
Beat the Machine: Challenging Workers to Find the Unknown
Unknowns

Josh Attenberg
Polytechnic Institute of NYU

Brooklyn, NY
josh@cis.poly.edu

Panagiotis G. Ipeirotis
NYU Stern School of Business

New York, NY
panos@stern.nyu.edu

Foster Provost
NYU Stern School of Business

New York, NY
fprovost@stern.nyu.edu

Abstract

We present techniques for gathering data that ex-
pose errors of automatic predictive models. In cer-
tain common settings, traditional methods for evaluat-
ing predictive models tend to miss rare-but-important
errors—most importantly, rare cases for which the
model is confident of its prediction (but wrong). In
this paper we present a system that, in a game-like set-
ting, asks humans to identify cases that will cause the
predictive-model-based system to fail. Such techniques
are valuable in discovering problematic cases that do
not reveal themselves during the normal operation of
the system, and may include cases that are rare but
catastrophic. We describe the design of the system, in-
cluding design iterations that did not quite work. In
particular, the system incentivizes humans to provide
examples that are difficult for the model to handle,
by providing a reward proportional to the magnitude
of the predictive model’s error. The humans are asked
to “Beat the Machine” and find cases where the auto-
matic model (“the Machine”) is wrong. Experiments
show that the humans using Beat the Machine identify
more errors than traditional techniques for discovering
errors in from predictive models, and indeed, they iden-
tify many more errors where the machine is confident it
is correct. Further, the cases the humans identify seem
to be not simply outliers, but coherent areas missed
completely by the model. Beat the machine identifies
the “unknown unknowns.”

Introduction
“There are known knowns. These are things we
know that we know. There are known unknowns.
That is to say, there are things that we know we
don’t know. But there are also unknown unknowns.
There are things we don’t know we don’t know.”
– Donald Rumsfeld

Many businesses and government organizations
make decisions based on estimations made by ex-
plicit or implicit models of the world. Being based
on models, the decisions are not perfect. Under-
standing the imperfections of the models is impor-
tant (i) in order to improve the models (where
possible), (ii) in order to prepare to deal with

Copyright c© 2011, Association for the Advancement of Ar-
tificial Intelligence (www.aaai.org). All rights reserved.

the decision-making errors, and (iii) in some cases
in order to properly hedge the risks. However, a
crucial challenge is that, for complicated decision-
making scenarios, we often do not know where
models of the world are imperfect and/or how
the models’ imperfections will impinge on decision
making. We don’t know what we don’t know.
We see the results of such failures of omniscience
in grand catastrophes, from terrorist attacks to un-
expected nuclear disasters, in mid-range failures,
like cybersecurity breaches, and in failures of oper-
ational models, such as predictive models for credit
scoring, fraud detection, document classification,
etc.
In this paper we introduce and analyze a crowd-
sourcing system designed to help uncover the “un-
known unknowns” for predictive models. The sys-
tem is designed to apply to settings where assess-
ing the performance of predictive models is partic-
ularly challenging. Later we will describe in detail
the critical aspects of such settings, but first let us
introduce a motivating example to make the dis-
cussion concrete.
Consider the following task: a firm has built a
system for identifying web pages that contain in-
stances of “hate speech” (e.g., racist content, an-
tisemitism, and so on), based on a model that
takes web pages as input and produces as output a
“hate score.” The firm would like to use this system
to help protect advertisers, who (despite the best
efforts of their advertising agents) sometimes see
their ads appearing adjacent to such objectionable
content. The advertisers do not want their brands
to be associated with such content, and they defi-
nitely do not want to support such content, explic-
itly or implicitly, with their ad dollars.
How does this firm assess the strengths and weak-
nesses of its system and model? This scenario com-
prises a constellation of factors that are not un-
common in organizational decision making, but are
quite problematic for conducting the assessment—
particularly because of the problem of unknown
unknowns. Specifically, this paper considers appli-
cations where:

• Every decision-making case can be represented
by a description and a target. We have a (pre-



dictive) model that can give us an estimate or
score for the target for any case. For this paper,
we assume for simplicity that the target is bi-
nary, and that the truth would not be in dispute
if known.1

• We want to understand the inaccuracies of the
model—specifically, the errors that it makes, and
especially whether there are systematic patterns
in the errors. For example, is there a particular
sort of hate speech that the model builders did
not consider, and therefore the model misses it?

