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INPUT TO A REGRESSION PROBLEM 
 

Simple regression:    (x1, Y1), (x1, Y2), … , (xn, Yn) 
 
Multiple regression:  ( (x1)1, (x2)1, (x3)1, … (xK)1, Y1),  

( (x1)2, (x2)2, (x3)2, … (xK)2, Y2),  
( (x1)3, (x2)3, (x3)3, … (xK)3, Y3), 
… ,  
( (x1)n, (x2)n, (x3)n, … (xK)n, Yn),  

  
 
The variable Y is designated as the “dependent variable.”  The only distinction between 
the two situations above is whether there is just one x predictor or many.   The predictors 
are called “independent variables.” 
 

There is a certain awkwardness about giving generic names for the independent 
variables in the multiple regression case.   In this notation, x1 is the name of the 
first independent variable, and its values are (x1)1, (x1)2, (x1)3, … , (x1)n .  In any 
application, this awkwardness disappears, as the independent variables will have 
application-based names such as SALES, STAFF, RESERVE, BACKLOG, and so 
on.   Then SALES would be the first independent variable, and its values would be 
SALES1, SALES2, SALES3, … , SALESn . 
 
The listing for the multiple regression case suggests that the data are found in a 
spreadsheet.  In application programs like Minitab, the variables can appear in any 
of the spreadsheet columns.  The dependent variable and the independent 
variables may appear in any columns in any order.  Microsoft’s EXCEL requires 
that you identify the independent variables by blocking off a section of the 
spreadsheet;  this means that the independent variables must appear in 
consecutive columns.   

 
 
MINDLESS COMPUTATIONAL POINT OF VIEW 
 
The output from a regression exercise is a “fitted regression model.” 
 

Simple regression: Y  = b0 + b1 x 
 
Multiple regression:  0 1 2 3

ˆ ( 1) ( 2) ( 3) ... ( )KY b b x b x b x b xK= + + + + +  
 
Many statistical summaries are also produced.  These are R2, standard error of estimate, 
t statistics for the b’s, an F statistic for the whole regression, leverage values, path 
coefficients, and on and on and on and ......   This work is generally done by a computer 
program, and we’ll give a separate document listing and explaining the output. 
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HOW DO WE USE REGRESSIONS TO MAKE PREDICTIONS? 
 
The prediction situation is one in which we have new predictor variables but do not yet 
have the corresponding Y. 
 

Simple regression:   We have a new x value, call it xnew , and the predicted (or 
fitted) value for the corresponding Y value is 

newŶ   =  b0  +  b1 xnew . 
 
Multiple regression:   We have new predictors, call them  (x1)new, (x2)new, (x3)new, 

…, (xK)new .  The predicted (or fitted) value for the 
corresponding Y value is 

0 1 2 3
ˆ ( 1) ( 2) ( 3) ... ( )new new new new K newY b b x b x b x b xK= + + + + +  

 
 
 
 
CAN I PERFORM REGRESSIONS WITHOUT ANY UNDERSTANDING OF THE 
UNDERLYING MODEL AND WHAT THE OUTPUT MEANS? 
 
Yes, many people do.  In fact, we’ll be able to come up with rote directions that will 
work in the great majority of cases.  Of course, these rote directions will sometimes 
mislead you.  And wisdom still works better than ignorance. 
 
 

WHY DO PEOPLE DO REGRESSIONS? 
 
A cheap answer is that they want to explore the relationships among the variables.   
 
A slightly better answer is that we would like to use the framework of the methodology to 
get a yes-or-no answer to this question:  Is there a significant relationship between 
variable Y and one or more of the predictors?  Be aware that the word significant has a 
very special jargon meaning. 
 
An simple but honest answer pleads curiousity. 
 
The most valuable (and correct) use of regression is in making predictions;  see the next 
point.  Only a small minority of regression exercises end up by making a prediction, 
however. 
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The coefficients (the β’s) are nonrandom but unknown quantities.  The noise terms ε1, ε2, 
ε3, …, εn are random and unobserved.  Moreover, we assume that these ε’s are 
statistically independent, each with mean 0 and (unknown) standard deviation σ.   
 
The model is simple, except for the details about the ε’s.  We’re just saying that each data 
point is obscured by noise of unknown magnitude.  We assume that the noise terms are 
not out to deceive us by lining up in perverse ways, and this is accomplished by making 
the noise terms independent. 
 
Sometimes we also assume that the noise terms are taken from normal populations, but 
this assumption is rarely crucial. 
 
 
 
WHO GIVES ANYONE THE RIGHT TO MAKE A REGRESSION MODEL?  DOES 
THIS MEAN THAT WE CAN JUST SAY SOMETHING AND IT AUTOMATICALLY 
IS CONSIDERED AS TRUE? 
 
Good questions.  Merely claiming that a model is correct does not make it correct.  A 
model is a mathematical abstraction of reality.  Models are selected on the basis of 
simplicity and credibility.  The regression model used here has proved very effective.  A 
careful user of regression will make a number of checks to determine if the regression 
model is believable.  If the model is not believable, remedial action must be taken. 
 
 
 
HOW CAN WE TELL IF A REGRESSION MODEL IS BELIEVABLE?  AND 
WHAT’S THIS REMEDIAL ACTION STUFF? 
 
Patience, please.  It helps to examine some successful regression exercises before moving 
on to these questions.   
 
 

WHAT’S THE REGRESSION MODEL? 
 
The model says that Y  is a linear function of the predictors, plus statistical noise. 
 

