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 OUTLIERS IN REGRESSION  

 
This problem concerns the regression of Y on (X1, X2, …, Xk) based on n data points.   
The model we use is 
 

Yi = β0 + β1 Xi1 + β2 Xi2 + … + βk Xik + εi  
 
where the εi’s are independent statistical noise terms with mean value zero and standard 
deviation σ.  The subscripting scheme is done so that Xij is the value of the jth  
independent variable ( Xj ) for data point i. 
 
We wish to distinguish these types of problem points (described here with generic 
subscripts g, h, and ): 
 

For point g, the values of the independent variables (Xg1, Xg2, …, Xgk) are 
reasonable when compared to the other data points, but the noise term εg is very 
far from zero. 
 
For point h, the values of the independent variables (Xh1, Xh2, …, Xhk) are 
reasonable when compared to the other data points, but the model fails.  That is, 
Yh does not have a distribution centered at β0 + β1 Xh1 + β2 Xh2 + … + βk Xhk. 
 
For point , the values of the independent variables, namely X 1, X 2, …, X k, are 
unusual when compared to the other data points.  
 

 
As we will see, point g is likely to be designated an outlier, because its corresponding 
residual eg will be far from zero. 
 
Point h could create all sorts of problems, but most likely it will resemble points of type g 
because its failure to fit the model will be reflected in a residual eh  which is far from 
zero.  The least squares calculation will accommodate the other points very well, leaving 
point h with a residual far from zero. 
 
Point  will be called a high leverage point.  High leverage points generally do not 
produce unusual residuals, but they have the potential to do great harm to the regression.  
There are many notions of harm, but here we refer to one notion:  the regression 
coefficients would be very different if this point were omitted. 
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Unless the sample size n is very small, point g is not likely to create much trouble.  This 
point will be easily picked out from the residual versus fitted plot.  It is probably worthy 
of special note.  Removal of this point 
 

will have very little impact on the fitted regression line’s coefficients 
 
will increase the value of R2 , perhaps substantially 
 
will reduce the value of  sε, perhaps substantially 
 
will shorten the prediction intervals for new points, perhaps substantially 

 
Should point g be removed?  In terms of the fitted regression, it doesn’t matter (which is 
a vote for not removing the point).  In terms of other calculations, the removal of point g 
improves thing;  one now has to balance the improvement in the other statistics with the 
appearance of data-massaging. 
 
Point h will be operationally hard to distinguish from point g, and it should be treated the 
same. 
 
Point  is troubling.  Generally, we recommend that high leverage points be removed 
before the regression work starts.  By the time that the regression work is completed, 
some of the predictors may have been removed, and the status of point  may have 
changed.  You will have to make subjective decisions about whether this point should be 
reincluded.   It is hard to give completely general advice, but here are some 
considerations: 

(1) If the sample size is truly large, say n > 400, then it’s not worth the trouble 
to remove a small number of high leverage points.   

(2) You should be concerned if your data set has a substantial number of high 
leverage points.  Here “substantial number” is subjective, but would 
certainly cover ten high leverage points when n = 40 or twenty high 
leverage points when n = 400. 

(3) Binary independent variables which are unbalanced (say 95% of values 
are “0” and 5% of values are “1”) can easily create high leverage 
situations.  Data points which are marked as high leverage because of this 
kind of situation need not be removed.   

(4) Do not get into a cycle of point removal for high leverage issues.  Remove 
points for high leverage only at the initial run.   

(5) A decision to transform any of the independent variables will require a 
complete restart of the problem.  That is, you’ll have to start over in terms 
of checking for high leverage. 
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     WORKING WITH HIGH LEVERAGE POINTS      

 
 

 

The data in file X:\SOR\B011305\HO\EX1233.MTP call for the regression of SALARY 
on predictors NumExpl, Margin, and IPCost.  This problem appears in Hildebrand and 
Ott. 
 
