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A statistical inference is a quantifiable statement about either a population parameter or a 
future random variable.   There are many varieties of statistical inference, but we will 
focus on just four of them:   parameter estimation, confidence intervals, hypothesis tests, 
and predictions. 
 
Parameter estimation is conceptually the simplest.  Estimation is done by giving a single 
number which represents a guess at an unknown population parameter. 
 

If X1, X2, …, Xn is a sample of n values from a population with unknown mean μ, 
then we might consider using X  as an estimate of μ.   We would write μ  = X .  
This is not the only estimate of μ, but it makes a lot of sense. 
 

 
A confidence interval is an interval which has a specified probability of containing an 
unknown population parameter. 
 

If X1, X2, …, Xn is a sample of n values from a population which is assumed to be 
normal and which has an unknown mean μ, then a 1 - α confidence interval for μ 

is X  ± / 2; 1n
st
nα − .  Here tα/2;n-1 is a point from the t table.   Once the data leads to 

actual numbers, you’ll make a statement of the form “I’m 95% confident that the 
value of μ lies between 484.6 and 530.8.” 
 

 
A hypothesis test is a yes-no decision about an unknown population parameter.  There is 
considerable formalism, intense notation, and jargon associated with hypothesis testing. 
 

If X1, X2, …, Xn is a sample of n values from a population which is assumed to be 
normal and which has an unknown mean μ, we might consider the null hypothesis 
H0: μ = μ0 versus alternative H1: μ ≠ μ0 .  The symbol μ0 is a specified 
comparison value, and it will be a number in any application.   Based on data, we 
will decide either to accept H0 or to reject H0 .  We work with a level of 
significance (usually noted as α and nearly always 0.05) such that the probability 
of rejecting H0 when it is really true is limited to the level of significance. 
 
In the situation illustrated here, suppose that n = 24, H0: μ = 310, H1: μ ≠ 310, and 
α = 0.05.  Then H0 will be rejected if and only if | t | ≥ t0.025;23 = 2.069.  The 

symbol t refers to the t statistic, and t = 310Xn
s
− . 
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Predictions are guesses about values of future random variables.  We can subdivide this 
notion into point predictions and interval predictions, but point predictions are usually 
obvious.   
 

If X1, X2, …, Xn is a sample of n values from a population which is assumed to be 
normal and which has an unknown mean μ, we might wish to predict the next 
value Xn+1 .  Implicit in this discussion is that we have observed X1 through Xn , 
but we have not yet observed Xn+1 .  The point prediction is certainly X ;  in fact, 
we would write X n+1 = X .  The 1 - α prediction interval works out to be 

X   ±  / 2; 1
11nt s
nα − + . 
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The normal table gives us the fact that P[ -1.96 < Z < 1.96 ] = 0.95.   
 
With a sample of n values from a population with mean μ and standard deviation σ, the 

Central Limit theorem gives us the result that Z =  X

n

− μ
σ   =  n X − μ

σ
 is approximately 

normally distributed with mean 0 and with standard deviation 1. 
 

If the population is assumed to be exactly normal to start with, then n X − μ
σ

 is 

automatically normally distributed.  (This is not a use of the Central Limit 
theorem.)   
 
If one does not make the assumption that the population is exactly normal to start 

with, then n X − μ
σ

 is approximately normal, provided n is large enough.  (This 

is precisely the Central Limit theorem.)   The official standard is that n should be 
at least 30.  The result works well for n as small as 10, provided that one is not 
working with probabilities like 0.0062 or 0.9974 which are too close to zero or 
one. 

 

Start from P[ -1.96 < Z < 1.96 ] = 0.95 and then substitute for Z the expression n X − μ
σ

.  

This will give us 
 

P 1.96 1.96Xn −μ⎡ ⎤− < <⎢ ⎥σ⎣ ⎦
  =  0.95 

 
We can rewrite this as  
 

P 1.96 1.96X
n n
σ σ⎡ ⎤− < −μ <⎢ ⎥⎣ ⎦

  =  0.95 

 
Now subtract X  from all items to get 
 

P 1.96 1.96X X
n n
σ σ⎡ ⎤− − < −μ < − +⎢ ⎥⎣ ⎦

  =  0.95 

 
Multiply by -1 (which requires reversing inequality direction) to obtain 
 

P 1.96 1.96X X
n n
σ σ⎡ ⎤+ > μ > −⎢ ⎥⎣ ⎦

  =  0.95   
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This is in the form large > medium > small.  Rewrite as small < medium < large to get 
 

P 1.96 1.96X X
n n
σ σ⎡ ⎤− < μ < +⎢ ⎥⎣ ⎦

  =  0.95 

 
This is now a probability statement in which μ is in the middle!   If we knew σ and if we 
observe X , then this is a special kind of probability statement about μ.   We call this a 
confidence interval.   We are 95% confident that μ is in this interval.  This is a very 
useful statistical inferential statement.  We often say simply, “we are 95% confident that 

μ is in the interval X  ± 1 96. σ
n

. ” 

 
Most confidence intervals are used with 95% confidence.   To make things more general, 
we use the zγ notation.  Specifically, zγ is the “upper gamma” point from the standard 
normal distribution.  This means that zγ has γ of the probability to its right;  we can write 
this as P[ Z > zγ ] = γ.  The value 1.96 is the upper 2.5% point, in that we would write 
P[ Z > z0.025 ] = 0.025. 
 