Simple regression: Yi = β0 + β1 xi + εi 
 
Multiple regression: Yi = β0 + β1 (x1)i + β2 (x2)i + β3 (x3)i + … + βK (xK)i + εi 
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THERE SEEMS TO BE SOME PARALLEL STRUCTURE INVOLVING THE 
MODEL AND THE FITTED MODEL. 
 
It helps to see these things side-by-side. 
 

Simple regression: 
The model is   Yi = β0 + β1 xi + εi  

 

The fitted model is  Y   =  b0 + b1 x 
             
 
Multiple regression:   

The model is  Yi = β0 + β1 (x1)i + β2 (x2)i + β3 (x3)i + …  
+ βK (xK)i + εi 

 
The fitted model is   0 1 2 3

ˆ ( 1) ( 2) ( 3) ... ( )KY b b x b x b x b xK= + + + + +  
 

The Roman letters (the b’s) are estimates of the corresponding Greek letters (the β’s). 
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WHAT ARE THE FITTED VALUES? 
 
In any regression, we can “predict” or retro-fit the Y values that we’ve already observed, 
in the spirit of the PREDICTIONS section above.    
 

Simple regression: 
The model is   Yi = α + β xi + εi  

 

The fitted model is  Y a bx= +  
 
The fitted value for point i is 
   Y a bxi i= +  
  

             
Multiple regression:   

The model is  Yi    = β0 + β1 (x1)i + β2 (x2)i + β3 (x3)i + …  
+ βK (xK)i + εi 

 
The fitted model is   0 1 2 3

ˆ ( 1) ( 2) ( 3) ... ( )KY b b x b x b x b xK= + + + + +  
 
The fitted value for point i is  
 0 1 2 3

ˆ ( 1) ( 2) ( 3) ... ( )i i i i K iY b b x b x b x b xK= + + + + +  
 

 
Indeed, one way to assess the success of the regression is the closeness of these fitted Y 
values, namely , , , ...,Y Y Y Yn1 2 3  to the actual observed Y values Y1, Y2, Y3, …, Yn. 
 
 
 
THIS IS LOOKING COMPUTATIONALLY HOPELESS. 
 
Indeed it is.  These calculations should only be done by computer.  Even a careful, well-
intentioned person is going to make arithmetic errors if attempting this by a non-
computer method.  You should also be aware that computer programs seem to compete in 
using the latest innovations.  Many of these innovations are passing fads, so don’t feel too 
bad about not being up-to-the-minute on the latest changes. 
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The notation used here in the models is not universal.  Here are some other possibilities. 
 
 

Notation here Other notation 

Yi yi 

xi Xi 

β0+β1xi α+β xi 

εi ei or ri 

(x1)i, (x2)i, (x3)i, …, (xK)i xi1, xi2, xi3, …, xiK 

bj ˆ
jβ  
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In many regression problems, the data points differ dramatically in gross size. 
 

EXAMPLE 1:  In studying corporate accounting, the data base might involve firms 
ranging in size from 120 employees to 15,000 employees. 
 
EXAMPLE 2:  In studying international quality of life indices, the data base might 
involve countries ranging in population from 0.8 million to 1,000 millions. 

 
In Example 1, some of the variables might be highly dependent on the firm sizes.  For example, 
the firm with 120 employees probably has low values for gross sales, assets, profits, and 
corporate debt. 
 
In Example 2, some of the variables might be highly dependent on country sizes.  For example, 
the county with population 0.8 million would have low values for GNP, imports, exports, savings, 
telephones, newspaper circulation, and doctors. 
 
Regressions performed with such gross size variables tend to have very large R2 values, but prove 
nothing.  In Example 1, one would simply show that big firms have big profits.  In Example 2, 
one would show that big countries have big GNPs.  The explanation is excellent, but rather 
uninformative. 
 
There are two common ways for dealing with the gross size issue:  ratios and logarithms. 
 
The ratio idea just puts the variables on a “per dollar” or “per person” basis.   
 
For Example 1, suppose that you wanted to explain profits in terms of number of employees, 
sales, assets, corporate debt, and (numerically coded) bond rating.  A regression of profits on the 
other variables would have a high R2  but still be quite uninformative.  A more interesting 
regression would create the dependent variable profits/assets and use as the independent variables 
employees/assets, sales/assets, debt/assets.  The regression model is 
 

PROFIT
ASSETS

EMPLOYEES
ASSETS

SALES
ASSETS

DEBT
ASSETS

BONDi

i

i

i

i

i

i

i
i i= + + + + +β β β β β ε0 1 2 3 4  

(Model 1) 
 
Observe that BOND, the bond rating, is not a “gross size” variable;  there is no need to scale it by 
dividing by ASSETS. 
 
In Example 1, the scaling might be described in terms of quantities per $1,000,000 of ASSETS.  
It might also be reasonable to use SALES as the scaling variable, rather than ASSETS. 
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For Example 2, suppose that you wanted to explain number of doctors in terms of imports, 
exports, savings, telephones, newspaper circulation, and inflation rate.  The populations give you 
the best scaling variable.  The regression model is 
 

DOCTORS
POPN

IMPORTS
POPN

EXPORTS
POPN

SAVINGS
POPN

i

i

i

i

i

i

i

i
= + + +β β β β0 1 2 3  

+ + + +β β β ε4 5 6

PHONES
POPN

PAPERS
POPN

INFLATEi

i

i

i
i i   (Model 2) 

 
All the ratios used here could be described as “per capita” quantities.  The inflation rate is not a 
“gross size” variable and need not be put on a per capita basis. 
 