(a)  Perform the regression of SALARY on the three predictors.   Within Stat ⇒ 
Regression ⇒ Regression ⇒, ask for Storage ⇒ Hi (leverages) ⇒.   Also, be sure to 
ask for the residual versus fitted plot through Graphs ⇒ Residuals versus fits ⇒.  
Report the fitted regression equation. 

SOLUTION:  Here is the regression output: 
 

Regression Analysis: Salary versus NumExpl, Margin, IPCost 
 
The regression equation is 
Salary = 25.5 + 0.00389 NumExpl + 0.0957 Margin + 0.216 IPCost 
 
Predictor        Coef     SE Coef          T        P 
Constant      25.5378      0.6430      39.72    0.000 
NumExpl      0.003894    0.001718       2.27    0.027 
Margin        0.09572     0.03653       2.62    0.011 
IPCost        0.21635     0.06920       3.13    0.003 
 
S = 0.9999      R-Sq = 38.4%     R-Sq(adj) = 35.5% 
 
Analysis of Variance 
 
Source            DF          SS          MS         F        P 
Regression         3      39.291      13.097     13.10    0.000 
Residual Error    63      62.983       1.000 
Total             66     102.274 

 
 
Unusual Observations 
Obs    NumExpl     Salary         Fit      SE Fit    Residual    St Resid 
  7         42     27.500      29.804       0.198      -2.304       -2.35R  
 12        389     28.900      29.706       0.623      -0.806       -1.03 X 
 46        130     25.700      28.426       0.247      -2.726       -2.81R  
 56        371     32.400      30.729       0.510       1.671        1.94 X 
 66         43     31.300      29.084       0.144       2.216        2.24R  
 
R denotes an observation with a large standardized residual 
X denotes an observation whose X value gives it large influence. 

 
 
The residual-versus-fitted plot (not shown) seems to be reasonable. 
 
 
(b)  Use the F statistic and its p-value to indicate whether the overall regression is 
significant.   Use the individual t statistics to decide whether the three predictors are 
needed. 
 
SOLUTION:  As F = 13.10 on (3, 63) degrees of freedom reports a p-value of 0.000, we 
can certainly claim that the overall regression is significant.   Also, each of the three 
predictors has a t statistic with a p-value below 0.05, so we would judge each of the three 
predictors to be significant also. 
 
(c)  Minitab will use an X on two points with this message: 
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X denotes an observation whose X value gives it large influence. 

 
Here we should interpret “large influence” as meaning that the points have the potential 
to seriously alter the regression results.  This is a warning, not a claim that the points 
really have altered the results.   The strategic question can be handled by examining the 
leverage values (which Minitab calls Hi), and these will appear in the data window in a 
column called HI1, which was created through your action in part (a).   Find the numeric 
values for HI1 for the two points which got the X message. 
 
SOLUTION:  For point 12, the value of Hi is 0.388716, and for point 56 it is 0.259877. 
 

(d)  A reasonable standard for the leverage values uses a threshold of concern.  A 

leverage value (Hi in Minitab) is potentially troublesome if it exceeds 1k +3 , where k is 

the number of predictors (here 3) and n is the number of data points.   Do the points 
identified in (c) exceed this threshold of concern?   Can you see what is potentially 
troublesome about these points? 

n

 

SOLUTION:   We have n = 67, so that 1k
n

3 +  =  3 13
67
+  ≈ 0.1791.  Certainly the leverage 

values (Hi) for both points 12 and 56 easily exceed this threshold.  Now, why are these 
points unusual?  It seems that these two have outrageously large values for NumExpl.  
Point 12 is also extremely unusual in its combination of (NumExpl, Margin). 
 
 
(e)  The cautious approach to regression requires that high leverage points be set aside 
and that the regression should be repeated without these points.  Give the regression on 
the remaining 65 points. 
 

Here are two artful ways to omit points from a Minitab regression.   
 
Method 1: 

Start by copying the dependent variable column to a new column.   Use 
Manipulate ⇒ Copy Columns ⇒ to make a copy of SALARY in a new 
column;  you might call this new column as SALBACKUP. 
 