• The process that is producing the data does not
(necessarily) reveal the target for free. In our ex-
ample, if we misclassify a hate speech page as be-
ing OK, we may never know. (Indeed, we usually
never know.) This is in contrast to self-revealing
processes; for example, in the case of credit-card
fraud detection, we will eventually will be in-
formed by the customer that there is fraud on her
account. For targeted marketing, we often even-
tually know whether the consumer responded to
an offer or not.

• Finally, there are important classes or subclasses
of cases that are very rare, but nevertheless
very important. The rarity often is the very rea-
son these cases were overlooked in the design
of the system. In our example, hate speech on
the web itself is quite rare (thankfully). Within
hate speech, different subclasses are more or less
rare. Expressions of racial hatred are more com-
mon than expressions of hatred toward dwarves
or data miners (both real cases).

These problem characteristics combine to make it
extremely difficult to discover system/model im-
perfections. Just running the system, in vitro or in
vivo, does not uncover problems; as we do not ob-
serve the true value of the target, we cannot com-
pare the target to the model’s estimation or to the
system’s decision.
We can invest in acquiring data to help us uncover
inaccuracies. For example, we can task humans to
score random or selected subsets of cases. Unfortu-
nately, this has two major drawbacks. First, due to
the rarity of the class of interest (e.g., hate speech)
it can be very costly to find very few positive exam-
ples, especially via random sampling of pages. For
example, hate speech represents far less that 0.1%
of the population of web pages, with unusual or dis-
tinct forms of hate speech being far rarer still. Thus
we would have to invest in labeling more than 1000
web pages just to get one hate speech example, and
as has been pointed out recently, often you need
more than one label per page to get high-quality la-
beling (Sheng, Provost, and Ipeirotis 2008; Raykar
et al. 2009).
In practice, we often turn to particular heuristics
to identify cases that can help to find the errors

1For our example, the description of the case would be
the web page (its words, links, images, metadata, etc.). The
target would be whether or not it contains hate speech.

of our model. There has been a large amount of
work studying “active learning” which attempts
to find particularly informative examples (Settles
2010). A large number of these strategies (uncer-
tainty sampling, sampling near the separating hy-
perplane, query-by-committee, query-by-bagging,
and others) essentially do the same thing: they
choose the cases where the model is least certain,
and invest in human labels for these. This strategy
makes sense, as this is where we would think to
find errors. Additionally, there has been a long his-
tory of understanding that “near misses” are the
cases to use to best improve a model, both for
machine learning (Winston 1970) and for human
learning (VanLehn 1998).
Unfortunately, although helpful in understanding
and improving modeling, these strategies look ex-
actly where we don’t want to look. These strate-
gies explicitly deal with the “known unknowns.”
The model is uncertain about these examples—we
“know” that we don’t know the answer for them
(i.e., we have low confidence in the model’s out-
put). These strategies explicitly eschew, or in some
cases probabilistically downweight, the cases that
we are certain about, thereby reducing the chance
that we are going to find the unknown unknowns.
With that substantial preamble, we can now state
succinctly the goal and contributions of this paper.
We introduce a technique and system to use hu-
man workers to help find the unknown unknowns.
Our BeatTheMachine (BTM) system combines a
game-like setup with incentives designed to elicit
cases where the model is confident and wrong.
Specifically, BTM rewards workers that discover
cases that cause the system to fail. The reward
increases with the magnitude of the failure. This
setting makes the system to behave like a game,
encouraging steady, accurate participation in the
tasks. We describe our first experiences by the live
deployment of this system, in a setting for identi-
fying web pages with offensive content on the In-
ternet. We show that this BTM setting discovers
cases that are inherently different than the errors
identified by a random sampling process. In fact,
the two types of errors are very different. The BTM
process identifies “big misses” and potential catas-
trophic failures, while traditional model-based ex-
ample selection identifies “near misses” that are
more appropriate for fine-tuning the system. The
evidence shows that BTM does not just find indi-
vidual “oddball” outlier cases, but it finds system-
atic big errors. In a sense, the BTM process indeed
gives us the opportunity to learn our “unknown un-
knowns” and warn us about the failures that our
current automatic model cannot (yet) identify by
itself.

