school friendship network

Examples of networks

Yeast network
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Examples of networks

Sexual contact network

Examples of networks

High-school dating network
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Examples of networks

Machine Learning Papers

Examples of networks

The Web, circa 1998
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Examples of networks

IRC channel

Examples of networks

(Companies linked by news stories)
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Examples of networks

Books linked by co-purchases (partial…)

Some basic terminology

Graph

Node, edge

Directed/undirected 

Degree (degree distribution)

Component

Overview of networks
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Analogous to random variables

Poisson (Erdos-Renyi) random graph: 

Generalized random graphs

Models of small-world graphs

Random graphs

( ) (1 )k n kn
q x p p

k
−⎛ ⎞

= −⎜ ⎟
⎝ ⎠

Conceptual construct for modeling networks

Simplest abstraction: a graph is drawn from a set of 
possible graphs according to some distribution

More useful but less precise abstraction

The distributions associated with the properties of the 
graphs that are eventually drawn.

So, what exactly is a network property?

Random graphs, more importantly…
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Degree distribution
Extent of and variation in “local connectedness” across nodes

PageRank (and related measures)
Extent of and variation in “centrality” across nodes

Clustering
Extent of and variation in “shared connectedness” across nodes

Average distance (diameter)
Extent of and variation in distance between nodes

Assortative mixing/Homophily
Extent of and variation in “within-class connectedness” across nodes

Distribution of components, degree correlation, 
community structure,…

Network properties

Conceptual construct for modeling networks

Simplest abstraction: a graph is drawn from a set of 
possible graphs according to some distribution

Simplest less precise abstraction:

Each draw is described in terms of a degree distribution

Need independence assumptions, a construction process

Power-law networks:

Random graphs

( ) : fraction of nodes with degree q x x

( )q x x α−=
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Some properties of networks
Newman (2003)
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Conceptual construct for modeling networks

Simplest abstraction: a graph is drawn from a set of 
possible graphs according to some distribution

Simplest less precise abstraction:

Each instance is described in terms of a degree distribution

Need independence assumptions, a construction process

Power-law networks:

Neighbor degree distribution:

This abstraction facilitates the development of powerful 
theoretical models of complex networks with “local information”

Random graphs

( ) : fraction of nodes with degree q x x

( )q x x α−=
( )ˆ( )

( )
xq xq x

kq k
=
∑

Graphical Economics (Kearns and others, 2004)
Recognize that interactions between trading partners are often local, 
and the nature of what is “local” can be described by an underlying 
network.

Reformulate a simplified version of the Arrow-Debreu economy based 
on this recognition.

Establish existence of an extension of the Arrow-Debreu equilibrium in 
which “local” markets clear.

Provide a polynomial time algorithm to compute this equilibrium for a 
special class of underlying networks. 

(related: does computability of an equilibrium matter?)

Networks and theory: Examples
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Local Network Effects (Sundararajan 2004, 2006, 2007)
Recognizes that the value from shared interaction and adoption is often 
local and described by an “underlying network”.

Defines how to integrate abstractions of complex networks into an 
economic model whose outcome is described by a game-theoretic 
equilibrium.

Establishes a homeomorphism between the standard existing solution 
(“fulfilled expectations” equilibria) and equilibria grounded in game 
theory.

Provides the first set of properties (a Pareto-ranking, monotonicity) of the 
latter equilibria (a partial generalization has subsequently been provided 
by Galeotti et al. 2006).

Provides a mathematical formalization of the connection between 
underlying networks and empirical networks.

Shows that the optimal way to “seed” a network can often involve 
targeting the least connected nodes in addition to the most connected 
ones (and sometimes excluding the most connected ones).

Networks and theory: Examples

Local networks
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Local networks
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Local networks
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Local network effects

Agents make adoption decisions based on their 
observed local networks, and partial information 
about the entire network.

Agents generally have: 

different local networks

perfect information about the structure of their local network

some information about the structure of the other local 
networks they belong to (their neighbors’ local networks)

very little or no information about the exact structure of the 
rest of the social network
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A model of local network effects
Set of potential customers 

Single homogeneous network good that costs c 

Customers connected by an underlying social network modeled 
as an instance of a random graph (more on this soon). 

Each customer has:

A neighbor set Gi

A degree di (number of neighbors)

A valuation type θi (strength of adoption complementarity)

Each customer makes an adoption choice

Payoff from adoption for customer i:

1 2 3N { , , ,...,n }=

[ ( ) ]i j i
j Gi

a u a , - c
∈

θ∑

{0 1}ia ,∈

The underlying social network
{1,2,3,..., }N n= \{ }2N i

iΓ =

1 2 ...Γ ⊂ Γ ×Γ × ×ΓnSet of graphs:

Distribution over this set: : [0,1]ρ Γ→

G: Draw from this distribution
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Distribution of the social network (ρ)

( ) subset of  such that for each ( ),  | |Γ = Γ ∈Γ =j j jx X x X x
For each x in D, denote

Restrict the distribution over ρ as follows: 

For each , for each ,Pr[ ( ) | , ] ( )i j j i ii j G G x G q x∈ ∈Γ θ =

ˆFor each , for each ,Pr[ ( ) | , ] ( )i j j i ii j G G x G q x∉ ∈Γ θ =

Generalizes to posteriors conditional on degree
Admits generalized random graphs, standard models 

of small world networks

Sequence of the game

Nature draws θi for each i, draws 

Each agent i observes their type

Each agent i chooses either to adopt (ai=1) or not 
(ai=0) 

Payoffs are realized

G∈Γ
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Information
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Results: Equilibria

Each symmetric Bayes-Nash equilibrium involves a threshold 
strategy:  

with threshold

“No adoption” is always an equilibrium for pure network goods

The equilibria can be Pareto ordered:

* [ (1), (2),..., ( )]mθ = θ θ θ

*

*
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( , )

1,   ( )
i i

i i
i i

d
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d

⎧ θ < θ⎪θ = ⎨
θ ≥ θ⎪⎩

* { , ,...}A BΘ = θ θ

<...A Bθ < θ
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Results: Properties of the equilibria
The ordering of equilibria is based on the equilibrium probability 
of neighbor adoption   

