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The standard normal distribution refers to the case with mean μ = 0 and standard 
deviation σ = 1.  This is precisely the case covered by the tables of the normal 
distribution.  It is common to use the symbol Z to represent any random variable which 
follows a normal distribution with μ = 0 and σ = 1. 

 
The normal distribution is often described in terms of its variance σ2.  Clearly σ is 
found as the square root of σ2. 

 
If X is a normal random variable with general mean μ (not necessarily 0) and standard 
deviation σ (not necessarily 1), then it can be converted to standard normal by way of 
 

Z  =  X − μ
σ

  or equivalently X = μ + σ Z  

 
The act of subtracting the mean and then dividing by a standard deviation is called 
“standardizing,” and it enables you to use the normal table. 
 
In the examples on this document, it is assumed that you are working from a table in 
which you have values of P[ Z ≤ z ] for positive z only. 
 
 
EXAMPLE 1:  Suppose that Z is a standard normal random variable.  What is the 
probability that Z is between -0.4 and +1.2? 
 
SOLUTION:  This is a routine table look-up exercise. 
 

P[ -0.4 ≤ Z ≤ +1.2 ] = P[ -0.4 ≤ Z ≤ 0 ] + P[0 ≤ Z ≤ 1.2 ]    
 

= P[ 0 ≤ Z ≤ 0.4 ]  +  P[0 ≤ Z ≤ 1.2 ]   
 

=       0.1554          +     0.3849   =     0.5403 
 
 
 
EXAMPLE 2:  Suppose that Z is a standard normal random variable.  Find value w so 
that P[ -w ≤ Z ≤ +w ] = 0.60. 
 
SOLUTION:  This is again a routine use of the normal table, though here you have to use 
it in “reverse” order. 
 
Now, P[ - w ≤ Z ≤ +w ] = 0.60 implies by symmetry that P[0 ≤ Z ≤ +w] = 0.30, and thus 
one should search the body of the table for the value closest to 0.3000. 
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One could interpolate, but it’s easier to just take the closer value.  We’ll use 
P[ 0 ≤ Z ≤ 0.84] = 0.2995 ≈ 0.30, so that we report our solution as w = 0.84.  That is, 
we’re claiming that P[ -0.84 ≤ Z ≤ +0.84 ] ≈ 0.60. 
 

Here’s how you would interpolate to get this answer.  Only in rare situations 
would you need to do this. 

 

z-value P[0 ≤ Z ≤ z] 
Proportional 

distance 
from top 

0.84 0.2995 0.0000 
c 

(to be found) 
0.3000     

(desired) 0.2778 

0.85 0.3023 1.0000 
 

The proportional distance figure was found as 0.3000 0.2995
0.3023 0.2995

−
−

 = 

 3000 2995
3023 2995

−
−

 =  5
18

 ≈ 0.2778.    Now a straight ratio-proportion argument 

gives 0.84
0.85 0.84

c −
−

 =  0.2778.  This solves as c = 0.84 + 0.2778 × (0.01)  =  

0.84 + 0.002778  =  0.842778.  It seems reasonable to round this to 0.843. 
 
 
EXAMPLE 3.  Suppose that X is a normal random variable with mean μ = 200 and 
standard deviation σ = 40.  What is the probability that X will take a value greater than 
228? 
 
SOLUTION:   If you remember to standardize, you can do problems like this almost 
without thinking. 
 

P[X > 228 ] = 200 228 200P
40 40

X − −⎡ ⎤>⎢ ⎥⎣ ⎦
 =  P[ Z > 0.7 ]  =  0.5  -  P[ 0 ≤ Z ≤ 0.7 ]  

=  0.5 - 0.2580 =   0.2420 
 

In this calculation, observe that 
X − 200

40
 is renamed as Z. 

                                    

The table reveals that 
 
     P[ 0 ≤ Z ≤ 0.84 ] = 0.2995 
and 
     P[ 0 ≤ Z ≤ 0.85 ] = 0.3023  
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EXAMPLE 4.  Suppose that the latent load charge threshold for a population of investors 
is approximately normally distributed with mean 3.2 percentage points and standard 
deviation 0.8 of a percentage point.  Find the lower 10% point.  That is, find the load rate 
A so that, with probability 90%, an investor will happily tolerate rate A. 
 

Each person has an upper limit for the load charge;  if Dave’s limit is 3.8%, then 
he would not object to paying 3.1%.  We can observe how any individual will 
behave at any specified rate, but we can’t observe the individual’s upper limit.  
For this reason, we call the limit latent. 

  
SOLUTION:  Note that we are given μ = 3.2 percentage points and σ = 0.8.  Note also 
that the 10% point has probability 0.10 associated with lower values and a probability 
0.90 associated with higher values.   
 
Note also the use of “approximately normally distributed.”  We are not going to assert 
absolutely that this phenomenon, latent load charge threshold, follows a normal 
distribution perfectly. 
 
You should standardize this problem just as you did the previous.  The only difference is 
that some parts of the problem will be algebra expressions rather than numbers.  Let X 
denote the limit for a randomly-chosen investor.  Then 

 

P[ X ≤ A ] =  3.2 3.2P
0.8 0.8

X A− −⎡ ⎤<⎢ ⎥⎣ ⎦
  =  3.2P

0.8
AZ −⎡ ⎤<⎢ ⎥⎣ ⎦

  

 
and this is the quantity we want to be 0.10. 
 
We seek a value v so that  P[ Z ≤ v ] = 0.10.   Apparently such a value must be negative.  
We see that 
 

0.1 of the probability is found between -∞ and v 
0.4 of the probability is found between v and 0 
0.4 of the probability is found between 0 and -v (note that -v is positive) 
0.1 of the probability is found between -v and ∞ 

 
It appears that we must have P[ 0 ≤ Z ≤ -v ] = 0.40. 

 
From the normal table we find 
 

     P[ 0 ≤ Z ≤ 1.28 ]  =  0.3997  
     P[ 0 ≤ Z ≤ 1.29 ]  =  0.4015  

 
We will simply use the closer of these;  that is, we’ll claim that -v = 1.28, so that 
v = -1.28. 
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We can complete the solution by solving A− 3 2
0 8

.
.

 = -1.28, giving A = 2.176.  This means 

that, with probability 90%, an investor will have a limit above 2.176 percentage points 
(and presumably will not balk at having to pay 2.176 percentage points). 
  
You can see the pointlessness of interpolating to get refined answers.  Suppose you use 
the facts above to decide P[ 0 ≤ Z ≤ 1.2817 ] = 0.4000.  This would cause you to replace 
“-1.28” above with “-1.2817” and this would change the answer to 2.17464 percentage 
points.  The difference between the original 2.176 percentage points and the interpolated 
answer 2.17464 percentage points is 0.00236 percentage points, referring to the decimal 
0.0000236.  This is 23.6 cents on a $10,000 investment. 
 
 
EXAMPLE 5:   Suppose that an automobile muffler is designed so that its lifetime (in 
months) is approximately normally distributed with mean 26.4 months and standard 
deviation 3.8 months.  The manufacturer has decided to use a marketing strategy in which 
the muffler is covered by warranty for 18 months.  Approximately what proportion of the 
mufflers will fail the warranty? 
 
SOLUTION:  Observe the correspondence between  
 

probability that a single muffler will die before 18 months 
 

and 
 

proportion of the whole population of mufflers that will die before 18 months. 
 
We treat these two notions as equivalent. 
 
Then, letting X denote the random lifetime of a muffler, 
 

P[ X < 18 ]  = 26.4 18 26.4P
3.8 3.8

X − −⎡ ⎤<⎢ ⎥⎣ ⎦
 ≈  P[ Z < -2.21 ]  =  P[ Z > 2.21 ]  

=  0.5 - P[ 0 ≤ Z ≤ 2.21 ]  = 0.5 - 0.4864  =  0.0136 
 
From the manufacturer’s point of view, there is not a lot of risk in this warranty. 
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EXAMPLE 6:   Suppose that the manufacturer in the previous example would like to 
extend the warranty time to 24 months.  Now the risk is considerable, since 
 

P[ X < 24 ]  = 26.4 24 26.4P
3.8 3.8

X − −⎡ ⎤<⎢ ⎥⎣ ⎦
 ≈  P[ Z < -0.63 ]  =  P[ Z > 0.63 ]   

 
=  0.5 - P[ 0 ≤ Z ≤ 0.63 ]  = 0.5 -  0.2357 = 0.2643 

 
More than one-quarter of the mufflers would fail by this standard. 
 
Suppose, though, that the warranty is “pro-rated” in that the customer recovers only the 
value of the time remaining to 24 months.  For example, if a muffler fails at 22.5 months, 
then the time remaining to 24 months is only 1.5 months, and the customer receives 
15
24

0 0625
.

.=  of the value of a new muffler.  If a muffler costs $64, this is worth $4.  