In the original SALARY column, type the missing data code * over the 
values for the points you want to omit (12 and 56). 
 
Repeat the regression, using exactly the same commands as before.  The 
output will also include some useful facts about the two omitted points. 

 
Method 2: 
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Start by marking the entire data area, including the variable names, as a 
block.  Press Ctrl+C to copy this to the Windows clipboard. 
 
Use File ⇒ New ⇒ Worksheet to create a new worksheet.  With the 
cursor in the name box for C1, press Ctrl+V.  This will create a copy of 
your original data in the new worksheet. 
 
You would like to give a new name to this copy.   Click on the Show 
Worksheets Folder icon;  this appears as a small square button with an 
image of three cascading data sheets.  The Project Manager window will 
open up, and the new worksheet will appear as a folder icon (with the 
name Worksheet 2).  Click with the right mouse button on this folder, and 
then select Rename.   Type an appropriate name, such as 
Ex1233_NO12_56. 
 
Return to the new worksheet, which should now appear with its new 
name.  In the SALARY column, type the missing data code * over the 
values for the points you want to omit (12 and 56). 
 
Repeat the regression, using exactly the same commands as before.  The 
output will include some useful facts about the two omitted points. 
 
You might wish to save the original data together with your modified 
worksheet, and it’s convenient to make this a project.  Use File ⇒ Save 
Project As ⇒.   A recommended name would be EX1233.MPJ. 

 
If it should happen that this regression with 65 points gets some X messages, it would be 
reasonable to ignore them.   That is, we do not want to get into a cycle of omitting points. 
 
SOLUTION:  Here is the regression omitting these points: 
 

Regression Analysis: Salary versus NumExpl, Margin, IPCost 
 
The regression equation is 
Salary = 25.8 + 0.00264 NumExpl + 0.0830 Margin + 0.226 IPCost 
 
65 cases used 2 cases contain missing values 
 
Predictor        Coef     SE Coef          T        P 
Constant      25.7927      0.6454      39.96    0.000 
NumExpl      0.002637    0.002516       1.05    0.299 
Margin        0.08302     0.03898       2.13    0.037 
IPCost        0.22569     0.07067       3.19    0.002 
 
S = 0.9841      R-Sq = 36.3%     R-Sq(adj) = 33.2% 
 
Analysis of Variance 
 
Source            DF          SS          MS         F        P 
Regression         3      33.666      11.222     11.59    0.000 
Residual Error    61      59.075       0.968 
Total             64      92.741 
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Unusual Observations 
Obs    NumExpl     Salary         Fit      SE Fit    Residual    St Resid 
  7         42     27.500      29.789       0.215      -2.289       -2.38R  
 12        389          *      29.402       0.918           *           * X 
 37         28     27.700      29.699       0.199      -1.999       -2.07R  
 41        230     29.300      28.923       0.435       0.377        0.43 X 
 46        130     25.700      28.358       0.261      -2.658       -2.80R  
 56        371          *      30.304       0.727           *           * X 
 64        279     29.400      29.854       0.511      -0.454       -0.54 X 
 66         43     31.300      29.122       0.149       2.178        2.24R  
 
R denotes an observation with a large standardized residual 
X denotes an observation whose X value gives it large influence. 

 
You should note that points 12 and 56 still appear in the listing with an X mark.  We will 
choose to ignore other points with X marks (once we have passed the initial regression). 
 
 
(f)  Make a comparison between the two regression results in terms of the F statistic, the t 
statistics, R2, and sε .   Also, does the regression in (e) suggest that any of the three 
predictors could be removed?   This removal will be followed up in (g) and (h). 
 