An alternate strategy is to take logarithms of all gross size variables.  In Example 1, one might 
use the model 
 

log( ) log( ) log( ) log( )PROFIT ASSETS EMPLOYEES SALESi i i i= + + +γ γ γ γ0 1 2 3

 
+  γ4 log(DEBTi )  +  γ5 BONDi  +  εi 

 
Of course, the coefficients γ0 through γ5 are not simply related to β0 through β4 in the original 
form of the model.  Unless the distribution of values of BOND is very unusual, one would not 
replace it with its logarithm. 
 
Similarly, the logarithm version of model 2 is 
 

log( ) log( ) log( ) log( )DOCTORS POPN IMPORTS EXPORTSi i i i= + + +γ γ γ γ0 1 2 3

 
+ + + + +γ γ γ γ ε4 5 6 7log( ) log( ) log( )SAVINGS PHONES PAPERS INFLATEi i i i i

 
Since INFLATE is not a “gross size” variable, we are not immediately led to taking its logarithm.  
If this variable has other distributional defects, such as being highly skewed, then we might 
indeed want its logarithm. 
 
Finally, it should be noted that one does not generally combine these methods.  After all, since 

log log( ) log( )
A
B

A B⎛
⎝⎜

⎞
⎠⎟ = −  the logarithm makes the ratio a moot issue.   

 
Dividing logarithms, as in log(DOCTORSi)/log(POPNi) is not likely to be useful. 
 
One always has the option of doing a “weighted” regression.  One can use one of the variables as 
a weight in doing the regression.  The company assets might be used for Example 1 and the 
populations used for Example 2.  The problem with this approach is that the solution will depend 
overwhelmingly on the large firms (or large countries). 
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Data cleaning steps 
 
We will describe the operations in terms of the computer program Minitab. 
 
 
We will assume here that we are working with a spreadsheet.  The columns of this 
spreadsheet will represent variables;  each number in a column must be in the same units.  
The rows of the spreadsheet will represent data points. 
 
As a preliminary step, check each column for basic integrity.  Minitab distinguishes 
columns of two major varieties, ordinary data and text.  (There are also minor varieties, 
including dates.)  If a column is labeled C5-T, then Minitab has interpreted this column 
as text information. 
 

It sometimes happens that a column which is supposed to be numeric ends up as 
text.  What should you do in such a case?   
 

Scan the column to check for odd characters, such as N/A, DK, ?, unk;  
some people use markers like this to indicate missing or uncertain values.  
The Minitab missing numeric data code is the asterisk *, and this should 
be used to replace things like the above.  The expression 2 1/2 was 
intended to represent 2.5 but Minitab can only interpret it as text;  this 
repair is obvious.   
 
If you edit a text column so that all information is interpretable as 
numeric, Minitab will not instantly recognize the change.  Use 
Manipulate ⇒ Change Data Type ⇒ Text to Numeric.   If you do this 
to a column that still has text information, the corresponding entries will 
end up as *, the numeric missing data code. 

 
It sometimes happens that a column given as numeric really represents a nominal 
categorical variable and you would prefer to use the names.   For example, a 
column might have used 1, 2, 3, 4 to represent single, married, widowed, and 
divorced.  You would prefer the names.  Use Manipulate ⇒ Code ⇒ Numeric 
to Text.  You will be presented with a conversion table which allows you to do 
this. 
 

The command Stat ⇒ Basic Statistics ⇒ Display Descriptive Statistics will give you 
the minimum and maximum of each column.  The minimum and maximum values should 
make sense;  unbelievable numbers for the minimum or the maximum could well be data 
coding errors.  This same command will give you the number of missing values, noted as 
N *.  The count on missing values should make sense. 
 
For many analyses you would prefer to deal with reasonably symmetric values.  One of 
the cures for right-skewness is the taking of logarithms.   Here are some general 
comments about this process: 
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Base e logarithms are usually preferred because of certain advantages in 
interpretation.  It is still correct, however, to use base 10 logarithms. 
 
Some variables are of the “gross size” variety.  The minimum to maximum span 
runs over several orders of magnitudes.   For example, in a data set on countries 
of the world, the variable POPULATION will run from 105 to 109 with many 
countries at the low end of the scale.  This variable should be replaced by its 
logarithm.  In a data set on the Fortune 500 companies, the variable REVENUES 
will run over several orders of magnitude with most companies toward the low 
end of the scale.  This variable should be replaced by its logarithm. 
 
The command Stat ⇒ Basic Statistics ⇒ Display Descriptive Statistics will 
allow you to compare the mean and the standard deviation.  If a variable which is 
always (or nearly always) positive has a standard deviation about as large as the 
mean, or even larger, is certainly positively skewed. 
 
What should you do with data that are skewed but not necessarily of the “gross 
size” variety?  This is a matter of judgment.  Generally you prefer to keep 
variables in their original units.   If most of the other variables are to be 
transformed by logarithms, then maybe you want to transform this one as well. 
 
If the skewed variable is going to be the dependent variable in a regression, then 
you will almost certainly want to take its logarithm.   (If you don’t take the 
logarithms immediately, you may find expanding residuals on the residual versus 
fitted plot.  Then you’ll have take logarithms anyhow.) 
 
If the variable to be transformed by logarithms as zero or negative values, then 
taking logarithms in Minitab will make trouble.  (In releases 13 and earlier, the 
calculation will become a missing value with no warning.  In release 14, the user 
will get a diagnostic message.)  The technique is to pick a value c so that all 
values of X + c are positive.  Then consider log(X + c). 
 
