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1.1 Introduction

In many applications, one must invest effort or money to acquire the data and other
information required for machine learning and data mining. Careful selection of the infor-
mation to acquire can substantially improve generalization performance per unit cost. The
costly information scenario that has received the most research attention (see Chapter X)
has come to be called ”active learning,” and focuses on choosing the instances for which
target values (labels) will be acquired for training. However machine learning applications
offer a variety of different sorts of information that may need to be acquired.

This chapter focuses on settings and techniques for selectively acquiring information
beyond just single training labels (the values of the target variable) for selected instances
in order to improve a model’s predictive accuracy. The different kinds of acquired infor-
mation include feature values, feature labels, entire examples, values at prediction time,
repeated acquisition for the same data item, and more. For example, Figures 1.1 contrast
the acquisition of training labels, feature values, and both. We will discuss all these sorts
of information in detail. Broadening our view beyond simple active learning not only ex-
pands the set of applications to which we can apply selective acquisition strategies; it also
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highlights additional important problem dimensions and characteristics, and reveals fer-
tile areas of research that to date have received relatively little attention.

In what follows, we start by presenting two general notions that are employed to help
direct the acquisition of various sorts of information. The first is to prefer to acquire in-
formation for which the current state of modeling is uncertain. The second is to acquire
information that is estimated to be the most valuable to acquire.

After expanding upon these two overarching notions, we discuss a variety of different
settings where information acquisition can improve modeling. The purpose of examining
various different acquisition settings in some detail is to highlight the different challenges,
solutions, and research issues. As just one brief example, distinct from active learning,
active acquisition of feature values may have access to additional information, namely
instances’ labels—which enables different sorts of selection strategies.

More specifically, we examine the acquisition of feature values, feature labels, and
prediction-time values. We also examine the specific, common setting where information
is not perfect, and one may want to acquire additional information specifically to deal with
information quality. For example, one may want to acquire the same data item more than
once. In addition, we emphasize that it can be fruitful to expand our view of the sorts
of acquisition actions we have at our disposal. Providing specific variable values is only
one sort of information “purchase” we might make. For example, in certain cases, we may
be able to acquire entire examples of a rare class, or distinguishing words for document
classification. These alternative acquisitions may give a better return on investment for
modeling.

Finally, and importantly, most research to date has considered each sort of information
acquisition independently. However, why should we believe that only one sort of infor-
mation is missing or noisy? Modelers may find themselves in situations where they need
to acquire various pieces of information, and somehow must prioritize the different sorts
of acquisition. This has been addressed in a few research papers for pairs of types of in-
formation, for example for target labels and feature labels (“active dual supervision”). We
argue that a challenge problem for machine learning and data mining research should be
to work toward a unified framework within which arbitrary information acquisitions can
be prioritized, to build the best possible models on a limited budget.

1.2 Overarching principles for selective data acquisition

In general selective data acquisition a learning algorithm can request the value of par-
ticular missing data, which is then provided by an oracle at some cost. There may be more
than one oracle, and oracles are not assumed to be perfect. The goal of selective data ac-
quisition is to choose to acquire data that is most likely to improve the system’s use-time
performance on a specified modeling objective in a cost-effective manner. We will use q to
refer to the query for a selected piece of missing data. For instance, in traditional active
learning this would correspond to querying for the missing label of a selected instance;
while in the context of active feature-value acquisition, q is the request for a missing fea-
ture value. We will focus primarily (but not exclusively) on pool-based selective data acqui-
sition, where we select a query from a pool of available candidate queries, e.g., the set of
all missing feature-values that can be acquired on request.

Note that in most cases, selection from the pool is performed in epochs, whereby at each
phase, a batch of one or more queries are performed simultaneously. The combinatorial
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problem of selecting the most useful such batches (and overall data set) from such a pool of
candidates makes direct optimization an NP-hard problem. Typically, a first order Markov
relaxation is performed, whereby the most promising data are selected greedily one-at-
a-time from the pool. While not guaranteeing a globally optimal result set (regardless of
what selection criterion is being used), such sequential data access often works well in
practice while making the selection problem tractable.

We begin by discussing two general principles that are applicable for the selective ac-
quisition of many different types of data. These overarching principles must be instanti-
ated specifically to suit the needs of each acquisition setting. While individual instanti-
ations may differ considerably, both principles have advantages and disadvantages that
hold in general, which we discuss below. In reviewing these techniques, we often refer to
the familiar active learning setting; we will see how the principles do and do not apply to
the other settings as the chapter unfolds.

1.2.1 Uncertainty Reduction

The most commonly used method for non-uniform sample selection for machine learn-
ing is to select data items for which the current model is most uncertain.

This notion is the basis for the most commonly used individual active learning tech-
nique, Uncertainty Sampling [44], as well as closely related (and in some cases identical)
techniques, such as selecting data points closest to a separating hyperplane, Query-by-
Committee and variance reduction [79]. Specifically, with Uncertainty Sampling the active
learner requests labels for examples that the currently held model is least certain about
how to classify.

Uncertainty reduction techniques are based on the assumption that predictive errors
largely occur in regions of the problem space where predictions are most ambiguous. The
intent is that by providing supplemental information in these regions, model confidence
can be improved, along with predictive performance. Despite the typical reference to the
classic 1994 paper [44], even Uncertainty Sampling itself has become a framework within
which different techniques are implemented. For example, exactly how one should mea-
sure uncertainty is open to interpretation; the following three calculations of uncertainty
all have been used [79, 55, 78]:

1 − P (ŷ|x) (1.1)

P (ŷ1|x) − P (ŷ2|x) (1.2)

−
∑

i

P (ŷi|x) log(P (ŷi|x)) (1.3)

where P (ŷ|x) is the highest posterior probability assigned by the classifier to a class, while
P (ŷ1|x) and P (ŷ2|x) are the probabilities assigned to the first and second most probable
classes as predicted by the classifier.

Uncertainty Reduction is widely used with some success in research literature, though
we will discuss situations where Uncertainty Reduction fails to make beneficial selections.
The same uncertainty-based heuristic can be applied more broadly to acquiring other
forms of data. For instance, when feature-values are missing, one can attempt to impute
the missing values from those that are present, and choose to acquire values where the
model is least certain of the imputed values.

The advantages of Uncertainty Reduction are:

• Evaluating and selecting queries based on uncertainty is computationally efficient in
many settings. For instance, Uncertainty Sampling for training labels only requires
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applying the classifier to predict the posterior class probabilities of examples in the
unlabeled pool. There is no retraining of models required in order to select queries.
Note that, in other settings, such as acquiring feature-values, the complexity may be
considerably higher depending on how one choses to measure uncertainty.

• Uncertainty Reduction techniques are often adopted because of their ease of imple-
mentation. For example, Uncertainty Sampling requires computing one of the uncer-
tainty scores described above which are simply applications of the existing model in
order to make predictions on an unlabeled instance.

• In the active learning literature, Uncertainty Reduction techniques have been applied
across many problems with reasonable success.

The disadvantages of Uncertainty Reduction are:

• While often effective in practice, Uncertainty Reduction does not directly attempt
to optimize a classifier’s generalization performance. As such it can often choose
queries that may reduce model uncertainty, but not result in improvement on test set
predictions. Notably, when applied to obtaining example labels, Uncertainty Sam-
pling is prone to selecting outliers [79]. These could be instances the model is un-
certain about, but are not representative of instances in the test set. The selection of
outliers can be addressed by using the uncertainty scores to form a sampling distri-
bution [72, 73]; however, sampling also can reduce the effectiveness of Uncertainty
Reduction techniques by repeatedly selecting marginally informative examples. In
other settings, Uncertainty Reduction may reduce uncertainty about values that are
not discriminative, such as acquiring values for a feature that is uncorrelated to the
class.

• While Uncertainty Sampling is often favored for ease of implementation, in settings
beyond the acquisition of single training labels, estimating uncertainty is often not
as straightforward. For example, how should you measure the uncertainty of an in-
stance label, given a current model and many contradictory labels for the same in-
stance from different oracles [82]?

• In general, selective data acquisition assumes that the response to each query comes
at a cost. In realistic settings, these costs may vary for each type of acquisition and
even for each query. Notably, some examples are more difficult for humans to la-
bel than others, and as such may entail a higher cost in terms of annotation time.
Similarly, some features-values are more expensive to obtain than others, e.g., if they
are the result of a more costly experiment. Uncertainty Reduction methods do not
naturally facilitate a meaningful way to trade off costs with potential benefits of each
acquisition. One ad hoc approach of attempting this is to divide the uncertainty score
with the cost for each query, and make acquisitions in order of the resulting quan-
tity [80, 32]. This is a somewhat awkward approach to incorporating costs, as uncer-
tainty per unit cost is not necessarily proportional to potential benefit to the resulting
model.

• As mentioned above, uncertainty can be defined in different ways even for the same
type of acquisition, such as a class label. Different types of acquisitions, such as fea-
ture values, require very different measures of uncertainty. Consequently, when con-
sidering more than one type of acquisition simultaneously, there is no systematic way
to compare two different measures of uncertainty, since they are effectively on dif-
ferent scales. This makes it difficult to construct an Uncertainty Reduction technique
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that systematically decides which type of information is most beneficial to acquire
next.

1.2.2 Expected Utility

Selecting data that the current model is uncertain about may result in queries that
are not useful in discriminating between classes. An alternative to such uncertainty-based
heuristics is to directly estimate the expected improvement in generalization due to each
query. In this approach, at every step of selective data acquisition, the next query selected
is the one that will result in the highest estimated improvement in classifier performance
per unit cost. Since the true values of the missing data are unknown prior to acquisition,
it is necessary to estimate the potential impact of every query for all possible outcomes. 1

Hence, the decision-theoretic optimal policy is to ask for missing data which, once incorpo-
rated into the existing data, will result in the greatest increase in classification performance
in expectation. If ωq is the cost of the query q, then its Expected Utility of acquisition can be
computed as

EU(q) =

∫

v

P (q = v)
U(q = v)

ωq

(1.4)

where P (q = v) is the probability that query q will take on value v, and U(q = v) is the
utility to the model of knowing that q has the value v. This utility can be defined in any
way to represent a desired modeling objective. For example, U could be defined as classi-
fication error. In this case, this approach is referred to as Expected Error Reduction. When
applied more generally to arbitrary utility functions we refer to such a selection scheme as
Expected Utility or Estimated Risk Minimization. Note that, in Equation 1.4 the true values of
the marginal distribution P (.) and the utility U(.) on the test set is unknown. Instead, em-
pirical estimates of these quantities are used in practice. When the missing data can only
take on discrete values, the expectation can be easily computed by piecewise summation
over the possible values. While for continuous values, computation of expected utility can
be performed using Monte Carlo methods.

The advantages of Expected Utility are:

• Since this method is directly trying to optimize the objective on which the model will
be evaluated, it avoids making acquisitions that do not improve this objective even
if it reduces uncertainty or variance in the predictions.

• Incorporating different acquisition costs is also straightforward in this framework.
The trade-off of utility versus cost is handled directly, as opposed to relying on an
unknown indirect connection between uncertainty and utility.