The most commonly encountered symbol is zα/2 . Here are some simple examples. 
 

α α/2 zα/2
0.10 0.05 1.645 
0.05 0.025 1.96 
0.01 0.005 2.575 

 
 
When we wanted 95% confidence, we put 2.5% of the probability in each of the upper 

and lower tails.  In general, if we want 1 - α confidence, we put α
2

 of probability in each 

of the upper and lower tails.  The statement that creates the 1 - α confidence interval is 
then 
 

/ 2 / 2P X z X z
n nα α

σ σ⎡ ⎤− < μ < +⎢ ⎥⎣ ⎦
  =  1 - α 

 

The 1 - α confidence interval is then X  ± z
nα
σ

/2 . 

 
The statement is hard to use in practice, because it is very rare to be able to claim 
knowledge of σ but no knowledge of μ.  There is a simple next step to cover this 
shortcoming.  
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A confidence interval is a statement used to trap unknown population parameters.  An 
example.... 

We are 95% confident that the September mean sales per store is between 246 
thousand dollars and 282 thousand dollars. 

 
The speaker is trying to estimate μ, the true-but-unknown population mean sales per 
store.  Presumably he or she has used a sample to make the statement.  The statement is 
either true or false (and we don’t know which), but it would be reasonable to give 95-to-5 
betting odds that the statement is true. 
 
The simplest approximate confidence interval statement is this: 
 

We are approximately 95% confident that the unknown parameter is in the 
interval  [estimate] ± 2 [standard error]. 

 
This is approximate for a number of reasons.  First of all, we are trying to make an 
all-purpose statement that really might not apply perfectly to everything.  Also, the “2” 
should really be 1.96, which has the property that  P[ -1.96 ≤ Z ≤ 1.96 ] = 0.95  for a 
standard normal random variable Z. 
 
One can refine the statistical theory a bit, tuning up any or all of  
 

choice for the estimate 
 
technique for obtaining the standard error 

 
refining the multiplier “2” 

 
Let’s give next what may be the most-commonly used confidence interval.  Suppose that 
you have a sample X1, X2, X3, X4, …, Xn .  As usual, we will use the upper case letters 
when we think of the Xi’s as random variables and x1, x2, x3, x4, …, xn when we think of 
these as observed numerical values.  In practice, this distinction will be hard to enforce.   
The procedure which we will use depends on the assumption that the Xi values constitute 
a sample from a population which follows the normal distribution.   
 

As usual, stating an assumption does not make it true.  Nonetheless, it is 
important to state an assumption that you are going to exploit, even if you do not 
completely believe the assumption.  It is important to invoke the conditions on 
which the work depends.   The procedure which follows, by the way, happens to 
work rather well even if the sampled population does not follow the normal 
distribution.  Moreover, when the sample size n exceeds 30, the normal 
distribution assumption is not critical. 

 
Let’s use μ for the mean of the population and use σ for the standard deviation of the 
population.  In all realistic problems, the values of μ and σ are both unknown.  The 
statistical work will be based on the sample mean X  and the sample standard deviation s.   
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Clearly X , the sample mean, will be used as the estimate for μ.  Since SD( X ) = σ
n

, 

we’ll use SE( X ) = 
s
n

 for the standard error.   As a consequence of the fact that X
s

n

− μ   

=  n X
s
− μ  follows the t distribution with n - 1 degrees of freedom, we can given the 

95% confidence interval for μ as  X   ± t
s
nn0.025 1; −  . 

 
The value t0.025;n-1 refers to the point from the t-table.   
 
The t-table is Table 4 of Hildebrand, Ott, and Gray, and it appears on page 729 
and on the inside back cover.  The 0.025 indicates the column to be used.  The 
n - 1 refers to the degrees of freedom.  Thus, if n = 17, then n - 1 = 16 and we 
look up t0.025;16 = 2.120. 
 
The 0.025 in the subscript refers to probability excluded to the right.  If Tn-1 refers 
to the t random variable with n - 1 degrees of freedom, then the mathematical 
description of this is P[ Tn-1 >  t0.025;n-1 ] = 0.025.  Said another way, t0.025;n-1 is the 
upper 2.5 percent point for the t distribution with n - 1 degrees of freedom.   
 