Moreover (and this is the point of the problem), of the mufflers that fail the warranty, 
most will fail by only a short amount of time.   
 
Of all the mufflers that fail, what proportion of them have failures in the interval (20 
months, 24 months)? 
 

 
Here’s how to make sense of these numbers.  Suppose that 10,000 mufflers of this type 
were sold.  Of these, you’d expect 2,643 (about) to fail the warranty.  However, 2,178 
(about) would fail during the period (20 months, 24 months), and the proportion is  
2 178
2 643

0 8241
,
,

.≈ .    That is, about 82% of the warranty failures will be for very short 

periods of time....and thus very low cost to the manufacturer.  In fact, this is probably an 
excellent strategy, because the customer who returns to collect petty cash on the warranty 
will probably also be a repeat purchaser! 

SOLUTION:  We found previously that P[ X < 24 ] = 0.2643. 
 
The next task is to find P[ 20 < X < 24 ]   
 

=  20 26.4 26.4 24 26.4P
3.8 3.8 3.8

X− − −⎡ ⎤< <⎢ ⎥⎣ ⎦
  ≈  P[ -1.68 < Z -0.63 ]   

 
=  P[ 0.63 < Z < 1.68 ]  = P[0 ≤ Z < 1.68 ] - P[0 ≤ Z ≤ 0.63 ] =  0.4535 - 0.2357   
 
=  0.2178 
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EXAMPLE 1:  The dressed weights of Excelsior Chickens are approximately normally 
distributed with mean 3.20 pounds and standard deviation 0.40 pound.  About what 
proportion of the chickens have dressed weights greater than 3.60 pounds? 
 
SOLUTION:  Let X denote the dressed weight of a randomly-selected chicken.  Then 
 

P P P[ . ] .
.

. .
.

[ . ] .X X Z> =
−

>
−⎡

⎣⎢
⎤
⎦⎥
= > =360 320

0 40
360 320

0 40
10 01587  

 
About 16% of the chickens will have dressed weights heavier than 3.60 pounds. 
 
 
EXAMPLE 2:  Suppose that the daily demand for change (meaning coins) in a particular 
store is approximately normally distributed with mean $800.00 and standard deviation 
$60.00.  What is the probability that, on any particular day, the demand for change will 
be below $600? 
 
SOLUTION:   Let X be the random amount of change demanded.  Then 

P P P[ ] [ . ] .X X Z< =
−

<
−⎡

⎣⎢
⎤
⎦⎥
≈ < − =600 800

60
600 800

60
333 0 0004  

It is exceedingly unlikely that the demand will be below $600. 
 
 
EXAMPLE 3:   Consider the situation of the previous problem.  Find the amount M of 
change to keep on hand if one wishes, with certainty 99%, to have enough change.  That 
is, find M so that  P[ X ≤ M ] = 0.99. 
 
SOLUTION: 

P P P[ ] [ ] .X M X M Z M
want

≤ =
−

<
−⎡

⎣⎢
⎤
⎦⎥
= <

−
=

800
60

800
60

800
60

0 99  

We could equivalently say that P[0 ] .< <
−

=Z M
want

800
60

0 49  

The normal table reveals that  
 
     P[ 0 < Z ≤ 2.32 ] = 0.4898  and 
     P[ 0 < Z ≤ 2.33 ] = 0.4901   
 
We’ll use the closer of these, namely 2.33.   
 
 

Then we solve  2.33 = 800
60

M − , giving M = 800 + 60(2.33) = 939.80. 
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The store will need to have $939.80 in change in order to have a 99% chance of having 
enough.  
 
Of course, if they decide to keep a stock of $950 in change, their chance of having 

enough is  P P P[ ] [ . ] .X X Z< =
−

<
−⎡

⎣⎢
⎤
⎦⎥
= < =950 800

60
950 800

60
2 5 0 9938 . 

 
You can check that keeping a stock of $1,000 in change will elevate this chance to 
0.9996. 
 

NOTE:   Some of the probabilities in examples 2 and 3 are very close to 0 or 1.  
Specific values encountered were 0.0004, 0.9938, and 0.9996.  The phrase 
“approximately normally distributed” does not justify such refined answers. 

 
EXAMPLE 4:  A machine that dispenses corn flakes into packages provides amounts that 
are approximately normally distributed with mean weight 20 ounces and standard 
deviation 0.6 ounce.  Suppose that the weights and measures law under which you must 
operate allows you to have only 5% of your packages under the weight stated on the 
package.  What weight should you print on the package? 
 
SOLUTION:  Note first of all that the printed weighted weight, call it w, must be below  
20 ounces.  If you labeled the packages “20 ounces” you would have about 50% of your 
packages underweight.  If you labeled the packages with something greater than 20 
ounces, then more than half the packages would be underweight.  Letting X denote the 
random amount dispensed, you want P[ X < w ] = 0.05.  Then 

P P P[ ]
. .

[
.

] .X w X w Z w
want

≤ =
−

<
−⎡

⎣⎢
⎤
⎦⎥
= <

−
=

20
0 6

20
0 6

20
0 6

0 05 

 
The normal table reveals that  
 
     P[ Z < -1.64 ] = 0.0505  and 
     P[ Z < -1.65 ] = 0.0495    
 
This is such an obvious interpolation that we’ll use the simple average -1.645. 
 

Actually, the facts from the table that we used were  
P[ 0 < Z < 1.64 ] = 0.4495 
P[ 0 < Z < 1.65 ] = 0.4505 

 

Then we solve 20
0.6

w−  = -1.645 to get w = 20 - 0.6(1.645) = 19.013. 

 
It would probably be adequate to label the packages “19 ounces.” 
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EXAMPLE 5:  A machine dispenses popcorn into cartons previously labeled 
“12 ounces.”  The machine has a setting to adjust the mean amount dispensed, but you 
have no idea about the standard deviation.  Suppose that you set the dispenser at 
12.5 ounces, and you find that 9% of the cartons are underweight (below 12 ounces).  
What is the standard deviation? 
 
SOLUTION:  Let X be the random amount dispensed.  Let σ be the standard deviation.  
The facts are 

0 09 12 12 5 12 12 5 12 12 5. [ ] . . .
= < =

−
<

−⎡
⎣⎢

⎤
⎦⎥
= <

−⎡
⎣⎢

⎤
⎦⎥

P P PX X Z
σ σ σ

 

 
The normal table reveals that  
 
     P[ Z < -1.34 ] = 0.0901  and 
     P[ Z < -1.35 ] = 0.0885   
 

Let’s use -1.34.  We now match the facts P Z <
−⎡

⎣⎢
⎤
⎦⎥
=

12 12 5 0 09. .
σ

 and P[  Z  <  -1.34  ]  =  

0.09.  We decide that 12 12 5 0 5 134−
=
−

= −
. . .

σ σ
 to decide that 0.5 0.37

1.34
−

σ = ≈
−

. 

 
Apparently the standard deviation of the amount dispensed is about 0.37 ounce. 
 
 
EXAMPLE 6:  An industrial process produces five-liter cans of paint thinner.  The 
history of this process indicates a mean fill of 5.02 liters, with a standard deviation of 
0.21 liter.  The quality control experts watch this process and select a can for inspection 
every hour.  This process runs for 12 hours every day.  The exact contents of the selected 
can are then determined.  The process is said to be “in control” if the volume is within the 
range 5.02 ± a(0.21).  The question here involves the choice of  a. 
 
Suppose that  a = 2.0.  About how often by chance alone, will a can be declared out of 
control? 
 
Repeat this for a  = 2.5  and  a  = 3.0. 
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SOLUTION:  The probability that a normally-distributed random quantity will be within 
two standard deviations of its mean is  2 × P[0 < Z < 2] = 0.9544.  Thus, the probability 
that a single can will lie outside this range is 0.0456, about 4.5%.  Since there are 12 
inspections per working day, it follows that one will find an out-of-control can about 
every other day, based on chance alone. 
 
If you change 2.0 to 2.5, the probability is 0.9876, about 99%.  It follows that one will 
find an out-of-control can about every eight working days, based on chance alone. 
 
If you use a = 3.0, the probability is 0.9974, about one in four hundred.  It follows that 
one will find an out-of-control can about every thirty working days, based on chance 
alone. 
 
The technique implied here is generally implemented by plotting the points on a control 
chart.  The use of a = 3.0 is described as “3σ” limits, and is perhaps the most common 
choice. 
 
These ideas about control charts should certainly be noted: 
 

Perhaps the most important benefit of control charts is that it causes people to 
watch the process. 
 
Control charts force people to confront the concept of statistical variability. 
 
The choice 3σ assures that very few false alarms will be issued.  If the process 
suddenly shifts mean by one standard deviation, the shift will be detected 
immediately with probability about 2%.  (In the paint thinner example, this could 
be a change from mean 5.02 to 5.02 + 0.21 = 5.23.)  It could take a while to notice 
this shift.  On the other hand, shift of two standard deviations will be noticed very 
quickly. 
 