“Higher” equilibria strictly Pareto-dominate lower ones, and 
therefore, there is a best equilibrium, which has the highest 
value of 

Each fulfilled expectations outcome with a local expectation λ of 
neighbor adoption has a corresponding Bayes-Nash equilibrium 
with

Coordinating adoption may be simpler if it is (a) local and     
(b) based on a simple parameter

Greatest equilibrium is “weakly” coalition proof: establishes a 
basis for stability in a standard model

1
( ) ( )[1 ( ( ))]

m

x
q x F x

=

λ θ = − θ∑

*( )λ θ = λ

*( )λ θ

The structure of adoption networks

0
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=
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Consider a generalized random graph with degree
distribution q(x), and moment generating function (MGF)

* *( ) [1 ( ) ( )]αΦ = Φ − δ + δpw Q wQ

For identical θ, and for a threshold degree δ∗, the MGF 
of the degree distribution of the adoption network is

( ) Pr[ | ] ( )
m

j i
j x

Q x d x j G q x
=

= ≥ ∈ =∑
where
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Networks and Public Goods (Bramoulle & Kranton 2006)

Theorize that knowledge gained from “costly search” is 
disseminated to a set of neighbors. Neighborhoods are defined by
an underlying undirected network.

The key insight: This kind of knowledge is a public good, but only 
locally. If an agent has a high degree, his or her effort towards 
searching is socially beneficial. However, agents with higher 
degree have a lower incentive to search because they are more 
connected, and are thus more likely to acquire the knowledge 
costlessly from a neighbor. 

Why is this related to e-commerce? 

Collaborative filtering, perhaps?

Networks and theory: Examples

Networks and Social Collateral (Mobius & Szeidl 2007)

Theorize that knowledge gained from prior commercial 
interaction can be transferred. The extent and reliability of 
transfer is mediated by an underlying network of “trust”. 

The key insight: This kind of transfer is welfare improving. If an 
agent has a high degree, it is more likely that such transfer is
viable, since the agent is more trusted. In addition, an agent 
who is not as connected, but whose local network is more 
clustered can achieve similar viable transfer, since there is 
better “shared” trust. 

Why is this related to e-commerce? 

Reputation systems, perhaps?

Networks and theory: Examples



22

Current dynamic models are all rooted in a baseline model of 
percolation on a graph.
Probability of being “switched on” a function of how many 
neighbors are “on”.
SIR model

Equilibrium cluster distributions when an infectious disease spreads.

SIS model
Approximate solutions to the cluster distribution.

The Watts “information cascades” model.

The output of these models tends to be a “steady state” and the 
time dynamics are hard to characterize.
Lopez-Pintado et al. and Jackson/Yariv provide some integration 
of economic ideas, but only towards a steady-state.
Major open question/direction for conceptual work: better 
models of the dynamics of diffusion of anything on a network. 

Challenge: diffusion in networks

Fixed underlying social network structure (varies between pure 
random and pure lattice), durable good.

Myopic customers: adopt if their period (or myopic discounted 
future) value is higher than period price.

A set of initial adopters is randomly chosen.

Adoption proceeds until nobody adopts. 

Problem (A)

Monopoly seller of a single product, sets a price each period

What is the optimal price path, adoption path, and how does it 
depend on the structure of the social network?

Network structure and dynamic adoption
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Fixed underlying social network structure (varies between pure 
random and pure lattice), durable good.

Myopic customers: adopt if their period (or myopic discounted 
future) value is higher than period price.

A set of initial adopters is randomly chosen.

Adoption proceeds until nobody adopts. 

Problem (B)

Monopoly seller of a single product, sets a price each period

Customers “pay attention” only if someone they are connected 
to has adopted:

In the prior period (the “LinkedIn” model)

In any prior period (the “persistent peer”, “Amway” model)

What is the optimal price path, adoption path, and how does it 
depend on the structure of the social network?

Network structure and dynamic adoption

Fixed underlying social network structure (varies between pure 
random and pure lattice), durable good.

Myopic customers: adopt if their period (or myopic discounted 
future) value is higher than period price.

A set of initial adopters is randomly chosen.

Adoption proceeds until nobody adopts. 

Problem (C)

Two competing sellers of ex-ante identical goods

Sellers choose a constant price, fraction of initial adopters

What are the equilibrium prices and fractions?

What is the equilibrium adoption path?

How clustered does the network have to be to support multiple 
firms with similar market shares?

Network structure and dynamic adoption
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Rather than starting with no adopters, suppose a 
subset           of agents are “seeded” (randomly?)

Define

and

Assume that an agent knows which of its neighbors is 
already an adopter

The strategy of an agent now depends on both 
degree as well as number of neighbors who are 
already adopters (that is, on both     and   ) 

Therefore, each agent needs a posterior on both 
and for each

= ∩t t
i iG G S

tS N⊂

| |=t
i id G

t
id id

t
jd

jd ∈ t
ij G

Network structure and dynamic adoption

Each symmetric Bayes-Nash equilibrium involves a 
threshold strategy:  

The threshold                      is non-decreasing in 
both its arguments

This result holds for any arbitrary iid posterior on the 
degree and adopter distribution of each 

*

*
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Network structure and dynamic adoption
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From experiments with non-strategic agents

The price path is non-monotonic over time (often tends to 
increase and then decrease, but not always)

Social networks with “small world” properties 

take longer to get to complete adoption

yield higher profits 

than social networks that are more random
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Network structure and dynamic adoption

(2) Modeling for prediction 
using networked data
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Modeling for prediction using 
networked data
Goals of this part of the tutorial

In the short amount of time that we have, it is impossible to 
cover comprehensively the vast amount of related work (see 
bibliography for a sample)

We will:

describe the four most important differences between 
traditional predictive modeling and predictive modeling with 
networked data.

describe example techniques and provide pointers into the 
literature to learn more

illustrate with some experiments and successful applications

Considerable power for predictive inference is inherent in 
the structure of many networks.

Prediction in networked data

• This part of the tutorial considers the task of modeling network
data with the goal of estimating some variable
– whose value currently is unknown
– whose value may be categorical or numeric
– the goal may be to estimate the value or a probability distribution 

over possible values

• This may be a past, current, or future value.
– was this account defrauded?
– is this web page of interest?
– will this consumer respond positively to this offer?