Logarithms will not cure left-skewed data.  If X is such a variable and if M is a 
number larger than the biggest X, then you can consider log(M – X), provided you 
can make a sensible interpretation for this. 
 
Logarithms should not be applied to binary variables.  If a variable has only two 
values, then the logarithms will also have only two values. 
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Suppose that we regress Y on other variables, including J.  The fitted model will be 
 

Y  =  b0 + …. + bJ J + …… 
 

The interpretation of bJ is this: 
 

As J increases by 1, there is an associated increase in Y of bJ , while holding all 
other predictors fixed. 

 
There’s an important WARNING. 
 

WARNING:  This interpretation should note that bJ is the “effect” of J on Y after 
adjusting for the presence of all other variables.  (In particular, regressing Y on J 
without any other predictors could produce a very different value of bJ .)   Also, 
this interpretation carries the disclaimer “while holding all other predictors fixed.”  
Realistically, it may not be possible to change the value of J while leaving the 
other predictors unchanged. 
 
 
 

Now…  suppose that Y is really the base-e logarithm of Z, meaning Y = log Z.   What’s 
the link between J and Z?   The fitted model is  
 

log Z   =  b0 + …  bJ J + .. 
 

Here the interpretation of bJ is this: 
 

As J increases by 1, there is an associated increase in log Z of bJ .  This means 
that log Z changes to log Z + bJ .   By exponentiating, we find that e Zlog  = Z  
changes to e Z bJlog +  =  e eZ bJlog  =  Z  ebJ .   Using the approximation that et ≈ 1 + t 
when t is near zero, we find that Z changes (approximately) to Z(1+bJ).   This is 
interpretable as a percent increase.   We summarize thus:   as J increases by 1, 
there is an associated proportional increase of bJ in Z.    

If, for example, bJ = 0.03, then as J increases by 1, the associated increase 
in Z is 3%. 
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This next case is encountered only rarely. 
 
Next suppose that Y is not the result of a transformation, but that J  = log R is the base-e 
logarithm of variable R.   What’s the link between R and Y?    Let’s talk about increasing 
J by 0.01.  (The reason why we consider an increase of 0.01 rather than an increase of 1 
will be mentioned below.)   Certainly we can say this: 
 

The fitted model is Y  = b0 + … + bJ log R + … 
 
As J = log R increases by 0.01, there is an associated increase in Y of 0.01 bJ .  
Saying that J increases by 0.01 is also saying that log R increases to log R + 0.01.   
By exponentiating, we find that e Rlog  = R  changes to e Rlog .+0 01 =  e eRlog .0 01 =  
R e0 01.   ≈  R (1+0.01), which is a 1% increase in R.   
 
Here’s the conclusion:   as R increases by 1%, there is an associated increase in Y  
of 0.01 bJ . 

If, for example, bJ = 25,400, then a 1% increase in R is associated with an 
approximate increase in Y of 254. 

 
We used an increase of 0.01 (rather than 1) to exploit the approximation 
e0.01 ≈ 1.01. 

 
 
 
 
Finally, suppose that both Y and J are obtained by taking logs.  That is Y = log Z and J = 
log R.   What is the link between R and Z?  Suppose we consider J increasing by 0.01;  as 
in the previous note, this is approximately a 1% change in R. 
 

As J increases by 0.01, there is an associated change from Y to Y + 0.01 bJ .  As 
Y = log Z, we see that Z changes (approximately) to Z(1+0.01 bJ).  Thus:  as R 
increases by 1%, we find that there is an associated change in Z  of 0.01 bJ , 
interpreted as a percent. 

If, for example, bJ = 1.26, then a 1% increase in R is associated with an 
approximate increase of 1.26% in Z. 
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This document points out an interesting misunderstanding about multiple regression.  
There can be serious disagreement between  
 

the regression coefficient bH  in the regression Y   = b0 + bG G + bH H 
and 

the regression coefficient bH  in the regression Y   = b0 + bH H 
 
While most people would not expect the values of bH to be identical in these two 
regressions, it is somewhat shocking as to how far apart they can be. 
 
Consider this very simple set of data with n = 20: 
 

G H Y  G H Y 
73 7.3 3096 80 0.8 3326 
87 -6.0 3519 82 -2.4 3365 
83 -3.7 3383 77 2.9 3215 
78 2.5 3261 81 -1.5 3306 
82 -2.2 3360 79 1.1 3266 
80 0.7 3334 78 1.9 3229 
83 -2.9 3388 76 3.5 3193 
86 -6.2 3481 80 0.5 3315 
75 5.1 3120 80 -0.3 3280 
82 -1.3 3378 81 -0.6 3335 

 
Here is the regression of Y on (G, H) : 
 

The regression equation is 
Y = - 751 + 50.6 G + 20.5 H 
 
Predictor       Coef       StDev          T        P 
Constant      -751.2       515.9      -1.46    0.164 
G             50.649       6.439       7.87    0.000 
H             20.505       6.449       3.18    0.005 
 
S = 13.63       R-Sq = 98.5%     R-Sq(adj) = 98.3% 
 
Analysis of Variance 
 
Source       DF          SS          MS         F        P 
Regression    2      209106      104553    562.64    0.000 
Error        17        3159         186 
Total        19      212265 

 
 
This shows a highly significant regression.  The F statistic is enormous, and the 
individual t statistics are positive and significant. 
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Now, suppose that you regressed Y on H only.  You’d get the following: 
 

The regression equation is 
Y = 3306 - 29.7 H 
 
Predictor       Coef       StDev          T        P 
Constant     3306.31        6.38     518.17    0.000 
H            -29.708       1.907     -15.58    0.000 
 
S = 28.53       R-Sq = 93.1%     R-Sq(adj) = 92.7% 
 
Analysis of Variance 
 
Source       DF          SS          MS         F        P 
Regression    1      197610      197610    242.71    0.000 
Error        18       14655         814 
Total        19      212265 
 

 
This regression is also highly significant.  However, it now happens that the relationship 
with H is significantly negative.   
 