We use the 0.025 for 95% confidence intervals because we exclude the most 
extreme 5% of the distribution, meaning 2.5% in each tail.  By established 
custom, the t table gives probabilities for one tail. 
 
The use of 95% confidence intervals is most common, but there are occasions 
when we need 90% or 99% intervals.  For a 99% interval, one would use t0.005;n-1.  
In general, if one seeks confidence level 1 - α, the corresponding point from the t 
table is tα/2; n-1 . 
 
Some people like to express the confidence as a percent, rather than as a decimal.  
That is, they’d rather talk about a 100(1 - α)% confidence interval than a 1 - α 
confidence interval.  This is an exceedingly petty issue. 
 
Hildebrand, Ott, and Gray use the symbol tα/2 where we have used tα/2; n-1 .    
Apparently they believe that the degrees of freedom number is obvious in most 
cases.  They are correct, but we’ll use the more detailed subscript anyhow. 
 
Since 95% confidence intervals are the most common, we usually use the 0.025 
column in Hildebrand, Ott, and Gray’s Table 4.  It should be noted that once n 
gets to be as big as about 15, then the values in this column are rather close to 2.  
This reflects the empirical rule that most quantities are within two standard 
deviations of their expected values with probability about 95%. 
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EXAMPLE:  A sample of 20 five-pound potato bags, sampled from a huge shipment of 
such bags, had a mean weight of 5.12 pounds, with a standard deviation of 0.14 pound.  
Give a 95% confidence interval for the true mean weight of all the bags in the shipment. 
 
SOLUTION:  Assume that the distribution of bag weights is normal.  Then the interval is 
 

X  ± t
s
nn0.025 1; −  

which is  

512 2 093
014

20
. .

.
±  

 
and numerically this becomes 5.12 ± 0.066.  This can also be given as (5.054 , 5.186).  
The value 2.093 is found in the row for 19 degrees of freedom in the t table, using the 
column for two-sided 95% intervals (the one headed 0.025). 
 
 
In describing a series of steps leading to a confidence interval, try to avoid using the 
equals sign.  That is, do NOT write something like 

512 2 093
014

20
. .

.
±   =   5.12 ± 0.066  =   (5.054 , 5.186). 

 
This interval is found as definition 7.9 on page 278 of Hildebrand, Ott, and Gray.  This 
box notes the hierarchy of assumptions that are involved.   
 

 If n is small 
(n < 30) 

If n is large 
(n ≥ 30) 

and if you are willing to 
assume that the sample 
comes from a normal 
population  

use definition 7.9 
on page 278 

use definition 7.9 
on page 278 

and if you are not willing 
to assume that the sample 
comes from a normal 
population  

you cannot give a 
confidence interval 

of this variety 

use definition 7.9 
on page 278 

 
  
Consider now a binomial problem.  Suppose that X is the number of successes in n 

independent trials, each with success probability p.  Let p  = 
X
n

 be the sample proportion 

of successes.  (Many other authors use π for the success probability and use π  =  
X
n

 for 

the sample proportion.)  The standard error of  p , meaning the estimate of the standard 
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deviation of p  is SE( p) = ( )ˆ ˆ1p p
n
−

.  The conventional, or Wald, 95% confidence 

interval for π can be given then as 
 

p  ±   ( )ˆ ˆ1
1.96

p p
n
−

 

 
If you wished to use something other that 95% as the confidence value, say you want the 
confidence level to be 1 - α, the interval would be given as 
 

p  ±  ( )
/ 2

ˆ ˆ1p p
z

nα

−
 

 

The value zα/2 represents the upper one-sided 
2
α  point from the normal distribution.  For 

instance, if 1 - α = 90%, then α = 10%, 
2
α  = 5%, and we use z0.05 = 1.645.    

To make the correspondence to the 95% interval, think of 1 - α = 95%, α = 5%, 

2
α  = 2.5% and we use z0.025 = 1.96. 

 
This is the most common form of the interval, but it is not recommended.  The forms 
below are better.  The notion of “better” is that they are more likely to come close to the 
target 1 - α coverage. 
 
It would be better to use the slightly longer continuity-corrected interval 
 

p   ±   ( )ˆ ˆ1 11.96
2

p p
n n

⎡ ⎤−
+⎢ ⎥

⎢ ⎥⎣ ⎦
 

 

The use of the fraction 
1

2n
 is called a continuity correction, the consequence of 

using a (continuous) normal distribution approximation on a (discrete) binomial 
random variable.  Alas, most texts do not use this correction.  The interval is 
certainly simpler without this correction, and perhaps that is the reason that most 

texts avoid it.  However, omitting this  
1

2n
 cheats on the confidence, in that a 

claimed 95% interval might really only be a 92% interval. 
 