The example used here dealt only with single cans of paint thinner.  In other 
contexts, one takes small samples and watches the sample standard deviation as 
well as the sample mean. 

 
It should be emphasized very strongly that the use of control charts puts you in a mindset 
to control the process, not to improve it.  Among Deming’s 14 points for management, 
here is point #3:   
 

Cease dependence on inspection to achieve quality.  Eliminate the need for 
inspection on a mass basis by building quality into the product in the first 
place. 
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This document will deal with situations in which we talk about a sample of observations. 
 
In statistical jargon, a “sample” denotes an independent set of  random variables, each 
coming from the same distribution.  (When the population size is finite, then the 
definition is modified slightly). 
 
We will use the notation X1, X2, …, Xn to denote the sample when discussed as random 
variables.  We would use x1, x2, …, xn to denote the actual numeric values which occur 
when the sample is finally observed.   (In some situations the distinction between random 
variables and their values is philosophically tortuous, and we will forsake notational 
rigidity.) 
 
We will use Xi to denote the ith observation in the sample.  This is a generic use of the “i” 
symbol. 
 
Since the Xi’s all have the same distribution, they must all have the same mean and 
standard deviation.  
 
Let μ = E Xi  be used for the mean, and let σ = SD(Xi ) be used for the standard deviation. 
 
Two statistically interesting quantities computed from the sample are 

T Xi
i

n

=
=
∑

1
, the sample total, and X  = T

n
 =  

1

1 n

i
i

X
n =
∑ , the sample average (or mean). 

We will think of T and X  as random variables.  It happens that  
 

E T  = n μ     and    SD( T ) = σ n  
 

E X  = μ    and  SD(X ) = σ
n

 

                        
There are several very important things to understand about these results: 
 
(1) Here T and X  are derived random variables.  This means that they are computed 
from other random variables.  They will have their own means and standard deviations, 
which exist at a deeper level of abstraction:  they are the means and standard deviations 
of sampling distributions, not of any population of physically identifiable things. 
 
(2) The means (expected values) and standard deviations of T and X  depend on μ and 
σ but do not otherwise depend on the original distributions.  (In particular, these facts do 
not require assumptions about normal distributions.) 
 
(3) These results are sometimes described in terms of the variances (which are the 

squares of the standard deviations).  That is, Var T = nσ2 and Var(X ) = σ
2

n
. 
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(4) The sample averageX  is generally used more commonly than the sample total T.  
 
(5) The standard deviation of the sample total T grows with n;  totals of many values 
are variable.  
 
(6) The standard deviation of the sample average X  decreases with n.  As n gets very 
large, this standard deviation shrinks arbitrarily close to zero;  this means that averages 
converge to the population mean.  This fact is sometimes called the “Law of Averages” 
or “Law of Large Numbers.” 
 
(7) If the sample size n is not small, then T and X  will be approximately normally 
distributed even if the original population was not.  This property is called the Central 
Limit theorem.  Generally, most people believe that n bigger than 30 allows you to 
invoke the Central Limit theorem, though you can often get away with n = 20 or even n = 
10. 
 
Specifically, the Central limit theorem allows you to claim that 
    

X  is approximately normally distributed with mean μ and with standard deviation 
σ
n

. 

 
T is approximately normally distributed with mean nμ and with standard deviation 
σ n . 
 

The statements about X  and T are equivalent;  it is purely a matter of clerical 
convenience as to whether one works with totals or averages. 
 
 
Some standard problems illustrate the use of these ideas. 
 
EXAMPLE 1:   Suppose that you have a sample of 100 values from a population with 
mean 500 and with standard deviation 80.  What is the probability that the sample mean 
will be in the interval (490, 510)? 
 
Each individual Xi has mean 500 and standard deviation 80.  It follows that X , the 

average of 100 such individuals, will have mean 500 and standard deviation 
80
100

8= . 

 
The Central Limit theorem allows us to assert that, to an excellent approximation, the 
average X  will follow a normal distribution.  The sample size, n = 100, is sufficiently 
large here that the use of the Central Limit theorem will not be questioned. 
 



 NORMAL DISTRIBUTIONS USED WITH SAMPLE AVERAGES AND TOTALS  

 14

The mean of this distribution is 500, and the standard deviation is 8.  Then 
 

P[ 490 < X  < 510 ] =  490 500 500 510 500P
8 8 8

X⎡ ⎤− − −
< <⎢ ⎥

⎣ ⎦
 

 
=  P[ –1.25 < Z < +1.25 ]  = 2 P[ 0 < Z < 1.25 ] = 2(0.3944) = 0.7888. 

 
Observe that in this problem X  has its own mean and standard deviation.  
 
 
 
EXAMPLE 2:  Bluefish purchased at the Lime Beach Fishing Terminal produce a filet 
weight that has a mean of 4.5 pounds with a standard deviation of 0.8 pound.  If you 
purchase five such fish, then what is the probability that you will have at least 21 pounds 
of filets? 
 
It follows from the given facts that T, the total filet weight of five fish, will have mean 5μ 
= 5 × 4.5 = 22.5 and standard deviation 0.8 5 ≈ 0.8 × 2.236 = 1.7888.  We would like to 
assert that T is normally distributed, but the sample size n = 5 does not really permit use 
of the Central Limit theorem.  We get around this difficulty with use of the caveat 
“Assuming that the population of filet weights is approximately normally distributed.....”  
Stating the assumption does not make it true, but it is nonetheless important to make the 
statement. 
 
We should also make the assumption that the five fish were, in some sense, randomly 
selected.  This assumption may also be false, since the objective of clever shopping is to 
avoid random merchandise, but we state the assumption anyhow. 
 
Answering the question is now very easy: 

P P P P[ ] .
.

.
.

[ . ] . [0 . ]T T Z Z≥ =
−

≥
−⎡

⎣⎢
⎤
⎦⎥
≈ ≥ − = + ≤ ≤21 22 5

17888
21 22 5
17888

0 84 0 5 0 84  

 
= 0.5 + 0.2995 = 0.7995 ≈ 80%. 

 

It should be noted that this problem could also be done in terms of averages.  Let X  = T
n

 

be the average.  With n = 5, the condition [T ≥ 21] is equivalent to 21 4.2
5 5
TX⎡ ⎤= ≥ =⎢ ⎥⎣ ⎦

.  

We note that the expected value of X  is 4.5, and the standard deviation of X  is 
n
σ  

= 0.8
5

 ≈ 0.3578.  Thus we find   
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P[ X  ≥ 4.2 ]  =  4.5 4.2 4.5P
0.3578 0.3578
X − −⎡ ⎤≥⎢ ⎥⎣ ⎦

  ≈  P[ Z ≥ –0.84] 

 
and this will necessarily produce exactly the same answer. 
 
 

 
Suppose that you believe that a population has standard deviation at most 40 pounds.  
What sample size n is required if you want the error of estimation to be less than or equal 
to 10 pounds with probability at least 95% ? 
 
 
You are asked to find the sample size n which makes certain things happen.  There are a 
lot of loose ends to this problem.  
 
(a) Here σ is assumed to be at most 40 pounds.  What if really σ < 40 pounds ? 
 
(b) The error limit has to be achieved with probability at least 95%.  Why doesn’t the 

problem ask for exactly 95%? 
 
(c) We’d like to apply the Central Limit theorem to the sample average.  

Unfortunately, we have not yet determined n, so we don’t know if the use of the 
Central Limit theorem will be legitimate. 

 
The required error condition is X − μ  ≤ 10 pounds, and we will rewrite this as 
-10 ≤ X  - μ  ≤ 10 . 
 

We note that X  has mean μ (unknown) and standard deviation σ
n n
=

40 .  

Then P[-10 ≤  X  - μ  ≤ 10 ] = 
 

P −
≤

−
≤

−
L

N

MMM

O

Q

PPP
10

40 40
10

40
n

X

n n

μ   =  P −
≤ ≤

L
NM

O
QP

n Z n
4 4

  =
want

  0.95 

 

We can rephrase this as  P
want

0
4

≤ ≤
L
NM

O
QP

=Z n   0.475. 

 

EXAMPLE 3:  Sometimes the objective of sampling is to estimate the population mean 
μ, and the sample average X  is the obvious estimate.  The error that results in using X  to 
estimate μ is X  - μ .  Since this can be positive or negative, we often unconsciously 
replace it by X − μ .  
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The normal table reveals that P[ 0 ≤ Z ≤ 1.96 ] = 0.4750, so we complete the problem by 

solving 196
4

. =
n

, which leads to n = 7.842 ≈ 61.47.  We will elevate this answer to the 

next integer, and we will recommend the use of sample size n = 62. 
 