The Design of “Beat the Machine”

Assessing and improving the quality of an auto-
matic classification system is challenging in envi-
ronments with the characteristics listed above. Tra-



ditionally, we would sample from the output deci-
sions and employ humans to verify the correctness
of the classifications. Using these judgments we can
estimate the error rate. Unfortunately, given our
problem characteristics, this process can be woe-
fully inefficient. First, if the classification decisions
are relatively accurate, then most of the results will
be accurate, and without intelligent sampling, hu-
mans will encounter errors very infrequently. Sec-
ond, if there is class imbalance, ceteris paribus,
most of the encountered errors would be misclassi-
fications of examples of the majority class into the
minority. If both of these conditions hold, then it
becomes quite difficult to identify misclassifications
of the minority class.

Example 1 Consider the case of identifying pages
with hate speech content. In reality, less than 0.1%
of the pages on the Internet contain such content.
If we have a relatively accurate classifier, with 95%
error rate on each class, it becomes very difficult
to identify misclassified pages that contain hate
speech. In a random sample, most of the pages are
correctly classified as benign. To find one “false
negative” (the severe error: hate speech passing
as benign) we will have to inspect approximately
20, 000 pages (and in the process would find around
1, 000 false positives). �

It is tempting to consider such problems inconse-
quential. However, when such a system is used to
filter billions of pages, such “relatively infrequent”
errors become frequent in absolute numbers. Fur-
thermore, even isolated, “outlier” cases can cause
significant damage, for example, to the public im-
age of a company that accidentally supports a site
containing such content through advertising.
Instead of passively waiting for such errors to
“emerge” we can instead actively seek to find them.
In a sense, this is similar to “white hat” hackers
that are hired by companies to find vulnerabili-
ties and break into their own security systems. In
our case, human workers are asked to submit pages
that will “beat” our classifier.
The selective acquisition of example labels with the
intent of building robust performance estimators at
minimal cost is a topic getting recent attention in
the research literature (Sawade, Christoph, Bickel,
Steffen, and Scheffer, Tobias 2010; Bennett and
Carvalho 2010). However, while promising and po-
tentially useful in practice, such acquisition strate-
gies are focused on minimizing the cost required to
compute a robust estimator for precision or total
loss. In order to construct such an estimator, ex-
isting selective acquisition strategies sample from
the problem space in accordance to some function
of the output score of the model being considered.
However, given a capable model deployed in a pro-
duction system, it may take millions of samples
from high-confidence positive predictions to reveal
a single example that “beats the machine.” Incor-
porating performance bounds such as those pre-

sented in the referenced research with our proposed
selection strategy is an interesting direction for fu-
ture work.

Task Design Iterations

For the purpose of this workshop, let’s now walk
through several design interations, focusing on the
ideas, challenges, and subsequent redesigns.
Initial design: The initial idea was straightfor-
ward: Ask humans to find cases that “beat the
machine”—the users would submit URLs that they
believed would be incorrectly classified by the cur-
rent classification model. To spur engagement, a
user would receive a nominal payment for just sub-
mitting the URLs, and then she would receive a
significant bonus payment for every URL that was
misclassified. (In the implementation, the nominal
payment was 1 cent per 5 URLs, and the pay-
ment per misclassified URL was a maximum of
50 cents.) To judge the misclassification, we asked
other (trusted) humans to classify these URLs, and
then to determine whether the URL beat the ma-
chine, we compared the outcome of the trusted
human classification with the outcome of the ma-
chine model. To avoid certain issues of gaming, the
BTM workers were recruited through Amazon Me-
chanical Turk, and the trusted human judges were
recruited and trained through oDesk for the fully
automated system, and were student interns using
a separate system for the experimental evaluation
below.) Unfortunately, this simple design was not
as effective as we would have liked, for a variety of
reasons.
The first, and most obvious, problem that we en-
countered was the lack of interactivity. The work-
ers could easily submit URLs that would break the
model, but then they had to wait for other humans
to inspect the results, in order to assess whether
they had succeeded. This process would take from
a few minutes to a few hours. The delay made the
task opaque to the players of the BTM game, as
they did not know if they were “playing the game”
well or not.
Adding immediate classification feedback:
To resolve (partially) the lack of interactivity, we
augmented the system to classify URLs on the fly,
and give immediate feedback to the humans about
the classifier outcome. (For example “The machine
believes that this URL contains hate speech. Do
you believe that this is correct?”) The BTM player
could then decide whether the URL was indeed
a misclassification case and submit it for further
consideration. Upon submission, the user received
provisional bonus points that correspond to a cash
reward. The bonus points became permanent and
the worker was paid immediately after inspection
and verification of the submitted content by the
human judges.
Unfortunately, this design did not provide the
proper incentives. Players found it much easier to