• This approach is capable of addressing multiple types of acquisition simultaneously
within a single framework. Since the measure of utility is independent of the type
of acquisition and only dependent on the resulting classifier, we can estimate the ex-
pected utility of different forms of acquisitions in the same manner. For instance, we
can use such an approach to estimate the utility of acquiring class labels and feature
values in tandem [71]. The same framework can also be instantiated to yield a holis-
tic approach to active dual supervision, where the Expected Utility of an instance or

1For instance, in the case of binary classification, the possible outcomes are a positive or negative label for a
queried example.



6 Cost-sensitive Learning

feature label query can be computed and compared on the same scale [2]. By evalu-
ating different acquisitions in the same units, and by measuring utility per unit cost
of acquisition, such a framework facilitates explicit optimization of the trade-offs be-
tween the costs and benefits of the different types of acquisitions. between the costs
and benefits of the different types of acquisitions.

The disadvantages of Expected Utility are:

• A naive implementation of the Expected Utility framework is computationally in-
tractable even for data of moderate dimensionality. The computation of Expected
Utility (Equation 1.4) requires iterating over all possible outcomes of all candidate
queries. This often means training multiple models for the different values a query
may take on. This combinatorial computational cost can often be prohibitive. The
most common approach to overcome this, at the cost of optimality, is to sub-sample
the set of available queries, and only compute Expected Utility on this smaller can-
didate set [71]. This method has also been demonstrated to be feasible for classifiers
that can be rapidly trained incrementally [70]. Additionally, dynamic programming
and efficient data structures can be leveraged to make the computation tractable [8].
The computation of the utility of each outcome of each query, while being the bot-
tleneck, is also fully parallelizable. As such large-scale parallel computing has the
potential of making the computational costs little more than that of training a single
classifier.

• As mentioned above, the terms P (.) and U(.) in the Expected Utility computation
must be estimated from available data. However, the choice of methods to use for
these estimations is not obvious. Making the correct choices can be a significant chal-
lenge for a new setting, and can make a substantial difference in the effectiveness of
this approach [71].

• Typically, the estimators used for P (.) and U(.) are based on the pool of available
training data, for instance, through cross validation. The available training examples
themselves are often acquired through an active acquisition process. Here, due to
the preferences of the active process, the distribution of data in the training pool
may differ substantially from that of the native data population and as a result, the
estimations of P (.) and U(.) may be arbitrarily inaccurate in the worst case.

• Additionally, it should be noted that despite the emperical risk minimization moniker,
Expected Utility methods do not in general yield the globally optimal set of selec-
tions. This is due to several simplifications: first, the myopic, sequential acquisition
policy mentioned above where the benefit for each individual example is taken in
isolation, and second, the utilization of empirical risk as a proxy for actual risks.

1.3 Active feature-value acquisition

In this section we begin by discussing active feature-value acquisition (AFA), the se-
lective acquisition of single feature values for training. We then review extensions of these
policies for more complex settings in which feature values, different sets thereof, as well as
class labels can be acquired at a cost simultaneously. We discuss some insights on the chal-
lenges and effective approaches for these problems as well as interesting open problems.
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As an example setting for active feature-value acquisition, consider consumers’ ratings
of different products being used as predictors to estimate whether or not a customer is
likely to be interested in an offer for a new product. At any given time, only a subset of
any given consumer’s “true” ratings of her prior purchases are available, and thus many
feature values are missing, potentially undermining inference. To improve this inference,
it is possible to offer consumers incentives so as to reveal their preferences—for example,
rating other prior purchases. Thus, it is useful to devise an intelligent acquisition policy
to select which products and which consumers are most cost-effective to acquire. Similar
scenarios arise in a variety of other domains, including when databases are being used
to estimate the likelihood of success of alternative medical treatments. Often the feature
values of some predictors, such as of medical tests, are not available; furthermore, the
acquisition of different tests may incur different costs.

This general active feature-value acquisition setting, illustrated in Figure 1.1(b), differs
from active learning in several important ways. First, policies for acquiring training labels
assign one value to an entire prospective instance acquisition. Another related distinction
is that the impact on induction from obtaining an entire instance may require a less pre-
cise measure to that required to estimate the impact from acquiring merely a single feature
value. In addition, having multiple missing feature values gives rise to a myriad of set-
tings regarding the level of granularity at which feature values can be acquired and the
corresponding cost [102, 47, 57, 56, 38]. For example, in some applications, such as when
acquiring consumers’ demographic and lifestyle data from syndicated data providers, only
the complete set of all feature values can be purchased at a fixed cost. In other cases, such
as the recommender systems and treatment effectiveness tasks above, it may be possible
to purchase the value of a single variable, such as by running a medical test. And there
are intermediate cases, such as when different subsets (e.g., a battery of medical tests) can
be acquired as a bundle. Furthermore, different sets may incur different costs; thus, while
very few policies do so, it is beneficial to consider such costs when prioritizing acquisition.
In the remainder of this section, we discuss how we might address some of these problem
settings, as well as interesting open challenges.

A variety of different policies can be envisioned for the acquisition of individual feature
values at a fixed cost, following the Expected Utility framework we discussed in Section
1.2 and [47, 56, 71]. As such, Expected Utility AFA policies aim to estimate the expected
benefit from an acquisition by the change in some loss/gain function in expectation.
For feature value acquisitions the expected utility framework has several important ad-
vantages, but also some limitations. Because different features (such as medical tests) are
very likely to incur different costs perhaps the most salient advantage for AFA is the abil-
ity to incorporate cost information when prioritizing acquisitions. The Expected Utility
framework also allows us to prioritize among acquisitions of individual features as well
as different sets thereof. However, the expected value framework would guarantee the ac-
quisition of the optimal single feature value in expectation, only if the true distributions
of values for each missing feature were known, and the loss/gain function, U , were to
capture the actual change in the model’s generalization accuracy following an acquisition.
In settings where many feature values are missing these estimations may be particularly
challenging. For example, empirical estimation of the model’s generalization performance
over instances with many missing values may not accurately approximate the magnitude
or even the direction of change in generalization accuracy. Perhaps a more important con-
sideration regarding the choice of gain function, U , for feature value acquisition is the se-
quential, myopic nature of these policies. Similar to most information acquisition policies,
if multiple features are to be acquired, a myopic policy, which aims to estimate the benefit
from each prospective acquisition in isolation, is not guaranteed to identify the optimal
set of acquisitions, even if the estimations listed above were precise. This is because the
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expected contribution of an individual acquisition is estimated with respect to the current
training data, irrespective of other acquisitions which will be made. Interestingly, due to
this myopic property, selecting the acquisition which yields the best estimated improve-
ment in generalization accuracy often does not yield the best results; rather, other measures
have been shown to be empirically more effective [71]—for example, log gain. Specifically,

when a model is induced from a training set T , let P̂ (ck|xi) be the probability estimated
by the model that instance xi belongs to class ck; and I is an indicator function such that
I(ck, xi) = 1 if ck is the correct class for xi and I(ck, xi) = 0, otherwise. Log Gain (LG) is
then defined as:

LG(xi) = −

K
∑

k=1

I(ck, xi) log P̂ (ck|xi) (1.5)

Notably, LG is sensitive to changes in the model’s estimated probability of the correct
class. As such, this policy promotes acquisitions which increase the likelihood of correct
class prediction, once other values are acquired.

We have discussed the computational cost which the Expected Utility framework en-
tails and the need to reduce the consideration set to a small subset of all prospective ac-
quisitions. For AFA, drawing from the set of prospective acquisitions uniformly at ran-
dom [71] may be used; however, using a fast heuristics to identify feature values that are
likely to be particularly informative per unit cost can be more effective. For example, a
useful heuristic is to draw a subset of prospective acquisitions based on the corresponding
features’ predictive values [71] or to prefer acquisitions from particularly informative in-
stances [56].

A related setting, illustrated in Figure 1.1(c), is one in which for all instances the same
subset of feature values are known, and the subset of all remaining feature values can be
acquired at a fixed cost. Henceforth, we refer to this setting as instance completion. Under
some conditions, this problem bears strong similarity to the active learning problem. For
example, consider a version of this problem in which only instances with complete feature
values are used for induction [102, 103]. If the class labels of prospective training exam-
ples are unknown or are otherwise not used to select acquisition, this problem becomes
very similar to active learning in that the value from acquiring a complete training in-
stance must be estimated. For example, we can use measures of prediction uncertainty (cf.,
section 1.2 to prioritize acquisitions [103].

Note however that the active feature-value acquisition setting may have additional in-
formation that can be brought to bear to aid in selection: the known class labels of prospec-
tive training examples. The knowledge of class labels can lead to selection policies that
prefer to acquire features for examples on which the current model makes mistakes [57].
An extreme version of the instance completion problem is when there are no known fea-
ture values and the complete feature set can be acquired as a bundle for fixed cost (see
Section 1.7 below).

Acquiring feature values and class labels
We noted earlier that an important benefit of the AFA Expected Utility framework is

that it allows comparing among the benefits from acquiring feature values, sets thereof,
as well as class labels—and thus can consider selecting these different sorts of data si-
multaneously [71]. This setting is shown in Figure 1.1(d). Note, however, that considering
different types of acquisitions simultaneously also presents new challenges. In particular,
recall the need for a computationally fast heuristic to select a subset of promising prospec-
tive acquisitions to be subsequently estimated by the Expected Utility policy. Assuming
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uniform costs, in most cases acquiring a class label is likely to be significantly more cost-
effective than acquiring a single feature values. However, if the consideration set were to be
sampled uniformly at random, when class labels constitute a minority in this pool, many
informative class labels may not even be considered for acquisition. One heuristic that has
been shown to perform well is to infer a crude measure of a class label’s benefit by the
benefits of the corresponding instance’s known feature values. Specifically, the probability
of drawing a prospective feature-value acquisition is proportional to the cost-normalized
variant of the corresponding feature’s information gain IG(F, L) [63] for class variable L;
the likelihood of considering a class label can then be made proportional to the sum of the
cost-normalized information gains of all the instance’s missing feature values [71].

One important setting in which arbitrary subsets of feature values can be acquired at
different costs, has not been explored extensively. It may be natural to extend the Expected
Utility framework to consider sets of categorical features. However, estimating the joint
probability distribution of all possible sets of values may render such a policy hopelessly
inefficient. To our knowledge, there has been some work on the acquisition of sets of values
during inference [8]. However, the complexity of the estimation for induction is substan-
tially more significant.

Lastly, integral to designing and evaluating information acquisition policies is a solid
understanding of the best costless alternatives for dealing with unknown feature val-
ues [45]. For example, unknown feature values may be replaced with estimates via im-
putation or, in some cases, ignored during induction [28, 75]. For the most part, the liter-
ature on selective data acquisition has not developed to consider (systematically) alterna-
tive costless solutions. Nonetheless, acquisition policies ought to estimate an acquisition’s
value as compared to the best costless solution (imputing the value; ignoring that variable
all together; taking a Bayesian approach). Perhaps more importantly, the conclusions of
empirical comparisons among policies and, consequently, the perceived effectiveness of
different policies, may be affected substantively by which (if any) costless solutions are
employed.