SOLUTION:    
 

Calculation Full regression 
n = 67 (a) 

Reduced regression 
n = 65 (e) 

F 13.10 on (3, 63) df 11.59 on (3, 61) df 
R2  38.4% 36.3% 
S   ( sε ) 0.9999 0.9841 
bNumExpl (tNumExplo) 0.003894   (2.27) 0.002637 (1.05) 
bMargin  (tMargin) 0.09572 (2.62) 0.08302 (2.13) 
bIPCost  (tIPCost) 0.21635 (3.13) 0.22569 (3.19) 

 
This does seem to suggest that variable NumExpl could well be removed. 
 
(g)  Remove the variable for which the t statistic in part (f) was inside the interval (-2, 2).  
Does the printout indicate that anything has changed with regard to points 12 and 56? 
 
SOLUTION:   Here is the regression on only (Margin, IPCost): 
 

Regression Analysis: Salary versus Margin, IPCost 
 
The regression equation is 
Salary = 25.9 + 0.0933 Margin + 0.207 IPCost 
 
65 cases used 2 cases contain missing values 
 
Predictor        Coef     SE Coef          T        P 
Constant      25.9400      0.6304      41.15    0.000 
Margin        0.09334     0.03774       2.47    0.016 
IPCost        0.20719     0.06849       3.03    0.004 
 
S = 0.9849      R-Sq = 35.2%     R-Sq(adj) = 33.1% 
 
Analysis of Variance 
 
Source            DF          SS          MS         F        P 
Regression         2      32.602      16.301     16.81    0.000 
Residual Error    62      60.138       0.970 
Total             64      92.741 
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Unusual Observations 
Obs     Margin     Salary         Fit      SE Fit    Residual    St Resid 
  7       23.4     27.500      29.908       0.183      -2.408       -2.49R  
 37       19.8     27.700      29.798       0.175      -2.098       -2.16R  
 38        6.7     27.300      27.220       0.415       0.080        0.09 X 
 46       15.6     25.700      28.248       0.239      -2.548       -2.67R  
 59        9.8     27.000      27.153       0.397      -0.153       -0.17 X 
 66       18.3     31.300      29.206       0.125       2.094        2.14R  

 
This model certainly fits well.  We should also note that points 12 and 56 are no longer 
marked as Hi, or high leverage. 
 
 
(h)  Once the problem is down to two predictors, it appears that points 12 and 56 are no 
longer troublesome.  Restore them to the regression, and compare the findings to that of 
the regression in (g).   The work that you did in step (e) allows you to recover the 
SALARY for points 12 and 56. 
 
SOLUTION:  Here is that regression: 
 

The regression equation is 
SALARY = 25.9 + 0.102 Margin + 0.196 IPCost 
 
Predictor        Coef       StDev          T        P 
Constant      25.9084      0.6416      40.38    0.000 
Margin        0.10220     0.03757       2.72    0.008 
IPCost        0.19559     0.07077       2.76    0.007 
 
S = 1.032       R-Sq = 33.4%     R-Sq(adj) = 31.3% 
 
Analysis of Variance 
 
Source            DF          SS          MS         F        P 
Regression         2      34.157      17.079     16.05    0.000 
Residual Error    64      68.117       1.064 
Total             66     102.274 
 
Unusual Observations 
Obs     Margin   SALbacku         Fit   StDev Fit    Residual    St Resid 
  7       23.4     27.500      29.984       0.188      -2.484       -2.45R  
 37       19.8     27.700      29.829       0.181      -2.129       -2.10R  
 38        6.7     27.300      27.211       0.420       0.089        0.09 X 
 46       15.6     25.700      28.307       0.249      -2.607       -2.60R  
 56       22.3     32.400      29.645       0.182       2.755        2.71R  
 59        9.8     27.000      27.192       0.412      -0.192       -0.20 X 
 66       18.3     31.300      29.250       0.129       2.050        2.00R  
 
R denotes an observation with a large standardized residual 
X denotes an observation whose X value gives it large influence. 