If you trace through these steps algebraically, you can get this formula for n: 
 

n  ≥  
2

/ 2z
E

α σ⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 
If you use zα/2 =  1.96, σ = 40, E = 10, you’ll produce n ≥ 61.47, exactly as above. 
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We can now address the loose ends noted before: 
 
(a) Here σ is assumed to be at most 40 pounds, but we worked through the problem 
as though σ = 40 pounds.  What if σ < 40 pounds ?  In such a situation, our sample size 
will be overadequate;  that is, we will achieve the desired error bound with a probability 
greater than 95%.  (We could also say that the 95% error bound will be smaller than 10 
pounds.) 
 

 
(c) The Central Limit theorem turns out to be legitimate here, since the required 
sample size is quite large.  If this problem ended with a small value for n, then we simply 
would have added the assumption that the original population values follow a normal 
distribution. 
 
 
 
EXAMPLE 4:   You would like to make a bid on the stock of an out-of-business toy 
company.  This stock consists of 2,860 sealed fiberboard cartons.  Before making a bid, 
you would like to perform an audit to assess the value.  How many cartons should you 
inspect and evaluate if you want to estimate the mean value per carton and if you want 
your estimate to be within 0.20 standard deviations of the correct value with probability 
at least 90%? 
 
SOLUTION:   This is very similar to the previous problem, except that your target error 
is expressed in standard deviation units  — and you don’t know the standard deviation! 
 
In Example 3, the target error was 10 pounds.  Here the target is 0.20 standard deviation. 
 
Curiously, we can follow the approach of the previous problem, keeping σ as an 

unknown algebra symbol.  Just note that the standard deviation of X  is σ
n

. 

 
Then  P[ -0.2 σ  ≤  X  - μ  ≤  0.2 σ ] =  
 

P −
≤

−
≤

L

N

MMM

O

Q

PPP
0 2 0 2. .σ
σ

μ
σ

σ
σ

n

X

n n

  =  P − ≤ ≤0 2 0 2. .n Z n   =
want

  0.90 

 
 

(b) Why doesn’t the problem ask for exactly 95%?  The figure 95% will not be 
exactly achievable.  In theory, and if σ = 40 pounds, then this requires a non-integer 
sample size.  By going to the next larger integer, the probability is actually elevated a bit 
above 95%. 
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We can rephrase this as P
want

0 0 2≤ ≤ =Z n.   0.45. 
 
The normal table reveals that P[ 0 ≤  Z ≤ 1.645 ] = 0.45, so we complete the problem by 
solving 0 2. n = 1.645. 
 

This gives n = =
1645
0 2

8 225
.

.
. and then n ≈ 67.65. 

 
We would need to sample 68 cartons to obtain an estimate with the desired precision.  
We note that a sample of 68 is sufficiently large to justify the use of the Central Limit 
theorem. 
 
It should also be noted that the ultimate sample size of n = 68 is not a large fraction of the 
population size N = 2,860.  Thus finite-population issues can be ignored. 
 
By the way, if you decided to apply the finite-population correction, meaning SD( X  ) = 
σ
n

N n
N
−
−1

, you would end up working through the condition 

 

0.2 0.2P
2,860 2,860 2,860
2,860 1 2,860 1 2,860 1

X
n n n

n n n

⎡ ⎤
⎢ ⎥− σ −μ σ⎢ ⎥≤ ≤
⎢ ⎥σ − σ − σ −
⎢ ⎥− − −⎣ ⎦

 

 
 

=  2,859 2,859P 0.2 0.2
2,860 2,860

n Z n
n n

⎡ ⎤
− ≤ ≤⎢ ⎥− −⎣ ⎦

 

 

=  2,8592P 0 0.2
2,860

Z n
n

⎡ ⎤
≤ ≤⎢ ⎥−⎣ ⎦

  ≥
want

  0.90. 

  

The condition you’d deal with is  0 2
2 859

2 860
1645.

,
,

.n
n−
= .  By squaring both sides, one 

gets the simple linear equation 0 04
2 859

2 860
2 7060.

,
,

.n
n−
= , leading to n = 66.1094.  This 

would be rounded up to n = 67.  In this example the population size of 2,860 was fairly 
large, and dealing formally with the finite population issues has minimal impact on the 
sample size. 
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There are many methods to assess whether a sample of data might reasonably be assumed 
to come from a normal population.  One very population graphical method carries the 
name “normal probability plot” and this is available in Minitab. 
 
Suppose that the data are given by x1, x2, x3, … , xn.  The procedure requires that these be 
sorted in increasing order.  We’ll assume that this has already been done so that we may 

write x1 ≤  x2 ≤  x3 ≤  …  ≤ xn.  Now form points (xi , yi) with yi = 
i A
n B
−
+

. 

 
The choices for A and B define the method.  As a practical matter, the common 
choices for A and B are just not that important, and we recommend using the 
defaults. 

 
The default method uses A = 3

8  and B = 1
4 . 

 
The Kaplan-Meier method uses A = 0 and B = 0.  This is related to the 
famous Kaplan-Meier estimate used in survival analysis. 
 
The Herd-Johnson method uses A = 0 and B = 1. 

 
The points (xi , yi) are then plotted.   The sorting of the xi’s and the definition of the yi’s 
guarantees that these points will increase from left to right on the graph paper.  To check 
for normal distributions, the vertical scale is stretched and squeezed so that, if the data are 
perfectly normal, the plot will come out as a perfect straight line.  Departures from 
straightness are used to assess possible non-normality.  There are excellent pictures in 
Hildebrand and Ott, section 6.6. 
 

In Minitab, the actual yi  values, given as percents, appear on the vertical axis.  In 
some other packages, the value yi is replaced by zi where P[Z ≤ zi ] = yi .   That is, 
zi corresponds to normal standard scores, and these zi’s are plotted on a linear 
equi-spaced scale. 
 

It also happens that some computer packages reverse the axes, so that the xi’s are 
vertical and the yi’s (or zi’s) are horizontal. 

 
As an example, let’s consider the data given in Exercise 7.17, pages 211-212 of 
Hildebrand and Ott, which give the times in minutes for 48 oil change jobs at a “quick 
lube” shop.   Here is a histogram of those data, obtained by Graph ⇒ Histogram ⇒. 
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This picture certainly suggests that the sample comes from a non-normal population.  
We’ll now get the normal probability plot.  In Minitab, do Graph ⇒ Probability Plot ⇒ 
and then choose Distribution Normal.  You’ll get the following: 
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The data dots appear in vertical stacks since there were tied values among the set of 48. 
 
The straight line is based on estimates of the mean and standard deviation, along with the 
assumption that the data actually come from a normal population.  The curved bands 
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represent “confidence limits” for the percentiles;  for instance, the band opposite 20 on 
the vertical scale gives limits for the 20th percentile.  The numbers relevant to these bands 
will be given in the Session window.  The fact that data points fall outside these bands is 
strong evidence that the data really do not come from a normal population.  The 
particular style of curvature shown here suggests positive skewness. 
  
Let’s consider an example which would support the assumption of normal distributions.  
The file CASE07.MTP covers the story given on pages 246-247 of Hildebrand and Ott.  
Three variables are provided for each of 61 employees, and we’ll look at the column 
Retiremt, representing the yearly retirement costs for the employer.  This is the histogram  

900850800750700650600550500450400

15

10

5

0

Retiremt

Fr
eq

ue
nc

y

 
This picture suggests a reasonably symmetric set of data, and normal distributions are 
certainly plausible.   For these data, the normal probability plot is this: 
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Here the dots seem to stay generally within the 95% boundaries.  There are some twists 
and wiggles, but we should be willing to say that the data are reasonably normal. 
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In dealing with the Central Limit theorem, there are a number of important ideas. 
 
(1) It’s important to distinguish between a sample of measured (continuous) data and 

a sample of yes/no data.  The yes/no situation is simply that of binomial sampling, 
and we are usually interested only in the total number of “yes” responses. 

 
(2) With continuous data, we need to distinguish the situation in which we are 

“sampling from a normally distributed population” from the situation in which we 
are “sampling from a population which is not normally distributed.”  Obviously 
we cannot distinguish perfectly, and we may need to deal with the notion of 
approximately normal populations. 

(2a) With small sample sizes, we simply do not have enough data to 
make an informed judgment as to whether the population values do 
or do not follow a normal distribution. 

(2b) With moderate sample sizes (say n = 20 to n = 60) we can plot 
histograms and compute skewness coefficients, but these may not 
be decisive enough to help us decide. 

(2c) With large sample sizes, we can usually make a pretty good 
decision about normality.  Because of the Central Limit theorem, 
however, it is not really very important whether the population 
values follow a normal distribution or not. 

 
(3) It is vital to distinguish the sample X1, X2, …, Xn from the sample average X .   