1.4 Labeling features versus examples

In selective data acquisition, we can acquire more information about our data instances
as in active feature-value acquisition. However, there are other types of class-indicative
data that are informative data that may be useful for building predictive models. In such
a setting, where myriad forms supervision can be compiled into building predictive mod-
els, it becomes important to examine acquisition costs and benefits, allocating budget to
those data most valuable to the task at hand. Consider, for example, the task of sentiment
detection, where given a piece of text as input, the desired output is a label that indicates
whether this text expresses a positive or negative opinion. This problem can be cast as a
typical binary text classification task, where a learner is trained on a set of documents that
have been labeled based on the sentiment expressed in them [60]. Alternatively, one could
provide labeled features: for example, in the domain of movie reviews, words that evoke
positive sentiment (e.g., “captivating”, “suspenseful”, etc.) may be labeled positive, while
words that evoke negative sentiment (e.g., “predictable”, “unimaginative”, etc.) may be
labeled negative. Through this kind of annotation a human conveys prior linguistic expe-
rience with a word by a sentiment label that reflects the emotion that the word evokes.

The setting where individual semantic features provide useful class indicators arises
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FIGURE 1.1: Different Data Acquisition Settings

broadly, notably in Natural Language Processing tasks where, in addition to labeled doc-
uments, it is possible to provide domain knowledge in the form of words or phrases [100]
or more sophisticated linguistic features that associate strongly with a class. Such feature
supervision can greatly reduce the number of labels required to build high-quality classi-
fiers [24, 84, 54]. In general, example and feature supervision are complementary, rather
than redundant. As such they can also be used together. This general setting of learning
from both labels on examples and features is referred to as dual supervision [84].

In this section we provide a brief overview of learning from labeled features, as well as
learning both from labeled features and labeled examples. We will also discuss the chal-
lenges of active learning in these settings, and some approaches to overcome them.

1.4.1 Learning from feature labels

Providing feature-class associations through labeling features can be viewed as one
approach to expressing background, prior or domain knowledge about a particular su-
pervised learning task. Methods to learn from such feature labels can be divided into ap-
proaches that use labeled features along with unlabeled examples, and methods that use
both labeled features and examples. Since, we focus primarily on text classification in this
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section, we will use words and documents interchangeably with features and examples. How-
ever, incorporating background knowledge into learning has also been studied outside the
context of text classification, as in knowledge-based neural networks [90] and knowledge-
based SVMs [29, 42].

Labeled features and unlabeled examples

A simple way to utilize feature supervision is to use the labels on features to label ex-
amples, and then use an existing supervised learning algorithm to build a model. Consider
the following straightforward approach. Given a representative set of words for each class,
create a representative document for each class containing all the representative words. Then
compute the cosine similarity between unlabeled documents and the representative docu-
ments. Assign each unlabeled document to the class with the highest similarity, and then
train a classifier using these pseudo-labeled examples. This approach is very convenient as it
does not require devising a new model, since it can effectively leverage existing supervised
learning techniques such as Naı̈ve Bayes [46]. Given that it usually take less time to label a
word than it takes to label a document [24], this is a cost-effective alternative.

An alternative to approaches of generating and training with pseudo-labeled examples,
is to directly use the feature labels to constrain model predictions. For instance, a label y

for feature xi can be translated into a soft constraint, P (y|xi) > 0.9, in a multinomial logis-
tic regression model [24]. Then the model parameters can be optimized to minimize some
distance, e.g. Kullback-Leibler divergence from these reference distributions.

Dual Supervision

In dual supervision models, labeled features are used in conjunction with labeled ex-
amples. Here too, labeled features can be used to generate pseudo-labeled examples, either
by labeling unlabeled examples [97] or re-labeling duplicates of the training examples [77].
These pseudo-labeled examples can be combined with the given labeled examples, using
weights to down-weight prior knowledge when more labeled examples are available. Such
methods can be implemented within existing frameworks, such as boosting logistic regres-
sion [77], and weighted margin support vector machines [97].

Generating pseudo-labeled examples is an easy way to leverage feature labels within
the traditional supervised learning framework based on labeled examples. Alternatively
one can incorporate both forms of supervision directly into one unified model [54, 84].
Pooling Multinomials is one such classifier, which builds a generative model that explains
both labeled features and examples. In Pooling Multinomials unlabeled examples are clas-
sified just as in multinomial Naı̈ve Bayes classification [52], by predicting the class with
the maximum likelihood, given by argmaxcj

P (cj)
∏

i P (wi|cj); where P (cj) is the prior
probability of class cj , and P (wi|cj) is the probability of word wi appearing in a document
of class cj . In the absence of background knowledge about the class distribution, the class
priors P (cj) are estimated solely from the training data. However, unlike regular Naı̈ve
Bayes, the conditional probabilities P (wi|cj) are computed using both the labeled exam-
ples and the set of labeled features. Given two models built using labeled examples and
labeled features, the multinomial parameters of such models are aggregated through a con-
vex combination, P (wi|cj) = αPe(wi|cj)+ (1−α)Pf(wi|cj); where Pe(wi|cj) and Pf (wi|cj)
represent the probability assigned by using the example labels and feature labels respec-
tively, and α is a weight indicating the level of confidence in each source of information.
At the crux of this framework is the generative labeled-features model, which assumes
that the feature-class associations provided by human experts are implicitly arrived at by
examining many latent documents of each class. This assumption translates in into several
constraints on the model parameter, which allows one to exactly derive the conditional
distributions Pf (wi|cj) that would generate the latent documents [54].
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1.4.2 Active Feature Labeling

While traditional active learning has primarily focused on selecting unlabeled instances
to be labeled, the dual-supervision setting adds an additional aspect to active learning
where labels may be acquired for features as well. In this section we focus on the task of
active learning applied to feature-label acquisition, illustrated by Figure 1.2
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FIGURE 1.2: Active Feature Labeling

Uncertainty-based approaches

Feature and instance labels contribute very differently to learning a model, and as such,
standard active learning approaches may not be directly applicable to feature label acqui-
sition. Nevertheless, heuristic approaches based on the principle of Uncertainty Sampling
have been applied to acquire feature labels, with varying degrees of success. As in tradi-
tional Uncertainty Sampling, Feature Uncertainty Sampling requests labels for features for
which the current model has the highest degree of uncertainty.

Much like instance uncertainty, feature uncertainty can be measured in different ways,
depending on the underlying method used for incorporating feature supervision. For in-
stance, when using a learner that produces a linear classifier, we can use the magnitude of
the weights on the features as a measure of uncertainty [85] — where lower weights indi-
cate less certainty. In the case of Pooling Multinomials, which builds a multinomial Naı̈ve
Bayes model, we can directly use the model’s conditional probabilities of each feature f

given a class. Specifically, feature uncertainty can be measured by absolute log-odds ratio,

abs
(

log
(

P (f |+)
P (f |−)

))

. The smaller this value, the more uncertain the model is about the fea-

ture’s class association. Then in every iteration of active learning, features with the lowest
certainty scores are selected for labeling.

Though Uncertainty Sampling for features seems like an appealing notion, it may not
lead to better models. If a classifier is uncertain about a feature, it may have insufficient
information about this feature and may indeed benefit from learning its label. However, it
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is also quite likely that a feature has a low certainty score because it does not carry much
discriminative information about the classes. For instance, in the context of sentiment de-
tection, one would expect that neutral/non-polar words will appear to be uncertain words.
For example, words such as “the” which are unlikely to help in discriminating between
classes, are also likely to be considered the most uncertain. In such cases, Feature Uncer-
tainty ends up squandering queries on such words ending up with performance inferior to
random feature queries. What works significantly better in practice is Feature Certainty, that
acquires labels for features in descending order of the uncertainty scores [85, 58]. Alternative
uncertainty-based heuristics have also been used with different degrees of success [25, 31].

Expected feature utility

Selecting features that the current model is uncertain about may results in queries that
are not useful in discriminating between classes. On the other hand, selecting the most cer-
tain features is also suboptimal, since queries may be wasted simply confirming confident
predictions, which is of limited utility to the model. An alternative to such certainty-based
heuristics, is to directly estimate the expected value of acquiring each feature label. This
can be done by instantiating the Expected Utility framework described in Section 1.2.2,
for this setting. This results in the decision-theoretic optimal policy, which is to ask for
feature labels which, once incorporated into the data, will result in the highest increase in
classification performance in expectation.

More precisely, if fj is the label of the j-th feature, and qj is the query for this feature’s
label, then the Expected Utility of a feature query qj can be computed as:

EU(qj) =

K
∑

k=1

P (fj = ck)U(fj = ck) (1.6)

Where P (fj = ck) is the probability that fj will be labeled with class ck, and U(fj = ck) is
the utility to the model of knowing that fj has the label ck. As in other applications of this
framework, the true values of these two quantities are unknown, and the main challenge
is to accurately estimate these quantities from the data currently available.

A direct way to estimate the utility of a feature label is to measure expected classifica-
tion accuracy. However, small changes in the probabilistic model that result from acquiring
a single additional feature label may not be reflected by a change in accuracy. As in active
feature-value acquisition (see Section 1.3) one can use a finer-grained measure of classifier
performance, such as Log Gain defined in Equation 1.5. Then the utility of a classifier, U ,
can be measured by summing the Log Gain for all instances in the training set.

In Eq. 1.6, apart from the measure of utility, we also do not know the true probability
distribution of labels for the feature under consideration. This too can be estimated from
the training data, by seeing how frequently the word appears in documents of each class.
For Pooling Multinomials, one can use the model parameters to estimate the feature label

distribution, P̂ (fj = ck) =
P (fj |ck)

P

K
k=1

P (fj |ck)
. Given the estimated values of the feature-label

distribution and the utility of a particular feature query outcome, we can now estimate the
Expected Utility of each unknown feature, selecting the features with the highest Expected
Utility for labeling.

As in other settings, this approach can be computationally intensive if Expected Utility
estimation is performed on all unknown features. In the worst case this requires building
and evaluating models for each possible outcome of each unlabeled feature. In a setting
with m features and K classes, this approach requires training O(mK) classifiers. How-
ever, the complexity of the approach can be significantly alleviated by only applying Ex-
pected Utility evaluation to a sub-sample of all unlabeled features. Given a large number
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of features with no true class labels, selecting a sample of available features uniformly at
random may be sub-optimal. Instead one can subsample features based on a fast and effec-
tive heuristic like Feature Certainty [85]. Figure 1.3 shows the typical advantage one can
see using such a decision-theoretic approach versus uncertainty-based approaches.
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FIGURE 1.3: Comparison of different approaches for actively acquiring feature labels, as
demonstrated on the Pooling Multinomials classifier applied to the Movies [60] data set.