Figure 1: A screen-shot of the BTM interface on Me-
chanical Turk.

locate pages from the majority class (e.g., pages
without any hate speech content) that would be
misclassified as containing hate speech. So, instead
of locating the desired, severe infrequent errors, we
received the type of errors that we could find more
easily by observing the positive classifications. (Re-
call that due to the class imbalance, most of the ob-
served errors would be good pages being classified
as containing hate speech.) As described above,
we are particularly interested in finding pages that
contain hate speech but are incorrectly classified
as benign. (And especially, among these, the “un-
known unknowns.”) Furthermore, we experienced
a significant number of cheating attempts where
users were submitting random URLs and always
insisting that the content is different than the clas-
sification decisions, even though the classifier was
correct.

Segmenting the task by class: To deal with
these problems, we split the task into two sub-
tasks: (1) Seek pages in the minority class that are
misclassified in the majority class (i.e., pages that
contain offensive content but are classified as be-
nign), and (2) seek pages with benign content that
would be classified as offensive. This segmentation
simplified the overall design and made the task eas-
ier for participants to understand. Moreover, it al-
lowed us to quickly reject submissions that were of
no interest. For example, if we are asking for mis-
classified hate speech pages, we can quickly reject
pages that our classifier unambiguously classifies
as hate speech. (In the original design, users had
the incentive to mark these as “non-hate-speech”
hoping that the human judge would accept their
judgments.) Figure 1 shows the (simple) task in-
terface.

Expanding the incentives: In the final design
(for this paper) we also improved the incentive
structure by rewarding differently users that dis-
cover “big mistakes” (the “unknown unknowns”)
and those that discover the “small mistakes” (the
“known unknowns”). Instead of giving a constant
bonus to the player for a misclassified URL, we re-
ward misclassifications proportionally to the con-
fidence of the classifier. If the model is not very
confident of its classification of a submitted URL,
the reward is small. This was a known unknown.

On the other hand, if the model is very confi-
dent in its decision (i.e., a classification confidence
close to 100%), but the decision is incorrect, then
the BTM system gives the highest possible bonus
to the worker.2 If the confidence was lower, say
75%, then the reward was proportionally smaller.
We also reward players that provide examples for
which the model was correct but uncertain: if the
model predicted that the page is 60% likely to con-
tain hate speech, and the page indeed contained
hate speech, the user received a small bonus.

Experimental Studies

To provide a first experimental evaluation of BTM,
we asked two questions:

• Does BTM identify errors efficiently?
• Can we use the discovered errors to improve the

models?