(3a) A large sample size does not do anything regarding the normality 
or non-normality of the sample values.   If you are sampling from a 
non-normal population, then large n simply means that you have 
lots of values from a non-normal population. 

(3b) A large sample size will enable you to decide whether you are 
sampling from a normal population or a non-normal population. 

(3c) A large sample size allows you to invoke the Central Limit 
theorem, and this specifically lets you claim that X  (or, 
equivalently, the total T = n X ) follows approximately a normal 
distribution. 
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(4) One makes assumptions about the population for the purpose of using some 
standard statistical procedures. 

(4a) Stating an assumption about a population does not make that 
assumption true.  Stating the assumption acts as a disclaimer. 

(4c) With large sample sizes, generally meaning n ≥ 30, from a 
continuous population, the distribution of X  is well approximated 
by a normal distribution.  Thus we may use the conventional 
confidence interval or perform the usual t test. 

(4c1) The confidence interval may be written as x  ± t s
nnα / ;2 1− . 

(4c2) The use of the t value requires that s be based on a sample 
from a normal population, and the Central Limit theorem 
does not cover the distribution of s.  However, with a large 
n, we can be sure that s ≈ σ.  Also with large n we have 
tα/2;n-1 ≈  zα/2.   Thus, this interval is very close to the 

interval x  ± z
nα
σ

/2  , which is the “known σ” case. 

(4c3) This interval (with large n) is sometimes written as 

x  ± z s
nα /2  or even as x  ± z

nα
σ

/2 . 

(4b) With small sample sizes, generally meaning n < 30, from a 
continuous population, one assumes that the population values 
follow a normal distribution in order to use the conventional 

confidence interval x  ± t s
nnα / ;2 1−  for the population mean μ or to 

use the usual t test for the hypothesis H0: μ = μ0. 
(4b1) You cannot state the assumption as “X  is normal” because 

you need normality of the population in order to get the 
correct distribution for s (and legitimize the use of the 
cutoff point tα/2;n-1 from the t table).   

(4b2) You cannot state the assumption as “the sample is normal” 
because this creates an inferential mystery.  What could it 
mean to have a normal sample from a population which is 
not necessarily normal?  



 CENTRAL LIMIT THEOREM  

 25

 
(5) For binomial data, the Central Limit theorem simply says that the distribution of 

X, the total number of successes, may be approximated with a normal distribution.  
This works reasonably well if n ≥ 30, np ≥ 5, and n(1 - p) ≥ 5. 
(5a) If we do not meet the conditions on n and p noted above, there is no 

assumption that can be used as a prelude to a normal-based procedure.  In 
particular, we cannot say “assuming that the population values follow a 
normal distribution.” 

(5b) Probability calculations should use a continuity correction.  Thus, a 
question of the form P[ X ≥ 20 ] should be restated as P[ X > 19.5 ].  
Similarly, P[ X  > 22 ] should be restated as P[ X > 22.5 ]. 

(5d) The confidence interval should never be given with tα/2;n-1 as there is no 
logical connection to the t distribution. 

(5e) The test of the hypothesis H0: p = p0 should be based on the test statistic 

Z = n p p
p p
−

−
0

0 01b g . 
(5e1) The comparison point for Z comes from the normal table.  There is 

no logical connection to the t distribution. 
(5e2) Some users advocate a continuity correction and give the test 

statistic as n
p p

p p
n− ±

−
0

1
2

0 01
b g
b g

.  The ± sign is used to bring the 

calculation closer to zero.   Thus, if ( p  - p0) > 0, use − 1
2n ;  if 

( p  - p0) < 0, use + 1
2n .  There is considerable disagreement about 

the appropriateness of this continuity correction. 

(5e3) You will sometimes see the test statistic in the form n p p
p p
−

−
0

1a f .  
This is numerically very close to the form given in (5e). 

 

(5c) The usual estimate of p is p  = X
n

, and the corresponding 1 - α confidence 

interval is p  ± z
p p

n nα /2
1 1

2
−

+
L
N
MM

O
Q
PP

a f
.   This is usually given without the 

term 1
2n

;  however the form given here comes closer to achieving the 

coverage probability 1 - α.  A confidence interval procedure which seems 

to work even better is based on the calculation p  = 2
4

X
n
+
+

;  the interval is 

given as p  ± ( )
/ 2

1
4

p p
z

nα

⎡ ⎤−
⎢ ⎥

+⎢ ⎥⎣ ⎦
.  The p  form is especially useful if n is 

small or if p  is very close to 0 or very close to 1. 
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Finally, let’s see an illustration of the Central Limit theorem at work.  Here is a sample of 
size 100 from a population about which we know very little: 
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Figure 1 

 
This is a fairly irregular shape, and we would certainly believe that the population values 
do not follow a normal distribution.  For these data x  = 6.481 and s = 5.773.  We do not 
know the population mean and standard deviation, but with this sample of n = 100, we 
certainly believe that μ is near 6.481 and that σ is near 5.773. 
 

As this was a simulation, we can let you in on the secret.  The population from 
which these were generated had μ = 5.9 and σ ≈ 4.5376. 
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If we took averages of samples of 5, we would at least begin to approximate normal 
distributions.   The histogram below shows the results of taking 100 samples, each of 
size 5, and recording the averages. 
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Figure 2 

 
This distribution is much more symmetric, but it would be hard to say whether it is 
normal or not.    
 

By the way, the mean of the 100 versions of x  (each of them an average of 5 
values) here is 5.698, and this is rather close to the true mean μ = 5.9.  Also, the 
standard deviation of the 100 versions of x  is 2.025;  this should correspond to 
σ
n

 =  4.5376
5

 ≈ 2.0293. 
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Now let’s consider what would happen if we took samples of size 30.  The next 
histogram shows the results of taking 100 samples, each of size 30, and recording the 
averages. 
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Figure 3 

 
We now see a shape that is looking very close to normal.   
 

The mean of the 100 versions of x  (each of them an average of 30 values) here is 
5.9662, and this is rather close to the true mean μ = 5.9.  Also, the standard 

deviation is 0.8031;  this should correspond to σ
n

 =  4.5376
30

 ≈ 0.8284. 

We can summarize the findings as follows: 
 

 Unobserved population 
quantities 

Calculated sample 
quantities  

Data collected Expected 
value 

Standard 
deviation 

Sample 
mean 

Sample 
standard 
deviation 

Histogram 
of 100 

Single value 5.9 4.5376 6.481 5.773 Figure 1 
Average of 
sample of 5 5.9 2.0293 5.698 2.025 Figure 2 

Average of 
sample of 30 5.9 0.8284 5.9662 0.8031 Figure 3 

 
You might be curious as to how the data were actually generated. 

With probability 0.7, a value was sampled from an exponential distribution with 
mean 5. 

With probability 0.3, a data value was taken from an exponential distribution with 
mean 2, and then the value 6 was added. 

 
This could be described as  0.7 × Expo(μ=5)   +  0.3 × [ 6 + Expo(μ=2) ]. 
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Suppose that you sell 179 washing machines and with each sale you offer the buyer the 
opportunity to purchase an extended warranty.  The probability that any individual will 
buy the extended warranty is 0.38.  Find the probability that 70 or more will buy the 
extended warranty. 
 
This is clearly a binomial situation.  With n = 179 independent customers, we will let X 
be the (random) number of them who purchase the extended warranty.  Thus X will be a 
binomial random variable with n = 179 and p = 0.38.   We ask P[ X ≥ 70 ]. 
 
You can use a program like Minitab to get this probability.  In fact, Minitab obtains this 
value as 1 - P[ X ≤ 69 ] = 1 - 0.5924 = 0.4076. 
 
We will show here the workings of the normal approximation to the binomial.  We note 
that E X  =  179 × 0.38  =  68.02 and SD(X)  =  179 0 38 0 62× ×. .   ≈  6.4940.  
 
We will convert the request P[ X ≥ 70 ] into P[ X > 69.5 ].  This half-integer adjustment is 
called the continuity correction.  There are several explanations that could be made. 

1.   For the binomial, the event { X ≥ 70 } is different from the event 
{ X > 70 }.  Since the normal distribution is continuous, it does not 
distinguish ≥ from >.  The use of half-integer boundaries saves us from 
these confusions.   

2. The probability histogram from the binomial distribution would consist of 
bars situated so that their centers align with the integers.  That is, the bar 
representing P[ X = 65 ] would be centered over 65.  Said another way, 
that bar would extend from 64 1

2  to 65 1
2 .  The event { X ≥ 70 } is really the 

event { X = 70 } ∪ { X = 71 } ∪ { X = 72 } ∪ …   The corresponding 
probability bars run from 69.5 to 70.5, then 70.5 to 71.5, then 71.5 to 72.5, 
and so on.  Thus, the probability accounting starts from 69.5. 

The continuity correction greatly improves the answer (relative to the exact calculation) 
when n is small.  For larger n, say 500 or more, the continuity correction offers only a 
small improvement. 
 