1.4.3 Active Dual Supervision

Since dual supervision makes it possible to learn from labeled examples and labeled
features simultaneously, one would expect more labeled data of either form to lead to
more accurate models. Fig. 1.4 illustrates the influence of increased number of instance
labels and feature labels independently, and also in tandem. The figure presents an em-
pirical comparison of three schemes: Instances-then-features, Features-then-instances, and
Passive Interleaving. As the name suggests, Instances-then-features, provides labels for ran-
domly selected instances until all instances have been labeled, and then switches to label-
ing features. Similarly, Features-then-instances acquires labels for randomly selected features
first and then switches to getting instance labels. In Passive Interleaving we probabilistically
switch between issuing queries for randomly chosen instance and feature labels.

We see from Fig. 1.4 that fixing the number of labeled features, and increasing the num-
ber of labeled instances steadily improves classification accuracy. This is what one would
expect from traditional supervised learning curves. More interestingly, the results also in-
dicate that we can fix the number of instances, and improve accuracy by labeling more
features. Finally, results on Passive Interleaving show that though both feature labels and
example labels are beneficial by themselves, dual supervision which exploits the inter-
action of examples and features does in fact benefit from acquiring both types of labels
concurrently.

In the sample results above, we selected instances and/or features to be labeled uni-
formly at random. Based on previous work in active learning one would expect that we can
select instances to be labeled more efficiently, by having the learner decide which instances
it is most likely to benefit from. The results in the previous section show that actively select-
ing features to be labeled is also beneficial. Furthermore, the Passive Interleaving results
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FIGURE 1.4: Comparing the effect of instance and feature label acquisition in dual super-
vision. At the end of the learning curves, each method has labels for all available instances
and features; and as such, the last points of all three curves are identical.

suggest that an ideal active dual supervision scheme would actively select both instances
and features for labeling. This setting is illustrated in Figure 1.5.

One could apply an Uncertainty Sampling approach to this problem. However, though
uncertainty scores can be used to order examples or features by themselves, there is no
principled way to compare an uncertainty score computed for an example with a score for
a feature. This is because these scores are based on different heuristics for examples and
features, and are not in comparable units. One alternative is to apply uncertainty-based
active learning schemes to select labels for examples and features separately. Then, at each
iteration of active dual supervision, randomly choose to acquire a label for either an ex-
ample or feature, and probe the corresponding active learner. Such an Active Interleaving
approach is in general more effective than the active learning of either instances or features
in isolation [85]. While easy to implement, and effective in practice, this approach is depen-
dent on the ad hoc selection of the interleave probability parameter, which determines how
frequently to probe for an example versus a feature label. This approach is indeed quite
sensitive to the choice of this interleave probability [85]. An ideal active scheme should,
instead, be able to assess if an instance or feature would be more beneficial at each step,
and select the most informative instance or feature for labeling.

Fortunately, the Expected Utility method is very flexible, capable of addressing both
types of acquisition within a single framework. Since the measure of utility is independent
of the type of supervision and only dependent on the resulting classifier, we can estimate
the expected utility of different forms of acquisitions in the same manner. This yields a
holistic approach to active dual supervision, where the Expected Utility of an instance or
feature label query, q, can be computed as

EU(q) =

K
∑

k=1

P (q = ck)
U(q = ck)

ωq

(1.7)

where ωq is the cost of the query q, P (q = ck) is the probability of the instance or feature
queried being labeled as class ck, and utility U can be computed as in Eq. 1.5. By evaluating
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FIGURE 1.5: Active Dual Supervision

instances and features in the same units, and by measuring utility per unit cost of acquisi-
tion, such a framework facilitates explicit optimization of the trade-offs between the costs
and benefits of the different types of acquisitions. As with Feature Utility, query selection
can be sped up by sub-sampling both examples and features, and evaluating the Expected
Utility on this candidate set. It has been demonstrated that such a holistic approach does
indeed effectively manage the trade-offs between the costs and benefits of the different
types of acquisitions, to deterministically select informative examples or features for label-
ing [2]. Figure 1.6 shows the typical improvements of this unified approach to active dual
supervision over active learning for only example or feature labels.

1.5 Dealing with noisy acquisition

We have discussed various sorts of information that can be acquired (actively) for train-
ing statistical models. Most of the research on active/selective data acquisition either has
assumed that the acquisition sources provide perfect data, or has ignored the quality of
the data sources. Let’s examine this more critically. Here, let’s call the values that we will
acquire “labels”. In principle these could be values of the dependent variable (training
labels), feature labels, feature values, etc., although the research to which we refer has fo-
cused exclusively on training labels.

In practical settings, it may well be that the labeling is not 100% reliable—due to im-
perfect sources, contextual differences in expertise, inherent ambiguity, noisy information
channels, or other reasons. For example, when building diagnostic systems, even experts
are found to disagree on the “ground truth”: “no two experts, of the 5 experts surveyed,
agreed upon diagnoses more than 65% of the time. This might be evidence for the dif-
ferences that exist between sites, as the experts surveyed had gained their expertise at
different locations. If not, however, it raises questions about the correctness of the expert
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FIGURE 1.6: The effectiveness of Expected Utility instantiated for active dual supervision,
compared to alternative label acquisition strategies.

data” [62]. The quality of selectively acquired data recently has received greatly increased
attention, as modelers increasingly have been taking advantage of low-cost human re-
sources for data acquisition. Micro-outsourcing systems, such as Amazon’s Mechanical
Turk (and others) are being used routinely to provide data labels. The cost of labeling us-
ing such systems is much lower than the cost of using experts to label data. However, with
the lower cost can come lower quality.

Surveying all the work on machine learning and data mining with noisy data is be-
yond the scope of this chapter. The interested reader might start with some classic pa-
pers [86, 51, 83]. We will discuss some work that has addressed strategies for the acquisition
of data specifically from noisy sources to improve data quality for machine learning and
data mining (the interested reader should also see work on information fusion [18].
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FIGURE 1.8: Learning curves under different quality levels of training data (q is the prob-
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1.5.1 Multiple label acquisition: round-robin techniques

If data acquisition costs are relatively low, a natural strategy for addressing data quality
is to acquire the same data point multiple times, as illustrated in Figure 1.7. This assumes
that there is at least some independence between repeated acquisitions of the same data
point, with the most clean-cut case being that each acquisition is an independent random
draw of the value of the variable, from some noisy labeling process. We can define the class
of generalized round-robin (GRR) labeling strategies. [82]: request a label for the data point
that currently has the fewest labels. Depending on the process by which the rest of the data
are acquired/selected, generalized round-robin can be instantiated differently. If there is
one fixed set of data points to be labeled, GRR becomes the classic fixed round-robin: cycle
through the data points in some order obtaining another label for each. If a new data point
is presented every k labels, then GRR becomes the common strategy of acquiring a fixed
number of labels on each data point [88, 87].

Whether one ought to engage in round-robin repeated labeling depends on several fac-
tors [82], which are clarified by Figure 1.8. Here we see a set of learning curves2 for the
classic mushroom classification problem from the UCI repository [12]. The mushroom do-
main provides a useful illustration because with perfect labels and a moderate amount of
training, predictive models can achieve perfect classification. Thus, we can examine the
effect of having noisy labels and multiple labels. The several curves in the figure show
learning curves for different labeling qualities—here simply the probability that a labeler
will give the correct label for this binary classification problem. As the labeler quality de-
teriorates, not only does the generalization performance suffer, but importantly the rate-
of-change of the generalization performance as a function of the number of labeled data
suffers markedly.

Thus, we can summarize the conditions under which we should consider repeated
labeling [82]:

1. What is the relative cost of acquiring labels for data points, as compared to the cost of

2Generalization accuracy estimated using cross-validation with a classification tree model.
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acquiring the “unlabeled” part of the data item? The cheaper the labels are, relatively
speaking, the more one can afford to acquire for each unlabeled data point.

2. How steep is the (single-label) learning curve? Specifically, if the rate of change of
generalization performance (however measured) is high, as a function of labeling
new instances, it may instead be best to label new instances rather than to get ad-
ditional labels for already-labeled instances. As illustrated in Figure 1.8, learning
curves generally are steeper when relatively few data points have been labeled, and
when the labeling is relatively good.

3. How steep is the gradient of generalization performance as a function of increasing
the number of labelers? This is a complicated function of the individual labeler qual-
ity and the independence of the labelers. For the former, note that at the extremes one
will see no improvement with increasing the number of labelers—when the labelers
are either perfect or they are completely random. The largest improvement-per-label
comes for mid-range quality. With respect to independence, obviously repeated la-
beling is wasted in the trivial scenario that the labelers all provide the same labels for
the same data points, and maximal value will come when the errors the labelers make
are completely independent. In Figure 1.8, getting additional (non-trivial) labels for
the already-labeled data points would correspond to moving up to a higher-quality
curve.

1.5.2 Multiple label acquisition: selecting examples to re-label

The round-robin techniques described above repeatedly label (re-label) data instances
indiscriminantly. However, if we have the opportunity to monitor the repeated labeling
process, intuitively it seems that we would want to select cases carefully for re-labeling. For
example, all else equal we would rather get another label on a case with label multiset {+,-,-
,+} than one with label multiset {+,+,+,+}. Why? Because we are less certain about the true
label in the former case than in the latter. As in other settings, we can formulate our strategy
as one of uncertainty reduction (cf., Section 1.2); a difference is that here we examine the
uncertainty embodied by the current label multiset. It is important to distinguish here
between how mixed up the label set is, as measured for example by its entropy, and our
uncertainty in the underlying label. For example, a label multiset with 600 +’s and 400 -’s
has high entropy, but if we are expecting high-noise labelers we may be fairly certain that
this is a +. Thus, we should compute careful statistical estimates of the certainty of the
label multiset, in order to select the highest uncertainty sets for re-labeling; doing so gives
consistently better performance than round-robin repeated labeling [82, 35]. Let’s call that
the label uncertainty.

For selective repeated labeling, the label uncertainty is only one sort of information
that can be brought to bear to help select cases to re-label. Alternatively, one can learn a
predictive model from the current set of re-labeled data, and then examine the uncertainty
in the model for each case, for example how close the probability estimated by a model
or ensemble of models is to the classification threshold, using the measures introduced
earlier for uncertainty sampling (Section 1.2). Let’s call this model uncertainty or MU. Model
uncertainty also can identify important cases to relabel; however, its performance is not as
consistent as using label uncertainty [82]. Interestingly, these two notions of uncertainty are
complementary and we can combine them and prefer selecting examples for which both
the label multiset and the model are uncertain of the true class, for example by using the
geometric mean of the two measures [82]. This label-and-model uncertainty is significantly
superior to using either sort of uncertainty alone and therefore also is superior to round-
robin repeated labeling [82].



20 Cost-sensitive Learning

Although model uncertainty uses the same measures as Uncertainty Sampling, there
is a major difference. The difference is that to compute MU the model is applied back to
the cases from which it was trained; mislabeled cases get systematically higher model un-
certainty scores [35]. Thus, model uncertainty actually is more closely akin to methods for
finding labeling errors [14]: it selects cases to label because they are mislabeled, in a “self-
healing” process, rather than because the examples are going to improve a model in the
usual active-learning sense. This can be demonstrated by instead using cross-validation,
applying the model to held-out cases (active-learning style) and then relabeling them; we
see that most of MU’s advantage disappears [35].