How could this possibly happen?  It turns out that these data were strung out in the (G, H) 
plane with a negative relationship.  The coefficient of Y on G was somewhat larger than 
the coefficient on H, so that when we look at Y and H alone we see a negative 
relationship.   
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The picture below shows the locations of the points in the (G, H) plane.  The values of Y 
are shown at some extreme points, suggesting why the apparent relationship between Y 
and H appears to be negative. 
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The quantity Syy =  y yi
i

n

−
=
∑ b g2

1

 measures variation in Y.  Indeed we get sy from this as 

sy = 
S

n
yy

−1
.  We use the symbol yi  to denote the fitted value for point i.  

 

One can show that y yi
i

n

−
=
∑ b g2

1

  =  y yi
i

n

−
=
∑ b g2

1

  +  y yi i
i

n

−
=
∑ b g2

1

.    These sums have the 

names SStotal, SSregression, and SSerror .  They have other names or abbreviations.  For 
instance 
 

SStotal  may be written as SStot . 
 
SSregression  may be written as SSreg , SSfit ,  or  SSmodel .  
 
SSerror  may be written as SSerr , SSresidual , SSresid , or SSres . 

 
The degrees of freedom accounting is this: 
 

SStotal    has n - 1 degrees of freedom 

 
SSregression   has K degrees of freedom   (K is the number of independent 

variables) 
 
SSerror    has n - 1 - K degrees of freedom  

 
Here is how the quantities would be laid out in an analysis of variance table: 
 
 

Source of 
Variation 

Degrees of 
freedom  Sum of Squares Mean Squares F 

Regression K y yi
i

n

−
=
∑ b g2

1

 y y

K

i
i

n

−
=
∑ b g2

1  
MS

MS
Regression

Error
 

Error n - 1 - K y yi i
i

n

−
=
∑ b g2

1

 y y

n K

i i
i

n

−

− −
=
∑ b g2

1

1
  

Total n - 1 y yi
i

n

−
=
∑ b g2

1
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Also, note that sε = MSError  is the estimate of σε.  This has many names: 
 

standard error of estimate 
standard error of regression 
estimated noise standard deviation  
root mean square error (RMS error) 
root mean square residual (RMS residual) 

 

The measure called R2  is computed as 
SS

SS
Regression

Total

.  This is often described as the “fraction 

of the variation in Y explained by the regression.” 
 
 
You can show, by the way, that 
 

s
s

n
n K

R
y

ε =
−

− −
−

1
1

1 2c h  

 

The quantity 2
adjR   =   ( )211 1

1
n R

n K
−

− −
− −

 is called the adjusted R-squared.   This is 

supposed to adjust the value of R2 to account for both the sample size and the number of 
predictors.   With a little simple arithmetic,  
 

2
adjR   =  

2

1
y

s
s
ε

⎛ ⎞
− ⎜ ⎟⎜ ⎟
⎝ ⎠

 

 
 
 
 

 

A measure of quality of the regression is the F statistic.  Formally, this F statistic tests  
H0 : β1 = 0, β2 = 0, β3 = 0, …, βK = 0    [Note that β0 does not appear.] 

versus 
H1  : at least one of β1, β2, β3, …, βK is not zero 

 
Note that β0 is not involved in this test. 
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This document considers the use of indicator variables, also called dummy variables, as 
predictors in multiple regression.  Three situations will be covered. 
 

EXAMPLE 1 gives a regression in which there are independent variables taking 
just two values.  This is very easy. 

EXAMPLE 2 gives a regression in which there is a discrete independent variable 
taking more than two values, but the values have a natural ordinal 
interpretation.  This is also easy. 

EXAMPLE 3 gives a regression with a discrete independent variable taking more 
than two values, and these values to not correspond to an ordering.  This 
can get complicated. 

 
EXAMPLE 1 
Consider a regression in which the dependent variable SALARY is to be explained in 
terms of these predictors: 
 

YEARS years on the job 
SKILLS score on skills assessment (running from 0 to 40) 
SUP  0 (not supervisor) or 1 (supervisor)  
GENDER 0 (male) or 1 (female) 

 
Suppose that the fitted regression turns out to be 

 
ˆSALARY   =  16,000  +  1,680 YEARS   

 
                +  1,845 SKILLS   +  3,208  SUP  -  1,145 GENDER 
 

Suppose that all the coefficients are statistically significant, meaning that the p-values 
listed with their t statistics are all 0.05 or less.  We have these very simple interpretations: 
 

The value associated with each year on the job is $1,680 (holding all else fixed). 
The value associated with each additional point on the skills assessment is $1,845 

(holding all else fixed). 
The value associated with being a supervisor is $3,208 (holding all else fixed). 
The value associated with being female is -$1,145 (holding all else fixed). 

 
The variables SUP and GENDER have conveniently been coded 0 and 1, and this makes 
the interpretation of the coefficients very easy.  Variables that have only 0 and 1 as values 
are called indicator variables or dummy variables.   

If the scores for such a variable are two other numbers, say 5 and 10, you might 
wish to recode them. 