Then 
 

P[ X > 69.5 ]  =  P X −
>

−L
NM

O
QP

68 02
6

69 5 68 02
6

.
.4940

. .
.4940

 ≈  P[ Z > 0.228 ]   

 
=  0.5 - P[ 0 ≤  Z ≤ 0.228 ]  =  0.5  - 0.0910  =  0.4090 

 
This answer was found by grabbing the closer entry in the table;  that is, we used 
P[ 0 ≤  Z ≤ 0.23 ] = 0.0910. 
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As an approximation to the exact answer 0.4076, this is reasonable, but not exquisite.  

The error of approximation is 0 0
0

.4090 .4076
.4076
−  ≈  0.0034  = 0.34%.  The approximation 

was large by about 1
3  of one percent. 

 
Comment 1:  If a high-quality answer is critical, you can try to interpolate in using 
the normal table.  Depending on how the rounding went, you do not necessarily 
get a better answer.  Here we would do  

P[ 0 ≤ Z ≤ 0.228 ] =  0.0871 + 0.8 × 0.0039 = 0.09022 
and an approximating probability of 0.40978.  This is actually a little farther away 
from the exact answer. 

 
Comment 2:  The continuity correction is important to getting a quality answer.  If 
you had left this problem as P[ X ≥ 70 ], you’d get  

 
68.02 70 68.02P

6.4940 6.4940
X − −⎡ ⎤>⎢ ⎥⎣ ⎦

  ≈  P[ Z > 0.3049 ]   

 
=  0.5 - P[ 0 ≤ Z ≤ 0.3049 ]  ≈  0.5 -  P[ 0 ≤ Z ≤ 0.30 ]    
 
=  0.5 - 0.1179  =  0.3821 

 
This is a much worse answer. 

 
 
 
 
The normal approximation to the binomial works less well (in terms of proportional 
error) for events of very small probability, even with the continuity correction.  Suppose 
that you had wanted P[ X ≤ 55 ].  Minitab gives the result as 0.0257.   For the normal 
approximation we change P[ X ≤ 55 ] to P[ X ≤ 55.5 ], and then do this: 

 

P[ X ≤ 55.5 ]  =  P X −
≤

−L
NM

O
QP

68 02
6

55 5 68 02
6

.
.4940

. .
.4940

 ≈  P[ Z ≤ -1.928 ]   

 
=  P[ Z ≥ 1.928 ]  =  0.5 - P[ 0 ≤  Z ≤ 1.928 ]  =  0.5 - 0.4732  =  0.0268 

 

The error of approximation is 0 0268 0 0257
0 0257

. .
.
−  ≈ 0.0428 = 4.28%.  This is really not very 

good. 
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----------------------------------------------------------------------------- 
         .00    .01    .02    .03    .04    .05    .06    .07    .08    .09 
----------------------------------------------------------------------------- 
-4.0 | .00003 .00003 .00003 .00003 .00003 .00003 .00002 .00002 .00002 .00002  
     | 
-3.9 | .00005 .00005 .00004 .00004 .00004 .00004 .00004 .00004 .00003 .00003  
-3.8 | .00007 .00007 .00007 .00006 .00006 .00006 .00006 .00005 .00005 .00005  
-3.7 | .00011 .00010 .00010 .00010 .00009 .00009 .00008 .00008 .00008 .00008  
-3.6 | .00016 .00015 .00015 .00014 .00014 .00013 .00013 .00012 .00012 .00011  
     | 
-3.5 | .00023 .00022 .00022 .00021 .00020 .00019 .00019 .00018 .00017 .00017  
     | 
-3.4 | .00034 .00032 .00031 .00030 .00029 .00028 .00027 .00026 .00025 .00024  
-3.3 | .00048 .00047 .00045 .00043 .00042 .00040 .00039 .00038 .00036 .00035  
-3.2 | .00069 .00066 .00064 .00062 .00060 .00058 .00056 .00054 .00052 .00050  
-3.1 | .00097 .00094 .00090 .00087 .00084 .00082 .00079 .00076 .00074 .00071  
     | 
----------------------------------------------------------------------------- 
         .00    .01    .02    .03    .04    .05    .06    .07    .08    .09 
----------------------------------------------------------------------------- 
     | 
-3.0 | .00135 .00131 .00126 .00122 .00118 .00114 .00111 .00107 .00104 .00100  
     | 
-2.9 | .00187 .00181 .00175 .00169 .00164 .00159 .00154 .00149 .00144 .00139  
-2.8 | .00256 .00248 .00240 .00233 .00226 .00219 .00212 .00205 .00199 .00193  
-2.7 | .00347 .00336 .00326 .00317 .00307 .00298 .00289 .00280 .00272 .00264  
-2.6 | .00466 .00453 .00440 .00427 .00415 .00402 .00391 .00379 .00368 .00357  
     | 
-2.5 | .00621 .00604 .00587 .00570 .00554 .00539 .00523 .00508 .00494 .00480  
     | 
-2.4 | .00820 .00798 .00776 .00755 .00734 .00714 .00695 .00676 .00657 .00639  
-2.3 | .01072 .01044 .01017 .00990 .00964 .00939 .00914 .00889 .00866 .00842  
-2.2 | .01390 .01355 .01321 .01287 .01255 .01222 .01191 .01160 .01130 .01101  
-2.1 | .01786 .01743 .01700 .01659 .01618 .01578 .01539 .01500 .01463 .01426  
     | 
----------------------------------------------------------------------------- 
         .00    .01    .02    .03    .04    .05    .06    .07    .08    .09 
----------------------------------------------------------------------------- 
     | 
-2.0 | .02275 .02222 .02169 .02118 .02068 .02018 .01970 .01923 .01876 .01831  
     | 
-1.9 | .0287  .0281  .0274  .0268  .0262  .0256  .0250  .0244  .0239  .0233   
-1.8 | .0359  .0351  .0344  .0336  .0329  .0322  .0314  .0307  .0301  .0294   
-1.7 | .0446  .0436  .0427  .0418  .0409  .0401  .0392  .0384  .0375  .0367   
-1.6 | .0548  .0537  .0526  .0516  .0505  .0495  .0485  .0475  .0465  .0455   
     | 
-1.5 | .0668  .0655  .0643  .0630  .0618  .0606  .0594  .0582  .0571  .0559   
     | 
-1.4 | .0808  .0793  .0778  .0764  .0749  .0735  .0721  .0708  .0694  .0681   
-1.3 | .0968  .0951  .0934  .0918  .0901  .0885  .0869  .0853  .0838  .0823   
-1.2 | .1151  .1131  .1112  .1093  .1075  .1056  .1038  .1020  .1003  .0985   
-1.1 | .1357  .1335  .1314  .1292  .1271  .1251  .1230  .1210  .1190  .1170   
     | 
----------------------------------------------------------------------------- 
         .00    .01    .02    .03    .04    .05    .06    .07    .08    .09 
----------------------------------------------------------------------------- 
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----------------------------------------------------------------------------- 
         .00    .01    .02    .03    .04    .05    .06    .07    .08    .09 
----------------------------------------------------------------------------- 
     | 
-1.0 | .1587  .1562  .1539  .1515  .1492  .1469  .1446  .1423  .1401  .1379   
     | 
-0.9 | .1841  .1814  .1788  .1762  .1736  .1711  .1685  .1660  .1635  .1611   
-0.8 | .2119  .2090  .2061  .2033  .2005  .1977  .1949  .1922  .1894  .1867   
-0.7 | .2420  .2389  .2358  .2327  .2296  .2266  .2236  .2206  .2177  .2148   
-0.6 | .2743  .2709  .2676  .2643  .2611  .2578  .2546  .2514  .2483  .2451   
     | 
-0.5 | .3085  .3050  .3015  .2981  .2946  .2912  .2877  .2843  .2810  .2776   
     | 
-0.4 | .3446  .3409  .3372  .3336  .3300  .3264  .3228  .3192  .3156  .3121   
-0.3 | .3821  .3783  .3745  .3707  .3669  .3632  .3594  .3557  .3520  .3483   
-0.2 | .4207  .4168  .4129  .4090  .4052  .4013  .3974  .3936  .3897  .3859   
-0.1 | .4602  .4562  .4522  .4483  .4443  .4404  .4364  .4325  .4286  .4247   
     | 
-0.0 | .5000  .4960  .4920  .4880  .4840  .4801  .4761  .4721  .4681  .4641   
 
----------------------------------------------------------------------------- 
         .00    .01    .02    .03    .04    .05    .06    .07    .08    .09 
----------------------------------------------------------------------------- 
 