1.5.3 Using multiple labels and the dangers of majority voting

Once we have decided to obtain multiple labels for some or all data points, we need
to consider how we are going to use multiple labels for training. The most straightfor-
ward method is to integrate the multiple labels into a single label by taking an average
(mode, mean, median) of the values provided by the labelers. Almost all research in ma-
chine learning and data mining uses this strategy, specifically taking the majority (plural-
ity) vote from multiple classification labelers.

While being straightforward and quite easy to implement, the majority vote integra-
tion strategy is not necessarily the best. Soft labeling can improve the performance of the
resultant classifiers, for example by creating an example for each class weighted by the pro-
portion of the votes [82]. Indeed, soft-labeling can be made “quality aware” if knowledge
of the labeler qualities is available (cf., a quality-aware label uncertainty calculation [35]).
This leads to a caution for researchers studying strategies for acquiring data and learning
models with noisy labelers: showing that our new learning strategy improves modestly
over majority voting may not be saying as much as we think, since simply using a better
integration strategy (e.g., soft labeling) also shows modest improvements over majority
voting (in many cases).

A different, important danger of majority voting comes when labelers can have vary-
ing quality: a low-quality labeler will “pull down” the majority quality when voting with
higher-quality labelers. With labelers who make independent errors, there is a rather nar-
row range of quality under which we would want to use majority voting [43, 82]. An
alternative is to use a quality-aware technique for integrating the labels.

1.5.4 Estimating the quality of acquisition sources

If we want to eliminate low-quality sources or to take their quality into account when
coalescing the acquired data, we will have to know or estimate the quality of the sources—
the labelers. The easiest method for estimating the quality of the labelers is to give them a
reasonably large quantity of “gold standard” data, for which we know the truth, so that we
can estimate error statistics. Even ignoring changes in quality over time, the obvious draw-
back is that this is an expensive undertaking. We would prefer not to waste our labeling
budget getting labels on cases for which we already know the answer.

Fortunately, once we have acquired multiple labels on multiple data points, even with-
out knowing any true labels we can estimate labeler quality using a maximum likelihood
expectation maximization (EM) framework [19]. Specifically, given as input a set of N ob-
jects, o1, . . . , oN , we associate with each a latent true class label T (on), picked from one of
the L different possible labels. Each object is annotated by one or more of the K labelers. To

each labeler (k) we assign a latent “confusion matrix” π
(k)
ij , which gives the probabilty that

worker (k), when presented with an object of true class i, will classify the object into cat-
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egory j. The EM-based technique simultaneously estimates the latent true classes and the
labeler qualities. Alternatively, we could estimate the labeler confusion matrices using a
Bayesian framework [16], and can extend the frameworks to the situation where some data
instances are harder to label correctly than others [96], and to the situation where labelers
differ systematically in their labels (and this bias can then be corrected to improve the
integrated labels) [36]. Such situations are not just figments of researchers’ imaginations.
For example, a problem of contemporary interest in on-line advertising is classifying web
content as to the level of objectionability to advertisers, so that they can make informed
decisions about whether to serve an ad for a particular brand on a particular page. Some
pages may be classified as objectionable immediately; other pages may be much more dif-
ficult, either because they require more work or because of definition nuances. In addition,
labelers do systematically differ in their opinions on objectionability: one person’s R-rating
may be another’s PG-rating.

If we are willing to estimate quality in tandem with learning models, we could use an
EM procedure to iterate the estimation of the quality with the learning of models, with
estimated-quality-aware supervision [67, 68].

1.5.5 Learning to choose labelers

We possibly can be even more selective. As illustrated in Figure 1.9, we can select from
among labelers as their quality becomes apparent, choosing particularly good labelers [22,
99] or eliminating low-quality labelers [23, 20]. Even without repeated labeling, we can
estimate quality by comparing the labelers’ labels with the predictions from the model
learned from all the labeled examples—effectively treating the model predictions as a noisy
version of the truth [20]. If we do want to engage in repeated labeling, we can compare
labelers with each other and keep track of confidence intervals on their qualities; if the
upper limit of the confidence interval falls too low, we can avoid using that expert in the
future [23].

FIGURE 1.9: Selecting Oracle(s)

What’s more, we can begin to consider that different labelers may have different sorts
of expertise. If so, it may be worthwhile to model labeler quality conditioned on the data
instance, working toward selecting the labeler best suited to each specific instance [22, 99].
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1.5.6 Where to go from here?

Research on selective data acquisition with noisy labelers is still in its infancy. Little has
been done to compare labeler selection strategies with selective repeated labeling strategies
and with sophisticated label integration strategies. Moreover, little work has addressed
integrating all three. It would be helpful to have procedures that simultaneously learn
models from multiple labelers, estimate the quality of the labelers, combine the labels ac-
cordingly, all the while selecting which examples to re-label, and which labelers to apply
to which examples. Furthermore, learning with multiple, noisy labelers is a strict gener-
alization of traditional active learning, which may be amenable to general selective data
acquisition methods such as expected utility [22] (cf., Section 1.2). Little has been done to
unify theoretically or empirically the notions of repeated labeling, quality-aware selection,
and active learning.

Most of these same ideas apply beyond the acquisition of training labels, to all the
other data acquisition scenarios considered in this chapter: selectively acquired data may
be noisy, but the noise may be mitigated by repeated labeling and/or estimating the quality
of labelers. For example, we may want to get repeated feature values when their acquisi-
tion is noisy, for example because they are the result of error-prone human reporting or
experimental procedures.

1.6 Prediction Time Information Acquisition

Traditional active information acquisition is focused on the gathering of instance labels
and feature values at training time. However, in many realistic settings, we may also have
the need or opportunity to acquire information when the learned models are used (call this
“prediction time”). For example, if features are costly at training time, why would these
features not incur a similar cost at prediction time? Extending the techniques of active
feature-value acquisition, we can address the problem of procuring feature values at pre-
diction time. This additional information, can, in turn, potentially offer greater clarity into
the state of the instance being examined, and thereby increase predictive performance, all
at some cost. In an analogous setting to prediction time active feature value acquisition, if
an oracle is available to provide class labels for instances at training time, the same oracle
may be available at test time, providing a supplement to error-prone statistical models,
with the intent of reducing the total misclassification cost experienced by the system con-
suming the class predictions. This objective of this section is to develop motivating settings
suitable for predictive time information acquisition, and to explore effective techniques for
gathering information cost-effectively.

1.6.1 Active Inference

At first blush, it might seem that prediction-time acquisition of training labels would
not make sense: if labels are available for the instances being processed, then why perform
potentially error prone statistical inference in the first place? While “ground truth” labels
are likely to be preferable to statistical prediction, all things being equal, such an equal
comparison ignores the cost-sensitive context in which the problem is likely to exist. Ac-
quisition of ground truth labels may be more costly than simply making a model-based
prediction; however, it may nonetheless be more cost-effective to acquire particular labels
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at this heightened cost depending on the costs incurred from making certain errors in pre-
diction. We refer to this prediction-time acquisition of label information as Active Inference.

More formally, given a set of n discrete classes, cj ∈ C, j = 1, . . . , n, and some
cost function, cost(ck|cj), yielding the penalty for predicting a label ck for an exam-
ple whose true label is cj , the optimal model-based prediction for a given x is then:

c = argminc

∑

j P̂ (cj |x)cost(c|cj), where P̂ (cj |x) represents a model’s estimated poste-
rior probability of belonging in class cj given an instance x. The total expected cost on a
given set T of to-be-classified data is then:

LT =
∑

x∈T

φ(x)min
c

∑

j

P̂ (cj |x)cost(c|cj) (1.8)

Where φ(x) is the number of times a given example x appears during test time. Note
that unless stated otherwise, φ(x) = 1, and can therefore simply be ignored. This is the
typical case for pool-based test sets where each instance to be labeled is unique.

Given a budget, B, and a cost structure for gathering labels for examples at prediction
time, C(x), the objective of an active inference strategy is to then select a set of examples
for which to acquire labels, A, such that the expected cost incurred is minimized, while
adhering to the budget constraints:

A = arg min
A′⊂T

∑

x∈T�A′

φ(x)min
c

∑

j

P̂ (cj |x)cost(c|cj) (1.9)

+
∑

x∈A′

C(x)

s.t. B ≥
∑

x∈A′

C(x)

Given a typical setting of evaluating a classifier utilizing only local feature values on a
fixed set of test instances drawn without replacement from P (x), choosing the optimal in-
ference set, A is straight forward. Since the labels of each instance are considered to be i.i.d.,
the utility for acquiring a label on each instance given in the right side of Equation 1.9 can
be calculated independently, and since the predicted class labels are uncorrelated, greedy
selection can be performed until either the budget is exhausted or further selection is no
longer beneficial. However, there are settings where active inference is both particularly
useful and particularly interesting: while performing collective inference, where network
structure and similarity amongst neighbors is specifically included while labeling, and
online classification, where instances are drawn with replacement from some hidden distri-
bution. The remainder of this section is dedicated to the details of these two special cases.

1.6.1.1 Active Collective Inference

By leveraging the correlation amongst the labels of connected instances in a network,
collective inference can often achieve predictive performance beyond that which is possi-
ble through classification using only local features. However, when performing collective
inference in settings with noisy local labels (e.g. due to imperfect local label predictions,
limitations of approximate inference, or other noise), the blessing of collective inference
may become a curse; incorrect labels are propagated, effectively multiplying the number
of mistakes that are made. Given a trained classifier and a test network, intent of Active
Collective Inference is to carefully select those nodes in a network for which to query an or-
acle for a “gold standard” label that will be hard set when performing collective inference,
such that the collective generalization performance is maximally improved [66].
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Unlike the traditional content-only classification setting, in collective classification the
label, y, of a given to a particular example, x, depends not only on the features used to rep-
resent x, but on the labels and attributes of x’s neighbors in the network being considered.
This makes estimation of the benefits of acquiring a single example’s label for active infer-
ence challenging; the addition may alter the benefits of all other nodes in the graph, and
approximation is generally required in order to make inference tractable. Furthermore, as
in other data acquisition tasks (Section 1.2) finding the optimal set is known to be an NP-
hard problem as it necessitates the investigation of all possible candidate active inference
sets [9, 10, 11]. Because of the computational difficulties associated with finding the opti-
mal set of instances to acquire for active inference, several approximation techniques have
been devised that enable a substantial reduction in misclassification cost while operating
on a limited annotation budget.

First amongst the approximation techniques for active collective inference are so-called
connectivity metrics. These metrics rely solely on the graphical structure of the network in
order to select those instances with the greatest level of connectivity within the graph. Mea-
sures such as closeness centrality (the average distance from node x to all other nodes), and
betweenness centrality (the proportion of shortest paths passing through a node x) yield
information about how central nodes are in a graph. By using graph k-means and utiliz-
ing cluster centers, or simply using measures such as degree (the number of connections),
locally well-connected examples can be selected. The intent of connectivity-based active
inference is to select those nodes with the greatest potential influence, without considering
any of the variables or labels used in collective inference [66].