 
These might also be described as categorical variables with two levels. 
 
In general, we will not offer interpretations on estimated coefficients that are not 
statistically significant. 
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EXAMPLE 2 
Consider a regression in which the dependent variable HOURS (television viewing hours 
per week) is to be explained in terms of predictors 
 

INCOME (in thousands of dollars) 
JOB (hours per week spent at work) 
FAM (number of people living in the household) 
STRESS (self-reported level of stress, coded as 

1 = none, 2 = low, 3 = some, 4 = considerable, 5 = extreme) 
 
The variable STRESS is clearly categorical with five levels, and we are concerned about 
how it should be handled.  The important feature here is that STRESS is an ordinal 
categorical variable, meaning that the (1, 2, 3, 4, 5) responses reflect the exact ordering of 
stress.  Accordingly, you need not take any extra action on this variable;  you can use it in 
the regression exactly as is.   
 
If the fitted regression equation is   
 

ˆHOURS  =  -62.0  -  1.1 INCOME  -  0.1 JOB  + 2.4 FAM  - 0.2 STRESS 
 
then the interpretation of the coefficient on STRESS, assuming that this coefficient is 
statistically significant, is that each additional level of STRESS is associated with 0.2 
hour (12 minutes) less time watching television. 
 
It seems natural to encode STRESS with consecutive integers.  These are some subtleties: 
 

* If you replaced the codes (1, 2, 3, 4, 5) by (-2, -1, 0, 1, 2), the regression 
would produce exactly the same estimated coefficient -0.2.  This 
replacement would alter the intercept however. 

 
* If you replaced the codes (1, 2, 3, 4, 5) by (10, 20, 30, 40, 50), the 

regression coefficient would be produced as -0.02. 
 
* If you do not like the equal-size spaces between the codes, you might 

replace (1, 2, 3, 4, 5) by (-3, -1, 0, 1, 3).  The coefficient would now 
change from -0.2, and you’d have to rerun the regression to see what it 
would be. 
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EXAMPLE 3 
 
We will consider next a data set on home prices with n = 370. 
 

Variable Interpretation Average Standard 
deviation 

PRICE Home price in dollars 154,422 14,883 

STYLE Home style, coded as 1 = split-level, 
2 = ranch, 3 = colonial, 4 = Tudor 2.41 0.98 

SIZE Indoor area in square feet 2,007.5 320.9 
BEDROOM Number of bedrooms 3.29 0.61 

 
The number of bedrooms is a small integer, and we can use it in the regression with no 
modification.   The average and standard deviation are useful summaries for BEDROOM, 
but we might also be interested in a simple tally.  The following was obtained in Minitab 
from Stat ⇒ Tables ⇒ Tally Individual Variables. 
 

BEDROOM  Count 
      2     21 
      3    230 
      4    109 
      5     10 
     N=    370 

 
The variable STYLE is encoded as small integers, but the numbers function only as 
labels.  Indeed, the information might have come to us as alphabetic names rather than 
these numbers.  Note the inherent meaninglessness of the arithmetic 
 

2 – 1 = ranch – split-level  =  1  =  3 – 2 = colonial – ranch 
 
From Stat ⇒ Tables ⇒ Tally Individual Variables for the variable STYLE we get this: 
 

STYLE  Count 
    1     85 
    2     97 
    3    141 
    4     47 
   N=    370 

 
Since the numbers attached to STYLE do not mean anything, we cannot use this variable 
as presently structured. 
 

By the way, if you uncritically ran the regression of PRICE on (STYLE, SIZE, 
BEDROOMS) you’d get the fitted equation  

PRICE = 87443 + 5444 STYLE + 22.8 SIZE + 2436 BEDROOM 
and the coefficient on STYLE would be statistically significant.  The 
interpretation would be that it’s a $5,444 step up from split-level to ranch, also a 
$5,444 step up from ranch to colonial, and a $5,444 step up from ranch to Tudor.  
This is ridiculous. 
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If STYLE had only two values, we would be in the situation of EXAMPLE 1, and we 
could just use STYLE as an ordinary indicator (or dummy) variable.  Here STYLE has 
four values, and we need a different method. 
 
We will make a set of indicator variables for STYLE.  In Minitab, do Calc ⇒ Make 
Indicator Variables.   You will get this information panel: 
 

 
 
Type STYLE in the location Indicator variables for, and the panel make a list in the 
Distinct Value column.  The Column will then show new names STYLE_1 through 
STYLE_4.  It would be convenient to overwrite these as SL, RANCH, COLONIAL, 
TUDOR. 
 
Minitab will create four indicator (dummy) variable columns.  In the column for SL, the 
value 1 will appear for any house that was a split-level, and the value 0 will appear for all 
other houses.   In the column for RANCH, the value 1 will appear for any house that was 
a ranch, and the value 0 will appear for all other houses. 
 
In each row of the data sheet, SL + RANCH + COLONIAL + TUDOR will be exactly 1.  
This just notes that each house is one, and only one, of the four styles. 
 
The command Calc ⇒ Make Indicator Variables can be applied to a column of 
alphabetic information.  
 
It seems natural now to run the regression of PRICE on (SL, RANCH, COLONIAL, 
TUDOR, SIZE, BEDROOM).   Note that STYLE is not included. 
 