For our experiments, we used the BTM system to
challenge two classification systems. One for de-
tecting pages with hate speech, and one for detect-
ing pages with adult content. We ran the systems
with the configuration details described in the pre-
vious section (1 cent for the base task, 50 cents
maximum payment for a URL that generates an
error).
Comparison with stratified random testing:
For the two systems, we compared BTM with the
usual quality assurance process of examining the
output of the classifier to identify errors. Exam-
ining a uniform random sample of the output is
particularly uninformative, as the classifiers are
quite accurate and the distributions are quite un-
balanced, and so the vast majority of cases are
correctly classified and not objectionable. There-
fore, standard procedure is to examine a random
sample, stratified by the model’s confidence score.
Specifically, the range of confidence scores [0,1] was
divided into k equal-width bins. A set of N URLs
for testing was sampled randomly, with N

k from
each bin. This stratification is used because it gen-
erally finds more errors, because it over-samples
the URLs for which the models have low confidence
(and are likely to be wrong). However, the discov-
ered errors are likely to be “known unknowns.”
For the adult classifier, the human workers iden-
tified errors in 16% of the inspected cases (much
higher than the natural error rate of the classifier).
In contrast, using BTM, more than 25% of the sub-
mitted cases generated an error (a 56% increase).
The corresponding statistics for hate speech were
even better: workers identified errors only in 9%
of the inspections for stratified random sampling,
but they identified errors in 27% of the URLs with
BTM. These results indicate that the BTM process
is indeed more efficient than the standard evalua-
tion procedure in identifying problematic cases. It

2In our particular implementation, the highest bonus is
worth 1000 points, or 50 cents.



should be noted that we could increase the “effi-
ciency” of the non-BTM procedure by simply sam-
pling more from the low-confidence cases. However,
this would directly reduce the number of “unknown
unknowns” discovered. At the extreme, the largest
number of errors would be found by sampling only
in the low-confidence region. All the errors found
would then be known unknowns. So, let’s now con-
sider the effect of BTM on the severity of the errors
found.
Comparing the severity of errors: Figure 2(a)
and 2(b) show the distribution of errors for hate
speech and adult content, respectively. A consis-
tent behavior is observed for both categories: BTM
identifies a significantly larger number of severe
misses—the unknown unknowns. Within the errors
identified by BTM, 25% were cases of high sever-
ity; the model was confident that it was making the
correct decision (classifying the content as benign,
with 100% confidence), but in reality the decision
was incorrect. So, not only does BTM identify a
larger number problematic cases than the strati-
fied testing, but also a significant number of these
cases were unknown unknowns: cases that would be
missed and without a very unpleasant event (pos-
sibly a catastrophe), we never would know that we
missed them. In contrast, and by now as expected,
most of the identified errors for the stratified ran-
dom sampling were near misses that occur near the
decision boundary.
Learning from identified errors: The next, nat-
ural question is whether the identified erroneous
decisions could be used to improve the decision
models. This actually is a very complicated prob-
lem, and a thorough treatment is beyond the scope
of this short paper. For example, oversampling
cases where a model makes big mistakes can be
catastrophic for learning (think simply about over-
sampling outliers in a linear regression). On the
other hand, techniques like boosting (Freund and
Schapire 1999) have gotten tremendous advantage
by overweighting cases where the current model is
incorrect.
Nevertheless, we can offer some initial insights. We
can examine whether the cases found by BTM seem
to be isolated outliers, or whether they seem to
be regularities that can be modeled. To this end
we ran the following experiment: We attempted to
learn a model that would classify positive and neg-
ative examples from amongst the BTM-identified
cases.3 Internal consistency in the identified errors
would suggest that these cases are not outliers,
but rather constitute parts of the space where the
model fails systematically (potentially without be-
ing aware of the failures).
Figure 3 shows the results of this process. The
“btm only” line shows the quality of the model
built and tested using the error cases identified by

3That is, false negatives and false positives from model
being considered, respectively

(a) Hate Speech

(b) Adult Content

Figure 2: Distributions of the magnitude of the identi-
fied errors by BTM and by random sampling for two ad
safety tasks

the BTM process. The “student only” line shows
the quality of the model built and tested using ex-
amples gathered through stratified random sam-
pling (the pages selected through random sampling
were inspected by students, hence the name). Both
the btm-only and student-only lines show quality
measurements computed via cross-validation. The
results show that the quality of the models is fairly
high, illustrating that there is consistency and in-
ternal coherence in these sets pages. The fact that
the BTM model can reach high levels of accuracy
indicates that BTM indeed identifies systematic er-
rors, and not just disparate outliers. The compara-
tively lower quality of the random sampling model
also illustrates that these pages are inherently more
difficult to learn from; this is consistent with our
discussion above that the discovery via stratified
random sampling (DVSRS) focuses on the ambigu-
ous cases (those that the current model is uncertain
about), while BTM discovers incorrectly classified
areas of the space that have been systematically