Approximate Inference and Greedy Acquisition attempts to optimize the first order Markov
relaxation of the active inference utility given in Equation 1.9. Here, the expected utility of
each instance is assessed and the instance with the most promise is used to supplement
A. The utility for an acquiring a particular x then involves an expected value computation
over all possible label assignments for that x, where the value given to each label assign-
ment is the expected network misclassification cost given in Equation 1.8. The enormous
computational load exerted here is eased somewhat through the use of approximate infer-
ence [9, 10, 11].

An alternative approach to active collective inference operates by building a collective
model in order to predict whether or not the predictions at each node are correct, P (c|x).
The effectiveness of acquiring the label for a particular xi is assumed to be a function of
the gradient of P (c|xj) with respect to a change in P (c|xi) for all xj ∈ T, and the change in
prediction correctness for the xi being considered. It is important to consider both whether
a change in the label of a xi can change many (in)correct labels, as well as how likely it is
that xi is already correctly classified. Appropriate choice of the functional form of P (c|x)
leads to efficient analytic computation at each step. This particular strategy is known as
viral marketing acquisition, due to it’s similarity with assumptions used in models used for
performing marketing in network settings. Here the effectiveness of making a particular
promotion is a function of how that promotion influences the target’s buying habits, and
how that customer’s buying habits influence others [9, 10, 11].

Often, the mistakes in prediction caused by collective inference tend to take the form of
closely linked “islands”. Focusing on eliminating these islands, reflect and correct attempts
to find centers of these incorrect clusters and acquire their labels. In order to do so, reflect
and correct relies on the construction of a secondary model utilizing specialized features
believed to indicate label effectiveness. Local, neighbor-centric, and global features are de-
rived to build a predictive model used to estimate the probability that a given xi’s label is
incorrect. Built using the labeled network available at test time, this “correctness model”
is then applied to the collective inference results at test time. Rather than directly incor-
porating the utility of annotating a xi to reduce the overall misclassification cost given in



Selective Data Acquisition for Machine Learning 25

Equation 1.8, reflect and correct leverages an uncertainty-like measurement, seeking the
example likely to be misclassified with the greatest number of misclassified neighbors.
This is akin to choosing the center of the largest island of incorrectness [9, 10, 11].

1.6.1.2 Online Active Inference

Many realistic settings involve online prediction; performing classification on instances
drawn sequentially and with replacement from some hidden distribution. Example appli-
cations include query classification, traffic analysis at web servers, classification of web
pages seen in ad server logs and web logs, and marketing decisions faced in online ad-
vertising. Because instances may be seen repeatedly as time progresses, the expected fre-
quency of occurrence for each instance x may be non-zero. As a result, the expected mis-
classification cost given in Equation 1.8 may be heavily influenced by the frequency of
certain examples and the cumulative cost their repetition imparts.

For many of the problems faced on the web, this problem imparted by repeated en-
counters with certain x’s becomes particularly acute; heavy-tailed distributions imply that
even though a great many unique instances may be encountered, a handful of instances
may impart a majority of the total possible misclassification cost. Fortunately, it is often
possible to defer the predictive model’s predictions to an oracle, sacrificing a one-time la-
beling cost in order minimize future misclassification costs for particular examples. The
task on this online active inference is then to select those instances from the example stream
for “gold standard” labeling offering the greatest reduction in “impression-sensitive” ex-
pected loss given in Equation 1.8 while factoring in label acquisition costs and adhering to
a limited budget [3].
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FIGURE 1.10: Online Active Inference: presented with an incoming example, a system
must decide if it is to sent a model’s predicted label to an end system, or pass the example
to an oracle for more reliable, albeit more expensive annotation.

A typical use case of online active inference is seen in Figure 1.10. For each example
x seen in the stream, the active inference system computes an expected label acquisition

benefit, EU(x) =
[

φ̂(x)minc

∑

j P̂ (cj |x)cost(c|cj)
]

−C(x), where C(x) is the label acquisi-

tion cost for x. As in other active inference settings, an ideal system would seek the x ∈ A
optimizing

∑

x∈A EU(x) constrained such that
∑

x∈A C(x) ≤ B.

However, the online, stream-based setting imparts several complications when mak-
ing the above optimization. First, the estimated probability, P (x), and associated φ(x), is
unknown a priori, and must be estimated on the fly. This estimation relies on the estab-
lished field of univariate density estimation, or using the feature values of each x in order
to compute a conditional density of each x. Second, each time a given x is encountered,
this instance’s expected misclassification cost is reduced. Accurate utility measurements
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require that this reduction in expected cost should be extrapolated to the future. A third
complication stems from how the budget, B is set. A budget-per-instance a one-time fixed
budget, and periodic fixed budgets yield different objective functions, complicating the
task faced in online active inference.

A fourth and particularly insidious difficultly stems from the fact that P (x) is unknown.
This implies that a system sampling a stream of examples from P (x) may not even know
the set of unique x’s that can potentially be encountered; as a consequence, the set of util-
ities under consideration. However, it is possible to build a distribution on the expected
utility values conditioned on the probability of at least one occurrence during the time
period under consideration. An appropriate lower bound, τ can then be chosen whereby
labeling all examples with a utility greater than τ gathers as many of the highest utility
examples as is possible while exhausting the available budget during that time period [3].

While labeling for the purpose of online active inference, it is also appealing to consider
how these labeled examples reduce overall cost via incorporation into the training set and
updating the underlaying model. Indeed, it is reasonable to consider how to allocate a sin-
gle budget in order to achieve the best overall performance, while taking into account both
active learning and active inference. While it is an interesting direction to consider how ex-
pected utility-optimizing techniques for active learning can be incorporated into the same
scale as the proposed technique for online active inference, it can be shown that by those
examples with the hightest EU(x) for active inference doubles as a generalized uncertainty
sampling strategy for active learning potentially offering reasonable label choices for the
task of model improvement while explicitly reducing misclassification cost [3].

1.6.2 Prediction Time Active Feature Value Acquisition

In many domains we can acquire additional information for selected test instances that
may help improve our classification performance on the test set. When this additional in-
formation comes at a cost, or is potentially noisy, it is best to actively select the instances
that are most likely to benefit from acquiring additional information. This problem of
prediction-time Active Feature-value Acquisition is analogous to AFA during induction
as discussed in Section 1.3. This setting has been studied in the context of customer tar-
geting models [37], where, when making a decision for a customer, additional information
may be purchased, if necessary, to make a more informed decision.

At the time of classifier induction, class labels are available for all instances including
the incomplete instances. This information can be used effectively to estimate the poten-
tial value of acquiring more information for the incomplete instances. However, this label
information is obviously not present during prediction on test instances. Yet, we must eval-
uate the benefit of acquiring additional features for an incomplete instance, versus making
a prediction using only incomplete feature information.

However, uncertainty-based heuristics are still applicable in this setting. In particular,
given a set of incomplete test instances, one can apply a previously-trained classifier to pre-
dict the class membership probabilities of these instances, using only the feature-values
that are known. The uncertainty of these predictions can be computed using a measure
such as unlabeled margin in Equation 1.2. Then all the feature-values for the most uncer-
tain instances can be acquired until the acquisition budget is exhausted.

The above Uncertainty Sampling strategy aims to obtain more information about an
uncertain prediction, with the hope that it will allow a more certain prediction, which in
turn is assumed to result in a more accurate prediction. Even if more certain predictions are
likely to be more accurate, acquiring additional information on the most uncertain instance
may not result in the highest payoff. For example, if an instance is inherently ambiguous.
Alternatively, we can select additional features-values only if they are expected to reduce
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the uncertainty in classification after acquisition. Again, this can be viewed as a special
case of the Expected Utility framework, where utility U in Equation 1.4 can be measured
by the log of the unlabeled margin [37].

Another factor to be taken into consideration at prediction-time is the cost of misclas-
sifying an instance. Often misclassification costs are non-symmetric, such as the cost of
misclassifying a malignant tumor as being benign. In such cases, one needs to weigh the
cost of acquisitions with the cost of misclassification for each test instance. When acqui-
sition and misclassification costs can be represented in the same units, we can selectively
acquire feature values, so as to minimize the sum of the acquisition cost and expected
misclassification cost [81].

Just as misclassification costs associated with different types of errors may not be uni-
form, it is also often possible to acquire arbitrary subsets of feature values, each at a dif-
ferent cost, a setting that has not been extensively explored in the research literature. It
may be natural to extend the Expected Utility framework to consider sets of categorical
features. However, estimating the joint probability distribution of all possible sets of val-
ues may render such a policy hopelessly inefficient. To overcome the constraints of this
computational complexity, one may consider only potentially relevant feature subsets for
acquisition, by combining innovative data structures and dynamic programming for incre-
mentally updating the search space of informative subsets as new evidence is acquired—
exploiting dependencies between missing features so as to share information value com-
putations between different feature subsets, making the computation of the information
value of different feature subsets tractable [8].

Finally, if we know that feature values can be acquired at test time, it would make sense
to account for this at the time of classifier induction. For example, by avoiding expensive
features at induction that may result in a more accurate model, but are not worth the cost at
prediction time. Such a setting can be addressed in a budgeted learning framework where
a learner can spend a fixed learning budget bl to acquire training data, so as to produce a
classifier that spends at most bc per test instance[38].

1.7 Alternative acquisition settings

There are other sorts of data that can be acquired at a cost to improve machine learn-
ing, besides the values for individual variables for the construction of predictive models.
This section covers some alternative settings for applying a modeling budget. This section
begins with a treatment of the active collection of feature values for the purpose of per-
forming unsupervised learning. Here, additional information may be acquired in order to
improve the quality of tasks such as clustering.

This section then continues to investigate the selection of entire examples by class, in
order that the training data comprise a “better” proportion of the constituent classes. We
then discuss the related scenario where a human can be deployed to search for relevant
information, for example, instances belonging to a given class, as well as feature values
and feature labels. Finally, we present the important and often-ignored fact that in many
practical situations, learned models are applied in a decision-making context, where max-
imizing the accuracy (or some other decision-agnostic measure) of one model is not the
ultimate goal. Rather, we want to optimize decision making. Decision-focused strategies
may acquire different data from model-focused strategies.
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1.7.1 Information Acquisition for Unsupervised Learning

Almost all work in information acquisition has addressed supervised settings. How-
ever information may also be acquired for unstructured tasks, such as clustering. Inter-
estingly, different clustering approaches may employ different types of information which
may be potentially acquired at a cost, such as constraints as well as feature values.

Most clustering policies assume that each instance is represented by a vector of feature
values. As is the case in supervised learning, clustering is undermined when the instance
representation is incomplete and can therefore benefit from effective policies to improve
clustering through cost-effective acquisition of information. Consider for example data on
consumers’ preferences. Clustering can be applied to this data in order to derive natural
groupings of products based on customer preferences, such as for data-driven discovery
of movie genres [6]. Clustering has also been used to help produce product/service rec-
ommendations to consumers [30]. In all these cases, performance can be improved with
cost-effective acquisition of information.