If you do that, you’ll get this message at the top of the Minitab run: 
 

* TUDOR is highly correlated with other X variables 
* TUDOR has been removed from the equation 
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This message happens because SL + RANCH + COLONIAL + TUDOR = 1 for every 
line of the data set.  This creates total collinearity with the regression intercept, and the 
regression arithmetic is impossible.  Minitab deals with this by removing the last-named 
variable involved.  In this instance, TUDOR was named last and was eliminated. 
 
Minitab then goes on to produce a useful regression run: 
 

The regression equation is 
PRICE = 114696 + 21.8 SIZE + 2682 BEDROOM - 21054 SL - 12504 RANCH 
           - 12639 COLONIAL 
 
Predictor        Coef     SE Coef          T        P 
Constant       114696        4160      27.57    0.000 
SIZE           21.832       1.993      10.96    0.000 
BEDROOM          2682        1006       2.66    0.008 
SL             -21054        1871     -11.26    0.000 
RANCH          -12504        1821      -6.86    0.000 
COLONIAL       -12639        1705      -7.41    0.000 
 
S = 9882        R-Sq = 56.5%     R-Sq(adj) = 55.9% 
 
Analysis of Variance 
 
Source            DF          SS          MS         F        P 
Regression         5 46184185424  9236837085     94.58    0.000 
Residual Error   364 35546964282    97656495 
Total            369 81731149706 

 
Parts of the output have been omitted.   
 
The question now is the interpretation of the coefficients.  For a split-level home, the 
indicators have values SL = 1, RANCH = 0, COLONIAL = 0.  (Note that TUDOR has 
been omitted by Minitab).  The fitted equation for a split-level home is then 
 

PRICE = 114696 + 21.8 SIZE + 2682 BEDROOM - 21054   Split-Level 
 
A ranch home has indicators SL = 0, RANCH = 1, COLONIAL = 0.  This gives the fitted 
equation  
 

PRICE = 114696 + 21.8 SIZE + 2682 BEDROOM - 12504   Ranch 
 
Similarly, the fitted equation for colonial homes is  
 

PRICE = 114696 + 21.8 SIZE + 2682 BEDROOM - 12639  Colonial 
 

What about the Tudor homes?  These have SL = 0, RANCH = 0, COLONIAL = 0, so that 
the fitted equation for these is  
 

PRICE = 114696 + 21.8 SIZE + 2682 BEDROOM   Tudor 
 
The omitted indicator, here TUDOR, gives the base for interpreting the other estimated 
coefficients. 
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The suggestion is that a split-level home sells for 21,054 less than a Tudor home, holding 
all other variables fixed.  A ranch sells for 12,504 less than a Tudor home, holding all 
other variables fixed.  It follows that a ranch sells for 21, 054 - 12,504 = 8,550 more than 
a split-level, holding all other variables fixed. 
 
If we had asked Minitab for the regression of PRICE on (SL, RANCH, TUDOR, SIZE, 
BEDROOM), we would have produced the following fitted equation: 
 

PRICE = 102057 + 21.8 SIZE + 2682 BEDROOM - 8415 SL + 135 RANCH  
               + 12639 TUDOR 

 
This time the indicator for colonial was used as the baseline, and we see that the Tudor 
homes sell for 12,639 more than the colonial homes, holding all else fixed.  Perfectly 
consistent. 
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The following display indicates exactly what happens as we change the baseline. 
 

 Estimated coefficients 
Indicators used in the regression SL RANCH COLONIAL TUDOR 
SL, RANCH, COLONIAL        -21,054 -12,504 -12,639  
SL, RANCH,                       TUDOR -8,415 135  12,639 
SL,                 COLONIAL, TUDOR -8,550  -135 12,504 
       RANCH, COLONIAL, TUDOR  8,550 8,415 21,054 

 
In all parts of this table, the other variables (SIZE, BEDROOM) were used as well. 
 
All four lines of this table represent equivalent fits.  All produce the same R2, the same F 
statistic, and the same sε (S in Minitab).  Moreover, the estimated coefficients on SIZE 
and BEDROOM will be the same in all four lines, as will the corresponding t statistics. 
 
 
 
If you are using a set of indicator variables, and if you go through a variable-selection 
process to remove variables, you must keep the indicator set intact.  In the context of this 
problem, that means that any fitted model must use either 

three out of the four indicators 
or 

none of the indicators 
 

The indicators only make solid good sense when used together. 
 
The regression of PRICE on (SIZE, BEDROOM, SL, RANCH, COLONIAL) which we 
saw above had significant t statistics on all independent variables.  We would not be 
tempted to remove any of them.  Moreover, a stepwise regression would select all the 
predictors. 
 
The regression of PRICE on (SIZE, BEDROOM, SL, RANCH, TUDOR) produces this: 
 

The regression equation is 
PRICE = 102057 + 21.8 SIZE + 2682 BEDROOM - 8415 SL + 135 RANCH  
         + 12639 TUDOR 
 
Predictor        Coef     SE Coef          T        P 
Constant       102057        3674      27.78    0.000 
SIZE           21.832       1.993      10.96    0.000 
BEDROOM          2682        1006       2.66    0.008 
SL              -8415        1365      -6.16    0.000 
RANCH             135        1309       0.10    0.918 
TUDOR           12639        1705       7.41    0.000 

 
This suggests that we might remove the indicator for RANCH.  Indeed, stepwise 
regression selects all the variables except RANCH.   
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So what’s the problem?  If we removed RANCH, the other estimated coefficients would 
change, and we would no longer be able to assess correctly the differences between the 
home styles. 
 
The advice, in generic form is this.  If there are K indicators in a set, then a fitted model 
must use either  

K – 1 of the indicators (leave out any one) 
or 

none of the indicators. 
 