 

 

Here’s a comparison: 
 

The fitted equation in (g) was 
 

Salary = 25.9 + 0.0933 Margin + 0.207 IPCost 

 
The fitted equation in (h) was 

 
SALARY = 25.9 + 0.102 Margin + 0.196 IPCost 
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Other facts: 
 

Calculation (g) 
Two predictors 

n = 65 

(h) 
Two predictors 

n = 67 
F 41.15 40.38 
t for Margin 2.47 2.72 
t for IPCost 3.03 2.76 
S  (sε) 0.9849 1.032 
R2 35.2% 33.4% 

 
The results of (g) and (h) are generally similar.  One might actually say that (g) is a 
somewhat better fit to the data, but this is a close call.   
 
You should feel comfortable with the removal of the variable NumEmpl.  It’s then less 
critical whether you do or do not include points 12 and 56. 
 
You might observe that all this action has led us to this simple resolution: 
 

The relationship between SALARY and NumExpl is dominated by two data 
points, 12 and 56. 

When points 12 and 56 are removed, the relationship between SALARY and 
NumEmpl disappears. 
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 OMITTING A SINGLE POINT FROM A REGRESSION  

 
Suppose that you have a data base involving variables Y, A, B, C, D and that this data 
base has n = 74 points.  You wish to consider the regression of Y on (A, B, C, D).  
Concerns about high leverage values (HI in Minitab) cause you to consider the removal, 
possibly temporarily, of points 14 and 68.   Here are two distinct strategies: 
 
STRATEGY 1:  This strategy keeps you within the original worksheet.    
 
Begin by making a copy of the dependent variable.  Do Calc ⇒ Calculator ⇒.  In the 
box next to  Store result in variable:  type the name YCOPY (or any similar suggestive 
name).  In the box Expression: simply type Y. 
 
Next in the spreadsheet move to the entry in row 14 under Y and type * , which is 
Minitab’s missing data code.   Similarly place * in row 68 under Y.  
 
Now do the regression again of Y on (A, B, C, D).   The resulting printout will show a 
regression with this message: 
 

72 cases used 2 cases contain missing values 
 
An advantage to this strategy is that regression work will still show leverage (HI) values 
for the omitted points 14 and 68.   This can be useful in deciding later whether you might 
readmit these points to the regression.   
 
Another advantage is that the point sequencing is maintained;  that is, point number 74 is 
still point number 74.  Clean accounting is enormously helpful. 
 
 
 
STRATEGY 2:   This strategy creates a new worksheet. 
 
In your worksheet, mark the entire relevant data including the variable names as a block.  
Put the cursor in the name block for the first column, and while holding down the shift 
key, move the cursor to the last row of the final column.  Press Ctrl-C to mark this block. 
 
Do File ⇒ New ⇒ Minitab worksheet.  This will create a new worksheet.  (The Alt-W 
or Window feature will allow you to move among worksheets.)  In this new worksheet, 
place the cursor in the name box for column 1 and do Ctrl-V.  This will copy the contents 
of the old worksheet into the new worksheet.    You should use Window ⇒ Manage 
Worksheets ⇒ Description ⇒ to leave yourself notes about the worksheets. 
 
Perform the appropriate editing in the new worksheet.   For instance, you can remove an 
entire row through Manipulate ⇒ Erase Variables.  Removing rows will alter the 
sequencing;  if you remove two rows then the final row will have number 72.  Of course, 
you may still choose to use the editing style in Strategy 1 (which will preserve the 
original sequencing). 
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While this worksheet is active, you should use Editor ⇒ Worksheet description to 
leave yourself a reminder as to what you’ve done.  For instance, this is the right place to 
indicate that you’ve removed points 14 and 68.   You might also consider using 
Window ⇒ Manage worksheets to give this new worksheet a descriptive name.    
 
At the conclusion of your work, you should save everything as a project.   This will keep 
your two (or more) worksheets together in a single file with extension MPJ. 
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 A USEFUL MULTIPLE REGRESSION ENDING  

This document deals a data set on trash hauling information collected over 40 districts.  
Because these districts differed substantially in size, all variables were logged.  The 
objective was to explain lwaste (logarithm of solid waste generated) in terms of five 
predictors.   
 