• This will be called “prediction” to differentiate this sort of 
modeling from modeling with the primary goal being 
explanation
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Prediction tasks in networked data
(cf. Getoor Tutorial 2005)

• Generic network prediction tasks 
– Node attribute value prediction
– Node classification (special case of foregoing)

– Link attribute value prediction
– Predicting link existence
– Link cardinality estimation (e.g., who’s popular?)

– Entity Resolution (e.g., is this a guy who defaulted before?)

– Group Detection 

• Related interesting network-data mining tasks
– Graph clustering
– Subgraph/substructure discovery
– Finding patterns in graphs
– see resources at end of slides

Modeling for prediction
• We assume a basic knowledge of modeling for 

prediction, as is done typically in applied statistics 
and machine learning.

• Typical techniques include:
– linear/logistic regression, classification and regression trees,

support vector machines, ensemble models (bagging, 
boosting, etc.), nearest-neighbor methods, neural networks, 
and so on.

• For background, please see:
– Hastie, et al. (2001)
– Mitchell (1997)
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Table of Topics (perhaps incomplete)

• univariate network modeling
• network autocorrelation

– homophily, guilt-by-association 
• network feature construction
• random fields (Markov, Gaussian, Conditional)
• collective inference 

– belief propagation, MCMC, relaxation, iterative classif., graph cuts

• first-order logic modeling
• probabilistic (relational) graphical models
• combining logical and probabilistic modeling
• incorporating node identifiers
• aggregation

The problem: Prediction in Networked Data
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The problem: Prediction in Networked Data
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?

The problem: Prediction in Networked Data

Here we’ll focus on the following prediction problem:
For any node i, variable yi, and value c, 

estimate p(yi = c|ΔK)

ΔK is everything known
about the network

Fraud detection
Link-farm identification
Targeted marketing
Web-page classification
Counterterrorism analysis
Patent analysis
Epidemiology
Bibliometrics
Movie classification
Firm/industry classification

Macskassy & P. (JMLR 2007)
provide a broad treatment
for univariate networks

Example social network application:

Ecommerce firms increasingly are collecting data 
on explicit social networks of consumers
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Example social network application:

Target consumers for new product

• Product: new communications service
• Long experience with targeted marketing
• Sophisticated segmentation models based on data 

and intuition
e.g., demographic, geographic, loyalty data
e.g., intuition regarding the types of customers known or 
thought to have affinity for this type of service

Hill, S., F.P., and C. Volinsky. “Network-based Marketing: Identifying likely 
adopters via consumer networks. ” Statistical Science 21 (2) 256–276, 2006.
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Sales rates are substantially higher for
“network neighbors”

1

4.82

2.96

0.4

Non-NN 1-21 NN 1-21 NN 22 NN not
targeted

(0.28%)

(1.35%)

(0.83%)

(0.11%)

Relative Sales Rates for Marketing Segments

Attribute Description 
Degree Number of unique customers communicated 

with before the mailer 
# Transactions Number of transactions to/from customers 

before the mailer 
Seconds of 
communication 

Number of seconds communicated with 
customers before mailer 

Connected to 
influencer? 

Is an influencer in your local neighborhood? 

Connected 
component size 

Size of the connected component target 
belongs to. 

Similarity 
(structural 
equivalence) 

Max overlap in local neighborhood with 
existing customer 

 

More-sophisticated network-based 
attributes?
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So, what’s different about networked data?
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Unique Characteristics of 
Networked Data (for predictive inference)

1. “Labeled” entities linked to “unlabeled” entities
– allows “guilt-by-association” and related techniques
– autocorrelation among neighbors

2. Collective inference is possible
– inferences about entities can affect each other

3. Other aspects of neighbors can affect inferences 
about an entity

4. Identifiers can play an important role in modeling
– being connected to specific individuals can be telling

Unique Characteristics of 
Networked Data (for predictive inference)

“Labeled” entities linked to “unlabeled” entities
– allows “guilt-by-association” and related techniques
– autocorrelation among neighbors

2. Collective inference is possible
– inferences about entities can affect each other

3. Other aspects of neighbors can affect inferences 
about an entity

4. Identifiers can play an important role in modeling
– being connected to specific individuals can be telling
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Guilt by association: autocorrelation relationship 
between labels* of neighboring nodes

*a label here being the value of some variable of interest 

How can predictive models incorporate 
network autocorrelation?  (Part 1)
• Features can be constructed that represent “guilt” of a node’s 

neighbors:

where xG is a (vector of) network-based guilt feature(s)

• In our network-based marketing example (Hill et al. 2006a)
– a variable was constructed to represent whether a social-network 

neighbor currently uses the service.  
– And more sophisticated variables help even more. 

• In fraud detection
– variables can represent the degree to which an account is connected 

(via “coreference’ or “cocitation” links) to known fraudulent accounts 
(Fawcett & P., 1997)

– or the similarity in immediate network to known fraudulent accounts 
(Cortes, et al. 2001; Hill et al. 2006b)

• In hypertext classification
– variables can be constructed representing (aggregations of) the 

classes of linked pages/documents (Chakrabarti et al. 1998; Lu & 
Getoor 2003)

...)(...ˆ Gxfy =
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Some univariate network classification 
techniques (see Macskassy & P. JMLR 2007)

• network-only Bayesian classifier nBC
– Inspired by (Charabarti et al. 1998)

– multinomial naïve Bayes on the neighboring class labels

• network-only link-based classifier
– Inspired by (Lu & Getoor 2003)

– logistic regression based on a node’s “distribution” of 
neighboring class labels, DN(vi)   (multinomial over classes)

• relational-neighbor classifier (weighted voting)
– (Macskassy & P. 2003, 2007) 
– More on this later

• relational-neighbor classifier (class distribution)
– Inspired by (Perlich & P. 2003)

∑
∈

=⋅==
ij Nv

jjjiii Ncypw
Z

Ncyp )|(1)|( ,

))(),(()|( cDistvDsimNcyp iNii ==

How can predictive models incorporate 
network autocorrelation?  (Part 2)

• Treat network as a random field
– a probability measure over a set of random variables {X1, 

…, Xn} that gives non-zero probability to any configuration 
of values for all the variables.