Let us first consider the Expected Utility framework for clustering. On the outset it may
appear that, given clustering algorithms typically aim to optimize some objective function,
changes in the value of this function can be used to reflect the utility U from prospective
feature value acquisitions. However, recall that typically only different clustering assign-
ments yield changes in the corresponding clustering algorithm’s objective function. Yet, as
noted in [91], a costly feature value acquisition may alter the value of algorithm’s objec-
tive function, without changing the assignment of even a single instance into a different
cluster. For the popular K-means clustering algorithm, for example, such an approach may
select feature values that alter cluster centroid locations (decreasing the total distances be-
tween instances and their respective centroids); however, these changes may not change
the cluster assignments significantly or at all. The effect of such wasteful acquisitions can
be significant. Alternatively, it is useful to consider utilities which capture the impact on
clustering configuration caused by an acquisition. For example, utility can be measured by
the number of instances for which cluster membership changes as the result of an acquisi-
tion [91].

Some clustering approaches do not employ a vectorial data representation; instead,
the proximity of pairs of instances is provided. Hence, for a data set with N instances,
the required information scales with O(N2). It has been shown [34, 15] that identifying
the most informative proximity measures to acquire can be critical for overcoming the in-
herent data sparseness of proximity data, making such methods feasible in practice. For
example, using the expected value of information to quantify the gain from additional in-
formation, [34] proposed an algorithm which identifies proximity values so as to minimize
the risk from estimating clusters from the existing data. Thus, selected acquisitions aim to
minimize the loss from deciding only based on the incomplete information instead of the
optimal decision, when all proximity values are known.

Semi supervised clustering also offers interesting opportunities to acquire limited su-
pervision to improve clustering cost-effectively. For example, a subset of instances, must-
link and cannot-link constraints can specify instance pairs that must and must-not belong
to the same cluster, respectively. Similarly, cluster-level constraints indicate whether or
not instances in two different clusters ought to be assigned to the same cluster. To im-
prove clustering, an information acquisition policy may suggest the constraints for which
pairs would be most informative to acquire. Similar to active learning, the feature values,
from which distances are derived, are known. Acquiring constraints for clustering may
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not bear much similarity to instance-level information acquisition for supervised learning.
However, the uncertainly reduction principle has been effectively adapted to this setting
as well. Specifically, for cluster-level constraint acquisition [39] proposes to acquire con-
straints when it is most difficult to determine whether two clusters should be merged.
In contrast, for acquiring instance-level constraints, [7] proposes a policy which does
not follow principles used in supervised settings. In particular, given the impact of ini-
tial centroids on clustering outcomes of the K-means clustering algorithm, they propose
a constraint acquisition policy which improves the identification of cluster centroids and
their neighborhoods with fewer queries. To accomplish this, they employ the farthest first
traversal scheme to identify points from different clusters using fewer queries. A subse-
quent consolidation phase, acquires additional pair-wise constraints to explore the struc-
ture of each cluster’s neighborhood.

In future work it would be interesting to consider policies that can consider different
types of information, such as constraints information and feature values, which may be
acquired at different costs. However, as reflected in the work we discuss above, and quite
differently from the supervised setting, employing the Expected Utility framework for this
task may not be the obvious choice in this case.

1.7.2 Class-Conditional Example Acquisition

In many model induction tasks, the amount of training data is constrained not by the
cost of instance labels, but by the cost of gathering the independent covariates that are
used to predict these labels. For example, in certain settings examples can be acquired by
class, but gathering the feature values requires costly physical tests and experiments, large
amounts of time or computation, or some other source of information that requires some
budget outlay. Consider, for example, the problem of building predictive models based on
data collected through an “artificial nose” with the intent of “sniffing out” explosive or
hazardous chemical compounds [48, 50, 49]. In this setting, the reactivity of a large num-
ber of chemicals are already known, representing label-conditioned pools of available in-
stances. However, producing these chemicals in a laboratory setting and running the resul-
tant compound through the artificial nose may be an expensive, time-consuming process.
This problem appears to face the inverse of the difficulties faced by active learning—labels
essentially come for free, while the independent feature values are completely unknown
and must be gathered at a cost (let’s say, all at once). In this setting, it becomes important
to consider the question: “in what proportion should classes be represented in a training
set of a certain size?” [95]

Let’s call the problem of proportioning class labels in a selection of n additional train-
ing instances, ”Active Class Selection” (ACS) [48, 50, 49, 95]. This process is exemplified in
Figure 1.11. In this setting, there is assumed to be large, class-conditioned (virtual) pools
of available instances with completely hidden feature values. At each epoch, t, of the ACS
process, the task is to leverage the current model when selecting examples from these pools
in a proportion believed to have the greatest effectiveness for improving the generalization
performance of this model. The feature values for each instance are then collected and the
complete instances are added to the training set. The model is re-constructed and the pro-
cesses is repeated until n examples are obtained (because the budget is exhausted or some
other stopping criterion is met, such as a computational limit). Note that this situation can
be considered to be a special case of the instance completion setting of Active Feature Ac-
quisition (discussed above). It is a degenerate special case because, prior to selection, there
is no information at all about the instances other than their classes.

For ACS, the extreme lack of information to guide selection leads to the development
of unique uncertainty and utility estimators, which, in the absence of predictive covariates,
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FIGURE 1.11: Active Class Selection: Gathering instances from random class-conditioned
fonts in a proportion believed to offer greatest improvement in generalization perfor-
mance.

require unique approximations. While alternative approaches to active class selection have
emerged, for thematic clarity, uncertainty-based and expected utility-based approaches
will be presented first. Note that because effective classification requires that both sides
of a prediction boundary be represented, unlike typical active learning techniques, active
class selection typically samples classes from their respective score distributions [72, 73].

Uncertainty-based approaches
This family of techniques for performing active class selection is based on the volatility
in the predictions made about certain classes—those classes whose cross-validated pre-
dictions are subject to the most change between successive epochs of instance selection
are likely to be based upon an uncertain predictor, and amenable to refinement by the in-
corporation of additional training data [48, 49]. Analogous to the case of more traditional
uncertainty-based data acquisition, several heuristics have been devised to capture the no-
tion of variability.

One measure of the uncertainty of a learned model is how volatile its predictive perfor-
mance is in the face of new training data. For example, in Figure 1.8 we see various, typ-
ical learning curves. With reasonably accurate training data, the modeling is much more
volatile at the left side of the figure, showing large changes in generalization performance
for the same amount of new training data. We can think that as the predictor gains knowl-
edge of the problem space, it tends to solidify in the face of data, exhibiting less change
and greater certainty. For ACS, we might wonder, if the learning curves will be equally
steep regardless of the class of the training data [48, 50, 49]. With this in mind, we can se-
lect instances at epoch t from the classes in proportion to their improvements in accuracy
at t−1 and t−2. For example, we could use cross-validation to estimate the generalization
performance of the classifier with respect to each class, A(c); class c can then be sampled
according to:
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pt
A(c) ∝

max
{

0,At−1(c) −At−2(c)
}

∑

c′ max {0,At−1(c′) −At−2(c′)}

Alternatively, we could consider general volatility in class members’ predicted labels,
beyond improvement in the model’s ability to predict the class. Again, by using cross-
validated predictions at successive epochs, it is possible to isolate members of each class,
and observe changes in the predicted class for each instance. For example, when the pre-
dicted label of a given instance changes between successive epochs, we can deem the in-
stance to have been redistricted [48, 50, 49]. Again considering the level of volatility in a
model’s predictions to be a measurement of uncertainty, we can sample classes at epoch t

according to each classes’ proportional measure of redistricting:

pt
R(c) ∝

1
|c|

∑

x∈c I(f t−1(x) 6= f t−2(x))
∑

c′
1

|c′|

∑

x∈c′ I(f t−1(x) 6= f t−2(x))

Where I(·) is an indicator function taking the value of 1 if its argument is true and 0 oth-
erwise. f t−1(x) and f t−2(x) are the predicted labels for instance x from the models trained
at epoch t − 1 and t − 2 respectively [48, 50, 49].

Expected Class Utility
The previously described active class selection heuristics are reliant on the assumption
that adding examples belonging to a particular class will improve the predictive accuracy
with respect to that class. This does not directly estimate the utility of adding members of
a particular class to a model’s overall performance. Instead, it may be preferable to select
classes whose instances’ presence in the training set will reduce a model’s misclassification
cost by the greatest amount in expectation.

Let cost(ci|cj) be the cost of predicting ci on an instance x whose true label is cj . Then
the expected empirical misclassification cost over a sample data set, D is:

R̂ =
1

|D|

∑

x∈D

∑

i

P̂ (ci|x)cost(ci|y)

Where y is the correct class for a given x. Typically in the active class selection set-
ting, this expectation would be taken over the training set (e.g. D = T ), preferably using
cross-validation. In order to reduce this risk, we would like to select examples from class c

leading to the greatest reduction in this expected risk [50].

Consider a predictive model P̂T∪c(·|x), a model built on the training set, T , supple-
mented with an arbitrary example belonging to class c. Given the opportunity to choose
an additional class-representative example to the training pool, we would like to select the
class that reduces expected risk by the greatest amount:

c̄ = argmax
c

U(c)

Where

U(c) =
1

|D|

∑

x∈D

∑

i

P̂T (ci|x)cost(ci|y) −
1

|D|

∑

x∈D

∑

i

P̂T∪c(ci|x)cost(ci|y)

Of course the benefit of adding additional examples on a test data set is unknown.
Furthermore, the impact of a particular class’s examples may vary depending on the fea-
ture values of particular instances. In order to cope with these issues, we can estimate via
cross-validation on the training set. Using sampling, we can try various class-conditional
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additions and compute the expected benefit of a class across that class’s representatives in
T , assessed on the testing folds. The above utility then becomes:

Û(c) = Ex∈c

[

1

|D|

∑

x∈D

∑

i

P̂T (ci|x)cost(ci|y) −
1

|D|

∑

x∈D

∑

i

P̂T∪c(ci|x)cost(ci|y)

]

Note that it is often preferred to add examples in batch. In this case, we may wish to
sample from the classes in proportion to their respective utilities:

pt

Û
(c) ∝

Û(c)
∑

c′ Û(c′)

Note that diverse class-conditional acquisition costs can be incorporated as in Sec-

tion 1.2, utilizing Û(c)
ωc

where ωc is the (expected) cost of acquiring the feature vector of
an example in class c.

Alternative approaches to ACS
In addition to uncertainty-based and utility-based techniques, there are several alternative
techniques for performing active class selection. Motivated by empirical results showing
that barring any domain-specific information, when collecting examples for a training set
of size n, a balanced class distribution tends to offer reasonable AUC on test data [92, 95], a
reasonable baseline approach to active class selection is simply to select classes in balanced
proportion.

Search strategies may alternately be employed in order to reveal the most effective class
ratio at each epoch. Utilizing a nested cross-validation on the training set, the space of class
ratios can be explored, with the most favorable ratio being utilized at each epoch. Note
that it is not possible to explore all possible class ratios in all epochs, without eventually
spending too much on one class or another. Thus, as we approach n we can narrow the
range of class ratios, assuming that there is a problem-optimal class ratio that will become
more apparent as we obtain more data [95].