The best (simple) option, and the one recommended for most cases, is the Agresti-Coull 

interval.  It’s based on p  = 2
4

x
n
+
+

.  The corresponding 1 - α confidence interval is then 



  DISCUSSION OF CONFIDENCE INTERVALS AND EXAMPLES  

 11

 

p   ±  ( )
/ 2

1
4

p p
z

nα

−
+

 

 
This is computationally identical to inventing four additional trials, of which two are 
success. 
 
 
EXAMPLE:  In a sample of 200 purchasers of Megabrew Beer there were 84 who 
purchased the beer specifically for consumption during televised sporting events.  Give a 
95% confidence interval for the unknown population proportion. 
 

SOLUTION:  Note that p  = 
84
200

 = 0.42.  The standard error associated with this 

estimate is SE( p) = ( )ˆ ˆ1p p
n
−

 =  0 0 58
200

.42 .×   =  0 002128.   ≈  0.0349.  The 

conventional 95% confidence interval is then 
 

0.42  ±  1.96 0.0349×  
 
or 0.42 ± 0.0684.  This can be written as (0.3516, 0.4884).  This is unrealistically short. 
 

Minitab will produce this interval.  Use Stat ⇒ Basic Statistics ⇒ 
1 Proportion...   Provide the values 200 and 84 in the Summarized Data area.   
Click on Options and then check off Use test and interval based on normal 
distribution. 
 
If you uncheck Use test and interval based on normal distribution you will get 
an elaborate calculation based on the exact distribution.  The method is identified 
as Clopper-Pearson.   Details are in Distributions in Statistics: Discrete 
Distributions, by Johnson and Kotz, pages 58-59.  The interval found by Minitab 
will be (0.3507, 0.4917).   
 

 

The continuity-corrected form is 0.42  ±  1 96 0 0349 1
400

. .× +L
NM

O
QP   or 0.42 ±  0.0709, 

which may be written as ( 0.3491, 0.4909). 
 

The Agresti-Coull form based on p  begins by noting that p  =  84 2
200 4

+
+

 =  86
204

 ≈  

0.4216.  Then the 95% interval is  
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0.4216 ± 0.4216 0.57841.96
204
×  

 
or 0.4216 ± 0.0678.  This is (0.3538, 0.4894).  This is the form that we’d recommend. 
 
 
 
EXAMPLE:  An examination of 25 finished television sets resulted in 18 being classified 
as OK, meaning ready for shipment to stores.  Give a 95% estimate for the corresponding 
population fraction. 
 

SOLUTION:  First note that p  = 
18
25

 = 0.72.   With n this small, we should really use the 

interval based on p .  We have p  = 20
29

 ≈ 0.6897, and the 95% interval is 

 

0.6897 ± 0.6897 0.31031.96
29
×  

 
or 0.6897 ± 0.1695.  This is (0.5202, 0.8592).  This is the preferred solution. 
 

By way of comparison, the conventional interval is  
 

0.72  ± 1.96 × 0.0900 
 
which is 0.72 ± 0.1764, meaning (0.5436, 0.8964). 
 
The continuity-corrected interval is  
 

0.72 ± 1 96 0 0900 1
50

. .× +L
NM

O
QP  

 
or 0.72 ±  0.1964, and this is (0.5236, 0.9164). 

 
The exact distribution version given by Minitab is (0.5061, 0.8792). 
 
 
 

 
One-sided confidence intervals are occasionally used in accounting frameworks in which 
one needs a one-sided statement about a value estimated by sampling.  Examples of such 
situations include auditing environments in which you need statements like “We are 95% 
confident that the percentage of invoices in error is at most 8.20%.” 
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EXAMPLE:  A sample of 28 subjects from a consumer panel reported weekly orange 
juice consumption.  These values had an average of 20.4 oz with a standard deviation of 
12.2 oz.  Give a 95% confidence interval for the population mean. 
 
SOLUTION:  To get started....be sure that you can identify μ, σ, x , s, n. 
 
Now assume that the population is at least approximately normal.   
 

ASIDE:  We know that the population can’t be normal.  The sample mean 20.4 is 
only 1.67 estimated standard deviations away from zero.  There are no data values 
two standard deviations below the mean!  With a sample size of 28, we could 
probably justify use of the Central Limit theorem, though 28 is just a bit short of 
the recommended 30. 

 

The interval is 20.4 ± 2.052
12 2

28
.

 , which is 20.4 ± 4.73.  We’re 95% confident that the 

value of μ is in the interval 20.4 ± 4.73, which is (15.67 , 25.13).   The value 2.052 is 
t0.025;n-1, the one-sided 2.5% point (two-sided 5% point) from the t distribution with n - 1 
= 27 degrees of freedom. 
 