• Convenient for modeling network data
A Markov random field satisfies:

– where Ni is the set of neighbors of Xi under some definition 
of neighbor.

– in other words, the probability of a variable taking on a 
value depends only on its neighbors

)(),( iiijjii NxXpjixXxXp ==≠==

(Dobrushin, 1968; Besag, 1974; 
Geman and Geman, 1984)
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How can predictive models incorporate 
network autocorrelation?  (Part 2, cont.)

∑
∈
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• Gaussian random field (Besag 1975; Zhu et al. 2003)
• “Relational neighbor” classifier - wvRN (Macskassy & P. 2003)

A particularly simple guilt-
by-association model is that 
a value’s probability is the 
average of its probabilities 
at the neighboring nodes

How can predictive models incorporate 
network autocorrelation?  (Part 2, cont.)

• Random fields have a long history for modeling 
regular grid data
– in statistical physics, spatial statistics, image analysis
– see Besag (1974)

• Besag (1975) applied such methods to what we 
would call networked data (“non-lattice data”)

• Some notable example applications to electronic 
commerce applications:
– hypertext classification (Chakrabarti et al. 1998)

– viral marketing (Domingos & Richardson 2001)

– eBay auction fraud (Pandit et al. 2007)
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Is guilt-by-association justified 
theoretically?

Thanks to (McPherson, et al., 2001)

• Birds of a feather, flock together
– attributed to Robert Burton (1577-1640)

• (People) love those who are like themselves
-- Aristotle, Rhetoric and Nichomachean Ethics

• Similarity begets friendship
-- Plato, Phaedrus

• Hanging out with a bad crowd will get you into 
trouble

-- Foster’s Mom

Is guilt-by-association justified 
theoretically?

Homophily
• fundamental concept underlying social theories 

– (e.g., Blau 1977)

• one of the first features noticed by analysts of social 
network structure 

– antecedents to SNA research from 1920’s (Freeman 1996) 
• fundamental basis for links of many types in social networks 

(McPherson, et al., Annu. Rev. Soc. 2001)
– Patterns of homophily:
– remarkably robust across widely varying types of relations
– tend to get stronger as more relationships exist

• Now being considered in mathematical analysis of networks 
(“assortativity”, e.g., Newman (2003))

• Does it apply to non-social networks?
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35 K News stories

?
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Unique Characteristics of 
Networked Data (for predictive inference)

1. “Labeled” entities linked to “unlabeled” entities
– allows “guilt-by-association” and related techniques
– autocorrelation among neighbors

Collective inference is possible
– inferences about entities can affect each other

3. Other aspects of neighbors can affect inferences 
about an entity

4. Identifiers can play an important role in modeling
– being connected to specific individuals can be telling
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Various techniques for collective inference 
(see also Jensen et al. KDD 2004)

• Gibbs sampling (Geman & Geman 1984)
• Iterative classification (Besag 1986; …)
• Relaxation labeling (Rosenfeld et al. 1976; …)
• Loopy belief propagation (Pearl 1988)
• Graph-cut methods (Greig et al. 1989; …)

Either: 
1. estimate the maximum a posteriori joint probability 

distribution of all free parameters
or
2. estimate the marginal distributions of some or all free 

parameters simultaneously (or some related likelihood-based 
scoring)
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• recall network-based marketing example?
collective inference can help for the nodes that are 
not neighbors of existing customers
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Collective inference gives additional improvement, 
especially for non-network neighbors

0.740.62All first-order + CI score (wvRN)

0.740.63All first-order + oracle (wvRN)

0.710.61All first-order network variables

non-NNNNAttribute

NN non-NN

Hill et al. 2007

So, how much “information” is in the 
network structure alone?
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Network Classification Case Study

• 12 data sets from 4 domains
• (previously used in ML research)

– IMDB (Internet Movie Database) (e.g., Jensen & Neville, 2002)
– Cora (e.g., Taskar et al., 2001) [McCallum et al., 2000]
– WebKB [Craven et al., 1998]

• CS Depts of Texas, Wisconsin, Washington, Cornell
• multiclass & binary (student page)
• “cocitation” links

– Industry Classification [Bernstein et al., 2003]
• yahoo data, prnewswire data

• Homogeneous nodes & links
– one type, different classes/subtypes

• Univariate classification
– only information: structure of network and (some) class labels
– guilt-by-association (wvRN) with collective inference
– plus several models
– that “learn” relational patterns

Macskassy, S. and F. P. "Classification in 
Networked Data: A toolkit and a univariate
case study." Journal of Machine Learning 
Research 2007.

How much information is in 
the network structure?

52%0.71wash-multi

65%0.85cornell-student

86%0.94wisconsin-student

36%0.54industry-pr

45%0.68cornell-multi

49%0.64industry-yahoo

50%0.74texas-multi

58%0.85wash-student

65%0.83imdb

67%0.82wisconsin-multi

81%0.87Cora

86%0.93texas-student

Relative error reduction 
over default prediction

AccuracyData set

• Labeling 90% of nodes
• Classifying remaining 10%
• Averaging over 10 runs
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Univariate network classification techniques 
(see Macskassy & Provost 2007)

• nBC - network-only Bayesian classifier 
– Inspired by (Charabarti et al. 1998)

– multinomial naïve Bayes on the neighboring class labels

• nLC - network-only link-based classifier
– Inspired by (Lu & Getoor 2003)

– logistic regression based on a node’s “distribution” of 
neighboring class labels, DN(vi)   (multinomial over classes)

• wvRN - relational-neighbor classifier (weighted voting)
– (Macskassy & P. 2003, 2007) 

• cdRN relational-neighbor classifier (class distribution)
– Inspired by (Perlich & P. 2003)

∑
∈

=⋅==
ij Nv

jjjiii Ncypw
Z

Ncyp )|(1)|( ,

))(),(()|( cDistvDsimNcyp iNii ==
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RBN vs wvRN
Classifying linked documents (CoRA)
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Machine Learning Research Papers (from CoRA data)

prob meth. (yellow)
theory (green)
genetic algs (red)
rule learning (blue)
neural nets (pink)
RL (white)
case-based (orange) 

• high concentration of bad guys at “top” of suspicion ranking
• gets better with increased secondary-data access

rightmost 
people are
completely
unknown, 
therefore 
ranking is 
uniform

Poor concentration for primary-data only (iteration 0)

most suspicious

High concentration after one secondary-access phase (iteration 1)

5046 is moderately noisy: 
¼ of “known” bad guys were 

mislabeled

(Macskassy & P., Intl. Conf. on  Intel. Analysis  2005)
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Unique Characteristics of 
Networked Data (for predictive inference)

1. “Labeled” entities linked to “unlabeled” entities
– allows “guilt-by-association” and related techniques
– autocorrelation among neighbors

2. Collective inference is possible
– inferences about entities can affect each other

Other aspects of neighbors can affect inferences 
about an entity

4. Identifiers can play an important role in modeling
– being connected to specific individuals can be telling

Networks ≠ Graphs?