At the initial stage of the work, point 10 was identified as “large influence” or “high 
leverage” by Minitab.    
 

Minitab uses the cutoff 13 k
n
+  for determining high leverage points.  You do not 

need to actually go through the work of finding the exact leverage value, though it 
can be interesting.   Here the leverage value for point 10 was found to be 

0.484069.  By comparison, 13 k
n
+  =  5 13

40
+  = 0.45. 

 
Point 10 definitely has the potential to make trouble, so we set it aside. 
 
Here’s the regression using 39 points and all five predictors. 
 

The regression equation is 
logWASTE = - 0.541 - 0.0195 logIND + 0.0603 logMETALS + 0.0407 logTRUCK 
           - 0.129 logRETAIL + 0.244 logHOTEL 
 
39 cases used 1 cases contain missing values 
 
Predictor        Coef       StDev          T        P 
Constant      -0.5405      0.1407      -3.84    0.001 
logIND       -0.01949     0.02343      -0.83    0.411 
logMETAL      0.06027     0.02119       2.84    0.008 
logTRUCK      0.04070     0.02472       1.65    0.109 
logRETAI     -0.12913     0.05849      -2.21    0.034 
logHOTEL      0.24390     0.05747       4.24    0.000 
 
S = 0.1920      R-Sq = 70.0%     R-Sq(adj) = 65.4% 
 
Analysis of Variance 
 
Source            DF          SS          MS         F        P 
Regression         5     2.83611     0.56722     15.38    0.000 
Residual Error    33     1.21675     0.03687 
Total             38     4.05285 
 
Source       DF      Seq SS 
logIND        1     1.67707 
logMETAL      1     0.15937 
logTRUCK      1     0.11933 
logRETAI      1     0.21616 
logHOTEL      1     0.66418 
 
Unusual Observations 
Obs     logIND   logWASTE         Fit   StDev Fit    Residual    St Resid 
  2       7.11     0.9030      0.3440      0.0878      0.5590        3.27R  
  5       2.53    -0.4292     -0.8069      0.1066      0.3776        2.36R  
 10      -0.69          *     -0.3431      0.1860           *           * X 
 15       3.75     0.5020      0.1781      0.1117      0.3239        2.07R  
 
R denotes an observation with a large standardized residual 
X denotes an observation whose X value gives it large influence. 
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The residual-versus-fitted plot for this is the following: 
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Because the visual impression of expanding residuals seems to come from the single 
point at the upper right, we will not interpret this plot as requesting a logarithm 
transformation of the dependent variable.   
 
We like this regression, except for the fact that some of the t statistics are weak.   Let’s 
note that R2 = 70.0%, and sε = 0.1920. 
 
We’ll show now a final version for this regression (without telling the whole story as to 
how we got here). 

 
The regression equation is 
logWASTE = - 0.700 + 0.0554 logMETALS + 0.142 logHOTEL 
 
39 cases used 1 cases contain missing values 
 
Predictor        Coef       StDev          T        P 
Constant     -0.70049     0.07410      -9.45    0.000 
logMETAL      0.05545     0.01402       3.96    0.000 
logHOTEL      0.14211     0.02772       5.13    0.000 
 
S = 0.2011      R-Sq = 64.1%     R-Sq(adj) = 62.1% 
 
Analysis of Variance 
 
Source            DF          SS          MS         F        P 
Regression         2      2.5967      1.2983     32.10    0.000 
Residual Error    36      1.4562      0.0404 
Total             38      4.0529 
 
Source       DF      Seq SS 
logMETAL      1      1.5335 
logHOTEL      1      1.0632 
 
Unusual Observations 
Obs   logMETAL   logWASTE         Fit   StDev Fit    Residual    St Resid 
  2       6.58     0.9030      0.3590      0.0755      0.5440        2.92R  
 15       1.50     0.5020     -0.0317      0.0633      0.5337        2.80R  
 20       4.84    -0.4020     -0.5306      0.1067      0.1286        0.75 X 
 
R denotes an observation with a large standardized residual 
X denotes an observation whose X value gives it large influence. 