 
Specifying a model that has none of the indicators is easy.  If you use a variable selection 
technique like stepwise regression or best subsets regression, you need a way to force the 
indicator set to stay together.  Here is how you set that up for stepwise regression: 
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Finally, we need an objective method to test whether an indicator variable set should be 
used at all.   Let’s consider the context of our model, namely 
 

PRICEi  =  β0  +  βSIZE SIZEi  +  βBEDROOM BEDROOMi   
 

+  βSL SLi  +  βRANCH RANCHi  +  βCOLONIAL COLONIALi  +  εi  
 
The decision about whether or not to use the style indicators is really a test of the null 
hypothesis  H0:   βSL = 0, βRANCH = 0,  βCOLONIAL = 0 .  
 
There is a method for testing whether a set of coefficients is all zero.  This method works 
for situations beyond what we are testing here.   This requires the computation of this F 
statistic: 
 

Regression sum of squares
Regression Sum of Squares Number of coefficients

using SIZE, BEDROOM, 
using SIZE, BEDROOM being investigated

SL, RANCH, COLONIAL
Residual Mean Squ

⎧ ⎫⎡ ⎤
⎧ ⎫⎡ ⎤⎪ ⎪⎢ ⎥ − ÷⎨ ⎬ ⎨ ⎬⎢ ⎥⎢ ⎥ ⎩ ⎭⎣ ⎦⎪ ⎪⎢ ⎥⎣ ⎦⎩ ⎭

are
using SIZE, BEDROOM,
SL, RANCH, COLONIAL

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 
This is to be interpreted as an F statistic.  We need to identify the two degrees of freedom 
numbers associated with F.    

The numerator degrees of freedom is “Number of coefficients being investigated” 
in the calculation above. 

The denominator degrees of freedom is the DF for residual in the regression on 
(SIZE, BEDROOM, SL, RANCH, COLONIAL). 

 
The regression on (SIZE, BEDROOM, SL, RANCH, COLONIAL) had this analysis of 
variance table: 
 

Analysis of Variance 
Source            DF          SS          MS         F        P 
Regression         5 46184185424  9236837085     94.58    0.000 
Residual Error   364 35546964282    97656495 
Total            369 81731149706 

 
The regression sum of squares is 46,184,185,424.  The residual mean square is 
97,656,495.   We note also that the degrees of freedom in the residual line is 364. 
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The regression on just (SIZE, BEDROOM) will have this analysis of variance table: 
 

Analysis of Variance 
Source            DF          SS          MS         F        P 
Regression         2 33675069487 16837534743    128.59    0.000 
Residual Error   367 48056080220   130942998 
Total            369 81731149706 

 
The regression sum of squares is 33,675,069,487. 
 
 
We’ll note that three coefficients are under test.  We now have enough information to 
assemble the test statistic: 
 

{ }46,184,185,424 33,675,069,487 3
97,656,495
− ÷

  ≈  42.70 

 
Minitab does not have a procedure for computing this number.  The user needs to 
assemble it. 
 
So what do we do with this number?   The null hypothesis above should be rejected at the 
0.05 level of significance if this exceeds 0.05

3, 364F , the upper 5% point for the F distribution 

with (3, 364) degrees of freedom.  It happens that 0.05
3, 364F  = 2.6294.  Since our computed 

statistic, 42.70 exceeds 2.6294, we would reject the null hypothesis that all the 
coefficients of the style indicators are zero.  It appears that the style indicators are useful 
as predictors of home price. 
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You can find this cutoff point for the F distribution from Minitab.  Just do Calc ⇒ 
Probability Distributions ⇒ F, and then fill in the resulting panel as follows: 
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This particular F test had been defined through this statistic: 
 

Regression sum of squares
Regression Sum of Squares Number of coefficients

using SIZE, BEDROOM, 
using SIZE, BEDROOM being investigated

SL, RANCH, COLONIAL
Residual Mean Squ

⎧ ⎫⎡ ⎤
⎧ ⎫⎡ ⎤⎪ ⎪⎢ ⎥ − ÷⎨ ⎬ ⎨ ⎬⎢ ⎥⎢ ⎥ ⎩ ⎭⎣ ⎦⎪ ⎪⎢ ⎥⎣ ⎦⎩ ⎭

are
using SIZE, BEDROOM,
SL, RANCH, COLONIAL

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 
You will sometimes see this in the exactly equivalent form  
 

Residual Sum of Squares
Residual sum of squares Number of coefficients

using SIZE, BEDROOM,
using SIZE, BEDROOM being investigated

SL, RANCH, COLONIAL
Residual Mean Square
us

⎧ ⎫⎡ ⎤
⎧ ⎫⎡ ⎤⎪ ⎪⎢ ⎥− ÷⎨ ⎬ ⎨ ⎬⎢ ⎥ ⎢ ⎥ ⎩ ⎭⎣ ⎦⎪ ⎪⎢ ⎥⎣ ⎦⎩ ⎭

ing SIZE, BEDROOM,
SL, RANCH, COLONIAL

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 
This equivalent form lays out the arithmetic as  
 

{ }48,056,080,220 35,546,964,282 3
97,656,495
− ÷

  ≈  42.70 

 
This produces exactly the same number, as it must. 
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Original documents (not part of the formal handout) 
 
introthoughts.doc 
grossSize.doc 
DataCleaning.doc 
coefintr.doc 
regpath.doc 
anova.doc 
indicator.doc  (has a few things on variable selection) 
   
 
 
 
 
 
 
 
 
 
 
 
 