• Networked data can be much more complex than 
just sets of (labeled) vertices and edges.
– Vertices and edges can be heterogeneous 
– Vertices and edges can have various information associated 

with them

• Example: Consider the following problem
– Can we estimate the likelihood that a stock broker is/will be 

engaged in activity that violates securities regulations?
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Detecting “bad brokers” (NASD)
(Neville et al. KDD 2005)
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–
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–
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+
+

––

–

–

+

Disclosure

Broker

Bad* Broker

Branch

*”Bad” = having violated
securities regulations
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Data on brokers, branches, disclosures 
(Neville et al. KDD 2005)

Broker

Is Fraud

Has 
Business

On 
Watch

Disclosure

Type

Year

Branch

Area

Region

Relational Learning

• Relational learning and inference: learning and 
inference where one cannot represent data as a single 
relation/table of independently distributed entities, without 
losing important information

• For example, data may be represented as a non-trivial, 
multi-table relational database, or as a heterogeneous, 
attributed graph, or in first-order logic.

• There is a huge literature on relational learning (see resources 
slide toward end for pointers) and it would be impossible to do 
justice to it in the short amount of time we have.

• Let’s consider briefly three approaches
– model in first-order logic
– model as probabilistic graphical model
– do both
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Traditional Learning and Classification

Setting:

home location, main calling location, min of use, …
NYC,NYC,4350,3,5,yes,no,1,0,0,1,0,2,3,0,1,1,0,0,0,..
NYC,BOS,1320,2,no,no,1,0,0,0,0,1,5,1,7,6,7,0,0,1,…
BOS,BOS,6543,5,no,no,0,1,1,1,0,0,0,0,0,0,4,3,0,4,..
... 
…
…

N
on

-r
el

at
io

na
l c

la
ss

if.• Logistic regression
• Neural networks 
• Naïve Bayes
• Classification trees
• SVMs
• …

yi

xi

yj

xj

home location, main calling location, min of use, …
NYC,NYC,4350,3,5,yes,no,1,0,0,1,0,2,3,0,1,1,0,0,0,..
NYC,BOS,1320,2,no,no,1,0,0,0,0,1,5,1,7,6,7,0,0,1,…
BOS,BOS,6543,5,no,no,0,1,1,1,0,0,0,0,0,0,4,3,0,4,..
... 
…
…

N
on

-r
el

at
io

na
l c

la
ss

if. Network classification

Network Learning and Classification

Setting:

yi

xi

yj

xj

Relations

• ILP
• Probabilistic 
relational models 
(RBNs, RMNs, AMNs, 
RDMs, …)

• Combinations of the 
two (BLPs, MLNs, …)



55

• The field of Inductive Logic Programming has extensively 
studied modeling in first-order logic, which can represent 
complicated relational and graph data

• Although it has been changing, traditionally ILP did not 
focus on representing uncertainty

• First-order logic for statistical modeling of network data?
– a strength is its ability to represent and search for complex 

and deep patterns in the network
– a weakness is its relative lack of support for aggregations 

across nodes (beyond existence)
– more on this in a minute…

First-order logic modeling

…one of the reasons for the modern 
rubric “statistical relational learning”

─ in the usual use of first-order logic, 
each ground atom either is true or is 
not true (cf., a Herbrand interpretation)

Network data in first-order logic

• broker(Amit), broker(Bill), broker(Candice), …
• works_for(Amit, Bigbank), works_for(Bill, E_broker), works_for(Candice, 

Bigbank), …
• married(Candice, Bill)
• smokes(Amit), smokes(Candice), …
• works_for(X,F) & works_for(Y,F) -> coworkers(X,Y)
• smokes(X) & smokes(Y) & coworkers(X,Y) -> friends(X,Y)
• …

Amit Candice

coworkers

friends

Bill

married
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Probabilistic graphical models

• Probabilistic graphical models (PGMs) are convenient methods 
for representation of (and inference with) probability 
distributions across a set of variables.  
– Bayesian networks (BNs), Markov networks (MNs), Dependency 

networks (DNs)
– See Pearl (1988), Heckerman et al. (2000)

• Typically BNs, MNs, DNs are used to represent a set of random 
variables describing independent instances.  
– For example, the probabilistic dependencies among the descriptive 

features of a consumer—the same for different consumers

Example: A Bayesian network modeling 
consumer reaction to new service

Positive reaction
before trying service

Technical
sophistication

lead user
characteristics

income

Positive reaction
after trying service

Quality
sensitivity

Amount
of use
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Probabilistic relational models

The term “relational” recently has been used to 
distinguish the use of PGMs to represent variables 
across a set of dependent, multivariate instances.  

– For example, the dependencies between the descriptive 
features of friends in a social network

– We saw a “relational” Markov network earlier when we 
discussed Markov random fields for univariate network 
data

• although the usage is not consistent, “Markov random field”
often is used for a MN over multiple instances of the “same”
variable

– RBNs (Koller and Pfeffer,1998; Friedman et al., 1999; Taskar et al., 
2001), RMNs (Taskar et al. 2002), RDNs (Neville & Jensen, 
2007), AMNs (Taskar et al. 2004)

– In these “Probabilistic relational models”, there are 
dependencies within instances and dependencies among 

Conditional random fields (CRFs, Lafferty et al., 2001) are random fields 
where the probability of a node’s label is conditioned not only on the labels of 
neighbors (as in MRFs), but also on all the observed attribute data.