 

 14



 A USEFUL MULTIPLE REGRESSION ENDING  

We see that R2 has dropped, but only to 64.1%.   We’re happy to tolerate this drop in R2 
to reduce the problem to just two predictors.  We see that Minitab has found another large 
influence point, point 20, but we’re going to react only at the beginning of the work to 
such messages. 
 
The residual versus fitted plot here looks similar to the original. 
 
 
 
Now that we’re down to only two predictors, maybe point 10 is not troublesome any 
more.  Let’s restore point 10 and see what happens: 
 

The regression equation is 
logWASTE = - 0.643 + 0.0508 logMETALS + 0.129 logHOTEL 
 
Predictor        Coef       StDev          T        P 
Constant     -0.64349     0.07469      -8.62    0.000 
logMETAL      0.05078     0.01476       3.44    0.001 
logHOTEL      0.12936     0.02893       4.47    0.000 
 
S = 0.2139      R-Sq = 58.3%     R-Sq(adj) = 56.0% 
 
Analysis of Variance 
 
Source            DF          SS          MS         F        P 
Regression         2      2.3611      1.1805     25.81    0.000 
Residual Error    37      1.6921      0.0457 
Total             39      4.0532 
 
Source       DF      Seq SS 
logMETAL      1      1.4469 
logHOTEL      1      0.9142 
 
Unusual Observations 
Obs   logMETAL   logWASTE         Fit   StDev Fit    Residual    St Resid 
  2       6.58     0.9030      0.3230      0.0787      0.5800        2.92R  
 10      -0.69    -0.1672     -0.6262      0.0700      0.4590        2.27R  
 15       1.50     0.5020     -0.0343      0.0673      0.5363        2.64R  
 20       4.84    -0.4020     -0.4874      0.1118      0.0854        0.47 X 
 
R denotes an observation with a large standardized residual 
X denotes an observation whose X value gives it large influence. 

 
Point 10 is no longer a high leverage point.   You might note that we’ve paid a penalty in 
R2, a drop from 64.1% to 58.3%, just for putting in this one point.   You might look back 
at the original data.  Point 10 is really unusual. 
 
Should we react to the fact that point 20 is now identified as having high leverage?   
Probably not, as the process of editing out points could go on indefinitely. 
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 A USEFUL MULTIPLE REGRESSION ENDING  

Here is the residual versus fitted plot, with the interesting points marked: 
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CROSS-REF LIST (NOT FOR DISTRIBUTION) 

There are a number of numerical relationships in computer regression output that may 
appear as coincidences.  In this document, we will not count the basic accounting facts as  
coincidences.  (An example of a basic accounting fact is SSregression + SSerror = SStotal.)   
Here is a list of some of these.  This uses n = number of data points and K = number of 
independent variables. 
 
THESE FACTS ALWAYS HOLD: 
 

R2  = R-squared = 
SS

SS
regression

total
 

 

2
adjR  = adjusted R-squared =  

( )

2

SD
s

Y
ε

 
−  
 

1  

 
R = Multiple correlation = R2  
 
sε = Standard error of estimate = MSerror  
 

SD(Y) = SD(dependent variable) = 
SS
n

total

−1
 

 

F = 
n K

K
R

R
− −

×
−

1
1

2

2  

 
THESE HOLD FOR SIMPLE REGRESSION (K = 1): 
 

t2 = F   (using t for slope) 
 
P-value for t (for slope) = P-value for F 
 
r  = ordinary correlation = ± R2  (using + if b > 0 and - if b < 0) 
 
VIF (variance inflation factor) cannot be given 

 
THESE HOLD FOR THE CASE OF TWO PREDICTORS (K = 2): 
 

The two VIF (variance inflation factor) values are equal 
 
 

Some software provides tolerance instead of VIF, but tolerance = 
1

VIF
. 
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