 
 
EXAMPLE:  Panelists were asked if they added a liquid bleach to their washing.  Of the 
28, there were 17 who used liquid bleach.  Give a 95% confidence interval for the 
population proportion. 
 
SOLUTION:  Before starting....what are p, p , σ, n ? 
 

The Agresti-Coull p  version is recommended.  Note that p  = 17 2
28 4

+
+

 = 19
32

 = 0.59375.  

The 95% interval is p  ± ( )
/ 2

1
4

p p
z

nα

⎡ ⎤−
⎢ ⎥

+⎢ ⎥⎣ ⎦
, which in this case is  

 

0.59375  ±  0.59375 0.406251.96
32
×  

 
This is 0.59375 ± 0.170169.  This can be reasonably given as 0.59 ± 0.17, or (0.42, 0.76).  
This is much more likely to hit the 95% target confidence. 
 

Just for comparison, the interval based on p  ±  ( )
/ 2

ˆ ˆ1p p
z

nα

−
 is 0.6071 ± 0.1809.  This 

is about (0.42, 0.79). 
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The program Minitab can do the computational work of obtaining confidence intervals. 
 
Suppose that in a weight loss study, the subjects’ initial percents of body fat were noted.  
Suppose that we’d like a 95% confidence interval for the mean of the population from 
which these subjects are claimed to represent a sample.  In Minitab, just do Stat ⇒ Basic 
Statistics ⇒ 1-Sample t.  If we have n = 80, x  = 31.771, and s = 5.676, we can use the 
Summarized data area to enter the input.  The default confidence is 95%, but you can 
change it if you want.  The output looks like this: 

One-Sample T  
 
 N     Mean   StDev  SE Mean        95% CI 
80  31.7710  5.6760   0.6346  (30.5079, 33.0341) 

 

The figure 0.635 represents s
n

, as may be easily checked.  The 95% confidence interval 

is given as (30.5079, 33.0341).  This means that we’re 95% sure that the unknown 
population mean μ for the body fat percents is in this interval.  (It should be noted that 
these subjects were specially recruited by virtue of being overweight.) 
 
If the data were given in a column of a Minitab worksheet, then that column would be 
named (instead of using the Summarized data area). 
 
You can also get Minitab to give a confidence interval for the difference between two 
means.  In this case, there are two subject groups, identified as “1” and “2” according to 
the treatment regimen which they are given.  Let’s give a 95% confidence interval for 
μ1 - μ2, where the μ’s represent the population mean drops in body fat over four weeks.  
For this situation, give Stat ⇒ Basic Statistics ⇒ 2-Sample t ⇒.   
 

Generally you will mark the radio button for  Samples in one column.  Then 
for Samples: indicate the column number (or name) for the variable to be 
analyzed.  (The variable name is drop4 for this example.)  Next to Subscripts: 
give the column number (or name) for the variable which identifies the groups.  
(In this example, the actual name Group is used.) 
 
Minitab also allows for the possibility that your two samples appear in two 
different columns.  For most applications, this tends to be a very inconvenient 
data layout, and you should probably avoid it. 

 
There is a box Assume equal variances which is unchecked as a default.  You should 
however be very willing to check this box.  (More about this below.)  The Minitab output 
is this: 
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This listing first shows information individually for the two groups.  (There are fewer 
than 80 subjects because some did not make the four-week evaluation.)  You might be 
amused to know that the value 0.52 does not represent 52% in this study;  it represents 
0.52%.  The subjects did not lose a lot of weight.  We have the 95% confidence interval 
for μ2 - μ1 as (-2.13, 1.65).   Of course, the interval for μ1 - μ2 would be (-1.65, 2.13).  
The fact that the interval includes zero should convince you that the two groups do not 
materially differ from each other. 
 
You might wonder what would have happened had you not check off the box Assume 
equal variances.  Here is that output: 
 

Two Sample T-Test and Confidence Interval 
 
Two sample T for drop4 
Group        N      Mean     StDev   SE Mean 
2           33      0.52      4.08      0.71 
1           31      0.76      3.43      0.62 
 
95% CI for mu (2) - mu (1): ( -2.12,  1.64) 
T-Test mu (2) = mu (1) (vs not =): T= -0.26  P=0.80  DF=  61 

 
The confidence interval is now given as (-2.12, 1.64), obviously not very different. 
 
The first of these runs, the one with the interval (-2.13, 1.65), assumed that the two 
groups were samples from normal populations with the same standard deviation σ.  The 
estimate of σ is called sp and here its value is 3.78.  When the standard deviation is 
assumed equal for the two groups, the interval is given as  
 

x x2 1−    ±    
1 2

1 2
/ 2; 2

1 2
n n p

n nt s
n nα + −
+  

 
When the Assume equal variances box is not checked, the confidence interval is   
 

x x2 1−    ±    z s
n

s
nα /2

1
2

1

2
2

2

+  

For most situations, the two versions of the confidence interval are very close.