Figure 3: Learning curves generated by the models us-
ing cross-validation (BTM and student lines), and then
use as test case for BTM the errors identified by random
sampling (BTM on students), and vice versa (students
on BTM).

ignored.
We also can examine whether the two approaches
(DVSRS and BTM) identify sets of similar exam-
ples, or whether each of them identifies something
completely different. For that, we tested the per-
formance of BTM using the examples from DVSRS
(“student”) and vice versa. The results indicate
that there is little cross-consistency between the
models. What we discover using BTM has little
effectiveness on the error cases identified through
DVSRS, and vice versa. This finding indicates that
BTM reveals errors in parts of the space unex-
plored by DVSRS.
BTM and DVSRS seem to be different processes,
capable of identifying different types of errors.
Each of these has its place in the evaluation and
improvement of automatic models. DVSRS identi-
fies cases where the model already knows that it is
not confident. The BTM process, through its game-
like structure and probing nature, encourages the
discovery of unknown problems in the model. The
fact that humans can easily find challenging cases
for the automatic models, when being themselves
confronted with this challenge, also indicates that
human expertise and curiosity can improve even
very accurate automatic models.

Current and Future Research

We discussed and explored the design of the Beat
the Machine process for directly integrating hu-
mans into testing automatic decision models for
vulnerabilities. Our results suggest that BTM is es-
pecially good in identifying cases where the model
fails, while being confident that it is correct. It is
naturally interesting to examine how to best use
knowledge of such vulnerabilities to improve the

automatic decisions models.
Vulnerability testing is common in areas of com-
puter security, where “white hat” hackers with the
appropriate expertise try to expose vulnerabilities
in the security infrastructure of a firm. In our set-
ting, we see that even lay users can easily find un-
known holes in automatic decision models that test
very well in “standard” tests, and show high classi-
fication performance when measured with the tra-
ditional, usual metrics (accuracy, AUC, etc). Thus,
builders of automatic decision models should take
extra care when using these traditional metrics for
evaluations.
In our live deployment, untrained humans, with the
appropriate incentives, were able to “beat the ma-
chine” seemingly easily, and discover a large num-
ber of vulnerabilities. This is, of course, useful by
itself: the “unknown unknowns” become “known
unknowns” and we can prepare to deal with these
cases. But the key question for future research is
also: how can we best incorporate such knowledge
so that both “unknown unknowns” and “known
unknowns” become “known knowns.”

Acknowledgements

The authors thank George A. Kellner and NEC
for faculty fellowships, and AdSafe Media for ex-
pertise, support, and data. The models used in this
paper are not necessarily models used in produc-
tion by any company. This work was partially sup-
ported by the National Science Foundation under
Grant No. IIS0643846.

References
Bennett, P. N., and Carvalho, V. R. 2010. Online
stratified sampling: evaluating classifiers at web-scale.
In CIKM’10.

Freund, Y., and Schapire, R. E. 1999. A short intro-
duction to boosting.

Raykar, V.; Yu, S.; Zhao, L.; Jerebko, A.; Florin, C.;
Valadez, G.; Bogoni, L.; and Moy, L. 2009. Supervised
Learning from Multiple Experts: Whom to trust when
everyone lies a bit. In Proceedings of the 26th Annual
International Conference on Machine Learning, 889–
896. ACM.

Sawade, Christoph; Bickel, Steffen; and Scheffer, To-
bias. 2010. Active Risk Estimation. In ICML.

Settles, B. 2010. Active learning literature survey.

Sheng, V. S.; Provost, F.; and Ipeirotis, P. G. 2008. Get
another label? improving data quality and data mining
using multiple, noisy labelers. In KDD ’08.

VanLehn, K. 1998. Analogy events: How examples
are used during problem solving. Cognitive Science
22(3):347–388.

Winston, P. 1970. Learning structural descriptions
from examples.