Relational prob. model of broker variables 
(Neville & Jensen, JMLR to appear)

Broker

Is Fraud

Has 
Business

On 
Watch

Disclosure

Type

Year

Branch

Area

Region

note: needs to be “unrolled” across network
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Important concept! 

• The network of statistical dependencies does not 
necessarily correspond to the data network

• Example on next three slides…

Recall: broker dependency network

Broker

Is Fraud

Has 
Business

On 
Watch

Disclosure

Type

Year

Branch

Area

Region

note: this dependency network needs to be “unrolled” across the data network
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Broker data network
(Neville et al. 2005)

+

+

+

+
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+
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+
+

––

–

–

+

Disclosure

Broker

Bad* Broker

Branch

*”Bad” = having violated
securities regulations

Statistical dependencies between brokers “jump 
across” branches; similarly for disclosures

Putting it all together:
Relational dependency networks 
(Neville & Jensen, JMLR 2007)

Learn statistical 
dependencies among 

variables

Construct 
“local”

dependency 
network

Unroll over particular
data network for

(collective) inference

+
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Broker

Is 
Fraud

Has 
Business

On 
Watch

Disclosure

Type

Year

Branch

Area

Region

Broker1

Is 
Frau

d1

Has 
Business1

On 
Watch1

Broker2

Is 
Frau

d2

Has 
Business2

On 
Watch2

Broker3

Is 
Frau

d3

Has 
Business3

On 
Watch3

Branch1

Area
1

Region1

Disclosure1

Type
1

Year1

Disclosure2

Type
2

Year2

Disclosure3

Type
3

Year3

CoWorker
Count(IsFraud)>1

CoWorker
Count(IsFraud)>3

CoWorker
Count(IsFraud)>0

Disclosure
Count(Yr<2000)>0

Disclosure
Count(Yr<1995)>3

Disclosure
Avg(Yr)>1997

Disclosure
Max(Yr)>1996

CoWorker
Count(IsFraud)>1

CoWorker
Count(IsFraud)>3

CoWorker
Count(IsFraud)>0

Disclosure
Count(Yr<2000)>0

Disclosure
Count(Yr<1995)>3

Disclosure
Avg(Yr)>1997

Disclosure
Max(Yr)>1996

CoWorker
Count(IsFraud)>1

CoWorker
Count(IsFraud)>3

CoWorker
Count(IsFraud)>0

Disclosure
Count(Yr<2000)>0

Disclosure
Count(Yr<1995)>3

Disclosure
Avg(Yr)>1997

Disclosure
Max(Yr)>1996
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Model unrolled on (tiny) data network

Broker1

Is Fraud1

Has 
Business1

On 
Watch1

Broker2

Is Fraud2

Has 
Business2

On 
Watch2

Broker3

Is Fraud3

Has 
Business3

On 
Watch3

Branch1

Area1

Region1

Disclosure1

Type1

Year1

Disclosure2

Type2

Year2

Disclosure3

Type3

Year3

(three brokers, one branch)

Combining first-order logic and 
probabilistic graphical models

• Recently there have been efforts to combine FOL 
and probabilistic graphical models
– e.g., Bayesian logic programs (Kersting and de Raedt, 2001),

Markov logic networks (Richardson & Domingos, MLJ 2006)

– and see discussion & citations in (Richardson & Domingos, 2006)

• For example: Markov logic networks
– A template for constructing Markov networks

• and therefore, a model of the joint distribution over a set of variables

– A first-order knowledge base with a weight for each formula

• Advantages:
– Markov network gives sound probabilistic foundation
– first-order logic allows compact representation of large networks 

and a wide variety of domain knowledge
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Unique Characteristics of 
Networked Data (for predictive inference)

1. “Labeled” entities linked to “unlabeled” entities
– allows “guilt-by-association” and related techniques
– autocorrelation among neighbors

2. Collective inference is possible
– inferences about entities can affect each other

3. Other aspects of neighbors can affect inferences 
about an entity
Identifiers can play an important role in modeling
– being connected to specific individuals can be telling

• nodes are people
• links are communications
• red nodes are fraudsters

A snippet from an actual network including “bad guys”

these two bad guys are 
well connected

Dialed-digit detector (Fawcett & P., 1997)
Communities of Interest  (Cortes et al. 2001)
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Side note: not just for “networked data” – id’s 
important for any data in a multi-table RDB

challenge: aggregation over 1-to-n relationships

How to incorporate identifiers of related 
objects (in a nutshell)

1. Estimate from known data:
– class-conditional distributions of related identifiers (say D+ & 

D-)
– can be done, for example, assuming class-conditional 

independence in analogy to Naïve Bayes
– save these as “meta-data” for use with particular cases

2. Any particular case C has its own “distribution” of related 
identifiers (say Dc)

3. Create features 
– Δ(Dc,D

+ ), Δ(Dc, D
- ), (Δ(Dc, D

+ ) – Δ(Dc, D
-))

– where Δ is a distance metric between distributions
4. Add these features to target-node description(s) for 

learning/estimation

Main idea:
“Is the distribution of nodes to which this case is linked

similar to that of a <whatever>?”
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Density Estimation for Aggregation
ClassCID

0C4

1C3

1C2

0C1

idCID

AC4

BC4

BC4

BC4

AC3

BC2

AC2

AC2

BC1

2: Case distributions:

1: Class-conditional distributions

3: L2 distances for C1:
L2(C1, DClass 1) = 1.125
L2(C1, DClass 0) = 0.08

BADc

0.750.25C4

01C3

0.330.66C2

10C1

0.80.2DClass 0

0.250.75DClass 1

BADistr.

(Perlich & P., 2006)

4: Extended feature vector:

?