Two Sample T-Test and Confidence Interval 
 
Two sample T for drop4 
Group        N      Mean     StDev   SE Mean 
2           33      0.52      4.08      0.71 
1           31      0.76      3.43      0.62 
 
95% CI for mu (2) - mu (1): ( -2.13,  1.65) 
T-Test mu (2) = mu (1) (vs not =): T= -0.26  P=0.80  DF=  62 
Both use Pooled StDev = 3.78
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Consider a binomial experiment, resulting in X events in n trails.  Let x be the observed 
value of the random variable X.  We seek here a 1 - α confidence interval for the 
unknown population parameter p.   
 

We use p̂ = x
n

 as the sample proportion. We have E p̂  = p  and  SD( p̂ ) = (1 )p p
n
− .   

Since p̂  is the obvious estimate of p, we have SE( p̂ )  = ( )ˆ ˆ1p p
n
−

 

 
The important concept is that sample quantities acquire a probability law of their own.  
The standard error of the mean is critical here.  The conventional (Wald) confidence 
interval for the binomial proportion is  

 

p̂  ±  ( )
/ 2

ˆ ˆ1p p
z

nα

−
     [Wald; not recommended]  

 
This conventional interval is given in most textbooks, but it is unacceptably overreaching.  
That is, its coverage probability tends to be less that the claimed 1 - α.    
 

A repair that you’ll sometimes see replaces zα/2 with tα/2;n-1 , since tα/2;n-1 > zα/2 
gives a slightly longer interval and thus gets closer to the claimed 1 - α.  This is 
misguided because we have lack the statistical theory to use the t distribution. 

 
An improved answer: 
 

p̂  ±  ( )
/ 2

ˆ ˆ1 1
2

p p
z

n nα

⎡ ⎤−
+⎢ ⎥

⎢ ⎥⎣ ⎦
    [continuity-corrected] 

 
This uses the binomial-to-normal continuity correction.  This is a little wider that the 
conventional interval, and it is more honest in terms of the confidence.  This procedure is 
OK, but we can do better. 
 

The intervals noted above can have some annoying problems.  If x = 0, the Wald 
interval will be 0 ± 0.   If x = n, the Wald interval will be 1 ± 0.  These do not 
make sense.  Either of these intervals can sometimes have left ends below 0 or 
right ends above 1. 

 
There is a strategy more precise than using this continuity correction.  The confidence 
interval is based on the approximation that  
 

( )
ˆ

1
p pn

p p
−

−
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is approximately normally distributed.   This gives the approximate probability statement  
 

( )/ 2 / 2
ˆ

P
1

p pz n z
p pα α

⎡ ⎤−
⎢ < < ⎥

−⎢ ⎥⎣ ⎦
  =  1 - α 

 
It’s important to realize that p̂  represents the (random) quantity observed in the data, 
while p denotes the unknown parameter value.   In the conventional derivation of the 
binomial confidence interval, the unknown denominator ( )1p p−  is replaced by the 

sample estimate ( )ˆ ˆ1p p− .   This time we’ll do something different.  Since the 
statement { –a < x < a }  is equivalent to { x2 < a2 }, the interval above can be recast as  
 

( )

2

2
/ 2

ˆ
P

1
p pn z

p p α

⎡ ⎤⎛ ⎞−⎢ ⎥⎜ ⎟ <
⎢ ⎥⎜ ⎟−⎝ ⎠⎣ ⎦

  =  1 - α 

 
A little rearrangement gives 
 

( )
( )

2
2

/ 2

ˆ
P

1
p p

n z
p p α

⎡ ⎤−
<⎢ ⎥

−⎢ ⎥⎣ ⎦
  =  1 - α 

 
One more step provides 
 

( ) ( )2 2 2
/ 2ˆ ˆP 2 1n p pp p z p pα

⎡ ⎤− + < −⎣ ⎦   =  1 - α 

 
We’ll collect the terms according to powers of p.   This gets us to 
 

( ) ( )2 2 2 2
/ 2 / 2ˆ ˆP 2 0n z p np z p npα α

⎡ ⎤+ − + + <⎣ ⎦   =  1 - α 

 
The expression in [  ] is a quadratic inequality in p.   The corresponding equality   
 

( ) ( )2 2 2 2
/ 2 / 2ˆ ˆ2 0n z p np z p npα α+ − + + =   [roots give score interval] 

 
has two roots, call them plo and phi .  The inequality holds between these roots, and we 
would then give the 1 - α confidence interval as 
 

(plo ,  phi )      [score interval]   
 