It should be noted that many techniques employed for building classification models
assume an identical or similar training and test distribution. Violating this assumption
may lead to biased predictions on test data where classes preferentially represented in the
training data are predicted more frequently. In particular ”increasing the prior probability
of a class increases the posterior probability of the class, moving the classification bound-
ary for that class so that more cases are classified into that class” [76, 61]. Thus in settings
where instances are selected specifically in proportions different from those seen in the
wild, posterior probability estimates should be properly calibrated to be aligned with the
test data, if possible [61, 26, 95].

1.7.3 Guided Selection

A much more general issue in selective data acquisition is the amount of control ceded
to the “oracle” doing the acquisition. The work discussed so far assumes that an oracle
will be queried for some specific value, and the oracle simply returns that value (or a noisy
realization). However, if the oracle is actually a person, he or she may be able to apply
considerable intelligence and other resources to “guide” the selection. Such guidance is
especially helpful in situations where some aspect of the data is rare—where purely data-
driven strategies are particularly challenged.
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Let’s continue thinking about the active class selection setting as a concrete case. In
many practical settings, one class is quite rare. As a motivational example, consider build-
ing a predictive model from scratch designed to classify web pages containing a particular
topic of interest. While large absolute numbers of such web pages may be present on the
web, they may be outnumbered by uninteresting pages by a million to one or worse (take,
for instance, the task of detecting and removing hate speech from the web [5]).

Unfortunately, when the class distribution is so skewed, active learning strategies can
fail completely—and the failure is not simply due to the hurdles faced when trying to learn
models in settings with skewed class distribution, a problem that has received a fair bit of
attention [93, 4]. Rather, the problem faced by the active learner is far more treacherous:
learning techniques cannot even concentrate on the rare instances as the techniques are
unaware which instances to focus on.

Perhaps even more insidious is the difficulty posed by classes consisting of rare, dis-
junctive sub-concepts. These disjuncts can emerge even in problems spaces without such
an extreme class skew: when members of an important class do not manifest themselves as
a simple, continuously dense region of the input space, but rather as many small disjoint
clusters embedded throughout the input space [94]. For an active learner, these “small dis-
juncts” act like rare classes: when an active learner has not been exposed to instances of a
sub-concept, how can it best choose instances to label in order to properly distinguish that
subconcept from its containing space?

While a plethora of techniques have been proposed for performing active learning
specifically in the high-skew setting [89, 13, 104, 27] as well as techniques where the geome-
try and feature-density of the problem space are explicitly included when making instance
selections [105, 33, 21, 59, 98, 53], these techniques, as initially appealing as they may seem,
may fail just as badly as traditional active learning techniques. Class skew and sub-concept
rarity may be sufficient to thwart them completely [5, 4].

However, in these extremely difficult settings, we can task humans to search the prob-
lem space for rare cases, using tools (like search engines) and possibly interacting with
the base learner. Consider the motivating example of hate speech classification on the web
(from above). While an active learner may experience difficulty exploring the details of
this rare class, a human oracle armed with a search interface is likely to expose examples
of hate speech easily. In fact, given the coverage of modern web search engines, a human
can produce interesting examples from a much larger sample of the problem space, far
beyond that which is likely to be contained in a sample pool for active learning. This is
critical due to hardware-imposed constraints on the size of the pool an active learner is
able to choose from—e.g., a random draw of several hundred thousand examples from
the problem space may not even contain any members of the minority class or of rare
disjuncts!

Guided Learning is the general process of utilizing oracles to search the problem space,
using their domain expertise to seek instances representing the interesting regions of the
problem space. Figure 1.12 presents the general guided learning setting. Here, given some
interface enabling search over the domain in question, an oracle searches for interesting
examples, which are either supplemented with an implicit label by the oracle, or sent for
explicit labeling as a second step. These examples are then added to the training set and a
model is re-trained. Oracles can leverage their background knowledge of the problem be-
ing faced. By incorporating the techniques of active class selection oracles can be directed
to gather instances in a class-proportion believed to most strongly help train a model. Fur-
ther, by allowing the oracle to interact with the base learner, confusing instances, those
that “fool” the model can be sought out from the problem space and used for subsequent
training in a form of human-guided uncertainty sampling.

While guided learning often presents an attractive and cost-effective alternative to ac-
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FIGURE 1.12: Guided Learning: An oracle selecting useful examples from the instance
space.

tive learning, particularly in difficult settings, the overall guided information acquisition
paradigm is flexible, human intelligence and background knowledge can be used to seek a
wide variety of information. As an example of alternative sources of information available
through guided information acquisition, consider the problem of finding useful features
when building classification models. In many settings, the choice of which features to use
as a capable separator of classes may not be initially obvious. Simply including many fea-
tures also is not an appealing option; with insufficient labeled examples, the underlaying
model or feature selection technique may confuse signal with noise, attributing predictive
power to certain features simply due to noise and false-signals [65, 64].

However, human are often able to apply their background knowledge, suggesting dis-
criminative features for a given problem or removing useless features currently being uti-
lized by an existing model in order to approve predictive performance [65, 64, 17]. An
example of this process can be seen in Figure 1.13. In this guided feature selection paradigm,
human oracles describe additional features to the predictive system, in effect adding addi-
tional columns to the instance information matrix. Note that these features may be func-
tions of existing feature values, or they may require explicit feature value acquisition as in
Section 1.3.

Active feature labeling and active dual supervision are demonstrated to be effective
techniques for reducing the total annotation effort required for building effective predic-
tive models (See Section 1.4). However, while appropriately chosen feature labels may
facilitate the construction of models able to effectively discriminate between classes, as
with active learning, particularly difficult situations may stymie active feature selection
and active dual supervision, wasting many queries on uninformative queries, simply be-
cause the base model has very little knowledge of the problem space [1]. However, just
as in guided learning, human oracles may be requested to seek polarity labels for those
features thought to most effectively discern between the classes. This process may be seen
in Figure 1.14. Note that this process may be seamlessly incorporated with guided feature
selection, adding new features and their associated label simultaneously. In the case of text
classification, this may involve adding a term or phrase not originally considered, and as-
signing to that phrase a class polarity. This guided feature labeling has been demonstrated
to offer much greater effectiveness than active feature labeling in “difficult” classification
problems [1].
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FIGURE 1.13: Guided Feature Selection: tasking oracles with finding useful features.

1.7.4 Beyond improving a single model’s accuracy

Thus far, we have discussed different types of information that can be acquired. How-
ever, in the context of learning predictive models we have not considered settings in which
the objective for information acquisitions differ from that of active learning policies, i.e.,
improving a single model’s predictive accuracy (by some measure). As an example of such
a setting, consider an application where the labels of training examples can be (actively)
acquired in order to augment the training data of multiple classification models.

Combining the aspects of multi-task learning and active learning, selecting examples
for Multiple Task Active Learning (MTAL) [69] can be approached in several ways. The
first approach would be simply to alternate between acquisitions that benefit each of the
models. The second approach would attempt to produce a single ranking of examples
based on the benefits across the learning tasks. In this case, each prospective acquisition is
first ranked by each of learning tasks, using traditional active learning policies. The over-
all rank for a prospective acquisition is then computed via the Borda aggregation proce-
dure, i.e., by summing the prospective acquisition’s rank numbers across all learning tasks.
Both of these methods [69] are general, in that they can be used to learn different types of
models. In fact, in principle, these policies can also apply when a different active learning
policy is used to rank prospective acquisitions for different types of models (e.g., aggre-
gation and classification models). However, their effectiveness has not been evaluated for
these settings related to multiple active learning techniques. When multiple prediction
tasks are related, such as when the labels of instances corresponding to each satisfy cer-
tain constraints, it is also possible to exploit these dependencies to improve the selection
of informative instances [101].

An interesting scenario which implies yet another objective for information acquisi-
tion in practice arises when information acquisition aims to improve repetitive decisions,
which are, in turn, informed by predictive models [74, 40] . Furthermore, many decisions
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FIGURE 1.14: Guided Feature Labeling: tasking oracles with finding features and their
associated class polarity believed to be best able to discriminate between classes.

are informed by multiple predictive models of different types. For instance, firms’ sales
tax audit decisions are typically informed by the predicted probability of tax fraud, but
also by the predicted revenue that might be recovered. Note that prospective audit acqui-
sitions will affect both predictive models. Interestingly, for each model, a different audit
acquisition might be more desirable to improve the corresponding estimation. Hence, it is
beneficial to understand how should an acquisition budget be allocated among them so as
to benefit future audit decisions the most?

In principle, MTAL can be applied to cost-effectively improve the predictive accuracy
of all the models informing the decisions. However, costly improvements in model accu-
racy does not necessarily yield better decisions [74]. Hence, more efficient policies can be
derived if such greedy improvements in accuracy are avoided. Furthermore, exploiting
knowledge of the decision’s structure can yield significant benefits [74, 40, 41]. For exam-
ple, when information is acquired for multiple models informing the decisions, it is useful
to consider how changes in all of the models simultaneously will affect future decisions.
This approach has been applied effectively when the same information can augment mul-
tiple models simultaneously [40, 41]. It will also be useful to study the effectiveness of
this general principle when the training data of each of the models can be augmented by
acquisition from a different source (i.e., the same acquisition cannot be used to train all
models).
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1.8 Conclusion

The vast majority of the information acquisition literature focuses on active learning,
reflecting only a single setting— the selection of individual instances for the acquisition
of a single, correct label with the objective of improving classification performance cost
effectively. However, as we outline in this chapter, a rich set of important practical prob-
lems arise once we consider the diverse set of information that is available to a machine
learning system at some cost, and when the error-free assumptions typically used in such
research are relaxed. In this chapter, we discussed three dimensions that define alternative
information acquisition problems. Specifically these facets are: the different types of infor-
mation that can be acquired to inform learning, the quality of the acquired information,
and the different objectives which acquisitions ultimately aim to improve, cost-effectively.
Since each of these facets can take a variety of settings in practice, cost-effective informa-
tion acquisition gives rise to a diverse range of important problems.

In order to cope with the complexity of such a diverse range of problems, we have pre-
sented two general strategies for information acquisition. Namely, uncertainty reduction
and expected utility approaches. While uncertainty-based approaches are appealing ini-
tially in that they are often simple to implement and have been subject to extensive study in
the realm of traditional active learning, these techniques tend to fall short when faced with
the more complex demands of general information acquisition. Combining effectiveness
measures for diverse types of information seamlessly in concert with acquisition costs is
often beyond the capability of uncertainty-based techniques. Fortunately, expected utility-
based approaches offer a one-size-fits-all framework for integrating the empirical benefits
of different acquisition types with the costs these acquisitions may incur. While expected
utility approaches offer great promise, this is tempered by the difficulties associated with
computing an accurate utility estimator in a way that is computationally tractable.

While we have demonstrated a wide range of use cases and settings for selective data
acquisition, discussing applications ranging from marketing to medicine, there are innu-
merable scenarios yet to be explored; more complex combinations of data available at a
cost, both at training and at use time, with relaxed assumptions regarding data cleanliness.
Though it’s difficult to speculate what new applications and future research into the realm
of data acquisition will accomplish, we believe that the material presented here provides a
solid foundation upon which this new work can build.
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