? ...? ClassCID

0ID4

1ID3

1ID2

0ID1

0.005

1.28

0.435

0.08

L20

-0.495

1.155

0.421

-1.045

L21- L20

0.5

0.125

0.014

1.125

L21 ClassCID

0C4

1C3

1C2

0C1

Classify buyers of most-common title from 
a Korean E-Book retailer

E-Books

0

0.01

0.02

0.03

0.04

0.05

0.06

1 2 3 4 5 6 7 8 9 10

C
on

di
tio

na
l P

rio
r

Class 1

Class 0

Class-conditional distributions across identifiers of 10 other popular books

Estimate whether or not customer will purchase
the most-popular e-book:  Accuracy=0.98 (AUC=0.96)
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Machine Learning Research Papers (from CoRA data)

prob meth. (yellow)
theory (green)
genetic algs (red)
rule learning (blue)
neural nets (pink)
RL (white)
case-based (orange) 

(recall CoRA from discussion of univariate network models)

Using identifiers on CoRA

(compare: Hill & P. “The Myth of the Double-Blind Review”, 2003)

(Perlich & P.  2006)
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Summary: Unique Characteristics of 
Networked Data (for predictive inference)

1. “Labeled” entities linked to “unlabeled” entities
– allows “guilt-by-association” and related techniques
– autocorrelation among neighbors

2. Collective inference is possible
– inferences about entities can affect each other

3. Other aspects of neighbors can affect inferences 
about an entity

4. Identifiers can play an important role in modeling
– being connected to specific individuals can be telling

Results show that there is a lot of power for 
prediction just in the network structure

(3) Modeling for explanation 
using networked data
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Using networked data to explain
Goals of this part of the tutorial

Recognize the difference between the “simple” approach of 
associating network properties with outcomes and the emerging 
modern structural approaches that emphasize identification.

Become familiar with a couple of examples of properties that 
have been useful in explaining ecommerce outcomes.

Become familiar with a couple of emerging modern structural 
approaches to modeling networks that will lead to 
econometrically rigorous explanatory models.

Degree distribution
Extent of and variation in “local connectedness” across nodes

PageRank
Extent of and variation in “centrality” across nodes

Clustering
Extent of and variation in “shared connectedness” across nodes

Average distance (diameter)
Extent of and variation in distance between nodes

Assortative mixing/Homophily
Extent of and variation in “within-class connectedness” across nodes

Distribution of components
Degree correlation, community structure

Recall: Network properties
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The “simple” approach
Theorize (perhaps using a mathematical model) how certain 
network properties will affect certain outcomes

Centrality and success

In-degree and income

Centrality and demand patterns

Measure properties, outcomes

Establish association between properties and outcomes by 
estimating reduced form equations.

Useful to establish co-movement, impossible to ascribe 
causation in a scientific way, widely used.

Degree distribution
Extent of and variation in “local connectedness” across nodes

PageRank
Extent of and variation in “centrality” across nodes
Measure of “how important”, also “how influenced”

( )

(1 ) ( )( ) +
( )j G i

PageRank jPageRank i
n OutDegree j∈

⎛ ⎞− α
= α ⎜ ⎟

⎝ ⎠
∑

Example: PageRank and the long tail
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Example: PageRank and the long tail

Example: PageRank and the long tail
Gini coefficient

Captures the extent to which demand is concentrated among the 
highest selling products in a group. Measured by the area above the 
Lorenz curve.

gini/2

100%

100%b

Lorenz 
Curve

a

The bottom b% of 
products have a% of 
the total demand

100%

0%

B

L(r)

Sales rank percentile r

100%

0%

B

L(r)

Sales rank percentile r

100%

0%

A

Sales rank percentile r

L(r)

100%

0%

A

Sales rank percentile r

L(r)

Science: Chemistry

Computers and Internet: 
Web Development
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Example: PageRank and the long tail
1 2

3 4 5

= + +

+ + +

[GINI] [AVGDEMAND] [AVGPAGERANK]

[PAGERANKVAR] [SIZE] [AMIXING]

Log a b Log b Log

b Log b Log b Log

20%

0%

-20%

2/4 2/11 2/18 2/25

0%

6%

-6%

2/4 2/11 2/18 2/25

A

B

AVGDEMAND: Average demand for books in the category 
AVGPAGERANK: Average PageRank for books in the category 

PAGERANKVAR: Variance in PageRank across books in the category 
SIZE: Number of books in the category 
AMIXING: Fraction of co-purchase links to books within the same category

Example: PageRank and the long tail

20%

0%

-20%

2/4 2/11 2/18 2/25

A

AVGDEMAND: Average demand for books in the category 

AVGPAGERANK: Average PageRank for books in the category 

E: Top 50%D: Bottom 20%C: Top 20%
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[GINI] [AVGDEMAND] [AVGPAGERANK]

[PAGERANKVAR] [SIZE] [AMIXING]

Log a b Log b Log

b Log b Log b Log
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Other co-purchase graph properties

260,000

240,000

220,000

4%

8%

12%

Number of nodes
(left scale)
% of new nodes
(right scale)

2/1 2/10 2/19 2/28 

A

2/7 vs. 2/2 2/12 vs. 2/7 2/17 vs. 2/12 2/22 vs. 2/17 2/27 vs. 2/22

5%

10%

15%

Between two new nodes

Number of new edges, 
as a % of total number 
of edges in the network

With a new “source” node

With a new “sink” node

Between pre-existing nodes

B

Other co-purchase graph properties

Distribution of clustering 
coefficients for a sample day

Average clustering coefficients, assortative mixing over a month

0.3

0.35

0.4

0.45

0.5

1-Feb 10-Feb 19-Feb 28-Feb

0%

5%

10%

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0%

5%

10%

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Distribution of average assortative 
mixing by category for a sample day

0%

10%

20%

Mixing
Clustering

Random utility versus “location” model of choice?
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Other co-purchase graph properties

17.5

18

18.5

19

19.5
20

20.5

1-Feb 10-Feb 19-Feb 28-Feb

Average average distances over one month

“Connected” nodes 
All nodes

0%

5%

10%

15%

5 10 15 20 25 30 35 40

Distribution of average distances for a sample day

Nineteen degrees of separation? 

Example: Position and Info. Advantage
Aral and Van Alstyne (2007)

The network: email communication between employees in an 
organization 

Establishes a relationship between network position and the 
diversity of information an employee has access to. 

Associates these two effects with employee productivity.

Findings:

Larger, more diverse networks <-> more diverse information

More diverse information <-> Higher productivity

Diverse networks could play a role beyond simply providing 
more diverse information

Communication trails will be increasingly common networked 
data sets in the future…
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Example: Position and Info. Advantage

First 
Order:
Direct 

Contacts
Second 
Order:
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Contacts

First 
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Structural models to identify

Identification (vastly simplified): recovering structural equation 
coefficients from reduced-form estimates.