In practice, we can collect numeric values for n, 2

/ 2zα , and p̂  and then solve the score 
interval numerically.    
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If you want to see the score interval directly, it’s this: 
 

2
/ 2

2 2
/ 2 / 2

1ˆ
2

n zp
n z n z

α

α α

⎛ ⎞ ⎛ ⎞
+⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠

 ± ( ) 2 2

/ 2
/ 2 2 2

/ 2 / 2

ˆ ˆ1 1
4

p p n zz
n n z n z

α
α

α α

− ⎛ ⎞ ⎛ ⎞⎛ ⎞
× +⎜ ⎟ ⎜ ⎟⎜ ⎟ + +⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 

 
The center of this interval, the expression before the ± , is a weighted average of p  

and 1
2

.    This center can also be written as 
21

2 / 2
2

/ 2

x z
n z

α

α

+
+

 , which looks like 

number of successes
number of trials

 after creating 21
/ 22 zα  fake successes and 21

/ 22 zα  fake failures.  This 

leads to the Agresti-Coull interval, noted below. 
 
The half-width of the interval, the expression after the ± , is a slight adjustment from 

( )
/ 2

ˆ ˆ1p p
z

nα

−
, the half-width of the Wald interval. 

 
You will also see a style based on creating four artificial observations, two successes (1s) 
and two failures (0s).   Let 
 

p  =  2
4

x
n
+
+

 

 
Then use the conventional interval based on p  and the sample size n + 4.  The interval is 
 

p   ±  ( )
/ 2

1
4

p p
z

nα

−
+

    [Agresti-Coull; recommended] 

 
This is the Agresti-Coull interval.  If you use confidence 95% in the score interval above, 
you’ll use zα/2 = z0.025 = 1.96 ≈ 2  and this produces almost exactly the Agresti-Coull 
interval. 
 
There are helpful discussions of these intervals in Analyzing Categorical Data, by Jeffrey 
Simonoff, Springer Publications, 2003.  See especially pages 57 and 65-66. 
 
 
Here’s an example.  The numeric results are summarized in the chart at the end of this 
section.  Suppose that we have a sample of n = 400 and that we observe x = 190 
successes.   This leads immediately to  
 

p̂  = 190
400

 = 0.475 
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The conventional (Wald) 95% confidence interval is 
 

p̂  ±  ( )
0.025

ˆ ˆ1p p
z

n
−

 

 

and this computes to 0.475 ± 0.475 0.5251.96
400
× , or about 0.475 ± 0.048939.  This is 

0.426061 to 0.523939. 
 
 

The 1
2n

 continuity-corrected form is 0.475 0.525 10.475 1.96
400 800

⎡ ⎤×
± +⎢ ⎥

⎣ ⎦
, or about 

0.475 ± 0.050189.  This is 0.424811 to 0.525189. 
 

We could also use the Agresti-Coull p  form.  Note that p  = 190 2
400 4

+
+

 = 192
404

 

≈ 0.475248.  Then compute 
 

p   ±  ( )
/ 2

1
4

p p
z

nα

−
+

 

 

This is  0.475284  ±  0.475284 0.5247161.96
404
× , which is about 0.475284 ± 0.048697.  

This interval is 0.426587 to 0.523981. 
 
 
We can also give the score interval based on the quadratic inequality: 
 

( ) ( )2 2 2 2
/ 2 / 2ˆ ˆ2 0n z p np z p npα α+ − + + =  

 
Using zα/2 = 1.96, n = 400, p̂  = 0.475, we get this as   
 

403.8416 p2  -  383.8416 p  +  90.25  =   0 
 
The roots of this quadratic are  
 

383.8416 39.338991987086
807.6832
±   

 
These are about 0.426532 and 0.523944;  thus 0.426532 to 0.523944 is the interval. 
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What does Minitab do for this problem?  Use Stat ⇒ Basic Statistics ⇒ 1 Proportion.  
If the data appear in a worksheet column, just enter the column name or number.  If you 
have just x and n, you can use the Summarized data box.  Select Options, and click the 
radio button for Use test and interval based on normal approximation.  This will 
produce exactly the conventional confidence interval.   
 
For these data, the Minitab version using the “normal approximation” gives the interval 
0.426062 to 0.523938. 
 
If you uncheck the “normal approximation” button, you get the Clopper-Pearson interval 
based on the exact binomial distribution.  This sounds like a good idea, but it’s a 
procedure also fraught with controversy.  For these data, it produces the interval 
0.425155 to 0.525217. 
 

“These data” were x = 190, n = 400. 
At p = 0.425155, we find exactly P[ X ≥ 190 ] = 0.025. 
At p = 0.525217, we find exactly P[ X ≤ 190 ] = 0.025. 
 