 0.0 | .5000  .5040  .5080  .5120  .5160  .5199  .5239  .5279  .5319  .5359   
     | 
 0.1 | .5398  .5438  .5478  .5517  .5557  .5596  .5636  .5675  .5714  .5753   
 0.2 | .5793  .5832  .5871  .5910  .5948  .5987  .6026  .6064  .6103  .6141   
 0.3 | .6179  .6217  .6255  .6293  .6331  .6368  .6406  .6443  .6480  .6517   
 0.4 | .6554  .6591  .6628  .6664  .6700  .6736  .6772  .6808  .6844  .6879   
     | 
 0.5 | .6915  .6950  .6985  .7019  .7054  .7088  .7123  .7157  .7190  .7224   
     | 
 0.6 | .7257  .7291  .7324  .7357  .7389  .7422  .7454  .7486  .7517  .7549   
 0.7 | .7580  .7611  .7642  .7673  .7703  .7734  .7764  .7794  .7823  .7852   
 0.8 | .7881  .7910  .7939  .7967  .7995  .8023  .8051  .8078  .8106  .8133   
 0.9 | .8159  .8186  .8212  .8238  .8264  .8289  .8315  .8340  .8365  .8389   
     |  
----------------------------------------------------------------------------- 
         .00    .01    .02    .03    .04    .05    .06    .07    .08    .09 
----------------------------------------------------------------------------- 
     | 
 1.0 | .8413  .8438  .8461  .8485  .8508  .8531  .8554  .8577  .8599  .8621   
     | 
 1.1 | .8643  .8665  .8686  .8708  .8729  .8749  .8770  .8790  .8810  .8830   
 1.2 | .8849  .8869  .8888  .8907  .8925  .8944  .8962  .8980  .8997  .9015   
 1.3 | .9032  .9049  .9066  .9082  .9099  .9115  .9131  .9147  .9162  .9177   
 1.4 | .9192  .9207  .9222  .9236  .9251  .9265  .9279  .9292  .9306  .9319   
     | 
 1.5 | .9332  .9345  .9357  .9370  .9382  .9394  .9406  .9418  .9429  .9441   
     | 
 1.6 | .9452  .9463  .9474  .9484  .9495  .9505  .9515  .9525  .9535  .9545   
 1.7 | .9554  .9564  .9573  .9582  .9591  .9599  .9608  .9616  .9625  .9633   
 1.8 | .9641  .9649  .9656  .9664  .9671  .9678  .9686  .9693  .9699  .9706   
 1.9 | .9713  .9719  .9726  .9732  .9738  .9744  .9750  .9756  .9761  .9767   
     |  
----------------------------------------------------------------------- 
         .00    .01    .02    .03    .04    .05    .06    .07    .08    .09 
----------------------------------------------------------------------------- 
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----------------------------------------------------------------------- 
         .00    .01    .02    .03    .04    .05    .06    .07    .08    .09 
----------------------------------------------------------------------------- 
     | 
 2.0 | .9772  .9778  .9783  .9788  .9793  .9798  .9803  .9808  .9812  .9817   
     | 
 2.1 | .9821  .9826  .9830  .9834  .9838  .9842  .9846  .9850  .9854  .9857   
 2.2 | .9861  .9864  .9868  .9871  .9875  .9878  .9881  .9884  .9887  .9890   
 2.3 | .9893  .9896  .9898  .9901  .9904  .9906  .9909  .9911  .9913  .9916   
 2.4 | .9918  .9920  .9922  .9925  .9927  .9929  .9931  .9932  .9934  .9936   
     | 
 2.5 | .9938  .9940  .9941  .9943  .9945  .9946  .9948  .9949  .9951  .9952   
     | 
 2.6 | .9953  .9955  .9956  .9957  .9959  .9960  .9961  .9962  .9963  .9964   
 2.7 | .9965  .9966  .9967  .9968  .9969  .9970  .9971  .9972  .9973  .9974   
 2.8 | .9974  .9975  .9976  .9977  .9977  .9978  .9979  .9979  .9980  .9981   
 2.9 | .9981  .9982  .9982  .9983  .9984  .9984  .9985  .9985  .9986  .9986   
     | 
----------------------------------------------------------------------------- 
         .00    .01    .02    .03    .04    .05    .06    .07    .08    .09 
----------------------------------------------------------------------------- 
     | 
 3.0 | .99865 .99869 .99874 .99878 .99882 .99886 .99889 .99893 .99897 .99900  
     | 
 3.1 | .99903 .99906 .99910 .99913 .99916 .99918 .99921 .99924 .99926 .99929  
 3.2 | .99931 .99934 .99936 .99938 .99940 .99942 .99944 .99946 .99948 .99950  
 3.3 | .99952 .99953 .99955 .99957 .99958 .99960 .99961 .99962 .99964 .99965  
 3.4 | .99966 .99968 .99969 .99970 .99971 .99972 .99973 .99974 .99975 .99976  
     | 
 3.5 | .99977 .99978 .99978 .99979 .99980 .99981 .99981 .99982 .99983 .99983  
     | 
 3.6 | .99984 .99985 .99985 .99986 .99986 .99987 .99987 .99988 .99988 .99989  
 3.7 | .99989 .99990 .99990 .99990 .99991 .99991 .99992 .99992 .99992 .99992  
 3.8 | .99993 .99993 .99993 .99994 .99994 .99994 .99994 .99995 .99995 .99995  
 3.9 | .99995 .99995 .99996 .99996 .99996 .99996 .99996 .99996 .99997 .99997  
     | 
 4.0 | .99997 .99997 .99997 .99997 .99997 .99997 .99998 .99998 .99998 .99998 
----------------------------------------------------------------------------- 
         .00    .01    .02    .03    .04    .05    .06    .07    .08    .09 
----------------------------------------------------------------------------- 
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Suppose that we have an infinite population represented by the generic random variable 
X.  We can think of an unlimited random sampling process resulting in the unending 
string of random variables X1, X2, X3, X4, … 
 
We will conceptualize these Xi’s as random.  We can use the lower case symbols 
x1, x2, x3, x4, ...  for possible numeric values. 
 
Let’s suppose that the population has a mean μ and a standard deviation σ. 
 
Let’s also assume that X0 is a known non-random starting value. 
 
Let  Tn = X0 +  X1 + X2 + X3 + X4 + … + Xn  be the nth total.  Observe that T0 = X0 , 
T1 = X0 + X1 , and in general Tn = Tn-1 + Xn ;  that is, each total is the previous total plus 
one new Xn . 
 
The sequence of running totals T0, T1, T2, T3, T4, … is called a random walk.  Implicit in 
this notion is the independence of the successive differences   

 
X0 = T0 

 
X1 = T1 - T0 
 
X2 = T2 - T1 
 
X3 = T3 - T2 
 
X4 = T4 - T3 
 
X5 = T5 - T4 

 
…. 

 
Since the Tn values are a form of sample totals, we have E Tn = T0 + nμ and 
SD(Tn) = σ n . 
 
 
Many things can be conceptualized as random walks.  For instance, if Xn is the number of 
papers that a news vendor sells on day n, then the sequence T0, T1, T2, T3, T4, … gives the 
cumulative sales.   (Here T0 represents the carry-over from the previous accounting 
period;  perhaps T0 would be zero in this example.)  
 
The role of random walks in stock prices has been viciously debated.  We’ll look at two 
such models.  The first model is instructive;  it is much more useful for modeling 
cumulative sales than it is for stock prices.  The second model is more difficult, but it is 
used with great frequency in dealing with stock prices. 
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MODEL 1:  Normal distributions for stock price changes.   
 
Let P0 be the price of a certain stock at the beginning of our observation period.  The 
value of P0 will be regarded as known and nonrandom.   
 

Of course P is also the symbol we use for probability.  The context should make 
clear exactly which meanings are involved. 

 
We will think of the daily changes X1, X2, X3, X4, … as independent random quantities, 
each with a normal distribution with mean μ and standard deviation σ.  In this model, μ 
and σ are in money units (such as dollars). 
 

Daily prices need not be used.  This description works for weekly prices or 
monthly prices.  It also works for prices on 15-second intervals.   In this 
discussion, we’ve ignored the discreteness of stock prices, which are traded in 
one-cent increments.  (They used to be traded in eighths of dollars!)  And yes, the 
use of normal distributions constitutes an assumption. 

 
Observe that Pn = P0 + (X1 + X2 + … + Xn).  It’s convenient to let Tn = X1 + X2 + … + Xn , 
so that we can write Pn = P0 + Tn. 
 
Of course, E(Tn) = nμ  and  SD(Tn)  =  σ n . 
 
It follows that  E(Pn) = P0 + nμ  and  SD(Pn) = σ n . 
 
For stock-market applications, it is frequently assumed that μ = 0, to be interpreted as no 
net drift for stock prices.  This leads to E(Pn) = P0 .  (This makes the stock price sequence 
into a martingale, but that’s another story.)   Since Pn  is the price of the stock n days 
from now, the result SD(Pn) = σ n  reflects our uncertainty about the future. 
 