Identification in networked data is hard

Background: Peer effects (Manski, 1993)

• y: outcome; x: characteristics; G: matrix defining “groups”

• Real social effects cannot be separated from correlated effects
• The “reflection problem” makes identifying the endogenous effects 

from the exogenous effects hard.

0 1 2 3y Gx Gy x= α +α +α +α
Outcome
vector

Endogenous
effect

Exogenous
(contextual)

effect

Effect of own
characteristics
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Identifying peer effects
Often in networked data, the “groups” associated with each 
observation are sufficiently different from each other.

Under certain linear independence properties of G, this facilitates 
the identification of social effects (Bramoulle et al, 2007)

Other useful references: Lee (2003, 2006), Moffitt (2001)

0 1 2 3y Gx Gy x= α +α +α +α

Identifying peer effects
The prior discussion helps identify social effects, but does not
actually solve the problem of identifying the effects associated
with the presence of an edge in a networked data set. (Notice 
that y is on both sides of the equation below, or there are 
contemporaneous and sometimes reciprocal effects of peers.) 

One possible approach:

Estimate the outcome variables – that is, whatever you are 
trying to show is influenced by the edge – using only the 
exogenous variables (spatial autoregressive)

Compute estimates of the outcomes (endogenous variables) 
using these coefficients

Use these estimated endogenous variables in complete model

Example: Peer effects and recommendation networks 
(Oestreicher-Singer and Sundararajan 2007). 

0 1 2 3y Gx Gy x= α +α +α +α
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Co-evolution of networks and behavior
In some situations, networks influence behaviors (or outcomes), 
which in turn influence the networks over time. Recall the 
examples that this tutorial started with. 

A structural (and somewhat integrative) approach based on a 
more complete model of this kind is attempted by Snijders and 
coauthors (2004, 2005, 2007)

Co-evolution of networks and behavior
Basic idea (and analogy with discrete choice logit):

Create a simplified (but internally complete) Markovian
dynamic model of the co-evolution of networks and behaviors 
or actors in which all current outcomes and the current 
network are collectively the state, and all changes to 
outcomes and the network are “chosen” by actors. 

Use one or a combination of a number of network properties 
to describe utility to each actor from each choice.

Estimate the parameters of this model directly (typically, 
maximum likelihood/Bayesian is not possible, and MCMC is 
required)  
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Explanation vs. Prediction

(intentionally blank)

Theories from the social sciences matter, whatever your research or business objective.

Questions and Discussion

http://oz.stern.nyu.edu/
http://pages.stern.nyu.edu/~fprovost/
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Other Resources 
 
Here is a non-exhaustive list of resources to explore work on complex networks, explanatory modeling 
(fairly thin) and predictive modeling with networked data (lots!).  Beyond providing overviews and 
details, and identifying particular research projects, these resources give a flavor for the variety of topics, 
and a sampling of the researchers working on them. 
 
• Books 

– Introduction to Statistical Relational Learning, ed. Getoor and Taskar 2007 
• http://mitpress.mit.edu/catalog/item/default.asp?ttype=2&tid=11331 

– Relational Data Mining, ed. Dzeroski and Lavrac 2001 
• http://www-ai.ijs.si/SasoDzeroski/RDMBook/ 

– Random Graph Dynamics by Rick Durrett . Cambridge University Press, 2006 
• http://www.math.cornell.edu/~durrett/RGD/RGD.html  

– N.E.J Newman, The Structure and Function of Complex Networks. SIAM Review (this isn’t 
a book but is better than any of the books that overview complex networks). 

• http://arxiv.org/abs/cond-mat/0303516  

• Tutorial on Statistical Relational Learning 

– http://www.cs.umd.edu/~getoor/Talks/SRL-ICML-ILP05-Tutorial.ppt 

• Tutorial on Complex Networks 

– http://cnls.lanl.gov/~ebn/cn/  

• Resources for Social Network Analysis 

– http://stat.gamma.rug.nl/snijders/  

• Special issues of the journal Machine Learning 



– Multirelational data mining and statistical relational learning 
• http://www.springerlink.com/content/5830543713335321/ 

– Inductive logic programming 
• (several) 

– Mining and Learning with Graphs 
• http://www.springer.com/cda/content/document/cda_downloaddocument/CFP_10994

_171106.pdf?SGWID=0-0-45-334589-p35726603 

• Conference on Social Networks 

– Sunbelt 2007: http://www.insna.org/2007/Sunbelt%202007.html  

– Sunbelt 2006: http://www.insna.org/2006/sunbelt2006.html 

• Workshop on the Economics of Social Networks 

– ESSET 2006: http://www.szgerzensee.ch/research/conferences/esset06/?L=1  

• Workshop on Statistical Network Analysis: 

• http://www.icml2006.org/icml2006/technical/workshops.html 

• Workshops on statistical relational learning 

• ICML 2004 http://www.cs.umd.edu/projects/srl2004/ 

• IJCAI 2003 http://kdl.cs.umass.edu/srl2003/ 

• AAAI 2000 http://robotics.stanford.edu/srl 

• Workshops on multi-relational data mining: 

• http://www-ai.ijs.si/SasoDzeroski/MRDM2004/ 

• http://www-ai.ijs.si/SasoDzeroski/MRDM2003/ 

• http://www-ai.ijs.si/SasoDzeroski/MRDM2002/ 

• Workshops on mining and learning with graphs 

• http://www.inf.uni-konstanz.de/mlg2006/index.shtml 

• http://mlg07.dsi.unifi.it/ 

• (see also MGTS 2003-2005) 

• Dagstuhl workshops on Probabilstic, Logical, & Relational Learning 

• http://www.dagstuhl.de/05051/ 

• http://kathrin.dagstuhl.de/07161 

• Conferences on Inductive Logic Programming (annual) 

• NYU Workshops on the Economics of Information Technology 

• 2006: http://w4.stern.nyu.edu/ceder/events.cfm?doc_id=5583  

• 2005: http://w4.stern.nyu.edu/ceder/events.cfm?doc_id=4174  
 