Consider the one-sided hypothesis test problem H0: p = p0 versus H1: p > p0 , and suppose 
that significance level 1

2 α = 0.025 is used.  With n = 400 and x = 190, the use of a large 
value for p0 would lead to accepting H0.  The smallest value of p0 at which H0 could be 
accepted is 0.425155, the lower end of the interval. 
 
As for the other end, consider the one-sided hypothesis test problem H0: p = p0 versus 
H1: p < p0 , and suppose again that significance level 1

2 α = 0.025 is used.  With n = 400 
and x = 190, the use of a small value for p0 would lead to accepting H0.  The largest value 
of p0 at which H0 could be accepted is 0.525217, the upper end of the interval. 
 
Thus, the Clopper-Pearson method for a 1 - α confidence interval gives the end points 
which are the limits for p0 at which separate one-sided null hypotheses (each at level 1

2 α) 
would be accepted.   
 
Minitab uses an interesting modification of the Clopper-Pearson method if x = 0 or x = n.   
Suppose that we want a 95% interval for p, and the data give us n = 20 and x = 0.  The 
lower end of the interval should certainly be 0.00.  Consider the hypothesis testing 
problem at level 1

2 α = 0.025 of  H0: p = p0 versus H1: p > p0  in which a very, very small 
value of p0 (say 10-10) appears.  There is no way to take advantage of a significance level 
of 0.025, since for obvious rejection rule { X ≥ 1 } we have P[ X ≥ 1 ]  =  1 – P[ X = 0 ]  =  

1 – (1 – p0)20
    =  ( )

20

0
0

20
1 j

j

p
j=

⎛ ⎞⎛ ⎞
− −⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
∑   =  2 3

0 0 0

20 20 20
1 1 ...

1 2 3
p p p

⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞
− − + − +⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠
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≈  20 p0 .   This uses the binomial theorem and then ignores minuscule terms involving 
2
0p , 3

0p , and so on.  Minitab then invokes 0.00 as the lower end of the interval, and uses 
the entire α = 0.05 on the upper end.   The interval is then given as (0.000000, 0.139108), 
and the corresponding probability statement is this: 
 

At p = 0.139108, we find exactly P[ X ≤ 0 ] = P[ X = 0 ] = 0.05. 
 
 
 
 
 
 
 
Now, let’s check this again for a similar result, obtained with a smaller sample size. 
 
Suppose that we have a sample of n = 40 and that we observe x = 19 successes.   This 
leads to  
 

p̂  = 19
40

 = 0.475 

 
This is exactly the same p̂  that we had in the larger problem. 
 

The conventional 95% confidence interval is p̂  ±  ( )
0.025

ˆ ˆ1p p
z

n
−

and this computes to 

0.475 ± 0.475 0.5251.96
40
× , or about 0.475 ± 0.154758.  This is 0.320242 to 0.629758. 

 

The 1
2n

 continuity-corrected form is 0.475 0.525 10.475 1.96
40 80

⎡ ⎤×
± +⎢ ⎥

⎣ ⎦
, or about 

0.475 ± 0.167258.  This is 0.307742 to 0.642258. 
 

We could also use the Agresti-Coull p  form.  Note that p  = 19 2
40 4

+
+

 = 21
44

 ≈  0.477278.  

Then we compute p   ±  ( )
/ 2

1
4

p p
z

nα

−
+

.  This is  

0.477273  ±  0.477273 0.5227271.96
44
× , which is about 0.477273 ±  0.147588.  This 

interval is 0.329685 to 0.624861. 
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We could also give the score interval based on the quadratic inequality.  Using 
zα/2 = 1.96, n = 40, p̂  = 0.475, we get this as  43.8416 p2  -  41.8416 p  + 9.025  =   0.  
The roots are about 0.352162 and 0.647838;  thus 0.352162 to 0.647838 is the interval. 
 
The Minitab version, using the “normal approximation” is 0.320245 to 0.629755.  
 
Without the “normal approximation” it is 0.315120 to 0.638720. 
 
 
 
Here is a summary table: 
 

Method n = 400 , x = 190 n = 40, x = 19 
 Low End High End Low End High End 

Conventional (Wald) 0.426061 0.523939 0.320242  0.629758 
Minitab with normal 

approximation 0.426062  0.523938 0.320245  0.629755 

1
2n

 correction 0.424811 0.525189 0.307742  0.642258 

Agresti-Coull p  method 0.426587 0.523981 0.329685 0.624861 
Score interval 0.426532 0.523944 0.352162  0.647838 

Minitab without normal 
approximation 0.425155 0.525217 0.315120  0.638720 

 
For the n = 400 problem with p̂  = 0.475, the differences among the methods are trivial.  
For the much smaller problem with n = 40 and p̂  = 0.475, the differences are material.  
Please avoid the conventional and “Minitab with normal approximation” methods.  
 
 
 
 
 