As an example, suppose that P0 =  $40,  μ = $0.01, and σ = $0.28.   Let’s find the 
probability that the price will exceed $41 after 25 days.   Let Tn = X1 + X2 + … + Xn  be 
the cumulative sum of the daily changes.  Note that E(Tn) = nμ = 25 × $0.01 = $0.25 and 
SD(Tn) = nσ   = $0.28 25  = $1.40.  Then 
 

P[ P25 > $41 ]  =  P[ P0 +  Tn > $41 ]  =  P[Tn > $1 ]  
 

=  $0.25 $1 $0.25P
$1.40 $1.40

nT − −⎡ ⎤>⎢ ⎥⎣ ⎦
  ≈  P[ Z > 0.54 ] 

 
=  0.50  -  P[ 0 ≤ Z ≤ 0.54 ]  =  0.50  -  0.2054  =  0.2946  
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If the daily changes are assumed to follow a normal distribution, then the use of Z is 
exact.  Even without this assumption, the sample size of 25 is probably enough to justify 
the use of the Central Limit theorem. 
 
 
One can also give a 95% prediction interval for the price of the stock after 25 days.  We 
note that  E(P25) = P0 + E(Tn) = $40 + $0.25 = $40.25.  Next, SD(P25) = SD(Y)  =  σ 25  
= $0.28 × 25  = $1.40.  We predict with 95% probability that the stock price will be in 
the interval $40.25 ± 1.96($1.40), which is ($37.51, $42.99). 
 

The “1.96” is an exact use of the normal table, since 
 
     P[ -1.96 ≤ Z ≤ 1.96 ] = 2 P[ 0 ≤ Z ≤ 1.96 ] = 0.95. 

 
 
Many people are content to replace “1.96” with “2.”  This would give the interval as 
$40.25 ± $2.80. 
 

Please note that this is a prediction interval, since we are making an inference 
about the future value of some random variable.  (Confidence intervals, by way of 
contrast, are used to trap nonrandom parameters.) 

 
 
 
 
 
One commonly expressed dissatisfaction with this model is that the normal distribution 
allows the possibility (albeit with very low probability) of negative values for the stock 
price.  Certainly we would worry about this model for so-called penny stocks, which 
often trade at prices below $1.  
 
 
 
MODEL 2:  Log-normal distributions for stock price changes.   
 
All logarithms in this discussion are base-e. 
 
Let P0 be the price of a certain stock at the beginning of our observation period.  The 
value of P0 will be regarded as known and nonrandom.  We will think of the daily 

changes in terms of price ratios 
P

P
i

i−1
.   We will model the logarithms of these ratios, 

meaning things of the form log
P

P
i

i−

⎡

⎣
⎢

⎤

⎦
⎥

1
,  as independent random quantities, each with a 

distribution with mean μ and standard deviation σ.    
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If the random quantities log
P

P
i

i−

⎡

⎣
⎢

⎤

⎦
⎥

1
 are assumed to follow a normal distribution, 

then the ratios 
P

P
i

i−1
 are said to follow a lognormal distribution.  As a result, this is 

often described as the lognormal model for stock prices.  
 
In this model, μ and σ are parameters of a population of logarithms of ratios and thus are 
unit-free quantities.  In particular, they are not in dollars or any other currency.  The 
parameter μ represents the drift in the model and σ is a measure of volatility.   
 
The notational scheme is this: 
  

P0 = eX0      X0 = log P0 
 

P1 = P0 eX1      X1 = log
P
P

1

0

⎛
⎝
⎜

⎞
⎠
⎟ = log P1 - log P0 

 

P2 = P1 eX2     X2 = log
P
P

2

1

⎛
⎝
⎜

⎞
⎠
⎟ = log P2 - log P1 

 

P3 = P2 eX3     X3 = log
P
P

3

2

⎛
⎝
⎜

⎞
⎠
⎟ = log P3 - log P2 

 

P4 = P3 eX4      X4 = log
P
P

4

3

⎛
⎝
⎜

⎞
⎠
⎟ = log P4 - log P3                                           

 
or in general 
 
Pn = Pn-1 eXn    Xn = log P

P
n

n−1

 =  log Pn - log Pn-1 

 
 
 

By using back substitution, we can show that 
 

Pn  =  P0 eX X Xn1 2+ + +...   X1 + X2 + … + Xn  =  log P
P

n

0
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Note that P0 and X0 are considered non-random.  Let Tn = X1 + X2 + X3 +  … + Xn ;  

observe that Tn = log P
P

n

0
 .   Then Tn has an expected value of  nμ  and a standard deviation 

of σ n .   
 
The most elegant representation for the log-normal random walk is this: 
 

Pn  =  0
nTP e  

 
There is an immediate parallel with the present-value formula Vt = V0  e r t .    
 
 
As an example, suppose that P0 = $40, μ = 0, and σ = 0.02.   Let’s find the probability 
that P25, the price of the stock after 25 days, will exceed $45.  Now T25 has mean value 
25μ = 0 and standard deviation  σ 25  = 0.02 × 5 = 0.1  and it is approximately normally 
distributed.  (With a sample of n = 25, we can reasonably resort to the Central Limit 
theorem.)   Then find 
 

P[ P25 > $45 ]  =  0P $45nTP e⎡ ⎤>⎣ ⎦   =  P $40 $45nTe⎡ ⎤>⎣ ⎦  
 
=  P 1.125nTe⎡ ⎤>⎣ ⎦   =  P[ Tn  >  log(1.125) ]  ≈  P[ Tn  >  0.1178 ] 

 
It is important here that base-e logarithms are used (and not base-10). 

 

=  0 0.1178 0P
0.1 0.1
nT − −⎡ ⎤>⎢ ⎥⎣ ⎦

  ≈  P[ Z > 1.18 ]  =  0.50 – P[ 0 ≤ Z ≤ 1.18 ] 

 
=  0.50  -  0.3810  =  0.1190 
 

A similar logic can be used for prediction intervals.   We are 95% certain that T25 = 

log P
P

25

0

  is in the interval  0 ± (1.96)(0.1), which is  (-0.196, 0.196).  We are 95% 

confident that  
 

-0.196  ≤  log P
P

25

0

 ≤  0.196 

 
or equivalently  

 
log P0 -  0.196  ≤  log P25  ≤   log P0 + 0.196 
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This means that we are 95% confident that  
 
e e e e eP P Plog . log log .0 25 00 196 0 196− ≤ ≤  

 
or, after a little clean-up,  
 

P e P P e0
0 196

25 0
0 196− ≤ ≤. .  

 
We can calculate (with the exponential function on a calculator)  e-0.196 = 0.8220 and 
e0.196 = 1.2165, and this will lead us to  
 

0.8220 P0  ≤  P25  ≤  1.2165 P0 
 
Since P0 = $40, the interval is  $32.88 to $48.66. 
 
A few comments about this.... 
 
While the quantity Xn can be positive or negative, the value of eXn  is always positive.   
The relationship Pn = Pn-1 eXn  will thus always produce positive prices.  This gets around 
the objection to negative values which haunts model 1.  
 

Model 2 puts a probability structure on the proportional changes  P
P

n

n−1

.  This seems to be 

more reasonable than putting structure on the dollar-value changes, as in mode l. 
 
 
There is an interesting side consequence to this model.  You can see that the center of the 
confidence interval is at $40.77, which is a little bit higher than $40.  This happens even 
though we put a mean of zero on the Xi ’s.  If you believe in the lognormal model, you 
must make money in the stock market because the gains tend to outweigh the losses, even 
when the market drift parameter μ is zero. 
 
 
 
Here’s a different numeric story for the second model, using a positive value of μ. 
 
Suppose, as before, that P0 = $40 and σ = 0.02, but now let μ = 0.005.  We want to give a 
95% prediction interval for P25, the price of the stock after 25 days.  As before, 

Tn = log P
P

n

0

, but now T25 has mean value 25μ = 0.125 and standard deviation σ 25  = 0.1.  

 

We are 95% certain that T25 = log P
P

25

0

  is in the interval  0.125 ± (1.96)(0.1), which is  

(-0.071, 0.321).  We are 95% confident that  
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-0.071  ≤  log P
P

25

0

 ≤  0.321 

 
or equivalently  

 
log P0 -  0.071  ≤  log P25  ≤   log P0 + 0.321 

 
This means that we are 95% confident that  

 
e e e e eP P Plog . log log .0 25 00 071 0 321− ≤ ≤  

 
or, after a little clean-up,  
 

P e P P e0
0 071

25 0
0 321− ≤ ≤. .  

 
We have e-0.071 = 0.9315 and e0.321 = 1.3785, and this will lead us to  
 

0.9315 P0  ≤  P25  ≤  1.3785 P0 
 
Since P0 = $40, the interval is  $37.26 to $55.14.  The positive value of μ gives a nice 
kick to this interval. 
 


